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Abstract: Credit risk measurement remains a critical field of top priority in banking 

finance, directly implicated in the recent global financial crisis. This paper examines  

the dynamic linkages between credit risk migration due to rating shifts and prevailing 

macroeconomic conditions, reflected in alternative business cycle states. An innovative 

empirical methodology applies to bank internal rating data, under different economic 

scenarios and investigates the implications of credit risk quality shifts for risk rating 

transition matrices. The empirical findings are useful and critical for banks to align to 

Basel guidelines in relation to core capital requirements and risk-weighted assets in the 

underlying loan portfolio. 
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1. Introduction 

Credit risk is defined as “the potential that a bank borrower or counterparty will fail to meet its 

obligations in accordance with agreed terms” by the Basel Committee on Banking Supervision [1]. 

Credit risk is usually conceived in loan exposures and interest-generating securities which are core 

revenue sources for financial institutions. In an environment of global financial crisis and economic 
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recession, banks are now increasingly exposed to credit risk from a diversity of financial instruments 

other than loans, including interbank transactions, trade financing, foreign exchange transactions, 

financial futures, swaps, bonds, equities and options, inter alia. 

According to Basel II and III guidelines, banks are allowed to incorporate their own estimates of 

different risk exposures, adopting internal risk rating systems, in order to realistically assess their 

regulatory capital requirements, known as the “internal-ratings-based” (IRB) approach. Only banks 

meeting certain minimum conditions, disclosure requirements and approval from their national 

supervisor are allowed to apply this approach [2]. Furthermore, the notion of “incremental risk charge” 

(IRC) requires banks to calculate a one-year 99.9% VaR (value-at-risk) for losses associated with 

credit sensitive products in the trading book [3]. In this dynamic process, banks need to monitor credit 

rating shifts and potential defaults in a volatile economic environment [4]. 

In a broader context, the assignment process of credit risk rating takes into account both qualitative 

and quantitative elements ([5–7], inter alia). An important feature of external agency ratings is that, 

assuming time-homogeneity, they are assigned typically with a “through-the-cycle” (TTC; also, 

“stressed ratings”) approach, based on an undefined long-term perspective on credit risk but of a more 

stable perspective [8]. This implies an evaluation of the borrower based on a downside scenario  

(e.g., the worst phase in the macroeconomic cycle) rather than on current market conditions, as in the 

so-called “point-in-time” (PIT) approach [9,10]. TTC ratings, therefore, tend to be more stable than 

PIT ratings, as rating transitions (migrations)—i.e., movements from one rating class to another—are 

less frequent. Also, historical default rates for each rating class may be more unstable, since in bad 

years the default rate may increase without companies being moved to a different rating class, as 

occurs under the PIT approach. Since PIT ratings are sensitive to cyclical changes in the borrower’s 

credit risk, risk levels and corresponding capital requirements tend to increase during recession periods 

and to decline during economic expansions. Because of increasing (regulatory) capital requirements 

during downturns, banks tend to restrict lending activities or to increase price margins, both reducing 

funding opportunities. The economic downturn may be exacerbated by reduced funding due to 

increasing capital requirements from PIT rating systems and this phenomenon is referred to as 

procyclicality. Empirical evidence suggests already that banks, for a number of reasons, reduce lending 

more than the reduction of economic activity during downturn. Therefore, procyclicality has been a 

critical issue in Basel II and II capital guideline rules that clearly advise TTC ratings. Rating stability, 

on the other hand, may be in conflict and not reflect recent changes in default risk, as ratings are 

adapted slowly to these changes. Many of the internal rating systems built by financial institutions are 

PIT systems measuring credit risk taking into account the current conditions and situation of a 

borrower [6,7]. 

To this end, credit ratings facilitate bank evaluation of borrower’s credit quality and worthiness. 

