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Abstract: In a bonus-malus system in car insurance, the bonus class of a customer is updated
from one year to the next as a function of the current class and the number of claims in the
year (assumed Poisson). Thus the sequence of classes of a customer in consecutive years
forms a Markov chain, and most of the literature measures performance of the system in
terms of the stationary characteristics of this Markov chain. However, the rate of convergence
to stationarity may be slow in comparison to the typical sojourn time of a customer in the
portfolio. We suggest an age-correction to the stationary distribution and present an extensive
numerical study of its effects. An important feature of the modeling is a Bayesian view,
where the Poisson rate according to which claims are generated for a customer is the outcome
of a random variable specific to the customer.

Keywords: actuarial mathematics; Bayes premium; equilibrium distribution; experience
rating; insurance portfolio; Markov chain; motor insurance; Poisson claims;
stationary distribution

1. Introduction

In the classical actuarial model for bonus-malus systems in automobile insurance (Denuit et al. [1]
or Lemaire [2], for example), there is a finite set of bonus classes ` = 1, . . . , K. A customer having
n claims and bonus class ` in a given year has bonus class b(`, n) in the next for some deterministic
function b (the bonus rule; claim sizes are ignored and only claim numbers counted). The customer has
a risk parameter λ, such that the number of claims N0, N1, . . . in consecutive years are i.i.d. Poisson(λ),
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and so the sequence L0, L1, . . . of bonus classes is a time-homogeneous Markov chain with transition
matrix P (λ) =

(
pk`(λ)

)
k,`=1,...,K

where

p`,`′(λ) =
∞∑
n=0

e−λ
λn

n!
I
(
b(`, n) = `′

)
(such a customer we denote a λ-customer). Customers pay premium r` when in class ` and enter the
system in some fixed class `0. The r` and `0 may be chosen according to certain optimality and/or
financial equilibrium principles (see below) or arbitrarily.

For a simple example of a bonus rule, consider the−1/+2 rule. Here each claim causes the bonus level
to increase by 2, whereas it decreases by 1 for each claim-free year (obvious boundary modifications
apply to levels 1, K − 1, K). The systems in use are often substantially more detailed, with K of
order 15–25.

Much of the discussion of the literature employs stationarity modeling, measuring characteristics of
the system via the stationary distribution π(λ) = (π`(λ))`=1,...,K (existing under the weak assumptions
of irreducibility and aperiodicity). In particular, the average premium r(λ) of a customer with risk
parameter λ is defined by

r(λ) =
K∑
`1

r`π`(λ) =
K∑
`=1

π` · lim
n→∞

pn`0,`(λ) (1)

where the pn are the n-step transition probabilities. From the r(λ), one often proceeds to calculate the
Loimaranta efficiency

e(λ) =
d log r(λ)

d log λ
=

λr′(λ)

r(λ)

at λ (denoted elasticity outside the actuarial sciences); it measures to which extent r(λ) is linear at λ (as
should ideally be the case), with e(λ) = 1 expressing ‘local linearity’ at λ.

Such stationary performance measures are only meaningful if the Markov chain L attains
(approximate) stationarity within the typical time a customer spends in the portfolio. For this reason
much attention has been given to studying the approach of the pn`0,`(λ) to π`(λ). The rate of convergence
is known to be geometric, with decay parameter the second largest eigenvalue of the transition matrix
P (λ). However, this is an asymptotic result and so the studies are most often numerical, depicting for
example the mean annual premium EλrLn or the total variation (t.v.) distance

dTV

(
p`0·(λ),π(λ)

)
=

K∑
`=1

∣∣pn`0,`(λ)− π`(λ)
∣∣ (2)

as function of n (see, for example, Denuit et al. [1], p. 183ff). The results are sometimes encouraging:
for some bonus systems, dTV

(
p`0·(λ),π(λ)

)
= 0 already for n = 4–6. However, these are typically

simple-minded systems, and for the more realistic ones, one often sees a substantial value of the t.v.
distance for say n = 30, a value exceeding the time span a customer can be expected to stay in the
portfolio. Nevertheless, the studies of the effects of the sojourn time A in the portfolio being finite
are remarkably few, with Borgan et al. [3] being the main exception. One purpose of this paper is to go
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deeper into this direction and to formulate an alternative (which we call age-correction) to the stationarity
point of view.

Bonus-malus systems may be seen as an example of experience rating which has as aim to calculate
the premium on an individual basis by using the information available to the company. In the automobile
insurance setting, we ignore in this paper profit, administration costs etc., and take the average claim size
equal to 1, so that in after a given year m, the company would want to compute its net premium cm for
year m as its best guess of the customer’s λ as function of the numbers N0, N1, . . . , Nm−1 of claims filed
in years 0, 1, . . . ,m − 1. The naive guess is of course the average λ̂m = (N0 + N1 + · · · + Nm−1)/m.
However, a high value of λ̂m could be due to bad luck of an otherwise good driver and a low value
luck of an otherwise bad driver. An estimate which is more fair to the customer is therefore obtained
by a Bayesian view where one involves information on the population of customers in form of a prior
distribution, say U , of λ, views the particular customer’s λ as the outcome of a r.v. with distribution U ,
calculates the posterior distribution Um and takes cm as the mean of Um, the Bayes premium.

