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Abstract: We analyze the properties of various methods for bias-correcting parameter
estimates in both stationary and non-stationary vector autoregressive models. First, we show
that two analytical bias formulas from the existing literature are in fact identical. Next, based
on a detailed simulation study, we show that when the model is stationary this simple bias
formula compares very favorably to bootstrap bias-correction, both in terms of bias and mean
squared error. In non-stationary models, the analytical bias formula performs noticeably
worse than bootstrapping. Both methods yield a notable improvement over ordinary least
squares. We pay special attention to the risk of pushing an otherwise stationary model
into the non-stationary region of the parameter space when correcting for bias. Finally, we
consider a recently proposed reduced-bias weighted least squares estimator, and we find that
it compares very favorably in non-stationary models.

Keywords: bias reduction; VAR model; analytical bias formula; bootstrap; iteration;
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1. Introduction

It is well-known that standard ordinary least squares (OLS) estimates of autoregressive parameters
are biased in finite samples. Such biases may have important implications for models in which estimated
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autoregressive parameters serve as input. For example, small sample bias may severely distort statistical
inference (Mark [1], Bekaert et al. [2], Kilian [3], Stambaugh [4], Lewellen [5], Amihud and Hurvich
[6]), forecasting accuracy (Kim [7–9]), estimation of impulse response functions (Kilian [10,11],
Patterson [12]), estimation of optimal portfolio choices in dynamic asset allocation models (Engsted
and Pedersen [13]), and estimation of dynamic term structure models (Bauer et al. [14]).

Simple analytical formulas for bias-correction in univariate autoregressive models are given
in Marriott and Pope [15], Kendall [16], White [17], and Shaman and Stine [18]. In particular, the
bias in the simple univariate AR(1) model has been analyzed in many papers over the years using
both analytical expressions, numerical computations, and simulations, e.g., Orcutt and Winokur [19],
Sawa [20], MacKinnon and Smith [21], Patterson [22], and Bao and Ullah [23]. In a multivariate context
analytical expressions for the finite-sample bias in estimated vector autoregressive (VAR) models have
been developed by Tjøstheim and Paulsen [26], Yamamoto and Kunitomo [27], Nicholls and Pope [28],
Pope [29], and Bao and Ullah [23]. However, there are no detailed analyses of the properties of these
multivariate analytical bias formulas. If bias-adjustment using the analytical formulas has better or
equally good properties compared to more computer intensive bootstrap bias-adjustment methods, this
gives a strong rationale for using the analytical formulas rather than bootstrapping.

This paper investigates the properties of various bias-adjustment methods for VAR models.1 First,
we show that the analytical bias expressions developed (apparently independently) by Yamamoto and
Kunitomo [27] one the one hand and Nicholls and Pope [28] and Pope [29] on the other hand, are
identical. To our knowledge this equivalence has not been noticed in the existing literature.2

Second, through a simulation experiment we investigate the properties of the analytical bias formula
and we compare these properties with the properties of both standard OLS, Monte Carlo/bootstrap
generated bias-adjusted estimates, and the weighted least squares approximate restricted likelihood
(WLS) estimator recently developed by Chen and Deo [30], which should have reduced bias compared
to standard least squares. We investigate both bias and mean squared error of these estimators. Since
in general the bias depends on the true unknown parameter values, correcting for bias is not necessarily
desirable because it may increase the variance, thus leading to higher mean squared errors compared to
uncorrected estimates, cf., e.g., MacKinnon and Smith [21]. We investigate both a simple one-step
‘plug-in’ approach where the initial least squares estimates are used in place of the true unknown
values to obtain the bias-adjusted estimates, and a more elaborate multi-step iterative scheme where we
repeatedly substitute bias-adjusted estimates into the bias formulas until convergence. We also consider
inverting the analytical bias formula, i.e., conditional on the least squares estimates we solve for the true
parameter values using the bias formula and subsequently use these ‘true’ parameters to estimate thebias.

1 Rather than examining confidence intervals (as in e.g. Kilian [24], we focus on point estimates, which play an essential
role in much empirical research, e.g., return variance decompositions (Campebll [25]), portfolio choice models (Engsted
and Pedersen [13]), and dynamic term structure models (Bauer et al. [14]).

2 As noted by Pope [29], the expression for the bias of the least squares estimator in Nicholls and Pope [28] and Pope [29]
is equivalent to the bias expression in Tjøstheim and Paulsen [26]. Neither Pope nor Tjøstheim and Paulsen refer to
Yamamoto and Kunitomo [27] who, on the other hand, do not refer to Tjøstheim and Paulsen [26]. As noted by Bao and
Ullah [23], the bias expression they derive is consistent with the bias expression in Nicholls and Pope [28] and Pope [29]
but they do not refer to Yamamoto and Kunitomo [27].



Econometrics 2014, 2 47

In many empirical applications the variables involved are highly persistent which may lead to both the
least squares and the bias-adjusted VAR parameter matrix containing unit or explosive roots. Kilian [10]
proposes a very simple method for eliminating non-stationary roots when bias-adjusting VAR parameter
estimates. We investigate how the use of Kilian’s approach affects the finite-sample properties of the
bias-correction methods. To secure stationary roots in the first step an often used alternative to OLS is the
Yule-Walker estimator, which is guaranteed to deliver stationary roots. We investigate the finite-sample
properties of this estimator and we compare it to OLS both with and without bias correction. We
also consider non-stationary systems. The analytical bias formula is derived under the assumption of
stationarity, while WLS allows for unit roots, which suggests that WLS should be the preferred choice
of estimator in this scenario.

Finally, we analyze the finite-sample properties of bias-correction methods (both bootstrap and
analytical methods) in the presence of skewed and fat-tailed data, and we compare a parametric bootstrap
procedure, based on a normal distribution, with a residual-based bootstrap procedure when in fact data
are non-normal. Among other things, this analysis will shed light on the often used practice in empirical
studies of imposing a normal distribution when generating bootstrap samples from parameter values
estimated on non-normal data samples. Furthermore, in contrast to the analytical bias formula WLS is
derived using a normality assumption. We include WLS in the comparison based on non-normal data to
evaluate if violation of the normality assumption distorts the finite-sample properties of the estimator.3

The rest of the paper is organized as follows. In the next section we present the various bias-correction
methods, based on either a bootstrap procedure or analytical bias formulas, and the reduced-bias WLS
estimator. Section 3 reports the results of the simulation study where we analyze and compare the
properties of the different bias-correction methods. Section 4 contains a summary of the results.

2. Bias-Correction in a VAR model

In this section we discuss ways to correct for the bias of least squares estimates of VAR parameters.
For simplicity, we here only consider the VAR(1) model

Yt = θ + ΦYt−1 + ut, t = 1, ..., T (1)

where Yt and ut are k× 1 vectors consisting of the dependent variable and the innovations, respectively.
θ is a k × 1 vector of intercepts and Φ is a k × k matrix of slope coefficients. The covariance matrix
of the innovations, which are independent and identically distributed, is given by the k × k matrix
Ωu. Alternatively, if the intercept is of no special interest the VAR(1) model can be formulated in a
mean-corrected version as

Xt = ΦXt−1 + ut, t = 1, ..., T (2)

3 We only consider VAR models without deterministic trends, but it should be noted that in contrast to AR models, there
are no analytical bias formulas available for VAR models with deterministic trends. In this case, bootstrap methods are
the only available approach in practice.
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where Xt = Yt − µ with µ = (Ik − Φ)−1 θ. Higher-order VAR models can be stated in first-order form
by using the companion form, so the focus on VAR(1) models is without loss of generality. We consider
both stationary VAR models and models with unit roots.

2.1. Bootstrap Bias-Correction

Usually, in applied econometrics bias-adjustment is done using Monte Carlo or bootstrap procedures.
The general procedure in bias-adjusting the OLS estimate of Φ can be summarized as follows for the
VAR(1) model in (2):4

1. Estimate the VAR model (2) using OLS. Denote this estimate Φ̂.

2. Conditional on Φ̂ simulate M bootstrap samples (each of size T ). This step requires simulation
of the innovations ut, which can be done either by repeated sampling with replacement from the
residuals from step 1 or by sampling from an assumed parametric distribution.