Credit rating (or scoring) transition, in specific, is the migration of a debt instrument from one rating to 

another rating over a period of time. This migration is the movement either as an upgrade or a 

downgrade from an existing rating and indicates the change in the credit quality of an entire loan 

portfolio as well as the potential for significant financial stress and loan default [11]. In relation to that, 

transition matrices represent a key tool when assessing the riskiness of a credit exposure. A transition 

matrix reports the distribution of issuers/borrowers based on their initial rating class (on rows) and on 

their final status (in columns: final rating class, withdrawn rating or default) at the end of a particular 
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time interval (e.g., one-quarter or one-year). It is now widely recognized that the implementation of a 

transition analysis approach would support banks to accurately model credit rating migration 

probabilities 
1
 as an integral part of modern credit risk management [12]. Indeed, the recent turmoil in 

global capital markets and the adverse prevailing economic conditions have resulted in a widespread 

shift towards negative credit ratings, signalling severe deterioration in credit quality. Credit risk 

transitions are seen to exhibit different behavioural patterns over different macroeconomic phases and 

business cycle states (booms–contractions). To take into account the implication of business cycles and 

real economic activity on credit risk and rating migration behaviour, a number of studies distinguish 

between different economic phases (regimes), treating booms separately from contractions ([13–17], 

inter alia). 

The core objective of the paper contributes to the empirical investigation of credit risk transition 

patterns in different business cycle states. More specifically, the study attempts to model corporate 

rating migration probabilities on bank loan portfolios, incorporating the state of real economic activity 

as well. The empirical approach assumes an IRB bank internal rating framework. The paper proceeds 

as follows. Section 2 reviews past empirical literature on critical factors that arguably influence  

bank loan portfolio monitoring as well as the assessment of borrowers’ creditworthiness. Section 3 

proposes and applies a discrete-time maximum likelihood (DTML) model [18–20] and incorporates 

key macroeconomic factors to reflect different states of the real economy. Section 4 evaluates the 

empirical findings on the basis of a bank’s internal rating system and, finally, Section 5 concludes. 

2. Literature Review 

As BCBS postulates “borrowers and facilities must have their ratings refreshed at least on an annual 

basis; certain credits, especially higher risk borrowers or problem exposures, must be subject to more 

frequent review. In addition, banks must initiate a new rating if material information on the borrower 

or facility comes to light” [21]. BCBS, furthermore, indicates that monitoring shifts in new rating 

patterns can be a useful input in anticipating future default signals, when scrutinising obligors’ 

historical track records. Such monitoring can be founded upon the notion that phases of increased 

default risk are seen to follow earlier phases of highly frequent new ratings. Nevertheless, a bank’s 

feasibility to continuously monitor a risky borrower and to efficiently assess the level of creditworthiness 

remains a critical issue. 

Past relevant studies have dealt with credit rating migration analysis taking into consideration the 

following issues. In case a sequence follows a first-order Markov process, the migration probability 

matrix can be critical in revealing transition properties. This outcome, however, may be biased towards 

the dependence of immediately successive events and does not contain all prior events [22,23]. The 

type on dependence is often known as the “memory of the process”, which in this case has a length of 

one-step (distance between adjacent events). Furthermore, whenever one-step transition probabilities 

do not depend on time, so that 
1, +nn

ijp  =  ijp  (∀ n), they are assumed to be stationary and the Markov 

                                                 
1
 Whereas “credit rating migration probabilities” characterize the probability of a credit rating being upgraded, 

downgraded or remaining unchanged within a specific time period, “credit migration matrices” characterize the 

evolution of credit quality for issuers with the same approximate likelihood of default; they are constructed by mapping 

the rating history of the entities into transition probabilities. 
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chain is also stationary or time-homogeneous [24]. Finally, key macroeconomic factors are argued to 

be critical inputs to be incorporated in the modeling process, in order to proxy business cycles and 

states of the economy. 

2.1. First-Order Markov Process 

Transition matrices are at the centre of modern credit risk management. A standard specification for 

rating transition probabilities is the first-order, time-homogeneous Markov model, which is based on 

the assumptions that (a) the probability of migrating from one rating class to another depends on the 

current rating only and (b) the probability of changing from one rating class at time t to another class at 

time t + n does not depend on t. Past empirical evidence, nevertheless, indicates that transition 

probabilities are influenced by rating history (see: [25–27]). Consecutive rating changes in the same 

direction are seen to be more frequent than in the opposite direction. Since the effect is stronger in the 

case of downgrades, this phenomenon is referred to as “downward momentum” [28]. 