Example 1. A often considered choice for the prior U is a Gamma(b, µ) with density
µ(µu)b−1e−µu/Γ(b). This can be motivated by negative binomial fitting (e.g., Denuit et al. [1], p. 28),
but is also mathematically convenient since then the posterior Um is again Gamma with parameters

bm = b+N0 +N1 + · · ·+Nm−1 , µm = µ+m

and one gets the Bayes premium as the posterior mean

bm
µm

=
b+N0 +N1 + · · ·+Nm−1

µ+m
=

µ

µ+m
· b
µ

+
m

µ+m
· λ̂m

This has a neat interpretation as a weighted average of the population mean b/µ (the premium the
company will charge without access to claims statistics) and the mean λ̂m of the claims, with the weight
m/(µ+m) of λ̂m increasing to 1 as years go by and the information on the customer accumulates. 2

The Bayes premium enjoys the optimality property of minimizing the quadratic loss E(cm − Λ)2

in the class of all functions cm of N0, N1, . . . , Nm−1, the natural class of predictors of Λ using
information on N0, N1, . . . , Nm−1. In fact, it is standard that the solution to this minimization problem is
cm = E[Λ |N0, N1, . . . , Nm−1]. For these facts and the general theory of Bayes premiums, see
Bühlmann [4], Bühlmann & Gisler [5] and Denuit et al. ([1], Ch. 3). 1

Given the above optimality property, the Bayes premium can be viewed as the optimal fair choice
of the insurer’s premium (it is often argued that the reason that bonus-malus systems are used instead
in practice is that they are better understandable to the average customer who would not know about
prior and posterior distributions). Nevertheless, as noted by Norberg [6], the Bayesian view is highly
relevant also in bonus-malus systems but for a different purpose, to compute the premiums r1, . . . , rK in

1 These references have as their main theme not the Bayes premium but rather the credibility premium, also called the linear
Bayes premium, computed as the minimizer of E(am −Λ)2 in the class of all linear functions am of N0, N1, . . . , Nm−1;
for the Gamma example and many others, the Bayes premium and the linear Bayes premium coincide. The motivation for
considering linear predictors only is computational ease.
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the different bonus levels. To this end, the idea of basing the premium on the bonus level means that one
chooses the minimizer of E(c − Λ)2 in the class of all functions c of the bonus level. One then needs
to specify what is meant by this level, and to avoid the dependency on m, the choice of [6] and much
subsequent literature is a r.v. L∞ distributed as π(Λ) (recall that π(λ) is the stationary distribution of
the Markov chain L0, L1, . . . when the customer’s Poisson parameter is λ). Using the general L2-theory
quoted above, the minimizer is

c = E[Λ |L∞] =
K∑
`=1

I(L∞ = `)E[Λ |L∞ = `]

so that the optimal bonus level r` in class ` is E[Λ |L∞ = `]. Evaluating the conditional expectation,
we get

r` =

∫ ∞
0

λπ`(λ)U(dλ)∫ ∞
0

π`(λ)U(dλ)

. (3)

Formula (3) gives the premium rule of the bonus system which is optimal from the point of view of
minimizing the error in predicting a customer’s Λ. 2

The rule (3) enjoys in a certain sense the principle of financial equilibrium (for the company) which
asserts that on average, premium incomes and payments of claims should balance. Namely, the expected
claims in a year of a typical customer is EΛ and his expected premiums are ErL∞ assuming that a typical
customers bonus class is distributed as the stationary r.v. L∞. By the tower property of conditional
expectations, these expressions coincide. However, the point we take in this paper is that this assumption
is questionable and needs further discussion.

Remark 1. The above set-up ignores claim amounts (for examples of discussion involving also claim
severity, see Frangos & Vontos [7] and Mahmoudvand & Hassani [8]). For simplicity, we will assume
that the monetary scale is chosen such that the mean claim size is one. 2

Remark 2. Regulations vary greatly from country to country. At one extreme, all insurance companies
are obliged to use the same bonus-malus system, at the other they have complete freedom. The general
tendency has gone towards deregulation. A detailed survey of the situation in Europe as of year 2000
concerning such rules is in Meyer [9]. Of course, much has changed since then but still, [9] will serve to
give an impression of many practical issues connected with motor insurance. 2

The paper is organized as follows. In Section 2, we introduce our age-correction approach and give
some of its simple properties. The fundamental formula (4) gives π∗, the age-corrected π, expressed in
terms of the sojourn distribution of a customer in the population. Sections 3–6 then contain an extensive
numerical study of its behavior in concrete case and how it compares to the traditional stationarity-based
approach. A concluding discussion, including more careful references to the literature, is in Section 7,

2 Once this rule is chosen, one can also assert what is the optimal initial bonus level `0 by a further mean square error
minimization, cf. [6]. We do not go into this here.
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and the Appendix contains some complements as well as an outline of a more general modeling approach
via Markov chains.