3. For each bootstrap sample estimate (2) using OLS. Denote this estimate Φ̂∗. Calculate the average
of Φ̂∗ across the M bootstrap samples. Denote the average by Φ.

4. Calculate the estimate of the bias as BB
T = Φ− Φ̂, or accordingly the bias-adjusted estimate of Φ

as 2Φ̂− Φ.

2.2. Analytical Bias Formulas

As an alternative to bootstrapping there also exist analytical bias formulas, which provide an easy and
simple approach to bias-adjustment in VAR models. Yamamoto and Kunitomo [27] derive analytical
expressions for the bias of the least squares estimator in VAR models. Based on model (1), Yamamoto
and Kunitomo derive the following expression for the asymptotic bias of the OLS estimator of the slope
coefficient matrix Φ

BY K
T = −b

Y K

T
+O

(
T−3/2

)
, (3)

where

bY K = Ωu

∞∑
i=0

[
(Φ′)

i
+ (Φ′)

i
tr
(
Φi+1

)
+ (Φ′)

2i+1
] [ ∞∑

j=0

ΦjΩu (Φ′)
j

]−1
. (4)

Yamamoto and Kunitomo also show that the asymptotic bias of the OLS estimator of the intercept θ
follows by post-multiplying bY K by − (Ik − Φ)−1 θ.

The bias expression is derived under the assumption that the innovations are independent and
identically distributed with covariance matrix Ωu, and that the VAR system is stationary such that Φ

does not contain unit or explosive roots. A few additional assumptions are required (see Yamamoto and
Kunitomo [27] for details), and it can be noted that a sufficient but not necessary condition for these
assumptions to be satisfied is Gaussian innovations. The finite-sample error in the bias formula vanishes
at the rate T−3/2, which is at least as fast as in standard Monte Carlo or bootstrap bias-adjustment.

4 If the intercept is of special interest a similar procedure can be applied to the VAR model in (1).
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Yamamoto and Kunitomo also derive the asymptotic bias of the slope coefficient matrix in the special
case where θ = 0:

bY Kθ=0 = Ωu

∞∑
i=0

[
(Φ′)

i
tr
(
Φi+1

)
+ (Φ′)

2i+1
] [ ∞∑

j=0

ΦjΩu (Φ′)
j

]−1
. (5)

Compared to the case with intercept, the term (Φ′)i is no longer included in the first summation. This
illustrates the general point that the bias of slope coefficients in autoregressive models is smaller in
models without intercept than in models with intercept, see e.g. Shaman and Stine [18] for the univariate
case. In a univariate autoregressive model the above bias expressions can by simplified. For example, in
an AR(1) model, yt = α+ρyt−1+εt, the bias of the OLS estimator of ρ is given by− (1 + 3ρ) /T,which
is consistent with the well-known expression by Kendall [16]. If α = 0 the bias of the OLS estimator of
ρ is given by −2ρ/T, which is consistent with the work by White [17].

Based on the VAR model (2) Pope [29] derives the following analytical bias formula for the OLS
estimator of the slope coefficient matrix Φ

BP
T = −b

P

T
+O

(
T−3/2

)
, (6)

where

bP = Ωu

[
(Ik − Φ′)

−1
+ Φ′

(
Ik − (Φ′)

2
)−1

+
k∑
i=1

λi (Ik − λiΦ′)−1
]

Ω−1x . (7)

λi denotes the i’th eigenvalue of Φ and Ωx is the covariance matrix ofXt. Pope obtains this expression by
using a higher-order Taylor expansion and, as seen, the approximation error in the bias formula vanishes
at the rate T−3/2, which is of the same magnitude as the finite-sample error in Yamamoto and Kunitomo’s
asymptotic bias formula. The underlying assumptions are quite mild (see Pope [29] for details). Among
the assumptions are that the VAR system is stationary, and that the VAR innovations ut constitute a
martingale difference sequence with constant covariance matrix Ωu. The expression does not, however,
require Gaussian innovations.5

By comparing the two expressions (4) and (7) we see that they appear very similar and, in fact, they
turn out to be identical as stated in Theorem 1:

Theorem. The analytical bias formulas by Yamamoto and Kunitomo [27] and Pope [29] are identical
since bP = bY K .

5 In earlier work, Nicholls and Pope [28] derive the same expression for the least squares bias in Gaussian VAR models, and
Pope [29] basically shows that this expression also applies to a general VAR model without the restriction of Gaussian
innovations.
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Proof. We can rewrite the infinite sums in bY K as follows

∞∑
i=0

(Φ′)
i

= (Ik − Φ′)
−1

∞∑
i=0

(Φ′)
2i+1

= Φ′
∞∑
i=0

(Φ′)
2i

= Φ′
(
Ik − (Φ′)

2
)−1

∞∑
i=0

ΦiΩu (Φ′)
i

= E
[
(Yt − µ) (Yt − µ)′

]
= E [XtXt

′] = Ωx

∞∑
i=0

(Φ′)
i
tr
(
Φi+1

)
=
∞∑
i=0

(Φ′)
i (
λi+1
1 + ...+ λi+1

k

)
= λ1

∞∑
i=0

(Φ′)
i
λi1 + ...+ λk

∞∑
i=0

(Φ′)
i
λik

= λ1 (Ik − λ1Φ′)−1 + ...+ λk (Ik − λkΦ′)−1

=
k∑
j=1

λj (Ik − λjΦ′)−1 ,

where Xt = Yt − µ with µ = (Ik − Φ)−1 θ and λi denotes the i’th eigenvalue of Φ.

In applying (4), Yamamoto and Kunitomo [27] suggest to truncate the infinite sums by taking the
summation from 0 to T , based on the argument that the remaining terms are of the order o (T−1).
However, due to the equivalence of (4) and (7) there is no need to apply (4) with such a truncation.
In practice the formula in (7) should be used.

In contrast to Yamamoto and Kunitomo [27], Pope [29] does not consider the bias in the estimated
intercepts θ̂ or in the special case where θ = 0 but from Theorem 1 we obtain the following results:

Corollary. The bias in the OLS estimate of θ is given by (6) with

bP = −Ωu

[
(Ik − Φ′)

−1
+ Φ′

(
Ik − (Φ′)

2
)−1

+
k∑
i=1

λi (Ik − λiΦ′)−1
]

Ω−1x (Ik − Φ)−1 θ,

and the bias in the OLS estimate of Φ with θ = 0 is given by (6) with

bPθ=0 = Ωu

[
Φ′
(
Ik − (Φ′)

2
)−1

+
k∑
i=1

λi (Ik − λiΦ′)−1
]

Ω−1x .

2.3. Ensuring Stationarity

An important problem in adjusting for bias using bootstrap and the analytical bias formula is that the
bias-adjusted estimate of Φ may fall into the non-stationary region of the parameter space. The analytical
bias formula is derived under the assumption of stationarity and, hence, the presence of unit or explosive
roots will be inconsistent with the underlying premise for the VAR system we are analyzing. Kilian [10]
suggests an approach to ensure that we always get a bias-adjusted estimate that does not contain unit or
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explosive roots. This approach is used by, e.g., Engsted and Tanggaard [31] and Engsted and Pedersen
[13] and is as follows: First, estimate the bias and obtain a bias-adjusted estimate of Φ by subtracting the
bias from the OLS estimate. Second, check if the bias-adjusted estimate falls within the stationary region
of the parameter space. If this is the case, use this bias-adjusted estimate. Third, if this is not the case
correct the bias-adjusted estimate by multiplying the bias with a parameter κ ∈ [0, 0.01, 0.02, ..., 0.99]

before subtracting it from the OLS estimate. This will ensure that the bias-adjusted estimate is within
the stationary region of the parameter space.