A number of studies postulate that credit ratings under the first-order Markov assumption provide a 

reasonable practical approximation, as long as different transition matrices are considered in booms 

from contraction states [15,26,29,30]. Markovian models are seen to produce information on the 

probabilities of rare transitions (compared with a typical multinomial or cohort approach), even in case 

these transitions are not actually observed in the data [27]. The state space of the rating process can 

expand to render the Markov assumption reasonable. Furthermore, a Markovian model can be 

conveniently specified for firms that are downgraded and enter, subsequently, an “excited state” for a 

stochastic time-horizon [27,31]. A company’s rating is termed as “excited” (“non-excited”) in case the 

last rating change was a downgrade (otherwise). 

2.2. Time-Homogeneity 

The cross-sectional and temporal homogeneity of transition intensities is critical for deriving the 

modeling approach to transition matrices. A number of past studies investigate transition probabilities 

functions of distance points in time between different rates and study whether the same transition 

matrix can be used for each-point-in time (PIT) independently of the date points in time. Some studies 

conclude that credit rating transitions can be adequately modeled as a Markov chain for typical 

forecast horizons (one or two years), based on in-sample datasets [32,33]. Furthermore, heterogeneity 

in default probability, measured by a credit rating scoring for instance, is shown to be of critical 

importance in affecting the shape of the loss distribution [34,35]. 

Several studies specify non-homogeneous models that incorporate the notion of cyclicality and treat 

credit rating migrations as a non-memory-less process [35–37]. Nickell et al. [38], for instance, 

investigate the dependence of ratings transition probabilities on industry, country and stage of the 

business cycle and argue that the business cycle dimension is critical in explaining variations in 

transition probabilities. Bangia et al. [15] distinguish between transition matrices dependent on the 

business cycle and find that the loss distribution and economic capital of a synthetic bond portfolio can 

vary considerably in different economic environments. Jafry and Schuermann [39] propose a 

“mobility-metric” (a measure of overall mobility for a rated issuer), estimated as the average of the 

singular values of the mobility matrix for the issuer’s profile. Similarly, Truck and Rachev [40] 
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conclude that migration matrices estimated at different business cycle points produce significantly 

different VaR measures for an underlying portfolio. 

When modeling credit rating migration over a specific time-horizon (not in infinity),  

time-homogeneity is a key issue. Modeling rating transition as a Markov chain process implies that 

default is considered to be an absorbing state, that is, in the long-term all assets are in default. Past 

studies based on external rating data and up to two-year forecasts, postulate that credit rating dynamics 

can be adequately modeled as a Markov chain [32,41]. Furthermore, the incorporation of discrete-time 

approaches rather than of continuous-time duration models with time-homogeneity is argued to be 

ambivalent in terms of loss efficiency in cohort data analysis. Different estimation approaches can 

result to large differences in portfolio risk profile and capital requirements. Estimations based on 

continuous-time duration settings are found to be more efficient relative to multinomial cohort based 

approaches [42,43]. 

2.3. Macroeconomic Factors 

A number of studies incorporate critical macroeconomic explanatory factors and business cycle 

states in modeling rating transition probabilities, in order to establish linkages between underlying 

economic conditions and credit risk migration. Transition probabilities are seen to depend on industry, 

company, location and business cycle states [15,38,44,45]. Average time-to-default is found to 

decrease when economic activity decreases [46–49]. The time-varying cyclical nature of default rates 

over long historical periods has been also investigated [50–52]. 

Jafry and Schuermann [39] develop a metric that applies to migration matrices, in order to compare 

different estimation methods of migration probabilities. Similarly, Truck and Rachev [53] propose a 

class of “directed difference indices” to apply on transition matrices and these measures exhibit high 

correlation with differences in credit VaRs. To better understand the economic structure of time 

dependence, Parnes [35] examines shifts in key macroeconomic business conditions, incorporating a 

scaled GDP variable, contraction—expansion states and the CBOE volatility index (VIX). A number 

of studies test models of rating transitions in a calendar time framework over discrete time  

slots [36,54,55]. GDP is seen to be a key macroeconomic variable [56–57]. Recent studies incorporate 

alternative models in a dynamic framework, such as generalized linear mixed models (GLMM) and 

Markov chain Monte Carlo (MCMC) techniques [36,37] or conclude asymmetry in credit cycle 

dynamics [58]. Macroeconomic factors are found to affect the persistence of a low default regime 

more than a high default regime, supporting correlations of credit and business cycles. On the other 

hand, credit portfolio models conditional only upon business cycle proxies may miss out on a 

significant part of systematic portfolio credit risk. 