2. Independent Sojourn Times

Motivated by the criticism of the traditional use of stationarity, we now assume that a customer stays
in the portfolio only for a finite number of years A. i.e., he is in the portfolio in years 0, 1, . . . , A − 1

after entering. We further assume that A is independent of his Λ and his claim sequence N0, N1, . . . and
thereby his sequence of bonus levels, and that µA = EA <∞. This independence assumption is crucial
but of course questionable. For example, an insured with a high Λ will typically be in a high bonus class
and be more prone to change company than one with a small Λ. The distribution of A is denoted by F ,
the point probabilities by fa = P(A = a), and we write f ea = (fa+1 +fa+2 + · · · )/µA, n = 0, 1, . . .. Here
f e is the equilibrium distribution familiar from renewal theory, cf. ([10], V.3). It gives the distribution
of the time elapsed since the last renewal, an interpretation that matches nicely the alternative derivation
we give in Appendix B.

Much of the discussion of Section 1 remains relevant, only do we need for each value λ of the Poisson
parameter to replace the stationary distribution π(λ) of the bonus level by the distribution π∗(λ) of the
typical bonus level L∗.

We then need to specify what is meant by the ‘typical bonus level’ of a λ-customer, and our suggestion
is to define this as a r.v. L∗ with distribution

π∗` (λ) = Pλ(L∗ = `) =
1

µA
Eλ

A−1∑
n=0

I(Ln = `) =
∞∑
a=0

f eaPλ(La = `) (4)

denoted the age-corrected distribution in the rest of the paper. Expression (4) is fundamental for the
paper and may be approached in various ways. We choose here the set-up in the following Theorem 1
where the interpretation is as a limiting long-term average of bonus classes of λ-customers seen by the
company (for an alternative, see Appendix B).

Before stating the Theorem, we need some notation and assumptions. Let My denote the number
of λ-customers in the portfolio in year y = 0,±1,±2, . . ., Ey the number of λ-customers entering the
portfolio 3 4 and Ly,c, c = 1, . . . ,My the bonus classes of the λ-customers, Ty,c ∈ {0, 1, . . .} the time
since they entered the portfolio. Assume that the Ey are i.i.d. with finite mean µE and independent of
the
(
My′ , Ly′,1, . . . , Ly′,My′

)
with y′ < y, and that the A,Λ, N0, N1, . . . for different customers are i.i.d.

and independent of the Ey.

3 For convenience, the dependence on λ is suppressed in the notation. In the Bayesian set-up, Ey a r.v. with a continuous
distribution so that strictly speaking, Ey = My = 0 a.s.; the set-up and statements then have to be understood in a suitable
conditional sense.

4 To be strict, one needs also to define some ordering of customers. These matters are to our mind of formal nature rather
than intrinsically difficult, and so we omit the details.
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Theorem 1. Under the above assumptions,

1

M0 + · · ·+MY

Y∑
y=0

My∑
c=1

I(Ty,c = a) → f ea (5)

1

M0 + · · ·+MY

Y∑
y=0

My∑
c=1

I(Ly,c = `) → π∗` (λ) (6)

a.s. as Y →∞ for all `, no matter initial conditions.

Proof. We can write
M0 + · · ·+MY = C ′ + C ′′ + C ′′′

where C ′ is the time-in-portfolio-before-Y of λ-customers that first entered the portfolio at some time
y′ < 0, C ′′ the similar time of those that entered at some time y = 0, . . . , Y and left before Y + 1, and
C ′′′ the time of those that entered at some time y = 0, . . . , Y but still remain in the portfolio at time
Y + 1 (and possibly after). Here we can bound C ′′′ by C̃ ′′′, the total-time-in-portfolio (not necessarily
before Y ) of λ-customers that first entered at some time y = 0, . . . , Y but remained in the portfolio after
Y . By the law of large numbers, C ′′ + C̃ ′′′ ∼ Y µEµA. Further,

C ′ = M0 − E0 = O(1) = o(Y )

EC ′′′ = µE

Y∑
y=0

P(A > Y − y) = µE

Y∑
y=0

P(A > y) ↑ µEµA = o(Y )

Combining these facts gives
1

Y
(M0 + · · ·+MY ) → µEµA (7)

A similar argument shows that the total times C ′′ or C ′′′ λ-customers ever spend is bonus class ` (not
necessarily before Y ) is of order

µEY

∞∑
n=0

Pλ(Ln = `, A > n) = µEY µAπ
∗
` (λ)

and that the C ′′ contribution to the l.h.s. of (6) dominates the C ′ and C ′′′ contributions. Combining
with (7) gives (6). The proof of (5) is similar, though slightly easier.

