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Abstract: A fast method is developed for value-at-risk and expected shortfall prediction
for univariate asset return time series exhibiting leptokurtosis, asymmetry and conditional
heteroskedasticity. It is based on a GARCH-type process driven by noncentral t innovations.
While the method involves the use of several shortcuts for speed, it performs admirably in
terms of accuracy and actually outperforms highly competitive models. Most remarkably,
this is the case also for sample sizes as small as 250.
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1. Introduction

Value-at-risk (VaR) and, more recently, expected shortfall (ES) are fundamental risk measures. In
May 2012, the Basel Committee on Banking Supervision announced its intention to replace VaR with
ES in banks’ internal models for determining regulatory capital requirements ([1] p. 3). Calculation of
the ES requires first calculating the VaR, so that accurate methods for VaR are still necessary. Numerous
papers have proposed and tested models for VaR prediction, which amounts to delivering a prediction
of a left-tail quantile of the h-step ahead predictive distribution of a univariate time series of financial
asset returns. Kuester et al. [2] discuss and compare numerous models and show that competitive models
include the normal-mixture-GARCH type of models and GARCH-type models driven by heavy-tailed,
asymmetric innovations (in this case, we use the noncentral t distribution, or NCT-GARCH).



Econometrics 2014, 2 99

In this paper, we develop an extremely fast method for VaR and ES prediction based on NCT-GARCH
and demonstrate its viability. We use two variants of the normal-mixture-GARCH model class as a
benchmark for testing, given its outstanding prediction performance, as demonstrated in Kuester et al. [2]
and Haas et al. [3]. Unfortunately, the method we employ to speed up the NCT-GARCH estimation is
not straightforwardly applicable to the normal-mixture-GARCH framework, and so, the latter is, relative
to our newly proposed technique, extremely slow.

There are at least two reasons for developing a fast (and accurate) method for VaR and ES prediction.
The first is that large financial institutions are required to compute and report VaR (and soon, perhaps,
the ES) of customer portfolios. With the potential number of clients in the tens of thousands, speed
(and accuracy) are crucial. The second reason is that the method can then be used in a portfolio
optimization framework, in which the ES values corresponding to thousands of candidate portfolios
need to be computed.

The rest of this paper is organized as follows. Section 2 develops the methodology for computing
the NCT-APARCHmodel in a fraction of the time otherwise required by standard maximum likelihood
methods. Section 3 presents an extensive forecast comparison revealing the usefulness of the new
approach in terms of density and VaR forecasting. Section 4 concludes.

2. NCT-GARCH

With respect to the class of GARCH-type models driven by heavy-tailed, asymmetric innovations,
we consider an APARCH model driven by innovations from a (singly) noncentral t distribution,
hereafter NCT. While there are several ways of introducing asymmetry into the Student’s t distribution,
the benefit of this choice is that the NCT is closed under addition, in the sense that sums of margins
of the Kshirsagar [4] multivariate NCT is again NCT (see, e.g., [5]), so that, if the set of asset returns
is modeled using a multivariate NCT, then the portfolio distribution is analytically tractable; see, e.g.,
Jondeau [6] and Broda et al. [7]. The idea of using the (univariate) NCT distribution for modeling asset
returns goes back to Harvey and Siddique [8].

Section 2.1 introduces the model and discusses computational aspects and problems concerning the
NCT density and expressions for VaR and ES. Section 2.2 revives the idea of using fixed, instead of
estimated, GARCH parameters and details the idea of how to construct a fast and accurate estimator
for the NCT-APARCH model, with a location parameter. Section 2.2.1 introduces a new approach to
estimating the location coefficient, which is extremely fast and nearly as accurate as the use of the
maximum likelihood estimator (MLE). Section 2.2.2 shows the calibration of the GARCH parameters,
and Section 2.2.3 focuses on the subsequent parameter fixing of the APARCH asymmetry parameter.
In Section 2.3, the use of a lookup table, based on sample and theoretical quantiles, is developed. This
is shown to be virtually as accurate as maximum likelihood estimation, but far faster.

2.1. Model

With a GARCH structure, the model is:

Rt = a0 + Z∗t σt, Z∗t = Zt − µ, Zt
iid∼ NCT(k, γ) (1)
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with:

µ = E
[
Zt
]

=

(
k

2

)1/2
Γ (k/2− 1/2)

Γ (k/2)
γ

k ∈ R>0 is the degrees of freedom, and γ ∈ R is the noncentrality parameter, which dictates the
asymmetry; see, e.g., Paolella [9], Section 10.4, for details on computing the density and cumulative
distribution function (cdf) of the (singly and doubly) NCT using exact and saddle point methods. The
evolution of the scale parameter σt can be modeled rather flexibly by the APARCH model proposed by
Ding et al. [10], given by:

σδt = c0 +
r∑
i=1

ci (|εt−i| − γiεt−i)δ +
s∑
i=1

diσ
δ
t−i, εt = Z∗t σt (2)

with ci > 0, di ≥ 0, δ > 0 and |γi| < 1. Calculations show that the likelihood is often relatively flat in
δ for values between one and two, so we just set δ = 2, as well as taking the usual values of r = s = 1.
We will investigate the effect of varying asymmetry parameter γ1 below in Section 2.2.3 and first take
it to be zero for the development of the fast estimation method. Note that the structure of Equation (2)
implies that σt is independent of Z∗t , so that, in Equation (1), E

[
RP,t

]
= a0, a result we require below.

The major potential drawback of this model is that, using conventional constructs, the likelihood is
very slow to compute: The NCT density can be expressed as an infinite sum,

fZ (t; k, γ) = e−γ
2/2Γ ((k + 1) /2) kk/2√

πΓ (k/2)

(
1

k + t2

) k+1
2

×

[
∞∑
i=0

(tγ)i

i!

(
2

t2 + k

)i/2
Γ {(k + i+ 1) /2}

Γ {(k + 1) /2}

] (3)

as is used, for example, in MATLAB’s function, NCTPDF.
Given that the likelihood entails computing the density at each point in the return series, and we

envision this being done for thousands of such series, the use of Equation (3) will be prohibitive.
This bottleneck was overcome by Broda and Paolella [11], in which a highly accurate saddle point
approximation, hereafter SPA, was developed for the singly (and doubly) noncentral t distribution. The
enormous speed increase is attained because: (i) the SPA equation can be explicitly solved, and thus, the
evaluation of the approximation entails a small and fixed number of floating point operations; and (ii)
the procedure can be “vectorized” in MATLAB and other vector-based computing languages. The SPA
density needs to be renormalized to integrate to one, and this degrades its speed somewhat. However, a
lookup table (based on a tight grid of the two parameter values) can be used to obviate the integration.

An alternative to the SPA, which is nearly as fast, but more accurate, is to use a simple, two-fold
approximation to Equation (3). This is detailed in Appendix A.