3. The Discrete-Time Maximum Likelihood Framework 

Α model of discrete-time maximum likelihood (DTML) is now discussed (quarterly intervals); it 

incorporates a parametric approach to account for the state of the economy by including key 

macroeconomic factors. The framework applied here is suitable for producing maximum likelihood 

(ML) estimates, whenever the exact time of movement between rating classes and the class occupancy 
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between observation times are unknown; it also takes into account that the inter-examination periods 

(time-spans between successive ratings) may vary for different firms or individual borrowers. 

3.1. Time-Homogeneity in Transition Probabilities 

Initially, certain critical differences between discrete and continuous-time frameworks are 

discussed. For that, a first-order time-homogenous Markov chain )(tX  is incorporated to indicate credit 

rating categories at time t (t ≥ 0). Assuming discrete data and identical observation times equally 

spaced for each borrower in the Markov chain )( 1 jnjo tttt <<<< K , such that js  =  1−− jj tt  =  s , for all 

j  =  
nj,,1K  monitoring steps, the ML estimator of the stationary transition probabilities drawn by 

Equation (1) is the cohort estimator: 

)(ˆ sp ll ′ =

∑
=

Dl

l

ll

ll

N

N

1'

'

'

 l,l’ = 1,…,lD 
(1) 

where 1, 2, …, lD are finite numbers of the Markov chain states (1, 2,…, lD−1 correspond to decreasing 

levels of creditworthiness and lD indicates default); )(sP denotes the 
DD ll × transition probability matrix 

with its (ll’)
th

 element, namely )(sp ll ′
, corresponding to migration probability from state l to l’ within  

a s-length time interval; 
llN ′
 =  ∑

=

′

nj

j

llN
1

 is the total number of verified transitions from l to l’. 

In case that observation time points are not identical and equally spaced, the cohort estimator 

remains “poor” as it does not correspond to the ML estimator of )(sp ll ′  any longer, due to the fact that 

only the observations with identical and equal monitoring steps are considered. In other words, the 

cohort approach estimates the migration probabilities as observations running from the beginning to 

the end of a time period under study (any observations within this period interval are ignored). On the 

contrary, the DTML framework provides an alternative approach that contains this latter flaw. 

In the continuous-time maximum likelihood (CTML) framework, the Markov chain applies 

transition intensities ),( stq ll ′  =  llq ′ , whereby, given that state l enters in time t and is still occupied  

at t + s, then the transition out of l is determined by a set of lD−1 transition intensities 0>′llq . (The 

intensity, qij(t), from state i to state j can be perceived as the rate of change of the probability Pij in  

a very short time interval, ∆t). Given a time-homogenous Markov chain, the relationship between an  

(
DD ll × ) intensity matrix 

2
, Q, and the transition matrix, )(sP , is given by Equation (2):  

)(sP =
Qse  (2) 

                                                 
2
 Similar to a probability transition matrix, an intensity matrix, Q, can be constructed, containing all possible intensities 

between various states. An outcome containing K states, for instance, would have the following intensity matrix,  

Q: )(tQ  =  

)()(2)(1

)(2)(22)(21

)(1)(12)(11

tKKtKtK

tKtt

tKtt

qqq

qqq

qqq

L

MO

K

MM

L

. The following constraints apply on the row entries, qij(t), of intensity matrices:  

(a) the off-diagonals must be non-negative, i.e., 0)( ≥tqij  
for ji ≠ ; (b) the rows must sum to zero i.e., ∑

=

K

j

ij tq
1

)(  =  0 [59]. 
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In this case, the ML estimator of the transition intensity is given by Equation (3): 

llQ ′
=

∑

∑

=

= ′

n

i

i

l

n

i

i

ll

T

N

1

1  
(3) 

where i

llN ′  denotes the number of ll ′→  transitions made by an obligor i and i

lT  is the overall time that 

obligor i has spent in class l [26]. This is the duration estimator which counts every rating drift in a 

given period divided by the total time spent in each rating class. With no information available about 

the timing of events between observation times or about the exact transition time, neither the 

numerator nor the denominator of Equation (3) can be calculated [30]. Assuming discrete data 

(observations corresponding to a sequence of discrete time points), the duration intensities cannot be 

used to evaluate the transition intensities; moreover, the observation times must be identical and 

equally spaced, in order for the cohort estimator (Equation (1)) to provide ML estimations. 