Related to the issue of ensuring stationarity, how should we tackle bias-correction if the use of OLS
leads to a non-stationary system when we know or suspect (perhaps based on economic theory) that the
true VAR system is stationary? A potential solution is to use the Yule-Walker (YW) estimator, which
is guaranteed to ensure a stationary system. However, YW has a larger bias than OLS and, hence, the
finite-sample properties might be considerably worse. Pope [29] derives the bias of the YW estimator of
the slope coefficient matrix Φ in (2) as

BYW
T = −b

YW

T
+O

(
T−3/2

)
, (8)

where

bYW = Φ + Ωu

[
(Ik − Φ′)

−1
+ Φ′

(
Ik − (Φ′)

2
)−1

+
k∑
i=1

λi (Ik − λiΦ′)−1
]

Ω−1x . (9)

The approach and assumptions are identical to those used by Pope to derive the bias of the OLS
estimator.6 Comparing this result to (7) we see that bYW = Φ + bP . In an AR(1) model,
yt = α + ρyt−1 + εt, the bias of the YW estimator of ρ can be simplified to − (1 + 4ρ) /T . Hence,
applying YW instead of OLS ensures stationarity but increases the bias. However, since we have an
analytical bias formula for the YW estimator we can correct for bias in the same way as we would do
for OLS.

2.4. Reduced-Bias Estimators

As an alternative to estimating the VAR model using OLS and subsequently correct for bias using the
procedures outlined above, it is also possible to use a different estimation method that has better bias
properties than OLS. In recent work, Chen and Deo [30] propose a weighted least squares approximate
restricted likelihood (WLS) estimator of the slope coefficient matrix in a VAR(p) model with intercept,

6 Tjøstheim and Paulsen [26] obtain a similar expression for the bias of the Yule-Walker estimator, but under the assumption
of Gaussian innovations.
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which has a smaller bias than OLS. In fact, they show that this estimator has bias properties similar to
that of the OLS estimator without intercept. The estimator for a VAR(1) model is given as

vec (ΦWLS) =

[
T∑
t=2

LtL
′
t ⊗ Ω−1u + UU ′ ⊗ Ω−1/2u (Ik +D′ΩuD)

−1
Ω−1/2u

]−1

× vec

[
Ω−1u

T∑
t=2

(
Yt − Y (1)

)
L′t + Ω−1/2u (Ik +D′ΩuD)

−1
Ω−1/2u RU ′

]
, (10)

where L′t =
(
Yt−1 − Y (0)

)′
, U ′ = (T − 1)−1/2

∑T
t=2 (Yt−1 − Y1)′ , R = (T − 1)−1/2

∑T
t=2 (Yt − Y1) ,

D′ = (T − 1)1/2 (Ik − Φ)′Ω
−1/2
u , Y (0) = (T − 1)−1

∑T
t=2 Yt−1, and Y (1) = (T − 1)−1

∑T
t=2 Yt.

The weighted least squares estimator is derived under the assumption that the innovations are
independent and normally distributed with constant covariance matrix Ωu. The estimator is based on
the restricted likelihood, which is derived under the assumption that the initial value is fixed, which in
turn implies that the estimator allows for unit roots.

2.5. Unknown Parameter Values

Both the analytical bias formulas and the WLS estimator require knowledge of Ωu and Φ, which are
unknown. Chen and Deo [30] suggest to estimate these using any consistent estimator such as OLS,
and then use these consistent estimates instead. The same approach is typically used when applying the
analytical bias formulas, see, e.g., Engsted and Pedersen [13]. We will denote this approach the ‘plug-in’
approach. Alternatively, we can apply a more elaborate iterative scheme in which bias-adjusted estimates
of Φ are recursively inserted in (7) or (10), see, e.g., Amihud and Hurvich [6] and Amihud et al. [32]. An
iterative scheme is basically just an extension of the ‘plug-in’ approach and could for the analytical bias
formulas go as follows. First, reestimate the covariance matrix of the innovations, Ωu, after adjusting for
bias using the ‘plug-in’ approach and then substitute this covariance matrix into the formulas together
with the bias-adjusted slope coefficients obtained from the ‘plug-in’ approach. This yields another set of
bias-adjusted estimates, which we can then use to reestimate the covariance matrix and the bias. We can
continue this procedure until the slope coefficient estimates converge. A similar approach can be used
for the WLS estimator.

Alternatively, conditional on the OLS estimates we can solve for Φ (and thereby also Ωu) in the
analytical bias formulas. In the simple AR(1) model, yt = α + ρyt−1 + εt, where the bias of the OLS
estimator, ρ̂, of ρ is given by ρ̂− ρ = − (1 + 3ρ) /T it is easy to see that ρ = (T ρ̂+ 1) / (T − 3), which
we can then insert back into the bias formula to obtain an estimate of the bias in ρ̂. This approach is
related to the median-unbiased estimator by Andrews [33], which entails inverting the bias function.7 In
the VAR(1) model this approach entails solving k highly nonlinear equations for k unknown parameters,
which can be done relatively easy using numerical optimization routines.

7 We are grateful to an anynomous referee for drawing our attention to this approach.
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3. Simulation Study

The general simulation scheme goes as follows. We perform 10,000 simulations for a number of
different stationary VAR(1) models and for a number of different sample sizes. In each simulation
we draw the inital values of the series from a multivariate normal distribution with mean (Ik − Φ)−1 θ

and covariance matrix vec(Ωx) = (Ik×k − Φ ⊗ Φ)−1vec(Ωu). Likewise, the innovations are drawn
randomly from a multivariate normal distribution with mean 0 and covariance matrix Ωu. Based on
the initial values and innovations we simulate the series forward in time until we have a sample of
size T . For each simulation we estimate a VAR(1) model using OLS and WLS. Furthermore, we correct
the OLS estimate for bias using the analytical bias formula (6) (denoted ABF) and using a bootstrap
procedure (denoted BOOT). Based on the 10,000 simulations we calculate the mean slope coefficients,
bias, variance, and root mean squared error (RMSE) for each approach. The bootstrap procedure follows
the outline presented in Section 2.1. The innovations are drawn randomly with replacement from the
residuals, and we also randomly draw initial values from the simulated data. This procedure is repeated
1,000 times for each simulation.8 Regarding the analytical bias formula and WLS, we use the ‘plug-in’
approach, cf. Section 2.5. In the analytical bias formula we calculate the covariance matrix of Xt

as vec(Ω̂x) = (Ik×k − Φ̂ ⊗ Φ̂)−1vec(Ω̂u). In both the analytical bias formula and bootstrapping we
ensure stationarity by applying the approach by Kilian [10], cf. Section 2.3. In using this approach
we choose the largest value of κ that ensures that the bias-adjusted estimate no longer contains unit or
explosive roots.

We deviate from this general scheme in a number of different ways, all of which will be clearly stated
in the text. In Section 3.1 we also allow for a fixed initial value, since the WLS estimator is based on the
restricted likelihood, which is derived under the assumption that the initial value is fixed. In Section 3.2
we investigate the effect of iterating on WLS and ABF and inverting ABF. In Section 3.3 we analyze
the consequences of not using Kilian’s [10] approach to ensure stationarity and the properties of the YW
estimator. In Section 3.4 we allow for VAR(1) models with unit roots. In Section 3.5 we investigate
the finite-sample properties when data are skewed and fat-tailed instead of normally distributed, and
we analyze the consequences of using a parametric bootstrap approach to adjust for bias using a wrong
distributional assumption.

3.1. Bias-Correction in Stationary Models

Table 1 reports the simulation results for the following VAR(1) model

θ =

[
0

0

]
, Φ =

[
0.80 0.10

0.10 0.85

]
, Ωu =

[
2 1

1 2

]
, (11)

8 We have experimented with a larger number of bootstrap replications. However, the results presented in subsequent tables
do not change much when increasing the number of bootstraps. Hence, for computational tractability we just use 1,000
bootstrap replications.
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where the eigenvalues of Φ are 0.722 and 0.928. This VAR model is also used in simulation studies
by Amihud and Hurvich [6] and Amihud et al. [32] in analyzing return predictability by persistent
state variables. The table shows the mean slope coefficients and the average squared bias, variance,
and RMSE =

√
bias2+variance across the four slope coefficients for T = {50, 100, 200, 500}. For

expositional purposes bias2 and variance are multiplied by 100. The final column shows the number
of simulations in which the approach results in an estimate of Φ in the non-stationary region of the
parameter space. For example, for T = 50 using OLS to estimate the VAR(1) model implies that 25
out of 10,000 simulations result in a non-stationary model. The estimates from these 25 simulations
are included in the reported numbers. When the OLS estimate is in the non-stationary region of the
parameter space, we do not perform any bias-adjustment and set the bias-adjusted estimate equal to the
(non-stationary) OLS estimate. This implies that in 25 simulations the (non-stationary) OLS estimate
is included in the numbers for ABF and BOOT. For these bias-adjustment procedures the number in
the final column shows the number of simulations where OLS yields a stationary model, but where the
bias-adjustment procedure pushes the model into the non-stationary region of the parameter space, and
we use the approach by Kilian [10] to ensure a stationary model.