From the fitted model and the h-step ahead density forecast, the VaR and ES are calculated.
Calculation of quantiles requires root searching using the cdf, which also can be expressed as an infinite
sum. However, the SPA can be used for the cdf, as well, as detailed in Broda and Paolella [11], so that
the VaR is obtained in a fraction of the time otherwise required. The ES could be computed as follows:
assuming the density of random variableX is continuous, the ES can be expressed via the tail conditional
expectation, for a given confidence level q ∈ (0, 1), as:

ES(q)(X) ≡ −E [X | X ≤ −xq] = −1

q

∫ −xq
−∞

ufX(u)du (4)
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where xq is the corresponding VaR (the negative 100q% quantile of X).
See Broda and Paolella [12] for further details on computing ES for various distributions popular

in finance and Nadarajah et al. [13] for an overview and literature survey of ES and its estimation
methods. The integral in Equation (4) can be evaluated using Equation (3) or, much faster, using the SPA
density approximation. However, a yet much faster way is presented in Broda and Paolella [14], again
via the use of saddle point methods, which completely avoids numeric integration and is shown to be
highly accurate.

While the use of the SPA for the cdf and the ES enable much faster calculation of the VaR and ES,
there is yet a faster way. That is to use a lookup table procedure. When using a closely spaced grid of
values of k and γ, the delivered values of VaR and ES (for 2 ≤ k ≤ 30 and −1 ≤ γ ≤ 1) are accurate to
at least three significant digits. For building lookup tables, we employ the NCT density approximation
in Appendix A, hereafter FastNCT.

2.2. Faster Estimation Method

Via the use of the SPA to the density of the NCT distribution, or by virtue of FastNCT, ML estimation
of the NCT-APARCH model does not require much more time than the estimation of the usual t-GARCH
model of Bollerslev [15]. Nevertheless, this method still entails joint optimization of at least five
parameters and requires running the GARCH filter through the data at each iteration. As such, we
propose an alternative method of estimation that is much faster. The core idea is to fix the APARCH
parameters in advance, choosing a typical set of values associated with daily financial returns data. (This
idea is of course not new and goes back at least to the RiskMetrics Technical Document of 1994, in
which they essentially propose an integrated GARCH(1,1) model with d1 = 0.94.) For the estimation
of intercept parameter a0 in Equation (1), as E

[
Rt

]
= a0, we use (in light of the heavy tails) a trimmed

mean, as discussed below. The chosen GARCH filter is then applied to the location-centered returns
Rt − â0, yielding a (presumed) set of i.i.d. location-zero, scale-one NCT residuals.

Then, based on these residuals, one option is to compute the MLE of the two NCT density parameters.
This procedure is between seven and 15 times faster than computing the MLE of the full model when
using SPA or FastNCT (the time increase depending on the data set; presumably, the larger the degrees of
freedom parameter, the longer estimation takes, because of a flatter likelihood). Another option, which
is much faster and ultimately what we use and recommend, is to use a lookup table procedure based on
sample quantiles. This is detailed below in Section 2.3.

The next two subsections consider: (i) the estimation of the location term a0 assuming
volatility-adjusted returns; and (ii) the motivation and justification of fixing the APARCH parameters.

2.2.1. Location Term a0

We desire a very fast method for the estimation of a0, which is still accurate. This is because the
estimation error in the means of the returns are more consequential in asset allocation than those in the
variance and covariance terms (see [16]). One could just take the sample mean, but given the potentially
heavy tails of the data, this will be a poor choice. The median is also too extreme, especially after
GARCH effects are accounted for. Consider the trimmed mean for a set of data X = (X1, . . . , Xn),
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denoted trim(X, α) = X̄(α), 0 ≤ α < 100, computed as the mean of the Xi after dropping the smallest
and largest α/2% of the sample. We wish to determine the optimal trimming value α, as a function of the
degrees of freedom parameter k. Given that the fat tailed nature of asset returns is far more prominent
than the asymmetry, we consider determining the optimal α just based on the usual Student’s t, i.e.,
γ = 0. Let Xi

iid∼ t (k, µ, 1), i.e., the Student’s t with degrees of freedom parameter k, location µ and
scale one.

For a fixed k and based on a sample size of n = 1000 (and, with no loss of generality, taking µ = 0),
we simulate s = 50, 000 samples, and for each, X̄(α) was computed for each integer value of α ranging
from zero to 99. For each α, the mean squared error (MSE) is approximated as s−1

∑s
i=1 X̄

2
(α),i. To

illustrate, for v = 1, 3, 10, 50, Figure 1 plots the MSE as a function of α with the MSE of the MLE
shown as the dotted horizontal line. We see, as expected, that as k increases from one to 50, the optimal
value of α, say α̂ (k), decreases from 76 down to two. Notice also that, with increasing k, the MSE of
µ̂ML decreases, and the MSE of X̄α̂(v) approaches that of µ̂ML.

Figure 1. The MSE of trimmed mean X̄(α) as a function of α, for estimating location
parameter µ of the i.i.d. Student’s t data with known scale one and degrees of freedom one
(top left); three (top right); 10 (bottom left) and 50 (bottom right), based on a sample size
of n = 1000 observations. The vertical axis was truncated to improve the appearance. The
dashed line in each plot is the MSE of the MLE of µ.
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This procedure was then conducted for the 99 values k = 1, 1.5, 2, . . . , 50, and the optimal value of
α, α̂(k), was determined. The results are shown in Figure 2. The left panel plots k versus α̂ (k) and
shows that the α̂ behave as expected. The right panel shows the log plot, which reveals an almost linear
structure of α̂ for low values of k.
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Figure 2. (Left) Plots α̂ (k) versus k for n = 1000, each obtained via simulation using
25,000 replications; (Right) The same, but using a log scale.
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This can be used to construct a simple approximation to the relationship between k and α̂ (k). The
first five observations (v = 1, 1.5, . . . , 3) are virtually perfectly modeled as:

α̂ (k) ≈ ᾰ (k) := round (75.8264− 29.2699 log(k)) , 1 ≤ k ≤ 3 (5)

with an R2 of 0.9993. For 3 < k ≤ 33, we obtain:

α̂ (k) ≈ ᾰ (v) := round
(
81.6637− 40.5658 log k + 5.1540 (log k)2

)
, 3 < k ≤ 33 (6)

with R2 = 0.9983. For 33 ≤ k < 50, we take ᾰ (k) = 3. The same exercise was repeated for different
sample sizes and, conveniently, the optimal values of α do not depend on the sample size, at least for n
between 250 and 2000.

The procedure for estimating a0 is then as follows. First take a0 to be the sample median of the returns
data, say â(1)0 = median(Rt), and apply the fixed APARCH filter discussed below to the location-adjusted
returns Rt − â(1)0 . This results in a set of data, say Z(1) =

(
Z

(1)
1 , . . . , Z

(1)
T

)
, which are (close to) i.i.d.,

with the unit scale term. Based on Z(1), compute the estimators of k and γ, which could be done using
MLE, or a lookup table, as discussed in Section 2.3. Next, based on k̂, use Equation (5) or Equation (6)
to determine the optimal trimming value α, say α(1)

∗ . Finally, let â(2)0 = trim
(
Z(1) + â

(1)
0 , α

(1)
∗
)
. This can

be repeated, applying the GARCH filter to Rt− â(2)0 to get Z(2); then, obtain k̂ and γ̂ (from, say, a lookup
table); use Equation (5) or Equation (6) to get α(2)

∗ , and set â(3)0 = trim
(
Z(2) + â

(2)
0 , α

(2)
∗
)
, etc.