Based on earlier empirical studies [30,60–62] proposes a model to produce ML estimates of the 

intensity matrix, Q. Observation time points are assumed to be arbitrary and the exact times of rating 

class transitions and the class occupancy between observation times are assumed to be unknown. 

Transition probabilities, 
llp ′
, are expressed in terms of intensities; hence, it is vector θ of intensities 

llq ′
 

to be estimated. Incorporating a canonical decomposition and assuming that )(θQ  has distinct 

eigenvalues, 
Dl

λλ ,,1 K , Equation (2) develops into Equation (4): 

)(sP = 0A diag
1

0),,( 1 −Aee
ss Dl

λλ
L  (4) 

where 0A  is a 
DD ll ×  matrix whose l

th
 column is the right eigenvector for λl. The individual 

contribution to the total likelihood function that is to be maximized is divided into observations of the 

firms defaulting during the observed time iijii ttt ,,10 ,0
K

=
, with the rating of firm i as 

iijii xxx ,,10,
K

, 

respectively }],,{[ Dllx K∈  and those that are censored at the end of the observation time period. 

Assuming that the exact time of default is known but the rating class before the default is not 

known, the censored observations (in the set }1,,1{ −= DlR K ) contributes to the likelihood function by:  

)(θiL = [ ]∏
−

= ++ −−
+

1

11 )()(
#

1

i

iijijij

j

oj ijijxijijxx ttpttp  (5) 

where for l = 1, …, lD−1 

)( 1

#

ijijx ttp
iij

−+
= ∑

∈
+ −

Rr
iijijlr ttp

i
)( 1
 (6) 

The non-censored observations (firms i entering default during the observed period tij) contribute to 

the likelihood function by:  

)(θiL = [ ]∏
−

= ++ −−
+

2

1

#

1 )()(
1

i

Diijijij

j

oj ijijlxijijxx ttpttp  (7) 

where, for l = 1,…,lD−1 

)(
#

tp
Dll = ∑

−

=′
′′ −

1

1

)1(
D

D

l

l

llll qtp  (8) 



Int. J. Financial Stud. 2014, 2 129 

 

 

The total likelihood function is the product of the likelihood contributions over all n firms, 

conditional upon the distribution of firms among the states at ti0 [30]: 

)(θL = ∏ =

n

i iL
1

)(θ  (9) 

Considering the discrete-time framework (quarterly intervals), by transforming Equation (2): 

)(sP = Qs
e = 4

n
Q

e = n
Q

e )( 4

1

=
n

quarterP  
(10) 

where n = 1, …, m quarters and quarterP  is the one-quarter transition matrix. 

The total likelihood function is the outcome of the likelihood contribution over firm i, as in 

Equation (11): 

)( quarteri PL = ∏
−

=

−

′

+1

0

)( 1i ijijj

j

tt

llp  (11) 

where 
llp ′
 =  ),( llPquarter

′ . Equation (11) can be rewritten as in Equation (12): 

)( quarterPL = ∏∏
−

=

−

′

=

+1

0

)(

1

1i ijijj

j

tt

ll

n

i

p  (12) 

Thus, the log-likelihood function is given in Equation (13) as: 

)(ln quarterPL = ∑∑
=

−

=

′+ −
n

i

j

j

llijij

i

ptt
1

1

0

1 ln)(  (13) 

Equation (13) indicates that the quarterly transition matrix is evaluated within every observation 

available, where only the exact time of default is known but the previous rating class (prior to default) 

is unknown. Hence, an attractive feature of DTML against CTML relates to the issue that the former 

approach does not require iterative eigenvalue calculations to produce an outcome. In order to obtain a 

ML outcome in the general case of 2≥Dl , a Quasi-Newton algorithm with finite differences can apply 

to produce numerical derivatives approximations [59]. Since the algorithm is an iterative process, a 

starting point can be the cohort estimator [30]. 