Table 1. Bias-correction in a stationary but persistent VAR(1) model. The results in this
table are based on 10,000 simulations from the VAR(1) model given in (11). Bias2, variance,
and RMSE are reported as the average across the four slope coefficients. Average bias2 and
variance are multiplied by 100. The final column (#NS) gives the number of simulations
that result in a VAR(1) system in the non-stationary region. OLS are ordinary least squares
estimates; WLS are estimates based on equation (8); ABF are bias-adjusted estimates based
on the analytical bias formula, equation (7); BOOT are bias-adjusted estimates based on
the bootstrap.

Mean Slope Coefficients
Φ11 Φ12 Φ21 Φ22 Bias2 Variance RMSE #NS

T = 50 OLS 0.7082 0.0906 0.1036 0.7519 0.4538 1.9195 0.1534 25
WLS 0.7441 0.0973 0.1040 0.7927 0.1606 1.9135 0.1438 198
ABF 0.7743 0.0946 0.0995 0.8210 0.0382 1.7520 0.1336 1613
BOOT 0.7779 0.0963 0.1016 0.8252 0.0281 1.8170 0.1357 2220

T = 100 OLS 0.7548 0.0972 0.1035 0.8038 0.1049 0.7324 0.0913 2
WLS 0.7776 0.1019 0.1034 0.8304 0.0225 0.7604 0.0883 18
ABF 0.7931 0.0988 0.1003 0.8433 0.0024 0.6817 0.0826 304
BOOT 0.7950 0.1001 0.1015 0.8458 0.0011 0.6965 0.0834 539

T = 200 OLS 0.7783 0.0995 0.1017 0.8276 0.0245 0.3151 0.0581 0
WLS 0.7924 0.1036 0.1021 0.8449 0.0025 0.3498 0.0592 0
ABF 0.7985 0.1000 0.0999 0.8483 0.0001 0.3013 0.0548 0
BOOT 0.7992 0.1005 0.1003 0.8492 0.0000 0.3041 0.0551 2

T = 500 OLS 0.7917 0.0996 0.1014 0.8407 0.0039 0.1112 0.0339 0
WLS 0.7991 0.1034 0.1025 0.8508 0.0005 0.1316 0.0363 0
ABF 0.8000 0.0998 0.1005 0.8492 0.0000 0.1089 0.0329 0
BOOT 0.8002 0.0999 0.1006 0.8494 0.0000 0.1091 0.0330 0
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From Table 1 it is clear that OLS yields severely biased estimates in small samples. Also, consistent
with the univariate case we see that the autoregressive coefficients (Φ11 and Φ22) are downward biased.
For example, for T = 50, the OLS estimate of Φ22 is 0.7519 compared to the true value of 0.85. As
expected both bias and variance decrease when the sample size increases. Chen and Deo [30] advocate
the use of their weighted least squares estimator due to the smaller bias associated with this estimator
compared to OLS, a small-sample property that is also clearly visible in Table 1. However, the variance
of WLS is larger than that of OLS for T ≥ 100, and for T ≥ 200 this increase in variance more than
offsets the decrease in bias resulting in a higher RMSE for WLS compared to OLS.

Turning to the bias correction methods we find that both ABF and BOOT yield a very large reduction
in bias compared to both OLS and WLS. However, for very small samples even the use of these methods
still implies fairly biased estimates. For example, for T = 50 the bias corrected estimate of Φ22 is roughly
0.82 for both methods compared to the true value of 0.85. It is also worth noting that the variance of ABF
and BOOT is smaller than the variance of OLS. Hence, in this case the decrease in bias does not come
at the cost of increased variance. Comparing ABF and BOOT we see that using a bootstrap procedure
yields a smaller bias than the use of the analytical bias formula. The difference in bias is, however, very
small across these two methods. For example, for T = 50 the estimate of Φ22 is 0.8252 for BOOT
compared to 0.8210 for ABF. In contrast, the variance is lower for ABF than for BOOT, and this even
to such a degree that ABF yields the lowest RMSE. These results suggest that the simple analytical bias
formula has at least as good finite-sample properties as a more elaborate bootstrap procedure.9

To check the robustness of the results in Table 1, Table 2 shows the results based on the following
VAR(1) model

θ =

[
0

0

]
, Φ =

[
0.10 0.10

0.10 0.85

]
, Ωu =

[
2 −1.8

−1.8 2

]
, (12)

where the eigenvalues of Φ are 0.087 and 0.863. This system corresponds fairly well to an empirically
relevant VAR(1) model in finance consisting of stock returns (not persistent) and the dividend-price ratio
(persistent), and where the innovations of the two series are strongly negatively correlated, see, e.g.,
Stambaugh [4]. Overall, the results in Table 2 follow the same pattern as in Table 1, i.e. OLS yields
highly biased estimates, WLS is able to reduce this bias but at the cost of increased variance, and both
ABF and BOOT provide a large bias reduction compared to OLS and WLS.

However, Table 2 also displays some interesting differences. The variances of the bias correction
methods are now larger than that of OLS. This prompts the questions: What has caused this relative
change in variances (Φ or Ωu), and can the change imply a larger RMSE when correcting for bias than
when not? To answer these questions, Figure 1 shows the variance of OLS, WLS, and ABF as a function
of Φ11 with the remaining data-generating parameters equal to those given in (11) and (12), respectively.
The interval for Φ11 is chosen to ensure stationarity. The variance is calculated as the average variance

9 We have also analyzed VAR(2) models (results not shown). In general, the findings in this paper for a VAR(1) model also
hold for a VAR(2) model. One exception is that BOOT in this case performs (much) worse than ABF both in terms of
bias and variance.
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across the four slope coefficients based on 10,000 simulations with T = 100.10 For the data-generating
parameters given in (11), Panel (a.1) shows that for Φ11 smaller (larger) than roughly 0.4 the variance
of OLS is smaller (larger) than the variance of ABF. Panel (b.1) shows the corresponding results for the
data-generating parameters given in (12), i.e. the only differences between the two panels is Ωu. We see
a similar result as in Panel (a.1), but now Φ11 has to be smaller (larger) than roughly 0.65 for the variance
of OLS to be smaller (larger) than the variance of ABF.

Table 2. Bias-correction in a stationary but persistent VAR(1) model. The results in this
table are based on 10,000 simulations from the VAR(1) model given in (12). See also the
caption to Table 1.