Remark 3. The analysis in the proof of Theorem 1 is similar to the one of a discrete time G/G/∞ queue.
My then plays the role of the queue length at time y, and Ty,c as the elapsed service time of customer
y, c. We will not use this connection and hence leave out further details. 2

It may be noted that expression (4) may be evaluated in closed analytical form. To this end, we need
the fundamental matrix Z(λ) of the Markov chain given by Z(λ) = (I − P (λ) + 1π(λ))−1 where 1 is
the (row) vector with 1 at all entries ([10], p. 31). Further let f̂ [z] =

∑∞
0 fnz

n denote p.g.f. of F and use
the same notation f̂ [C] =

∑∞
0 fnC

n for a square matrix C. Then, with e` the `th (row) unit vector:

Theorem 2. The distribution π∗(λ) with point probabilities (4) is given by

π∗(λ) = π(λ) +
1

µA
e`0
{
Z(λ)

(
I − f̂ [P (λ)]

)}
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For the proof, see the Appendix.

Remark 4. If the univariate p.g.f. f̂ [z] is available in closed form, then so is usually the matrix version
f̂ [C] by obvious changes in the expression for f̂ [z]. For example for a negative binomial distribution of
order 2 with point probabilities fn = (1−ρ)2(n+ 1)ρn, n = 0, 1, . . ., we have f̂ [z] = (1−ρ)2/(1−ρz)2

and f̂ [C] = (1− ρ)2(I − ρC)−2 . 2

3. Numerical Set-up

3.1. The Bonus Systems

We have selected three rather different systems for our numerical studies. Doing so, our source has
been the survey in Meyer [9] treating the situation in most European countries (as well as Japan and
the US) around 1999. Important characteristics of a bonus system is the number K of classes and the
spread factor, defined as the ratio between the highest premium rK and the lowest r1. We chose systems
from three countries, Ireland, Italy and Germany. Ireland has a small number K = 6 of classes and a
low spread factor of 2, Germany has a high number K = 29 of classes and a high spread factor of 8.2,
whereas Italy is intermediate with K = 18 of classes and spread factor 4. More detail on the various
systems are given below. It should be noted that each system may only have been one among several in
the particular country when [9] was published and that much may have changed since then. However,
our point is not to analyze systems that are necessarily in current use but rather that our examples both
show diversity and are typical of many other systems.

The premiums r`, often called relativities, are traditionally given in percent of the premium in the
initial class `0 or some other reference class, and when presenting the three systems, we follow that
tradition (as does Meyer [9]). However, later we shall renormalize to get financial equilibrium.

Figure 1. Trial distributions and their equilibrium distributions.
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3.2. Trial Sojourn Time Distributions

We selected four trial distributions for the distribution of the sojourn time A of a customer in the
portfolio. Two are negative binomial with point probabilities

fn =
(n+ 1

2

)
(1− ρ)3ρn , n = 1, 2, . . . (8)

(i.e., A is distributed as 1+B1 +B2 +B3 whereB1, B2, B3 are independent geometric(ρ) on {0, 1, . . .}).
Here ρ was chosen to make the means 1 + 3ρ/(1 − ρ) equal to 7 and 13, and the two distributions are
denoted NB(7), resp. NB(13). The two other, denoted U(6.5) and U(12.5), were taken as uniform
distributions on {1, 2, . . . , 12}, resp. {1, 2, . . . , 24}, i.e., with roughly the same means. The distributions
and their equilibrium distributions given by (5) are illustrated in Figure 1, giving the (yearly) probability
mass function.

In the numerical calculations, the distributions were truncated at n = 50, except for Figure 2 where
the truncation point was n = 2, 000.

Figure 2. Convergence of relativities, Ireland.
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3.3. Bayesian Assumptions

We have taken the distribution U of the customers’ (yearly) λ parameter to be exponential with mean
0.1. The exponential assumption is from Bichsel [11], who fitted a gamma distribution to data and found
the shape parameter to be close to 1. The value 0.1 is from Lemaire & Zi ([12], p. 288) who argue this
to be typical in many countries. 5

Motivated by this assumption, we have in many of the illustrations selected four values of λ, 0.04,
0.08, 0.16 and 0.32, i.e., two below the population mean and two above. For the spread, note that
0.04 and 0.32 roughly correspond to the 5%, resp. 95%, quantiles in the exponential distribution with
mean 0.1.

5 This value is also compatible with the data in a recent study of a Greek portfolio, Tsougas [13]. See, however, Section 4.4.
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4. Convergence to Stationarity. Age-Corrected Distributions

4.1. Ireland

The Irish system is very simple with K = 6 classes and transition rules as in Table 1. The initial class
is `0 = 6.

Table 1. Bonus rules, Ireland.

` r` n = 0 n = 1 n = 2+

6 100 5 6 6
5 90 4 6 6
4 80 3 6 6
3 70 2 5 6
2 60 1 4 6
1 50 1 3 6

The convergence speed to the stationary distribution is illustrated in two figures. The first, Figure 3,
shows the shape of the transient λ-distributions of Ln for four selected values n = 5, 10, 15,∞ of n
(n = ∞ corresponds to the stationary distribution) and the four selected values 0.04, 0.08, 0.16, 0.32 of
λ, and the next, Figure 4, plots the t.v. distance (2) to the stationary distribution as function of the number
n of years elapsed.