The devised method converged after three or four iterations in all simulation studies conducted.
Figure 3 shows the comparison of the sample mean, the sample median and our iterated (three iterations
used) sample trimmed mean estimator. The latter performs superior to the sample mean and sample
median in all cases and yields a lower spread of estimates around the true value. The results shown
in Figure 3 are qualitatively the same when the MLE is employed in lieu of using a lookup table; see
Table 1. Qualitatively similar results were found to hold for a sample size of 250.
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Figure 3. Boxplots of 5000 estimates of a0 based on simulated data of length T = 1000,
generated from a t-GARCH model with parameters a0 = 0.1, c0 = 0.04, c1 = 0.05,
d1 = 0.90, for different degrees of freedom k = 4, 6, 8, 10. For estimating the degrees
of freedom, the lookup table-based estimation is used. Results for the MLE are qualitatively
identical. The (iterative) trimmed mean procedure is stopped after three iterations.
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2.2.2. Use of Fixed GARCH Parameters

We first provide simulation-based evidence indicating the potential plausibility of the method to
deliver similar density (and, thus, VaR and ES) predictions as full MLE estimation. One can view
both models as special (extreme) cases of shrinkage-based MLE, with the optimal amount of shrinkage
most likely not at either of these two extremes. We compare: (i) the variation of estimated NCT-GARCH
parameters on typical financial returns data; with (ii) the variation of the MLE from simulation of the
NCT-GARCH process using a typical parameter vector as the true values. If the variation in (i) is smaller
than that in (ii), then it stands to reason that the estimation of the GARCH parameters can be forgone
without great loss of accuracy and replaced by typical values obtained in (i) (for which we choose
c0 = 0.04, c1 = 0.05 and d1 = 0.90).

As a demonstration, we consider the daily percentage log returns of the 30 components of the DJIA
from Wharton/CRSP(as used in April 2013), from 1 January 1993, until 31 December 2012. For (i), we
use non-overlapping windows of a length of 1000 (yielding 150 sets of parameter estimates), and the
results are shown in Figure 4. (Although we are only concerned with the GARCH parameters, we show
all six parameters for completeness.)
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Table 1. Root mean squared errors (RMSE) for the sample mean, the sample trimmed mean
procedure from Section 2.2.1 and the sample median. Values are based on 5000 estimates
of a0 using simulated data generated from a t-GARCH model with parameters a0 = 0.1,
c0 = 0.04, c1 = 0.05, d1 = 0.90, for different degrees of freedom k = 4, 6, 8, 10.
The (iterative) trimmed mean procedure is stopped after three iterations. For estimating
the degrees of freedom of the conditional Student’s t distribution, MLE and lookup table
estimation (LTE) are used. GARCH parameters are fixed. Entries in boldface denote the
smallest RMSE.

Model Number Of Number of k RMSE of RMSE of the RMSE of
Entries Quantiles the Mean Trimmed Mean the Median

Procedure

T = 250

MLE 4 0.372 0.191 0.204
MLE 6 0.098 0.083 0.095
MLE 8 0.080 0.073 0.085
MLE 10 0.072 0.069 0.082

LTE 3621 6 4 0.308 0.183 0.197
LTE 3621 6 6 0.097 0.085 0.097
LTE 3621 6 8 0.080 0.073 0.085
LTE 3621 6 10 0.074 0.070 0.083

LTE 56,481 41 4 0.302 0.168 0.181
LTE 56,481 41 6 0.097 0.085 0.097
LTE 56,481 41 8 0.079 0.073 0.085
LTE 56,481 41 10 0.074 0.070 0.082

T = 1000

MLE 4 0.171 0.064 0.071
MLE 6 0.049 0.041 0.047
MLE 8 0.040 0.037 0.042
MLE 10 0.036 0.033 0.040

LTE 3621 6 4 0.153 0.065 0.072
LTE 3621 6 6 0.048 0.040 0.047
LTE 3621 6 8 0.040 0.036 0.042
LTE 3621 6 10 0.036 0.034 0.040

LTE 56,481 41 4 0.272 0.064 0.070
LTE 56,481 41 6 0.049 0.041 0.047
LTE 56,481 41 8 0.040 0.036 0.042
LTE 56,481 41 10 0.037 0.034 0.040
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Figure 4. MLE parameter estimates corresponding to the NCT-GARCH model, for the
DJIA-30 data, using non-overlapping windows of length T = 1000, over 20 years of data
and the 30 time series. The circle on the x-axis indicates the median of the data. Blue lines
refer to the average parameter value for each of the 30 assets.
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This can be compared to Figure 5, which shows the computation corresponding to (ii), i.e., the
MLE simulation results based on series of length T = 1000, generated from an NCT-GARCH
process with parameters a0 = 0.06, c0 = 0.05, c1 = 0.05, d1 = 0.90, k = 7, and γ = 0.05. The
corresponding two figures for T = 250 were also computed and are similar, though look even less
Gaussian than the case with T = 1000; and are available upon request. Also, the simulation in (ii) was
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conducted using T = 25, 000, to confirm the consistency and asymptotic normality of the estimators. We
see that the variation of (i) is, as hoped, smaller than that of (ii), for GARCH parameters c0 and c1, though
it is not quite the case for parameter d1, because of the elongated left tail in the distribution for d1 in
Figure 4. However, most of the mass is indeed centered around the value 0.90. As such, this exercise
lends some evidence that we can forgo the estimation of the GARCH parameters, but it remains to be
seen what effect this has on out-of-sample performance for density and VaR prediction. This is done
below in Section 3.

Figure 5. MLE Parameter estimates corresponding to the NCT-GARCH model, for
simulated noncentral t (NCT) GARCH data, using length T = 1000 and 1000 replications.
The circle on the x-axis indicates the median of the data.
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2.2.3. Fixed GARCH Parameters and APARCH

The previous exercise was initially conducted using the APARCH model, based on 250 observations,
this being one of the two sample sizes we chose to use in our forecast demonstration below. The reason
for this sample size of approximately one year of daily trading data is to help avoid the effects of model
misspecification, such as regime switching; see, e.g., Chavez-Demoulin et al. [17], or, more generally,
to account for the fact that the proposed model is surely not the true data generating process through all
of time; see the discussion and evidence in Paolella [18].

Using a sample size of 250 and estimating via MLE all of the parameters of the NCT-APARCH model,
it is found that the estimated asymmetry (leverage effect) parameter is rather erratic, when viewed over
moving windows through time, and often approaches (and touches) its upper boundary value of one. To
rule out any computational errors, simulations were conducted. When using a sample size of 250, it
was found that the final ML estimates are very sensitive to the choice of starting values and appear to
result in biased estimation of the asymmetry parameter. However, when using very large sample sizes
(e.g., 25,000), the maximum likelihood estimator looks as one would expect, namely virtually perfectly
Gaussian and centered around the true parameter values, this having been achieved using any reasonable
set of starting values, not just the true ones.