Mean Slope Coefficients
Φ11 Φ12 Φ21 Φ22 Bias2 Variance RMSE #NS

T = 50 OLS 0.1290 0.1841 0.0534 0.7509 0.4974 1.9419 0.1561 4
WLS 0.0911 0.1222 0.1056 0.8260 0.0295 2.1234 0.1446 63
ABF 0.1016 0.1162 0.0961 0.8312 0.0158 2.1547 0.1463 621
BOOT 0.1015 0.1107 0.0970 0.8383 0.0065 2.1544 0.1460 669

T = 100 OLS 0.1141 0.1400 0.0776 0.8030 0.1126 0.8412 0.0969 0
WLS 0.0839 0.0979 0.1168 0.8536 0.0140 1.0066 0.0982 0
ABF 0.0996 0.1038 0.1002 0.8457 0.0008 0.8978 0.0932 14
BOOT 0.0993 0.1018 0.1006 0.8482 0.0002 0.9002 0.0933 7

T = 200 OLS 0.1079 0.1195 0.0878 0.8270 0.0280 0.3925 0.0638 0
WLS 0.0826 0.0877 0.1194 0.8650 0.0264 0.5321 0.0725 0
ABF 0.1006 0.1012 0.0991 0.8486 0.0001 0.4049 0.0622 0
BOOT 0.1005 0.1005 0.0994 0.8494 0.0000 0.4057 0.0622 0

T = 500 OLS 0.1024 0.1070 0.0957 0.8414 0.0037 0.1506 0.0382 0
WLS 0.0844 0.0860 0.1177 0.8664 0.0256 0.2372 0.0500 0
ABF 0.0995 0.0996 0.1003 0.8501 0.0000 0.1524 0.0378 0
BOOT 0.0995 0.0995 0.1003 0.8503 0.0000 0.1526 0.0378 0

Hence, the relative size of the variances for OLS and ABF depends on both Φ and Ωu, but in general,
in highly persistent processes ABF has a lower variance than OLS. Panels (a.2) and (b.2) show that the
RMSE for ABF remains below that of OLS for all values of Φ11. Hence, despite a smaller variance for
certain values of Φ11, the larger bias using OLS results in a higher RMSE than in the case of ABF. This
result does, however, not always hold. Table 3 reports the simulation results for the much less persistent
VAR(1) model

θ =

[
0

0

]
, Φ =

[
0.20 0.10

0.10 0.25

]
, Ωu =

[
2 1

1 2

]
, (13)

10 We have made similar plots for other sample sizes, but the conclusions remain the same so to conserve space we do not
show them here.
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where the eigenvalues of Φ are 0.122 and 0.328. In contrast to the data-generating processes in (11)
and (12) both variables now display little persistence. Although OLS in this case still yields somewhat
biased estimates and WLS, ABF, and BOOT all reduce the bias, OLS has the lowest RMSE. This is due
to a much lower variance for OLS than for the alternative estimator, WLS, and the two bias-correction
methods, ABF and BOOT. The overall conclusion from Table 3 is that estimating even highly stationary
VAR models using OLS provides biased estimates, which suggests the use of WLS, ABF, or BOOT if
bias is of primary concern, while OLS is preferable if both bias and variance are important.

Table 3. Bias-correction in a stationary VAR(1) model. The results in this table are based on
10,000 simulations from the VAR(1) model given in (13). See also the caption to Table 1.

Mean Slope Coefficients
Φ11 Φ12 Φ21 Φ22 Bias2 Variance RMSE #NS

T = 50 OLS 0.1627 0.0932 0.0964 0.2073 0.0819 2.8504 0.1712 0
WLS 0.1850 0.0959 0.0980 0.2307 0.0155 2.9535 0.1723 0
ABF 0.1949 0.0985 0.0988 0.2427 0.0021 2.9530 0.1719 0
BOOT 0.1953 0.0986 0.0988 0.2432 0.0018 2.9550 0.1719 0

T = 100 OLS 0.1803 0.0973 0.0983 0.2295 0.0204 1.3280 0.1161 0
WLS 0.1919 0.0993 0.0992 0.2424 0.0031 1.3599 0.1167 0
ABF 0.1974 0.1000 0.0995 0.2483 0.0002 1.3528 0.1163 0
BOOT 0.1976 0.1000 0.0995 0.2484 0.0002 1.3546 0.1164 0

T = 200 OLS 0.1912 0.0985 0.0992 0.2403 0.0044 0.6522 0.0810 0
WLS 0.1971 0.0997 0.0997 0.2470 0.0004 0.6627 0.0814 0
ABF 0.2000 0.0999 0.0998 0.2500 0.0000 0.6580 0.0811 0
BOOT 0.2001 0.0999 0.0998 0.2500 0.0000 0.6587 0.0812 0

T = 500 OLS 0.1962 0.0996 0.0998 0.2462 0.0007 0.2545 0.0505 0
WLS 0.1986 0.1000 0.1000 0.2489 0.0001 0.2558 0.0506 0
ABF 0.1998 0.1001 0.1000 0.2501 0.0000 0.2554 0.0505 0
BOOT 0.1999 0.1001 0.1000 0.2502 0.0000 0.2555 0.0505 0

Figure 1(a.1) shows that for all values of Φ11 WLS yields a larger variance than both OLS and ABF,
and in Figure 1(b.1) this is the case for Φ11 smaller than roughly 0.65. The bias-reduction from WLS
compared to OLS only offsets this larger variance for Φ11 larger than roughly 0.4 and 0.2, respectively, cf.
Figure 1(a.2) and (b.2). However, WLS is derived under the assumption of fixed initial values. Figure 2
shows results corresponding to those in Figure 1 but now with fixed initial values, which provides a
more fair comparison of WLS to OLS and ABF. Comparing the two figures we see that fixed initial
values clearly improve the finite-sample properties of WLS. The variance of WLS is now always smaller
than or roughly equal to that of OLS, which together with a smaller bias implies that RMSE is lower for
WLS than for OLS. However, despite better finite-sample properties under fixed initial values, WLS still
does not yield a lower RMSE than ABF. Note, the relative findings on OLS and ABF are unaffected by
the choice of random or fixed initial values.
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Figure 1. Variance and RMSE with random initial value. The figure shows the variance and
RMSE in the VAR(1) slope coefficients based on 10,000 simulations as a function of Φ11 for
OLS (solid line), WLS (dotted line), and ABF (dashed line). The remaining data-generating
parameters are in Panel a given in (11) and in Panel b given in (12). The sample size is 100.
The variance and RMSE are reported as the average across the four slope coefficients. The
variance is multiplied by 100.
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Figure 2. Variance and RMSE with fixed initial value. See caption to Figure 1.
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3.2. Iterating and Inverting the Analytical Bias Formula

The use of an iterative scheme in the analytical bias formula is only relevant if the bias varies as a
function of Φ.11 Figure 3 shows the bias as a function of Φ22 in a bivariate VAR(1) system with the
remaining data-generating parameters equal to those given in (11). As expected the bias function varies
most for small sample sizes, but even for T = 50 the bias function for Φ11 is relatively flat. For Φ12

and Φ21 the bias function is relatively steep when the sample size is small and the second variable in
the system is fairly persistent. For Φ22 the bias function is mainly downward sloping. Overall, Figure 3
suggests that the use of an iterative scheme could potentially be useful if the sample size is small, while
for larger sample sizes the gain appears to be limited. Of course these plots depend on Φ and the
correlation between the innovations. To illustrate the effect of changing Φ and Ωu, Figure 4 shows the
bias also as a function of Φ22 but with the remaining data-generating parameters equal to those given
in (12). Comparing Figure 4 with Figure 3 it is clear that the bias functions are quite different. For
example, all the bias functions are now very flat when the second variable is highly persistent, which
suggests a limited effect of using an iterative scheme when the data-generating process is given by (12).

Figure 3. Bias functions. The figure shows the least squares bias in the VAR(1) slope
coefficients as a function of Φ22 with the remaining data-generating parameters given in (11)
for T = 50 (solid line), T = 100 (dotted line), and T = 500 (dashed line). The bias functions
are calculated using the analytical bias formula (7).

11 The idea of using an iterative approach when bias is a function of Φ is related to the non-linear bias-correction method
proposed by MacKinnon and Smith [21].
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Figure 4. Bias functions. The figure shows the least squares bias in the VAR(1) slope
coefficients as a function of Φ22 with the remaining data-generating parameters given in (12)
for T = 50 (solid line), T = 100 (dotted line), and T = 500 (dashed line). The bias functions
are calculated using the analytical bias formula (7).

Table 4 shows simulation results for the iterative scheme using the data-generating processes in (11)
and (12), respectively. The convergence criteria used in the iterative scheme is that the maximum
difference across the slope coefficients between two consecutive iterations must be smaller than 10−4.12

We calculate Ω̂x as vec(Ω̂x) = (Ik×k− Φ̂⊗ Φ̂)−1vec(Ω̂u), which implies that we in applying the iterative
scheme for the analytical bias formula also reestimate Ωx for each iteration based on the ’new’ estimates
of Φ and Ωu.13 For ease of comparison, Table 4 also contains the results based on the simple ‘plug-in’
approach as reported in Tables 1 and 2.