Figure 3. Transient distributions, Ireland.
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The shape of these figures may be understood from the transition rules. Consider for example a
customer with λ = 0.04. Here most of the mass of π is concentrated in class 1, but class 1 can at earliest
been reached in year 5. This explains the steep drop in Figure 4 in the t.v. distance between years 4 and
5. When looking at the bar plots in Figure 3 for the distribution of his class in different years, consider
for example year 5 and note that w.p. e−0.2 = 0.82 he will have no claims in the first 5 years, so 0.82 is
precisely the mass at class 1. W.p. 0.2e−0.2 = 0.16 he have will have exactly one claim. If this happens
in year 0, his sequence of states in years 1,2,3,4,5 is 6, 5, 4, 3, 2. The similar sequences for a claim in
year 1,2,3, resp. 4 are

5, 6, 5, 4, 3, 5, 4, 6, 5, 4, 5, 4, 3, 5, 4, 5, 4, 3, 2, 4 .

Since any of the years 0,1,2,3,4 are equally likely for the claim. this explains that class 4 is more likely
than classes 2,3, which is of course not the case for a good customer in stationarity (n = ∞). The
possibility of two or more claims giving mass in states 5,6 is just 0.02 and hence negligible.

Figure 4. T.v. convergence rate, Ireland.
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Similar remarks apply to other values of λ and n as well as the parallel figures for Italy and Germany
to follow, but we shall not give the details.

The figures shows the fastest convergence rate among our three selected systems, and also that the
rate is not that crucially depending on the value of λ. The explanation could be related to the simplicity
of the Irish system.

Figure 5, plots the age-corrected distribution π∗(λ) for our four selected values of λ (one in each
column) and our four trial distributions together with the stationary distribution π(λ) (the benchmark of
much literature) on top. It is seen that the agreement within columns is relatively good, with the most
marked differences for small values of λ. The explanation could be the relatively fast convergence rate
in the Irish system.
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Figure 5. Stationary and age-corrected distributions, Ireland.
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4.2. Italy

The Italian system is intermediate with K = 18 classes and transition rules as in Table 2. The initial
class is `0 = 14 [note that r`0 6= 100, a normalization allowed in exceptional cases].

Figures 6 and 7 are parallel to Figures 3 and 4 for Ireland, illustrating the convergence speed to
stationarity. As a new feature, we observe some gaps in the transient distributions. Consider for example
n = 5 where Figure 6 shows that classes 10 and 11 can not be attained. The explanation is that with 0
claims in years 0,1,2,3,4 one will go down 5 classes from 14 to 9, but with 1 claim one goes down 4 and
up two, so to 12, and with more than two of course even higher. One sees also a somewhat slower rate
of convergence to stationarity.

Finally the age-corrected distribution π∗(λ) are plotted in Figure 8 together with the stationary
distribution π(λ). One sees a marked worse agreement within columns than for Ireland. The most
marked differences occur for small values of λ, with one feature being a considerable concentration of
the π∗(λ) (but not of π(λ)) close to the inital class 14. Again, the most natural explanation is the slow
convergence rate.
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Table 2. Bonus rules, Italy.

` r` n = 0 n = 1 n = 2 n = 3 n = 4+

18 200 17 18 18 18 18
17 175 16 18 18 18 18
16 150 15 18 18 18 18
15 130 14 17 18 18 18
14 115 13 16 18 18 18
13 100 12 15 18 18 18
12 94 11 14 17 18 18
11 88 10 13 16 18 18
10 82 9 12 15 18 18
9 78 8 11 14 17 18
8 74 7 10 13 16 18
7 70 6 9 12 15 18
6 66 5 8 11 14 17
5 62 4 7 10 13 16
4 59 3 6 9 12 15
3 56 2 5 8 11 14
2 53 1 4 7 10 13
1 50 1 3 6 9 12

Figure 6. Transient distributions, Italy.
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Figure 7. T.v. convergence rate, Italy.
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Figure 8. Stationary and age-corrected distributions, Italy.
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4.3. Germany

The German system is rather elaborate. It has a large number of classes, K = 29, initial class 26, and
quite detailed rules for the new class after one or more claims. For example, after one claim the customer
moves up 14 classes when in class 1, always to class 17 when in classes 6–11, and up 3 classes when in
classes 19–22. The rules for some selected cases are given in Table 3; for full details, see Meyer [9] or
Mahmoudvand et al. [14].
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Table 3. Bonus rules, Germany.