Given the problematic asymmetry parameter in small sample sizes, we first select the three parameters
associated with the traditional GARCH model (with NCT innovations) and, then, conditional on those,
choose the optimal asymmetry parameter in the APARCH construction. In particular, we investigate the
effect of allowing for a non-zero asymmetry parameter γ1 in Equation (2) with respect to out-of-sample
prediction quality. To determine the optimal choice of γ1, we perform different out-of-sample forecast
studies, each with a fixed γ1 coefficient. (To speed up estimation, we employ the table lookup method
for the NCT parameters, as described in the next section.)

Figure 6 shows the results of VaR performance and prediction quality, the latter measured by
evaluating the log predicted NCT density at the realized returns, as done in Paolella [18] and Paolella
and Polak [19]. This was conducted for two sample sizes, 250 and 1000, and the results are remarkably
similar. Clearly, the NCT-APARCH model (with fixed GARCH parameters) has superior performance
for most choices of γ1, with the number of VaR violations being closer to its expected value. A similar
result is observed, but less pronounced, in terms of prediction quality: for 0.25 ≤ γ1 ≤ 0.55, the
NCT-APARCH model outperforms the GARCH case. From these plots, it appears that taking γ1 = 0.4

is the optimal choice to improve the forecast quality. We subsequently use this in all of the following
empirical examples.
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Figure 6. An illustration of the effect of varying the APARCH parameter on the number of
VaR violations (left) and the sum of log-likelihood values (right) evaluated at the realized
return given the predicted density of the portfolio return. Results are out-of-sample for
the period 4 January 1993 to 31 December 2012, obtained from rolling window exercises
with windows of a length of 250 (4787 forecasts) and 1000 (4037 forecasts), respectively.
The data set under study is the 20-year sequence of daily returns (percentage log-returns)
of the equally weighted portfolio of DJIA30components (as of April 2013). Dashed lines
refer to the NCT-GARCH model, solid lines to the NCT-APARCH model with γ1 being
varied. In the case of NCT-GARCH, model parameters are estimated by MLE, while for
NCT-APARCH, a0 is obtained using the trimmed mean procedure in Section 2.2.1, and the
GARCH parameters are fixed according to Section 2.2.2, i.e., we use c0 = 0.04, c1 = 0.05,
d1 = 0.90. Dotted lines in the left panel depict the expected number of VaR violations at
the 1% (lower lines; blue), 2.5% (middle lines; green) and 5% (upper lines; red) significance
level, respectively.

−1 −0.5 0 0.5 1
0

50

100

150

200

250

300

n
u

m
b

e
r 

o
f 

V
a

R
 v

io
la

ti
o

n
s

γ
1

−1 −0.5 0 0.5 1
−7200

−7150

−7100

−7050

−7000

−6950

−6900

−6850

−6800

s
u

m
 o

f 
lo

g
−

li
k
e

li
h

o
o

d
 v

a
lu

e
s

γ
1

Sample size 250.

−1 −0.5 0 0.5 1
0

50

100

150

200

250

n
u

m
b

e
r 

o
f 

V
a

R
 v

io
la

ti
o

n
s

γ
1

−1 −0.5 0 0.5 1
−6350

−6300

−6250

−6200

−6150

−6100

−6050

−6000

−5950

s
u

m
 o

f 
lo

g
−

li
k
e

li
h

o
o

d
 v

a
lu

e
s

γ
1

Sample size 1000.



Econometrics 2014, 2 110

2.3. Lookup Table

To further speed up the calculation of the NCT-APARCH model, we propose the use of a lookup
table. In particular, we replace the ML estimation of the two shape parameters by values obtained
from a pre-computed table, using a function of the sample quantiles. Based on a tight grid of values
for parameters k and γ, for every pair of {k, γ}, the set of corresponding quantiles {Q1, . . . , Qm}
is computed (with each Qi obtained by numerically inverting the NCT cdf). For example, with
m = 21, we choose quantiles corresponding to probabilities {0.01, 0.05, 0.10, 0.15, . . . , 0.95, 0.99}.
With the completed table, parameter estimation is conducted by finding in the table that pair {k, γ}
for which:

m∑
i=1

wi
(
Q̂i −Qi

)2 (7)

is minimized, where Q̂i refers to the sample counterpart of Qi and (w1, . . . , wm)′ is the
vector of weights obtained using the asymptotic distribution, i.e., wj =

√
n/σj , j = 1, . . . ,m, where

σj =
√
pj(1− pj)/f(Qj) with f being the NCT pdf and pj being the probability corresponding to

quantile Qj .
There are several tuning parameters to be chosen: the number m of quantiles, which quantiles, the

size (granularity) of the lookup table and whether to use weighting or not, as it might not yield relatively
high improvements in accuracy compared to its additional computational time.

For demonstrating the method, we consider four sets of quantiles m = 6, 11, 21, 41 and three table
sizes n = 3621, 14,241, 56,481. Table 2 shows the results of the simulation for a sample size of 250
and based on 1000 replications. Additional results for a sample size of 1000 are included in the working
paper version of this document. As expected, both accuracy and computational time of the lookup table
estimation (LTE) increase monotonically with m and the table size. Furthermore, it can be seen that
the accuracy of the weighted lookup table estimator (wLTE) is better than the one of the non-weighted
variant, but differences are minor. The wLTE, however, requires twice as much memory (for storing
the weighting coefficients ωi) and, also, roughly, twice as many floating point operations. Hence, the
non-weighted LTE is generally faster and, therefore, might be favorable in certain contexts. Furthermore,
large tables are unlikely to fit into the processor’s (L2- or L3-) cache, which results in significantly slower
computations times compared to the use of small tables that fit into cache memory. Compared to the
MLE, a lookup table gives considerably lower computation times, in particular when the sample size
is large.

The last line in Table 2, showing the MLE performance, is noteworthy. We see that the MLE is
outperformed in terms of MSE by the most sophisticated lookup table method. This is important,
as it demonstrates that even for a (traditionally, in statistics, large) sample size of 250, the MLE can
be outperformed by alternative, simpler and faster estimation methods. In the working paper version
of this document, a similar table is provided based on a sample size of 1000. It demonstrates that,
asymptotically, the MLE will outperform all non-trivial (i.e., non-measure-zero) estimators, though the
table lookup methods are still competitive.

Moreover, the table lookup approach is not limited to parameter estimates. It is straightforward to
also return, e.g., exact VaR and ES values, as mentioned in Section 2.1. These can then be used to obtain
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the VaR and ES values corresponding to the NCT-APARCH density prediction, recalling that VaR and
ES preserve location-scale transformations. This is the method we employ.

Table 2. Evaluation of estimation quality based on 1000 estimates of the (location-adjusted)
NCT pdf in Equation (3) using simulated data (250 observations). The true parameters of
the data generating process are θ = (k, γ)′ = (7, 0.05)′. ML estimations are performed
by MATLAB’s FMINUNC using θ = (10, 0.2)′ as the starting value and based on the
approximate NCT density. In addition, parameter restrictions similar to those used for the
lookup tables are imposed in ML estimations. Lookup tables are constructed based on an
equally-spaced grid with step sizes given by h1 and h2, respectively.