Regarding WLS, Table 4 shows that with the data-generating process given in (11) iteration reduces
the bias but increases the variance. Only for T = 50 is the bias reduction of a sufficient magnitude
to offset the increase in variance implying a decrease in RMSE. For T ≥ 100 RMSE increases when
iterating on the WLS estimator.14 For the data-generating process given in (12) the results for WLS
are quite different. Using an iterative scheme, bias is now larger than for the ‘plug-in’ approach when
T ≥ 100. Also, bias increases as a function of the sample size up to T = 200. However, due to a large
decrease in variance, RMSE still decreases as the sample size increases.

12 Amihud and Hurvich [6] and Amihud et al. [32] also use an iterative scheme in their application of the analytical bias
formula. However, they use a fixed number of iterations (10) while we iterate until convergence. Convergence is usually
obtained within a small number of iterations (4-6), but in a few cases around 20 iterations are needed for the coefficients
to converge.

13 Alternatively, we could leave Ωx unchanged throughout the iterative procedure. However, this approach generally leads
to an increase in both bias and variance (results not shown) compared to reestimating Ωx, so we disregard this approach
in our comparison of the ‘plug-in’ and iterative scheme.

14 With fixed initial values the variance of this estimator will decrease when applying the iterative procedure, resulting in a
decrease in RMSE, irrespective of the sample size (results not shown).
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Table 4. Bias-correction using an iterative scheme. The results in Panel A are based on
10,000 simulations from the VAR(1) model given in (11). The results in Panel B are based
on the model given in (12). WLS∗ and ABF∗ give the results when using an iterative scheme
for WLS and ABF, respectively. ABF∗∗ gives the results when inverting the analytical bias
formula to obtain an estimate of the bias. See also the caption to Table 1.

Panel A Panel B
Bias2 Variance RMSE #NS Bias2 Variance RMSE #NS

T = 50 WLS 0.1606 1.9135 0.1438 198 0.0295 2.1234 0.1446 63
WLS∗ 0.0511 1.9831 0.1423 612 0.0104 2.4418 0.1531 182
ABF 0.0382 1.7520 0.1336 1613 0.0151 2.1350 0.1456 446
ABF∗ 0.0284 1.7090 0.1317 1652 0.0082 2.1452 0.1456 535
ABF∗∗ 0.0409 1.5396 0.1254 5912 0.1897 2.1390 0.1514 3054

T = 100 WLS 0.0229 0.7549 0.0880 21 0.0109 1.0095 0.0984 2
WLS∗ 0.0015 0.8646 0.0928 102 0.0284 1.1795 0.1062 6
ABF 0.0025 0.6821 0.0826 307 0.0016 0.8992 0.0934 6
ABF∗ 0.0018 0.6750 0.0821 312 0.0009 0.9011 0.0934 7
ABF∗∗ 0.0444 0.6205 0.0813 2847 0.0796 0.9471 0.1003 337

T = 200 WLS 0.0021 0.3471 0.0590 0 0.0264 0.5237 0.0720 0
WLS∗ 0.0019 0.4428 0.0664 3 0.0581 0.6566 0.0818 0
ABF 0.0001 0.3004 0.0547 1 0.0001 0.4059 0.0621 0
ABF∗ 0.0001 0.2995 0.0546 1 0.0001 0.4062 0.0622 0
ABF∗∗ 0.0198 0.2854 0.0551 164 0.0230 0.4184 0.0652 0

T = 500 WLS 0.0004 0.1322 0.0363 0 0.0227 0.2367 0.0496 0
WLS∗ 0.0030 0.1942 0.0442 0 0.0511 0.3338 0.0607 0
ABF 0.0000 0.1091 0.0329 0 0.0000 0.1550 0.0381 0
ABF∗ 0.0000 0.1090 0.0329 0 0.0000 0.1550 0.0381 0
ABF∗∗ 0.0035 0.1067 0.0331 0 0.0036 0.1568 0.0389 0

For the analytical bias formula iteration generally yields a small reduction in bias compared to the
‘plug-in’ approach, while the effect on variance depends on the data-generating process. For the process
given in (11) variance decreases slightly when iterating, while there is a small increase for the process
given in (12). Comparing the effect on RMSE from using an iterative scheme relative to the ‘plug-in’
approach, we only see a noticeable decrease for (11) with T = 50. This result is consistent with the bias
functions shown in Figures 3 and 4, and suggests that iteration often has a limited effect.

Instead of iterating on the analytical bias formula, we can (conditional on Φ̂) use it to back out the
’true’ Φ (and thereby Ωu and Ωx), which can then be inserted into the bias formula to obtain an estimate
of the bias. Table 4 shows that this approach generally has a noticeably larger bias than both the ‘plug-in’
approach and the iterative scheme.15 The effect on the variance depends on the data-generating process.

15 In contrast to the ‘plug-in’ approach and the iterative scheme, inverting the bias formula generally leads to an upward bias
in autoregressive coefficients when the process is fairly persistent (results not shown). This is also mirrored in a relatively
large number of simulations resulting in a non-stationary system, cf. Table 4.
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For the process given in (11) variance is lowest when inverting the bias formula resulting in a slightly
lower RMSE compared to the other two approaches, while for (12) the variance and RMSE are both
higher when inverting.

3.3. Bias-Correction in Nearly Non-Stationary Models

Although the true VAR system is stationary, we often face the risk of finding unit or explosive roots
when estimating a persistent system based on a finite sample. In Table 1 for T = 50 we found that in 25
out of 10,000 simulations, OLS yields a non-stationary system. When correcting for bias using either the
analytical bias formula or a bootstrap procedure this number increases considerably. In this section we
compare the finite-sample properties of OLS (both with and without bias-correction) to the Yule-Walker
(YW) estimator, which is guaranteed to ensure a stationary system. We also analyze how Kilian’s [10]
approach to ensure stationarity affects the finite-sample properties of the bias-correction methods.

Table 5 reports simulation results for the following VAR(1) model

θ =

[
0

0

]
, Φ =

[
0.80 0.10

0.10 0.94

]
, Ωu =

[
2 1

1 2

]
, (14)

where the eigenvalues of Φ are 0.748 and 0.992. This VAR(1) model is also used in a simulation
study by Amihud et al. [32] and is more persistent than the ones used in Tables 1–4, which increases
the risk of estimating a non-stationary model using OLS and entering the non-stationary region of the
parameter space when correcting for bias. Panel A shows the finite-sample properties of the OLS and
YW estimators. Panel B reports the results when using Kilian’s approach to ensure stationarity when
correcting for bias using the analytical bias formulas (6) and (8) and bootstrapping (only OLS), while
Panel C shows the corresponding results without applying Kilian’s approach. The sample size is 100.16

From Panel A it is clear that YW has a much larger bias than OLS. This is also the case for the variance
and, hence, the RMSE for YW is larger than for OLS. However, in contrast to OLS, YW always results
in a stationary system, which implies that it is always possible to adjust for bias using the analytical bias
formula. In Table 5, OLS yields a non-stationary model in 250 out of 10,000 simulations. The question
now is if using the analytical bias formula for YW yields similar finite-sample properties as in the case
of OLS? Panel B (where the procedure by Kilian [10] is applied) shows that this is not the case. YW still
has a larger bias than OLS and the variance is more that three times as large. Comparing the results for
YW with and without bias correction we see that the bias is clearly reduced by applying the analytical
bias formula, but the variance also more than doubles. It is also worth noting that in 7,055 out of 10,000
simulations the system ends up in the non-stationary region when correcting YW for bias compared to
only 3,567 for OLS.17

16 We have done the same analysis for other sample sizes and we arrive at the same qualitative conclusions, so to conserve
space we do not report them here.