` r` n = 0 n = 1 n = 2 n = 3 n = 4+

29 245 25 29 29 29 29
25 100 24 26 29 29 29
20 55 19 23 26 27 29
15 40 14 21 25 27 29
10 35 9 17 24 26 29
5 30 4 16 22 24 29
1 30 1 15 22 24 29

A quite special feature of the German system is the very high initial class, 26, meaning that a customer
at earliest can reach the lowest premium level in class 1 after 25 years! This clearly shows up in the
following Figures 9–11, for example in the λ = 0.04 row in Figure 10 where the t.v. distance from
the stationary distribution is substantial up to time n = 25, and in the comparisons of age-corrected
distributions in Figure 11 which shows the same phenomenon as for Italy, a strong concentration of the
π∗(λ) (but not of π(λ)) close to the inital class 26.

Figure 9. Transient distributions, Germany.
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Figure 10. T.v. convergence rate, Germany.

0 10 20 30 40 50
0

2

λ =0.04

0 10 20 30 40 50
0

2

λ =0.08

0 10 20 30 40 50
0

2

λ =0.16

0 10 20 30 40 50
0

2

λ =0.32

Figure 11. Stationary and age-corrected distributions, Germany.
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4.4. Population Averages

We believe the differentiation between high and low values of λ in the above figures is of interest
rather than considering a single value as for example the population mean 0.1. However, the Bayesian
view could motivate to summarize by averaging λ over the structure distribution U .
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Figure 12. Population averaged convergence rates: population mean 0.1.
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Such averaging is done in Figures 12 and 13. Figure 12 gives the population averaged t.v. distance
K∑
`=1

∫ ∞
0

∣∣pn`0,`(λ)− π`(λ)
∣∣U(dλ)

between the transient distribution at time n and the stationary distribution π, whereas Figure 13 gives
the averaged age-corrected distributions

∫
π∗` (λ)U(dλ).

These figures show essentially the same behavior as for the intermediate values 0.08 and 0.16 of λ,
which could be expected since 0.04 and 0.32 are in the tails with low U -mass.

Figure 13. Population averaged age-corrected distributions: population mean 0.1.
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As a comparison, similar figures have been produced for the substantially smaller population mean
0.05, see Figures 14 and 15. A first rough conclusion is that the behavior appears to be rather insensitive
to the population mean.

Figure 14. Population averaged convergence rates: population mean 0.05.
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Figure 15. Population averaged age-corrected distributions: population mean 0.05.
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5. Relativities

We now turn to the influence of finite customer sojourn times on the Bayes premium, proceeding as
follows. For each of the three selected bonus systems and of the four trial sojourn time distributions, we
first compute our age-corrected alternatives π∗` (λ) to the stationary distribution π`(λ) by means of (4)
and next the Bayes premium r∗` in bonus class ` by means of the analogue of (3)

r∗` =

∫ ∞
0

λπ∗` (λ)U(dλ)∫ ∞
0

π∗` (λ)U(dλ)

(9)
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The results are in the following three Figures 16–18. The legends are solid red for distributionNB(6),
dotted red for NB(13), solid blue for U(6), and dotted blue for U(12). As supplement we also compute
the Bayes premium corresponding to the stationary distribution π`(λ) (dotted black) and supplement
with the premium corresponding to the given relativities for the bonus system (e.g., 50, 60, 70, 80, 90,
100 for Italy) in solid black; whereas the Bayes premium automatically yields financial equilibrium, cf.
the discussion following (3), we here need to normalize to satisfy this requirement.

Figure 16. Relativities, Ireland.
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Figure 17. Relativities, Italy.
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Figure 18. Relativities, Germany.
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When interpreting the figures, we first note that it does not contradict financial equilibrium that for
a given country, one set of relativities is below the other. For example, all relativities corresponding to
one of our four trial sojourn time distributions (colored graphs) are below the given relativities (solid
black graph). But the explanation is simply that one set of relativities should be weighted with the age
corrected distribution and the other with the stationary distribution, and the age corrected distributions
have a region of importance which is more shifted towards high classes.

We next note that the two distributions NB(7), U(6.5) with the low mean are quite close, in some
cases even hard to distinguish. Distributions NB(13), U(12.5) have a roughly doubled mean. As could
be expected, this puts them closer to the Bayesian relativity computed w.r.t. π(λ). The convergence
rate appears quite slow, however, and this is further illustrated in the following Figure 2. We took
here the Irish system and compared the stationarity-based Bayesian relativity (solid black) to those of
four versions of the negative binomial distribution (8), one with mean 10 (dotted red), one with mean
100 (dashed red), one with mean 200 (dash-dotted red), and one with mean 400 (solid red). The figure
confirms the expectation of convergence, but shows also that (as just noted) it is slow.

6. Age-Corrected Average Premiums

Analogous with the stationarity-based definition (1) of the average premium r(λ) of a λ-customer, we
define the age-corrected version as

r∗(λ) =
K∑
`1

r`π
∗
` (λ) (10)

The r∗(λ) are plotted in Figures 19–21 one for each of the three bonus systems and the same 6 cases as
for the relativities in Section 5, with the same legends.