Model Number of Number of NCT dfk NCT asym. γ Average Average Average
Entries Quantiles Steps in [2, 30] Steps in [−1, 1] Runtime Log-lik. RMSE

LTE 3621 6 71 51 0.001 s −391.9075 3.804
LTE 3621 11 71 51 0.001 s −391.8002 3.732
LTE 3621 21 71 51 0.002 s −391.5919 3.665
LTE 3621 41 71 51 0.004 s −391.3617 3.585

h1 = 0.4 h2 = 0.04

LTE 14,241 6 141 101 0.002 s −391.9038 3.807
LTE 14,241 11 141 101 0.004 s −391.7969 3.730
LTE 14,241 21 141 101 0.007 s −391.5920 3.668
LTE 14,241 41 141 101 0.010 s −391.3608 3.589

h1 = 0.2 h2 = 0.02

LTE 56,481 6 281 201 0.008 s −391.9032 3.807
LTE 56,481 11 281 201 0.010 s −391.7977 3.730
LTE 56,481 21 281 201 0.030 s −391.5900 3.669
LTE 56,481 41 281 201 0.050 s −391.3601 3.589

h1 = 0.1 h2 = 0.01

wLTE 3621 6 71 51 0.001 s −391.6156 3.753
wLTE 3621 11 71 51 0.001 s −391.4190 3.539
wLTE 3621 21 71 51 0.002 s −391.3269 3.312
wLTE 3621 41 71 51 0.005 s −391.3711 3.247

h1 = 0.4 h2 = 0.04

wLTE 14,241 6 141 101 0.002 s −391.6110 3.751
wLTE 14,241 11 141 101 0.005 s −391.4177 3.541
wLTE 14,241 21 141 101 0.009 s −391.3232 3.311
wLTE 14,241 41 141 101 0.020 s −391.3687 3.242

h1 = 0.2 h2 = 0.02

wLTE 56,481 6 281 201 0.010 s −391.6123 3.752
wLTE 56,481 11 281 201 0.020 s −391.4176 3.541
wLTE 56,481 21 281 201 0.040 s −391.3234 3.312
wLTE 56,481 41 281 201 0.070 s −391.3669 3.242

h1 = 0.1 h2 = 0.01

MLE – – – – 0.068 s −391.0015 3.470
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3. Density and VaR Forecasting

To evaluate the performance of the NCT-APARCH model estimated using the trimmed mean
procedure for a0, fixed APARCH parameters and the lookup table, we perform some standard tests on
the out-of-sample VaR and also examine the ranking of out-of-sample predictive log likelihood statistics,
all using real data. In addition, we compare the models’s performance to that of two competing models
that have been shown to perform extraordinarily well and, thus, serve as reference standards. These
are the mixed-normal-GARCH ([20,21]), and its extension, the mixed-normal-GARCH model with
time-varying mixing weights ([3]). They address volatility clustering, fat-tails, asymmetry and, also,
give rise to rich volatility dynamics not possible with traditional (single-component) GARCH models.
Extensive out-of-sample forecast exercises in Kuester et al. [2] and Haas et al. [3] have confirmed that
these models deliver highly accurate VaR forecasts. The models are briefly summarized in Appendix B.

Analogously to Section 2.2.3, where the choice of the APARCH parameter γ1 is investigated, we
focus on density and VaR forecasting quality among the various competing models. For VaR quality, the
number of realized VaR violations is considered, while the density forecast quality is measured by the
sum of log-likelihood values of the predictive density, evaluated at the realized return. As before, we use
the sequence of daily (percentage log-) returns of DJIA30 components (i.e., the DJIA constituents as of
April 2013). The comparison spans the period 4 January 1993 to 31 December 2012, and comprises:
(i) the 4787 one-step-ahead forecasts obtained from a rolling window with size 250; and similarly;
(ii) the 4037 forecasts for a window size of 1000.

The models under study are:

• the MixN-GARCH(3, 2) and the TW-MixN-GARCH(2, 2) models (see Appendix B), estimated
via the extended augmented likelihood estimator (EALE), as introduced in Broda et al. [22]; also
see Haas et al. [3],
• the NCT-GARCH model, given by Equation (2) with γ1 = 0, estimated by MLE using the NCT

density approximation detailed in Appendix A, and
• the NCT-APARCH model, given by Equation (2) with a0 computed, as described in Section 2.2.1,

and fixed parameter values, as described in Sections 2.2.2 and 2.2.3.

The first example uses the equally weighted portfolio of these 30 stocks, which is a common choice
in many risk testing applications; see, e.g., Santos et al. [23]. The ability of the “1/N portfolio” to
outperform even sophisticated allocation methods goes back at least to Bloomfield et al. [24] and is
further detailed in DeMiguel et al. [25] and Brown et al. [26] and the references therein. Tables 3
and 4 summarize the out-of-sample results for moving window sizes of 250 and 1000, respectively.
We report realized violation frequencies for the predictive VaR at the 1%, 2.5% and 5% significance level
and test statistics for unconditional coverage (LLUC), independence (LLIND) and conditional coverage
(LLCC), according to the tests proposed in Christoffersen [27]. The following relationship holds,
LRCC = LRUC + LRIND, where asymptotically LRUC ∼ χ2(1) independent of LRIND ∼ χ2(1), and
thus, LRCC ∼ χ2(2).
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Table 3. Out-of-sample forecast results based on the daily returns for the equally weighted
portfolio. The first section of the table shows the empirical violation frequency for various
models and three probability levels, for the univariate time series corresponding to the
equally weighted portfolio of the 30 DJIAstocks, from January 1 1993 to December 31 2012,
using rolling windows of a size of 250 and a step size of one day, resulting in 4787 predicted
observations. Values reported for unconditional coverage (LLUC), independence (LLIND) and
conditional coverage (LLCC) are the test statistics, as described in Christoffersen [27]. Entries
in boldface denote the best outcomes. ***, **, and * denote significance at the 1%, 5% and
10% levels, respectively. SPLL is short for sum of (realized) predicted log-likelihood values.
The following lookup tables are used, (a): Six quantiles, 3621 entries, first table in Table 2;
(b): 41 quantiles, 3621 entries, fourth table in Table 2; and (c): 41 quantiles, 56,481 entries,
twelfth table in Table 2. EALE, extended augmented likelihood estimator.