17 Amihud and Hurvich [6] and Amihud et al. [32] use the YW estimator in a slightly different way. In their iterative
procedure they first estimate the model using OLS, and if this yields a non-stationary system, they reestimate the model
using YW. However, when correcting for bias they still use the analytical bias formula for OLS.
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Table 5. Bias-correction in a nearly non-stationary VAR(1) model. The results in this table
are based on 10,000 simulations from the VAR(1) model given in (14). The sample size
is 100. Panel A shows the results from estimating the VAR(1) model using ordinary least
squares (OLS) and Yule-Walker (YW). Panel B and C show the results when adjusting the
ordinary least squares estimate for bias using the analytical bias formula (7) (ABF) and
bootstrapping (BOOT), and when adjusting the Yule-Walker estimate for bias using the
analytical bias formula (8). In Panel B (in contrast to Panel C) the correction by Kilian
(1998a) to ensure a stationary VAR system is applied. See also the caption to Table 1.

Mean Slope Coefficients
Φ11 Φ12 Φ21 Φ22 Bias2 Variance RMSE #NS

Panel A
OLS 0.7508 0.0885 0.1032 0.8890 0.1290 0.6056 0.0844 250
YW 0.6567 -0.0649 0.1542 0.9582 1.2748 0.6578 0.1284 0

Panel B
ABF (OLS) 0.7813 0.0943 0.0968 0.9217 0.0182 0.5585 0.0745 3567
ABF (YW) 0.7829 0.0922 0.1105 0.9036 0.0448 1.7573 0.1297 7055
BOOT 0.7823 0.0951 0.0986 0.9234 0.0153 0.5709 0.0750 4266

Panel C
ABF (OLS) 0.7872 0.0951 0.0958 0.9276 0.0089 0.5599 0.0742 3567
ABF (YW) 0.8778 0.1465 0.1522 0.9398 0.2734 2×102 1.4960 7055
BOOT 0.7904 0.0962 0.0980 0.9311 0.0047 0.5785 0.0750 4266

Until now we have used the approach by Kilian [10] to ensure a stationary VAR system after correcting
for bias. Based on the same 10,000 simulations as in Panel B, Panel C shows the finite-sample properties
without applying Kilian’s approach. For OLS (using both the analytical bias formula and a bootstrap
procedure) bias decreases and variance increases slightly when we allow the system to be non-stationary
after bias-correction. This result is not surprising. The VAR system is highly persistent and very small
changes in Φ can result in a non-stationary system, e.g., if Φ22 is 0.95 instead of 0.94 the system has a unit
root. Hence, when applying Kilian’s approach, we often force the estimated coefficients to be smaller
than the true values. In contrast, when we allow the system to be non-stationary after bias-correction
some of the estimated coefficients will be smaller than the true values and some will be larger and,
hence, positive and negative bias will offset each other across the 10,000 simulations. Likewise, this will
also imply that the variance is larger when we do not apply Kilian’s approach. However, comparing the
results for OLS in Panel B and Panel C it is clear that these differences are very small, which implies that
Kilian’s approach does not severely distort the finite-sample properties of the bias-correction methods;
and this even though we apply the approach in roughly 4,000 out of 10,000 simulations. In contrast, for
YW it turns out to be essential to use Kilian’s approach as seen from Panel C. Note also that allowing
the system to be non-stationary (i.e. not applying Kilian’s approach) is not consistent with the fact that
the analytical bias formula is derived under the assumption of stationarity.
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3.4. Bias-Correction in Non-Stationary Models

One of the major advantages of the weighted least squares estimator by Chen and Deo [30] compared
to the analytical bias formula is that it allows for unit roots. In Section 3.3 we simulated from a stationary
but highly persistent VAR(1) model and we assumed that the researcher has a priori knowledge that
the system is stationary and thus considered the approach by Kilian [10] to ensure stationarity when
correcting for bias. As a robustness check we now simulate from a bivariate VAR(1) model with unit
roots and we assume that the researcher acknowledges that the system might be non-stationary and thus
does not want to force the system to be stationary. The analytical bias formula is derived under the
assumption of stationarity so the analysis in this section is in principle invalid for ABF. However, similar
to the analysis of the properties of WLS under random initial values, it is also of interest to examine the
finite-sample properties of ABF in the non-stationary case. To our knowledge the asymptotic theory of
the properties of the bootstrap bias-corrected estimator for unit root models has not yet been developed.

Table 6. Bias-correction in a bivariate VAR(1) model with one unit root. The results in this
table are based on 10,000 simulations from the VAR(1) model given in (15). See also the
caption to Table 1.

Mean Slope Coefficients
Φ11 Φ12 Φ21 Φ22 Bias2 Variance RMSE #NS

T = 50 OLS 0.9694 -0.0505 0.1887 0.7900 0.5172 1.1895 0.1293 1153
WLS 1.0227 -0.0597 0.1933 0.8048 0.2682 1.0373 0.1138 3067
ABF 1.0168 -0.0319 0.1556 0.8583 0.1084 1.0444 0.1072 5830
BOOT 1.0364 -0.0479 0.1584 0.8615 0.0489 1.1038 0.1071 6772

T = 100 OLS 1.0235 -0.0521 0.1658 0.8451 0.1028 0.3098 0.0636 956
WLS 1.0521 -0.0580 0.1677 0.8497 0.0503 0.2624 0.0557 2972
ABF 1.0426 -0.0423 0.1441 0.8762 0.0274 0.2856 0.0558 5156
BOOT 1.0553 -0.0514 0.1460 0.8776 0.0083 0.2892 0.0544 6083

T = 200 OLS 1.0483 -0.0544 0.1534 0.8656 0.0222 0.0952 0.0340 754
WLS 1.0626 -0.0581 0.1541 0.8668 0.0108 0.0832 0.0306 3113
ABF 1.0560 -0.0501 0.1415 0.8791 0.0074 0.0928 0.0316 4819
BOOT 1.0626 -0.0545 0.1422 0.8797 0.0023 0.0919 0.0306 5777

T = 500 OLS 1.0625 -0.0580 0.1449 0.8754 0.0027 0.0258 0.0168 550
WLS 1.0677 -0.0595 0.1451 0.8755 0.0013 0.0240 0.0158 3150
ABF 1.0650 -0.0566 0.1401 0.8799 0.0009 0.0258 0.0163 4711
BOOT 1.0674 -0.0583 0.1402 0.8801 0.0002 0.0254 0.0160 5558

We consider two bivariate VAR(1) models. Table 6 reports results for the following system

θ =

[
0

0

]
, Φ =

[
1.07 −0.06

0.14 0.88

]
, Ωu =

[
1 0.5

0.5 1

]
, (15)
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where the eigenvalues of Φ are 1 and 0.95, while Table 7 reports results for the system

θ =

[
0

0

]
, Φ =

[
1.08 −0.04

0.16 0.92

]
, Ωu =

[
1 0.5

0.5 1

]
, (16)

where both eigenvalues of Φ are 1. These two VAR(1) models are both used by Chen and Deo [30] in a
simulation study of the finite-sample properties of WLS. Due to an infinite variance ofXt in the presence
of unit roots, in the simulation study initial values of Xt are fixed and equal to 0 rather than random.

Tables 6 and 7 both show that OLS delivers biased estimates and that WLS, ABF, and BOOT all
reduce both bias and RMSE. Hence, even though ABF is derived under the assumption of stationarity, it
still has better finite-sample properties than OLS. Comparing WLS, ABF, and BOOT in terms of bias we
see that BOOT consistently delivers the smallest bias, irrespective of one or two unit roots. In contrast
to the stationary case ABF performs noticeably worse than BOOT. It does, however, yield a smaller bias
than WLS in the presence of one unit root, while the opposite is the case with two unit roots. With respect
to variance WLS consistently performs best, especially so when there are two unit roots. Altogether these
results imply that BOOT has the smallest RMSE when there is one unit root (and for small samples when
there are two unit roots) while this is the case for WLS when there are two unit roots (and the sample
size is not too small).

Table 7. Bias-correction in a bivariate VAR(1) model with two unit roots. The results in
this table are based on 10,000 simulations from the VAR(1) model given (16). See also the
caption to Table 1.