We see a considerable difference between the two stationarity-based average premiums (solid black
and dotted black) for Ireland and Italy, whereas they appear almost identical for Germany. The
age-corrected average premiums are again quite different, and exhibit somewhat similar behavior as
the relativities in Figures 16–18.
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Figure 19. The r∗(λ), Ireland.
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Figure 20. The r∗(λ), Italy.
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Figure 21. The r∗(λ), Germany.
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The ideal fairness criterion for a Bayesian premium rule is that the premium for a λ-customer should
come as close to λ as possible. This can never be perfectly achieved: since the premium in the
lowest bonus class is non-zero, a customer with a small λ will always pay too much, and since the
premium in the highest class is finite, a customer with a large λ will always pay too little. The figures
show that this effect is substantially more marked for the age-corrected average premiums than for the
stationarity-based ones. The explanation is natural: if the customer has a finite sojourn time, the system
will have less time to learn about his risk characteristics in the form of λ than if he had been there for
ever, as is the (false) assumption underlying the stationarity-based calculations.

7. Concluding Remarks

In this paper, we have inspected how reasonable it is to view bonus-malus system via the stationary
distribution, as is usually done. The conclusion is that in many cases the transient distributions are quite
far from the stationary ones, and that this has considerable consequences on the computation of such
quantities as Bayesian relativities and average premiums.

We do not necessarily insist that our trial distributions for the sojourn time in the portfolio have the
relevant time span. A motor insurance may be terminated for example just if the insured gets a new
car. In that case, he will typically continue with a new policy in the same company, but not enter in
the same level `0 as completely new insurers. Similar remarks to change of company, where usually
some information on present bonus class or general previous claim statistics is passed from the old
company to the new. Therefore, our choice of the A distributions should be seen as nothing more than
scenario analysis.

Examples of numerical studies of special bonus-malus systems are, for example, in Lemaire [15],
Lemaire & Zi [12] and Mahmoudvand et al. [14]. These papers differ from the present one by
not going into the Bayesian aspect. Here the more closely related literature is Norberg [6] and
Borgan et al. [3]. In particular, [3] contains ideas on how to get away from the stationary point of
view. As analogue of our π∗(λ), [3] suggests a distribution of the form

∑∞
0 wne`0P (λ)n where the wn

are suitable weights summing to one. It is also briefly mentioned that one interpretation corresponds to
sampling a customer at random from the portfolio, but the connection to our π∗(λ) which is obtained by
taking wn = f en is not given. Also the concept of sampling a customer at random is not explained very
clearly, cf., e.g., our Theorem 1 and Appendix B below, and in key examples the wn are taken constant
on an interval whereas f en is decreasing. Nevertheless, [3] contains some key ideas related to this paper,
and to our mind, the paper has received surprisingly little attention in subsequent literature (but see
Denuit et al. [1], Ch. 8).

Of further classical references in the bonus-malus area not cited elsewhere in the text, we
mention in particular (in chronological order) Grenander [16], Loimaranta [17], Bonsdorff [18] and
Rolski et al. [19].
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Appendix

A. Proof of Theorem 2

For ease of notation, we suppress the dependency on λ. First note thatZ = (I−P +1π)−1 satisfies

Zπ = π, 1Z = 1, PZ = ZP = Z − I + 1π

(multiply by I − P + 1π on both sides). From this it follows easily by induction that

P nZ = ZP n = Z − I − · · · − P n−1 + n1π

so
I + · · ·+ P n−1 = Z(I − P n) + n1π

e`0E
A−1∑
n=0

P n = e`0E
(
Z(I − P A) + A1π

)
= e`0

(
Z(I − f̂ [P ]

)
+ µA · π

Rewriting (4) in matrix notation and using the independence of A and L0, L1, . . . gives

π∗ =
1

µA
E
A−1∑
n=0

e`0P
n =

1

µA
e`0E

(
Z(I − P A) + A1π

)
=

1

µA

[
e`0
(
Z(I − f̂ [P ]

)
+ µA · π

]
B. A Variant of the Derivation of the Age-Corrected Distribution

A different way to arrive at distribution (4) as the relevant bonus class distribution in a model with
finite sojourn times of customers is to ‘sieve customers one-by-one through the system’. By this we mean
that we consider a sequence of λ-customers such that customer n has sojourn timeA(n) and bonus classes
L

(n)
0 , L

(n)
1 , . . . , L

(n)

A(n)−1
during his time in the portfolio. We then define a {1, . . . , K}-valued stochastic

process Z as the sequence

L
(1)
0 , L

(1)
1 , . . . , L

(1)

A(1)−1
, L

(2)
0 , L

(2)
1 , . . . , L

(2)

A(2)−1
(11)

and have:

Proposition 3. Assume that the distribution of A is non-lattice. Then the process Z given by (11) has
limiting distribution given by (4).