Model Estimation a0 1% VaR 2.5% VaR 5% VaR

Empirical violation frequency and SPLL

MixN-GARCH(3, 2) EALE jointly 1.36 3.11 5.70 −6864.52
TW -MixN-GARCH(2, 2) EALE jointly 1.32 3.05 5.62 −6879.26

NCT-APARCH (a) LTE tr. mean 1.07 2.38 4.49 −6802.75
NCT-APARCH (b) LTE tr. mean 0.94 2.53 4.49 −6796.98
NCT-APARCH (c) LTE tr. mean 0.94 2.53 4.49 −6797.06

NCT-GARCH MLE jointly 1.69 3.51 6.23 −6995.05
NCT-APARCH MLE jointly 1.59 3.36 5.93 −6918.63

NCT-APARCH (b) LTE median 0.919 2.444 4.324 −6806.1
NCT-APARCH (b) wLTE tr. mean 0.919 2.507 4.303 −6799.4

LLCC

MixN-GARCH(3, 2) EALE jointly 7.37 ** 7.98 ** 6.10 **
TW-MixN-GARCH(2, 2) EALE jointly 4.43 6.09 ** 3.99

NCT-APARCH (a) LTE tr. mean 0.52 0.49 2.88
NCT-APARCH (b) LTE tr. mean 0.76 0.45 2.70
NCT-APARCH (c) LTE tr. mean 0.76 0.45 2.70

NCT-GARCH MLE jointly 19.45 *** 21.68 *** 15.79 ***
NCT-APARCH MLE jointly 14.63 *** 13.31 *** 8.40 **

LLUC

MixN-GARCH(3, 2) EALE jointly 5.58 ** 6.86 *** 4.79 **
TW-MixN-GARCH(2, 2) EALE jointly 4.40 ** 5.57 ** 3.74 *

NCT-APARCH (a) LTE tr. mean 0.20 0.28 2.69
NCT-APARCH (b) LTE tr. mean 0.18 0.02 2.69
NCT-APARCH (c) LTE tr. mean 0.18 0.02 2.69

NCT-GARCH MLE jointly 19.19 *** 17.84 *** 14.11 ***
NCT-APARCH MLE jointly 14.18 *** 13.25 *** 8.31 ***

LLIND

MixN-GARCH(3, 2) EALE jointly 1.79 1.12 1.31
TW-MixN-GARCH(2, 2) EALE jointly 0.03 0.52 0.25

NCT-APARCH (a) LTE tr. mean 0.31 0.22 0.20
NCT-APARCH (b) LTE tr. mean 0.58 0.44 0.01
NCT-APARCH (c) LTE tr. mean 0.58 0.44 0.01

NCT-GARCH MLE jointly 0.26 3.84 * 1.68
NCT-APARCH MLE jointly 0.45 0.07 0.09
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Table 4. Similar to Table 3, but based on rolling windows of a size of 1000 days (4037 forecasts).

Model Estimation a0 1% VaR 2.5% VaR 5% VaR

empirical violation frequency and SPLL

MixN-GARCH(3, 2) EALE jointly 1.11 2.95 5.42 −5996.51
TW-MixN-GARCH(2, 2) EALE jointly 1.21 2.77 5.38 −5993.15

NCT-APARCH (a) LTE tr. mean 0.99 2.58 4.90 −5969.88
NCT-APARCH (b) LTE tr. mean 1.19 2.65 4.90 −5970.83
NCT-APARCH (c) LTE tr. mean 1.16 2.65 4.90 −5970.88

NCT-GARCH MLE jointly 1.19 3.12 5.87 −5974.90
NCT-APARCH MLE jointly 1.16 2.97 5.52 −5905.26

NCT-APARCH (b) LTE median 1.19 2.70 4.98 −5973.99
NCT-APARCH (b) wLTE tr. mean 1.29 2.75 4.95 −5971.10

LLCC

MixN-GARCH(3, 2) EALE jointly 1.53 3.96 1.50
TW-MixN-GARCH(2, 2) EALE jointly 2.95 1.21 1.19

NCT-APARCH (a) LTE tr. mean 0.80 0.30 0.09
NCT-APARCH (b) LTE tr. mean 2.53 0.66 0.14
NCT-APARCH (c) LTE tr. mean 2.16 0.66 0.14

NCT-GARCH MLE jointly 2.53 5.94 * 6.47 **
NCT-APARCH MLE jointly 2.16 4.36 2.79

LLUC

MixN-GARCH(3, 2) EALE jointly 0.52 3.15 * 1.50
TW-MixN-GARCH(2, 2) EALE jointly 1.75 1.21 1.18

NCT-APARCH (a) LTE tr. mean 3.3e-3 0.10 0.08
NCT-APARCH (b) LTE tr. mean 1.38 0.37 0.08
NCT-APARCH (c) LTE tr. mean 1.05 0.37 0.08

NCT-GARCH MLE jointly 1.38 5.94 ** 6.14 **
NCT-APARCH MLE jointly 1.05 3.50 * 2.27

LLIND

MixN-GARCH(3, 2) EALE jointly 1.01 0.81 1.3e-3
TW-MixN-GARCH(2, 2) EALE jointly 1.20 4.0e-3 0.01

NCT-APARCH (a) LTE tr. mean 0.80 0.20 0.01
NCT-APARCH (b) LTE tr. mean 1.16 0.29 0.06
NCT-APARCH (c) LTE tr. mean 1.11 0.29 0.06

NCT-GARCH MLE jointly 1.16 1.2e-3 0.34
NCT-APARCH MLE jointly 1.11 0.86 0.52

First, consider the VaR coverage performance. The NCT-APARCH model with fixed parameters
is clearly the best performer, this at all three VaR probability levels. Only the TW-MixN-GARCH
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model is found to be somewhat competitive, in particular at the 5% significance level. This result holds
irrespective of the lookup table used. Among the LTE results, we observe a slight dependence on the
employed estimation of the mean coefficient a0. In particular, the results based on the trimmed mean
approach are superior. This supports the use of our proposed method of mean estimation, which is
designed to be virtually as good as maximum likelihood, but much faster.

With regard to density forecast quality, measured by the sum of (realized) predicted log-likelihood
values (SPLL), first consider the sample size of 250 case. The worst performers are the NCT-APARCH
and NCT-GARCH models estimated by MLE. The normal mixture-based models are more competitive
in this regard and take second place. The best performers are the new class of models we propose
herein. This result is not surprising, given that GARCH models are known to require large sample sizes
for accurate estimation. Matters change for a sample size of 1000, in which case, the MLE estimated
NCT-APARCH model performs, by far, best. This improvement in density forecasting is, however, not
accompanied by a corresponding improvement in VaR forecasting quality. The dissonance between VaR
performance and density forecasting performance in the sample size of 1000 case is not inconsistent, as
shown in Geweke and Amisano [28].

Judging from the similar results across all procedures based on the lookup table, the observed
differences in performance stem from using the fixed set of APARCH parameters, instead of the MLE.
Moreover, given the matrix-based nature of the approach, the lookup table can straightforwardly be
parallelized, such that, e.g., in multi-core environments, even higher gains in speed are possible.

The second example is similar, but instead of only one series (the equally weighted portfolio), we
use each of the 30 individual stock return series. The results for the three VaR probability levels, for
each of the 30 series, were computed and tabulated and are shown in the working paper version of this
document. Cutting to the chase, the results are similar to the previous, equally weighted portfolio case:
the NCT-APARCH with fixed APARCH coefficients and the lookup table is the best performing model.

The MATLAB codes to compute VaR and ES corresponding to this model, for a given data set and tail
probability and based on the NCT parameter lookup table as used in Table 2 are available upon request
from the authors.