3.2. Business Cycles in Transition Probabilities 

The incorporation of business cycles and the state of the economy into a time-homogenous Markov 

chain in a DTML framework is now discussed. As past studies postulate, the approach to estimate 

matrices conditioned on the business cycle remains a critical issue [15,22,33,63]. In brief, a migration 

matrix describes all possible transition probabilities given a rating scale [64], as in Equation (14): 

)(tP =

100

,12,11,1

,22,21,2

.12.11,1

L

L

MO

K

MM

L

LLLL

L

L

ppp

ppp

ppp

−−−

 
(14) 

where each jip ,  represents the transition probability from state i to state j, if i ≠ j at time period t; the 

rows represent current ratings of obligors whereas the columns represent future ratings. The last row, 

L, represents the absorbing state of default, i.e., the probability of leaving the default state equals zero. 
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With the highest rating in the first row, the elements below the diagonal are the probabilities for 

upgrades and the elements above the diagonal are the probabilities for downgrades. The upper part of 

the matrix also includes the L
th

 column which gives default probabilities for different ratings. The 

diagonal elements represent the probabilities for the ratings to be preserved in period t. 

Two separate time-homogenous rating migration matrices can be estimated, conditioned on the 

boom and contraction state of the economy, respectively. The total transition matrix (estimated on all 

available observations) is used to construct the average transition probabilities. The transition matrix is 

anticipated to shift between upward or downward market phases, depicted by the explanatory 

macroeconomic variables (such as GDP per capita; GDP growth; inflation rate; external debt/exports, 

fiscal/external balance; [65]). In order to depict the statistical correlation between macroeconomic 

variables and transition matrices on the state of economy, Equation (15) is set as: 

)(γquarterP = ))(*( ncontractioboomaverage PPP −++ γβα  (15) 

where γ is a key macroeconomic factor and α and β reflect the boom and contraction coefficients, 

respectively. In accordance with Equation (12), the log-likelihood function can be set as in Equation (16): 

)]([( γquarterPL = ∏∏
−

=

−

′

=

+
1

0

)(

1

1)(
i ijij

j

j

tt

jll

n

i

p γ  (16) 

where 
)( 1)( ijij tt

jllp
−

′
+γ  is the ll ′

th
 element of: 

ijtijt

jquarterP
−+1

)(γ =
ijtijt

ncontractioboomaverage PPP
−+

−++
1

)])(*([ γβα   

where 
jγ  is the macroeconomic variable at time ijt . 

In case of inclusion of i economic variables, Equation (15) can be transformed into Equation (17): 

)( ,,1 iquarterP γγ
L

= ∑
=

−++
i

j

ncontractioboomjjjaverage PPP
1

))(*( γβα  
(17) 

A number of past studies examine the issue of business cycles and states of the economy in  

the context of credit risk [15,17,18,22,33,38,39,42]. Some approaches classify the states of the 

economy as finite regimes and assume transition matrices change over time with the states of the 

economy. According to Xing et al. [66], this ignores the fact that the states of the economy at different 

periods might be different even if they are in the same regime. From this perspective, it would be 

better not to restrict the number of regimes. In their study, they assume the state of the economy to be 

continuous, and model the structural changes in the economy as the shifts of the state of the economy 

in a continuous space. This implies that the generators of the rating transition matrices are constant 

between two adjacent structural changes in the economy. Xing et al. [66] show that the generator and 

transition matrices of rating transitions are indeed changing over time and the estimated structural 

breaks are not only statistically significant but economically meaningful as well. They also demonstrate 

that the generator or transition matrices in different industry categories have different behaviors and, 

specifically, industry sectors related to finance services are more susceptible to economic changes than 

other sectors. 
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3.3. Statistical Measurements 

Past studies incorporate a variety of statistical approaches, models and measurements to deal with 

the empirical analysis of rating migration matrices. The next sections discuss briefly the singular value 

decomposition metric and bootstrapping approaches. The latter are frequently incorporated in 

transition matrix analysis, as they arguably bear attractive properties and flexibility [42]. 

3.3.1. Singular Value Decomposition Metric 

The singular value decomposition (SVD) is a generalization of the eigen-decomposition which can 

be used to analyze rectangular matrices. The main idea of the SVD is to decompose a rectangular 

matrix into three simple matrices: two orthogonal matrices and one diagonal matrix. Because it gives  

a least square estimate of a given matrix by lower rank matrix of same dimensions, the SVD is 

equivalent to principal component analysis (PCA) and metric multidimensional scaling (MDS) and is, 

therefore, an essential tool for multivariate analysis [67]. In the context of transition matrices, Jafry 

and Schuermann [39] propose a new metric for comparing these matrices—a mobility index—termed 