Mean Slope Coefficients
Φ11 Φ12 Φ21 Φ22 Bias2 Variance RMSE #NS

T = 50 OLS 0.9575 -0.0075 0.1914 0.8665 0.4975 0.9676 0.1169 3390
WLS 1.0220 -0.0247 0.2038 0.8749 0.1886 0.7893 0.0973 5748
ABF 1.0064 0.0076 0.1630 0.9199 0.1922 0.8770 0.1021 7736
BOOT 1.0413 -0.0259 0.1731 0.9082 0.0501 0.9029 0.0958 8377

T = 100 OLS 1.0146 -0.0153 0.1704 0.9076 0.1289 0.2164 0.0549 4113
WLS 1.0534 -0.0292 0.1779 0.9072 0.0327 0.1576 0.0423 6533
ABF 1.0352 -0.0103 0.1566 0.9247 0.0731 0.2165 0.0522 8125
BOOT 1.0620 -0.0311 0.1638 0.9184 0.0105 0.2063 0.0449 8561

T = 200 OLS 1.0455 -0.0245 0.1634 0.9173 0.0362 0.0505 0.0269 4578
WLS 1.0673 -0.0339 0.1670 0.9160 0.0066 0.0347 0.0195 6942
ABF 1.0547 -0.0244 0.1585 0.9217 0.0223 0.0537 0.0261 8355
BOOT 1.0710 -0.0352 0.1615 0.9195 0.0027 0.0487 0.0216 8671

T = 500 OLS 1.0659 -0.0332 0.1605 0.9197 0.0061 0.0078 0.0106 4659
WLS 1.0748 -0.0374 0.1614 0.9193 0.0009 0.0052 0.0074 7059
ABF 1.0696 -0.0343 0.1595 0.9203 0.0035 0.0081 0.0100 8351
BOOT 1.0764 -0.0381 0.1601 0.9200 0.0004 0.0075 0.0084 8653
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3.5. Bias-Correction When Data Are Skewed and Fat-Tailed

Until now we have generated data from a multivariate normal distribution. However, in many
empirically relevant models the normality assumption often fails. The analytical bias formula is not
derived under a normality assumption, but it is unclear how the finite-sample properties of bias-correction
using ABF compare to those of bootstrapping if the data are, for example, very skewed and fat-tailed.
Furthermore, researchers often use a parametric bootstrap based on a normal distribution instead of
the usual residual-based bootstrap procedure. The obvious question here is: do we commit errors when
using this parametric bootstrap approach when data are very skewed and fat-tailed? Also, WLS is derived
under the assumption of normality. How does this estimator perform under skewed and fat-tailed data?
In this section, we address these issues.

To obtain data that are skewed and have fat tails we use the data-generating parameters in (11) but
follow Kilian [24] and make random draws for the innovations from a Student’s t-distribution with four
degrees of freedom and a χ2-distribution with three degrees of freedom, respectively.18 Table 8 shows
the results. For the bias-correction methods we use the approach by Kilian [10] to ensure stationarity.
The sample size is 100.19

Table 8. Bias-correction in a VAR(1) model, skewed and fat-tailed innovations. The results
in this table are based on 10,000 simulations from the VAR(1) model given in (11) but
with innovations randomly drawn from Student’s t-distribution with four degrees of freedom
(Panel A) and χ2-distribution with three degrees of freedom (Panel B). The sample size is
100. PARBOOT are bias-adjusted estimates from the bootstrap based on normally distributed
innovations. See also the caption to Table 1.

Mean Slope Coefficients
Φ11 Φ12 Φ21 Φ22 Bias2 Variance RMSE #NS

Panel A
OLS 0.7541 0.0968 0.1008 0.8038 0.1063 0.7525 0.0925 2
WLS 0.7694 0.1035 0.1025 0.8244 0.0402 0.7554 0.0890 8
ABF 0.7921 0.0994 0.0983 0.8438 0.0026 0.7053 0.0840 489
BOOT 0.7933 0.1003 0.0993 0.8454 0.0017 0.7160 0.0846 525
PARBOOT 0.7938 0.1002 0.0993 0.8458 0.0014 0.7150 0.0845 542

Panel B
OLS 0.7590 0.1000 0.1029 0.8102 0.0817 0.6642 0.0861 2
WLS 0.8135 0.0885 0.0900 0.8578 0.0119 0.8981 0.0952 132
ABF 0.7941 0.0998 0.0991 0.8453 0.0015 0.6242 0.0790 307
BOOT 0.7989 0.1029 0.1010 0.8520 0.0004 0.6315 0.0794 450
PARBOOT 0.7994 0.1028 0.1009 0.8524 0.0004 0.6314 0.0794 451

18 We center the randomly drawn innovations from a χ2-distribution to ensure the error distribution has zero mean.
19 We have done the same analysis for other sample sizes and we arrive at the same qualitative conclusions, so to conserve

space, we do not report them here.
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Overall, the results in Table 8 are in line with our previous findings for stationary models with random
initial values, namely that OLS yields highly biased estimates, WLS is able to reduce this bias but at the
cost of increased variance and the bias correction methods provide a large bias reduction compared to
both OLS and WLS. Comparing ABF and BOOT, we see that similar to the results in Tables 1–3 and 5,
BOOT yields a slightly smaller bias than ABF and has a slightly higher variance.

In addition to the residual-based bootstrap approach, Table 8 also shows the results when applying a
parametric bootstrap procedure based on an assumption of normally distributed data (PARBOOT). Given
that the innovations are skewed and fat-tailed we could expect this approach to have inferior properties
compared to both the residual-based bootstrap that directly takes into account the non-normality of the
data, and the analytical bias formula that is derived without the assumption of normality. The results in
Table 8 show that this is not the case. PARBOOT has both smaller bias and lower variance than BOOT.
However, the differences are very small, and for all practical purposes the results in Table 8 suggest that
the use of BOOT and PARBOOT will give similar results.

These results contrast those of Kilian [24] who examines the coverage accuracy of various methods
for constructing confidence intervals for impulse responses when data are non-normally distributed. Two
of the methods he considers are based on the analytical bias formula combined with a residual-based and
a parametric (assuming Gaussianity) bootstrap procedure, respectively. Kilian finds that in terms of
constructing confidence intervals for impulse responses the residual-based bootstrap procedure strictly
dominates the parametric approach when data have fat tails and are skewed. In the present paper
we consider parameter estimates and not confidence intervals, which inevitably depend on the entire
distribution of innovations. Our results show that with respect to point estimates using an incorrect
parametric bootstrap has no negative consequences, which lend support to the use of a parametric
bootstrap procedure when data do not match the assumed distribution.

4. Summary of Results

The main results of our simulation study for VAR(1) models can be summarized as follows:

- The analytical bias formula and the bootstrap approach both yield a very large reduction in bias
compared to OLS, also when the model is highly stationary. For persistent but stationary models
the variance of OLS is also higher than the variance of the bias-adjusted estimates. The less
persistent the system is the better OLS performs in terms of variance, and for highly stationary
models this results in OLS yielding the lowest mean squared error.

- The properties in terms of both bias and variance of the analytical bias formula and the bootstrap
approach are very similar in stationary models. In non-stationary models the analytical bias
formula performs noticeably worse than bootstrapping.

- The variance and thereby the mean squared error of WLS is highly sensitive to the initial value.
The estimator has a lower mean squared error than OLS when the initial value is fixed while for
random initial values it depends on the persistence of the system. In stationary models WLS has
a larger bias than the analytical bias formula and bootstrapping, and irrespective of initial values
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also a higher mean squared error. In non-stationary models the lower variance can, however, in
some cases lead to a lower mean squared error for WLS than for bootstrapping.

- The iterative scheme, where bias-adjusted estimates repeatedly are inserted into the analytical
bias formula, can for certain data-generating processes and very small sample sizes yield a minor
improvement over the simple one-step ‘plug-in’ approach where biased least squares estimates are
used in place of the true unknown parameters. For larger sample sizes there is no gain by iterating.

- Even after correcting for bias the Yule-Walker estimator has very poor finite-sample properties
compared to OLS.

- Kilian’s [10] approach to ensure stationarity does not distort the finite-sample properties of the
bias-adjusted estimates. The approach leads to a very small increase in bias but also a decrease in
variance implying a basically unaffected mean squared error compared to the case where we allow
the model to be non-stationary.

- Despite skewed and fat-tailed data, with respect to point estimates parametric bootstrap
bias-correction based on the normal distribution performs no worse than bootstrap bias-correction
based on the non-normal residuals.
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