4. Conclusions and Future Research

An interesting result from our proposed method for computing value-at-risk (VaR) and expected
shortfall (ES) is that setting the APARCH parameters to constants is superior to estimating them from
the data. This result is neither new, nor counter intuitive: it is just a special case of shrinkage estimation.
In addition, the use of a lookup table based on quantiles can be superior to the use of maximum
likelihood estimation of the density parameters for relatively small sample sizes and is very close in mean
square error quality, even for larger sample sizes. Both of these findings together yield a technique for
computing VaR and ES that is massively faster than existing methods based on conventional estimation
techniques and, amazingly, delivers values that are not just competitive to conventional methods, but are
actually demonstrably superior.

Work in progress involves using this method for minimum ES portfolio construction. It involves
computing the pseudo historical return series for a given set of portfolio weights, and these weights
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are then chosen iteratively by an appropriate optimization algorithm. This well-known technique is
sometimes referred to as the single index model approach; see, e.g., McAleer and Da Veiga [29] and
Asai and McAleer [30]. It is noteworthy that, from a numerical perspective, our proposed method often
shows the non-continuity of the ES with respect to the portfolio weights, owing to the nature of the
construction, so that traditional optimization methods based on numerical derivatives are likely to fail.
Alternative methods of optimization, including heuristic-based algorithms and simulation, are currently
being entertained and will be reported in future work.
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Appendix

A. Fast Approximation to the Univariate NCT pdf

We first summarize the main ideas of the approximation, which we refer to as FastNCT. First, the
infinite sum in Equation (3) is truncated at the first index at which the (relative) contribution of the
successive summand becomes negligible with respect to the total sum. Second, we observe that, for the
general case γ 6= 0, computations times for evaluating Equation (3) tend to increase rapidly for points
in the outer tail area. As the likelihood of points distant to the center is close to zero, we approximate
Equation (3) in this area by its central case (γ = 0), for which the pdf is extremely fast to evaluate.
This, of course, adds a (small) approximation error and two discontinuity points to the approximate
pdf. Fortunately, it turns out that, for the range of noncentrality coefficients typically found for financial
returns data, i.e., −1 ≤ γ ≤ 1, the tail approximation error is insignificant, and in our empirical studies,
the MLE was not affected by the discontinuity in terms of estimation quality under different optimization
methods. Table A1 briefly summarizes some of our simulation results, showing that there is virtually no
difference between maximum likelihood estimates obtained via MATLAB’s NCTPDF routine and via the
devised approximation. Qualitatively identical results are obtained for other parameter values typically
found for financial returns data.

Together, the two tricks (both of which can be “vectorized” in MATLAB) render the pdf evaluation
extremely fast and more accurate than the SPA approach in Broda and Paolella [11].

Let Z ∼ N(γ, σ) and X ∼ χ2(k) be independent random variables, then:

Y = µ+ Z/
√
X/k ∼ NCT(µ, γ, k, σ) (8)
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follows Kshirsagar’s univariate NCT distribution with density function:

fY (x;µ, γ, k, σ) =
Γ ((k + 1) /2)

(πk)1/2 Γ (k/2)σ
exp

{
−1

2

γ2

σ2

}(
k

k + y2/σ2

)(k+1)/2

(9)

×
∞∑
i=0

gi (x;µ, γ, k, σ) ,

gi (x;µ, γ, k, σ) =
2i/2Γ ((k + 1 + i) /2)

i!Γ ((k + 1) /2)

(
yγ

σ2
√
k + y2/σ2

)i

where µ ∈ R is the location coefficient, γ ∈ R is the non-centrality parameter, σ ∈ R>0 denotes the scale
of Z, k ∈ R>0 is the degrees of freedom parameter of X and y = x− µ. The considered approximation
is two-fold.

Table A1. Root mean squared error (RMSE) and inter-quantile range (IQR) of the
estimation error for the degrees of freedom (k) and the noncentrality parameter (γ) of the
NCT, based on simulated data (T = 250 and T = 1000 samples, 5000 simulations) using
θtrue = [ν = 7, γ = 0.05]. Estimations are performed by MATLAB’s FMINUNC routine
with starting value θstart = [ν = 10, γ = 0.2]. The average computation time per estimation
is given in seconds.

RMSE IQR

MATLAB’s NCTPDF FastNCT MATLAB’s NCTPDF FastNCT

T = 250 factor 7.000 0.140 s 0.020 s

NCT df k 205.14 277.91 6.252 6.267
NCT asym. γ 0.066 0.066 0.005 0.005

T = 1000 factor 7.941 0.270 s 0.034 s

NCT df k 1.246 1.247 1.385 1.386
NCT asym. γ 0.033 0.033 0.001 0.001

First, regarding the numerical stability of computing the infinite sum (that often involves extremely
large numbers), it appears beneficial to work with the logarithm of Equation (9), i.e.,

log fY (x;µ, γ, k, σ) = log Γ

(
k + 1

2

)
− log (πk)

2
− log Γ

(
k

2

)
− log (σ) (10)

+
k + 1

2

(
log (k)− log

(
k + y2/σ2

))
(11)

− 1

2

γ2

σ2
+ log

∞∑
i=0

gi (x;µ, γ, k, σ) (12)

The use of logarithms to linearize products is well-known to increase both numerical robustness, as
well as accuracy, e.g., by preventing numerical under- and over-flows. Except for the infinite sum over
gi in Equation (12),

∞∑
i=0

gi (x;µ, γ, k, σ) (13)
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the evaluation of fY to machine precision is straightforward using standard numerical
software. Unfortunately, and to the best of our knowledge, there is no closed form solution for
Equation (13). It, however, becomes evident that fY consists of two different kinds of terms. The terms in
Equations (10) and (11) give rise to the density of the multivariate central t, while those in Equation (12)
only contribute (by adding noncentrality) if γ 6= 0. We make use of this fact and construct the following
approximation to fY .

Let x be a point on the support of Y , and let ε, ε > 0, be a (very small) threshold value, e.g.,
the machine precision. The first approximation works as follows. We evaluate the density, fγ=0

Y ,
namely Equations (10) and (11). Then, based on the resulting likelihood value, we decide whether
to evaluate Equation (12) or not, i.e., we only calculate the noncentrality part if fγ=0

Y (x) > ε. This is
of particular importance, as the computation times of Equation (12) tend to increase dramatically for
(distant) evaluation points with an almost zero likelihood. By construction, this approximation involves
an error in the outer tail area where the computation of Equation (12) is disregarded. Observe, however,
that fY will anyway evaluate to a value close to zero in this area, if extreme cases of noncentrality are
neglected, which is found to be a reasonable assumption in the context of financial asset returns. As such,
the approximation error is small to negligible and depends on ε primarily. Using machine precision for
ε, the first approximation is extremely accurate and virtually perfect for −1 ≤ γ ≤ 1.