the “the singular value of decomposition metric”, SVDM , which has an intuitively-appealing “size” 

related to the average probability of migration of the original matrix. This metric for a transition 

probability matrix, P, of dimension 
DD ll ×  is given in Equation (18) as: 
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where the identity matrix of the same I and )(Gjλ  denotes the j
th

 eigenvalue of a DD ll ×  matrix G. By 

subtracting the identity matrix I  from the migration matrix, only the dynamic part of the original 

matrix remains, reflecting the magnitude of P in terms of implied mobility. The value of SVDM  is 

shown to indicate the “average amount of migration” contained in P; the larger the SVDM  value, the 

higher the average probability of rating change. The distance metric between the migration matrices PI 

and PII, is given as in Equation (19): 

),( IIISVD PPM∆ = )()( IISVDISVD PMPM −  (19) 

3.3.2. Bootstrap Method 

The bootstrap procedure involves choosing random samples with replacement from a data set and 

analyzing each sample in the same way, with each observation selected separately in random from the 

original dataset [68]. A particular data point from the original data set could appear multiple times in a 

given bootstrap sample. The number of elements in each bootstrap sample equals the number of 

elements in the original data set. An important advantage of bootstrap against other methods is that the 

researcher does not need to have a preconceived notion of the original sample distribution [42]. A 

number of past studies [39,69] indicate that 200 and 1000 bootstrap replications are sufficient for 

obtaining standard errors of bootstrapped statistics and confidence intervals, respectively. On the basis 

of data input constraints and in line with standard earlier practice, this study assumes the number of  

B = 1000 replications to be sufficient. 
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The bootstrap approach applied in this study involves the following steps: first, selection of  

a number of firms in random out of the sample under study along with their rating histories; 

subsequent replacement until the number of firms is the same as in the original sample; second, 

incorporation of a cohort and a DTML estimation approach; third, repetition (B-1) times of the two 

previous steps, with computation of the comparative metric SVDM  for every estimation, along with the 

confidence interval of α magnitude; α is obtained by sorting the comparative metrics in descending 

order and examining the breakpoints of top and bottom (1−α)/2 percentiles. The standard deviation of 

the transition probabilities is calculated as: 
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4. Empirical Application 

The dataset of the study is based on the entire loan portfolio and internal rating system of a major 

Austrian bank (anonymity preserved for confidentiality reasons). An initial empirical step relates to 

defining the segmentation of business sectors; this is based on the respective Standard & Poor’s (S&P) 

segregation, including: financial institutions; insurance; consumer/services; energy and national 

resources; real estate; leisure time/media; and transportation. Critical issues include also the 

specification of a rating system with credit quality classes, grades and probabilities of migration from 

one class to another over the credit risk horizon. Rating agencies, such as Moody’s [70], Fitch Ratings [71] 

and Standard & Poor’s [72], for instance, incorporate a 21-, 20-, and a 17-grade scale, respectively, for 

corporate borrowers. 

Past studies on internal rating systems [73], conclude a 5-grade rating system for the median bank 

out of the 50 largest US banking organizations. Other studies [30,56] use a 6-grade and a 7-grade 

rating system, respectively. A number of banks are interested in increasing the number of internal 

grades, either through the addition of ± modifiers or by splitting riskier grades. For the purposes of this 

study, a simple 5-grade rating system is constructed, with grade 1 denoting the worst (lowest) credit 

grade and grade 5 the best (highest) credit grade, respectively. 

A critical step relates to the specification of the risk horizon. The study sample includes both large 

and “small and medium-sized enterprise” (SME) obligors with an annual turnover of at least €2.5 

million and firms originating from a diversity of business sectors and countries of origin. These 

borrowers are classified according to their rating history over a 10-year horizon. The rating history of 

all borrowers (not defaulted by that year-end) in the reference (data-provider) bank’s loan portfolio is 

obtained, as of 31 December 2008. In addition, rating information for all borrowers that defaulted 

during 1995–2008 is collected. Legal bankruptcy proceedings and loan loss provisions are used as 

proxies for default. The observation period is eventually restricted to 1998–2008, in order to avoid 

survivorship bias and to overcome information constraints. 

The dataset contains initially 210,000 observations on 51,000 borrowers, at quarterly intervals [17,58]. 