This follows simply by noting that the instancesA(1), A(1)+A(2), . . .where a new customer takes over
in the construction of Z are regeneration points (the process starts afresh as from n = 0) and appealing
to the general theory of regenerative processes ([10], Ch. 6).
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It should be noted, however, that Z is not a Markov chain. This follows by noting that

P(Zn+1 = ` |Zn = k) =
∞∑
a=0

P(ξn = a)
{
pk` P(ξn > a+ 1 | ξn > a)

+ δ`0` P(ξn = a+ 1 | ξn > a)
}

(12)

where ξn is the time elapsed since the last regeneration point (backward recurrence time; ξn = n for
0 ≤ n < A(1), ξn = n − A(1) for A(1) ≤ n < A(1) + A(2) etc.). Here the distribution of ξn depends
on n, except for the special case where A is geometric, and so must (12) do (the argument excludes
time-homogeneity, but also the Markov property can be seen to fail).

C. A More General Model

We here suggest a model which incorporates several features not covered by the basic bonus-malus
model consider in the body of the paper.

We assume that a customer is characterized by a random mark M taking value in some setM and
a time-homogeneous Markov chain X = X0, X1, . . . with state space X = N × L × Y where L is the
finite set of bonus classes and Y is finite or countable. We write Xk = (Nk, Lk, Yk); Nk is the number
of claims in year k = 0, 1, . . ., assumed Poisson with parameter λ(M,Lk, Yk), and Lk is the bonus class.
The initial class L0 as well as Y0 depends on M .

In addition to potentially influencing the Poisson parameter, the Y component also generates the
sojourn time A: it is assumed that the customer still in the portfolio in year k = 0, 1, . . . will no longer
be there in year k + 1 w.p. δ(M,Yk), so that then A = k + 1. The further transition rules state that Lk+1

is calculated as a deterministic function b(Nk, Lk, Yk) of Xk = (Nk, Lk, Yk), and given Nk = n, Lk =

`, Yk = y, one has Yk+1 = y′ w.p. qy′;n,`,y.

Example 2. To cover the classical model with independent sojourn time considered in the rest of the
paper, take M = Λ as the Poisson parameter of the customer and λ(m, `, y) = m, L0 = `0. If A
has some general distribution with point probabilities fn, n = 1, 2, . . ., there are at least two ways
to conform to the general framework above. Both are familiar from the theory of discrete phase-type
distributions, ([10], III.4) or ([20], IX.1 and A5) (see in particular Sections IX.1 and A5 of [20]).

In the first, we take the state space for the Y -chain to be Y = N ∪ {∆} for some extra state ∆ and
Y0 = 0. From state y 6= ∆ [corresponding to still being in the portfolio in year y] one can go only to
either y + 1 or ∆, w.p. fy+1/f y+1 for ∆ and 1 − fy+1/fy+1

for y + 1 (thus qy′;n,`,y does not depend on
n, `); state ∆ (the coffin state) is absorbing. In the second, we take Y = N and Y0 = a w.p. fa. From
Yn = m > 0, one goes always to Yn+1 = m, whereas state 0 is absorbing (thus qy′;n,`,y = δy′,y−1 if
y > 0, qy′;n,`,y = δy′, if y = 0). 2

Example 3. Bonus hunger, i.e., the insured’s aptness not to file all small enough claims in order to
avoid increase in future premiums, has been studied repeatedly in the literature. e.g., Lemaire [21] (see
also Lemaire & Zi [12]) calculate for a given bonus system, each class ` and each λ a retention level
z`, such that the insured’s costs in terms of either covering a claim of size Z himself or expected future
premiums precisely balance when Z = z` when he is in class `. He will then file the claim if Z > z` and
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not otherwise. The calculation is based on a distribution G of a claim Z. We can model this by simply
modifying Example 2 by taking λ(m, `, y) = m

(
1−G(z`)

)
rather than λ(m, `, y) = m. 2

Example 4. An insured may be tempted to look for another insurer if he has had many recent claims,
therefore a high bonus class and so (often without reason!) believes that his present insurer’s system is
unfair. We can model this by modifying the first representation of A in Example 2 by allowing direct
transitions from state n of y to the coffin state ∆, occuring with a probability θ` depending on the present
bonus class ` (typically θ` will be increasing in `). Thus

qy+1;n,`,y = (1− fy+1/f y+1)(1− θ`) ,
q∆;n,`,y = fy+1/f y+1 + (1− fy+1/f y+1)θ` = θ` + (1− θ`)fy+1/f y+1 ,

all other qy′;n,`,y = 0. 2

Example 5. Young or old drivers are generally considered to have risk characteristics different from the
rest of the portfolio. We can model this by letting the mark M be the pair of the Poisson parameter Λ

and (for a young driver) the year B = 0, 1, . . . after the drivers license (or the age for an old driver), as
well as a state of y to be of the form (y′, y′′), with y′ determining A as above and y′′ the updated year
after the license. The initial class L0 is then chosen as function of B, and one could have, e.g., that
λ
(
(λ, b), `, (y′, y′′)

)
has the multiplicative form s(y′′)λ. 2

Further examples, not spelled out in detail, are M including covariates entering multiplicatively in
λ(m, `, y).
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