The second approximation consists in the truncation of Equation (13). Let (gi)i=0,... denote the series
of summands. Then: (i) g0 = 1; (ii) gi is oscillating when κ = yγ/σ2 has a negative sign; (iii) gi → 0

if i → ∞; (iv) series (hi)i=0,1,... = (|gi|)i=0,1,... has a global maximum; (v) the infinite sum converges
with respect to some reasonable stopping condition within a finite number of summands; and (vi) the
infinite sum can be accurately approximated without the numerical under- and over-flow issues of the
naive approach. (i) and (ii) are trivial; (iii) Let:

∇i = 2i/2Γ ((k + 1 + i) /2)

(
yγ

σ2
√
k + y2/σ2

)i

, and ∆i = i!Γ ((k + 1) /2)

denote the numerator and denominator, respectively, of gi as functions of i. Clearly the denominator
exhibits a higher growth rate than the numerator. That is, ∆i outweighs ∇i as i increases, and gi → 0 in
the limit as i → ∞. (iv) Analogously to (ii), we look at hi = |gi| and consider the absolute value of ∇i

and ∆i. As it turns out, |∆i| is a monotonically increasing function in i, while |∇i| can be monotonically
decreasing if |κ| < 1 or is increasing if |κ| ≥ 1. From the monotonicity of |∆i| and |∇i|, it follows that
hi either takes its maximum at i = 0 if |∇i| is decreasing or starts with h0 = 1, takes a maximum at an
unknown i and then declines towards zero if |∇i| is increasing. In both cases, hi has a global maximum.
(v) Convergence requires a stopping condition. Recalling (iii), the summands vanish as i increases.
Therefore, the infinite sum can be truncated at i = i? with hi? ≤ ε, where ε > 0 is an absolute threshold.
Alternatively, the sum can be truncated at the first summand that does not significantly contribute to the
sum, i.e., at index i = i? with gi?/

∑i?−1
j=0 gj ≤ ε. (iv) Very large values of gi, such as triggered by large

values of k, can break the numerical limitations of the underlying finite arithmetic architecture when the
resulting sum, gi +

∑i−1
j=1 gj , becomes sufficiently large. We suggest the identity:

log

(
exp {a}+

∑
j

exp {bj}

)
= a+ log

(
1 +

∑
j

Re exp {bj − a}

)
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where a, bj ∈ R, to tackle this numerical problem, and reformulate the summation in Equation (13) as

si+1 = si + log (1 + Re exp {log gi − si}) (14)

where s0 = log g0, and:

log gi (x;µ, γ, k, σ) =
i log(2)

2
log Γ

(
k + 1 + i

2

)
− log Γ(i+ 1)− log Γ

(
k + 1

2

)
+i log

(yγ
σ2

)
− i log (k + y2/σ2)

2

That is, si = log
∑j

j=0 gj . This way, Equation (13) is computed based on log(gi/si) instead of gi.
Briefly summarized, the benefit of using the first approximation is a tremendous speed increase in

computing f̂Y , since the computation of Equation (13) is often time consuming for points in the outer
tail area if γ 6= 0; while the advantage of using Equation (14) is a greatly improved numerical robustness,
as well as accuracy. The resulting approximation can be seen as:

f̂NCT
Y = fT

Y + gNCT
Y 1fTY ≥ε

where fT
Y denotes the pdf of the central case and gNCT

Y refers to Equation (12) computed based
on Equation (14).

B. Mixture Normal GARCH Models

As in Haas et al. [20], we say that time series {εt} is generated by a z-component mixed normal
GARCH(r, s) process, denoted mix-normal-GARCH, if the conditional distribution of εt is assumed to
be a z-component mixed normal distribution with zero mean,

εt | Ft−1 ∼ mix-normal (λ,µ,σt) (15)

where the mixing weights λ = (λ1, . . . , λz)
′, the vector of location coefficients µ = (µ1, . . . , µz)

′ and
the vector of scale parameters σt = (σ1,t, . . . , σz,t)

′ are column vectors, the mixed normal probability
density function (pdf) is given by:

fεt|Ft−1 (x;λ,µ,σt) =
z∑
i=1

λiφ (x;µi, σi,t) (16)

Ft represents the information available at date t; φ is the normal pdf, and λi ∈ (0, 1) with
∑z

i=1 λi = 1.
We focus on the diagonal GARCH representation introduced in Haas et al. [20], which is parsimoniously
parameterized compared to the full model and has been shown to perform very well out-of-sample. Its
component variances σ2

i,t exhibit the structure:

σ
(δ)
t = c0 +

r∑
i=1

ci|εt−i|δ +
s∑
j=1

Djσ
(δ)
t−j (17)

where ci = (γi,1, γi,2, . . . , γi,z)
′, i = 0, . . . , r, are z × 1 vectors, Dj , j = 1, . . . , s, are z × z diagonal

matrices, σ(δ)
t is short for (σδ1,t, σ

δ
2,t, . . . , σ

δ
z,t)
′, and δ ∈ R>0. The model parameters must be such that
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σ
(δ)
i,t > 0 holds for all i = 1, . . . , z. In the following, we take r = s = 1 and refer to the diagonal

elements of D1 as di, i = 1, . . . , z. Additional details and a survey of the mixed-normal-GARCH model
family and the extensions thereof can be found in Haas and Paolella [31].

We further consider the ability of mixture GARCH models to exhibit conditional, as well as
unconditional component models. As discussed in Haas et al. [20] and Kuester et al. [2], the component
of the mixture assigned to the most volatile observations is often adequately modeled by a component
with a relatively high, but constant (no GARCH), variance. In the following, models where only g, g ≤ z,
components have a GARCH(1, 1) structure are denoted by appending the accessory (z, g). As such, we
refer to the z-component diagonal mixed-normal-GARCH(1, 1) model with g GARCH components as
to the MixN-GARCH(z, g) model.

In Haas et al. [3], the mixed-normal-GARCH model is extended by time-varying mixing weights.
Among the various models entertained in that paper, the so-called TW-MixN-GARCH model ([3]
[Section 3.2]) is shown to perform best in terms of out-of-sample forecast quality. By relating mixing
weights at time t to past returns and past realized likelihood values at time t − 1, this model yields a
viable representation of Engle and Ng’s (1993) news impact curve with an asymmetric impact of the
unexpected return shock on future volatility. It nests the MixN-GARCH(z, g) model and extends it by
capturing leverage-like effects.

Compared to MixN-GARCH, the TW-MixN-GARCH model uses the same diagonal GARCH filter,
given in Equation (17), but in contrast to the time-constant mixing weights in Equation (16), the mixing
is defined here as:

fεt|Ft−1 (x;λ,µ,σt, γ) =
z∑
i=1

λi,t(γ)φ (x;µi, σi,t) (18)

where γ ≥ 0 is the parameter that controls the dynamics of the strictly positive mixing weights
λt = (λ1,t, . . . , λz,t)

′ with
∑

z λz,t = 1 for all t = 1, . . . , T . Details on the weight dynamics
and their computation can be found in Haas et al. [3] [Section 3]. Given that the dynamics are
controlled by a single parameter, the model is also parsimoniously parameterized. We adopt the
TW-MixN-GARCH(z, g) model as the second model in the comparison.

A brief remark is made on the estimation of finite mixture models using maximum likelihood. As
is well-known, the likelihood function of these distributions is potholed with many singularities, and
numeric problems become virtually inevitable. To cope with this estimation problem, in particular in
mixture GARCH estimations, we employ the augmented maximum likelihood estimation framework
proposed in Broda et al. [22] throughout the paper.
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