Subsequent to a careful data cleansing process, the dataset finally comes down to 185,000 observations 

on 48,000 firms. A thorough evaluation is normally conducted by the bank once a year (on a year-on-year 

basis as to the initial obligor’s rating). 
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4.1. Macroeconomics and States of the Economy 

Following the initial discussion of Section 2.3, a critical issue relates to the selection of the most 

appropriate macroeconomic variable in order to depict the state of the economy, in the DTML 

framework. Past studies propose a variety of relevant variables correlated with default risk, such as, 

indicatively, real GDP growth and unemployment rate [74]; S&P500 returns [75]; and industrial 

capacity utilization (CUI index, that is ratio of actual output level to sustainable maximum output  

level [76]. For the purposes of this paper, the CUI index is selected as a convenient indicator, justified 

on several grounds [77]. First, it is available quarterly (contrary to annual variables). Second, it can be 

incorporated into a well-specified multivariate model with a minor impact on prediction error bias. 

Third, it is more stable over time relative to other widely used cyclical indicators. 

Since the sample under study consists of heterogeneous firms that cannot be treated as a homogenous 

group, a single macroeconomic variable for the sample as a whole is rendered inappropriate. As a 

result, a smaller sample, consisting only of domestic (Austrian) firms/obligors, is finally undertaken; 

this results in 22,000 observations of 5000 firms (76.5% of the sub-sample exhibits an inter-examination 

frequency of one year; 16% of less than one year; and, 7.5% of more than one year). This sample is 

subsequently further divided into two sub-samples that correspond into a “boom” and a “contraction” 

economic state, respectively, in line with past relevant studies [17,27]. 

A number of studies propose different approaches in order to assess threshold values for 

macroeconomic variables, such as, for instance, calculation of average or median values of the  

factor under study; the best performing part is assumed to reflect the boom state and the worst 

performing part the contraction state, respectively ([54,78], inter alia). This study chooses to set the 

threshold value to the median. Based on that, the sub-samples in the boom and contraction  

states consist of approximately 5000 firms with 12,000 observations and 4000 firms with 10,000 

observations, respectively. 

4.2. Transition Probabilities in Time-Homogeneity 

Average transition matrices in time-homogeneity for boom and contraction phases are now 

estimated. The estimation of a one-quarter transition matrix proceeds on the basis of the full sample of 

the bank loan portfolio under study, consisting of 185,000 observation pairs and targeting to maximize 

the log-likelihood function as stated in Equation (13). Table 1 summarizes the one-year cohort and the 

DTML estimation results. 

The value of SVDM∆  quantifies the notion of “average amount of migration” contained in the 

transition probability matrix, P. The higher the value of SVDM∆ , the higher the average probability of 

rating changes. In this study, SVDM∆  is estimated at 0.0712 (at 1% statistical significance; standard 

error of less than 0.001). Past studies report transition matrices (estimated with a parametric  

time-homogeneous duration method for boom and contraction states) to exhibit a difference of 0.043 

in SVDM  [39]. Furthermore, comparisons of cohort and CTML estimations indicate the observed value 

of the distance metric to be equal to 0.00047 (at 5% statistical significance), [64]. Other studies 

estimate the SVDM  difference between the two matrices at 0.042, [79]. 
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The cohort transition matrix is seen to be significantly more diagonal-dominant (meaning that most 

of the probability mass resides along the diagonal) compared with the ML transition matrix, indicating 

that the latter matrix captures mobility (shifts) more efficiently. The two methods generate different 

probabilities of default. The one-year cohort estimator incorporates only yearly noted migrations and, 

in general, it is seen to typically underestimate default risk along all rating grades. Broadly, past 

studies conclude mixed empirical findings on the cohort method, indicating over- or under-estimated 

PDs [17,39,80]. The ML approach, on the other hand, incorporates events that occurred during the year 

as well as at year-end. Basel guidelines set a lower bound of 0.03% on PD estimates which may be 

used to compute regulatory capital [2]. Empirical evidence indicates that only the ML transition matrix 

is marginally below the critical bound of 0.03% (shaded transition probability cell; Table 1). 

Table 1. Transition probabilities in time-homogeneity: Full sample. 

From → To 1 2 3 4 5 Default 

Panel A: The one-year cohort transition matrix 

1 
0.96911 0.01821 0.00553 0.00712 0.00003 0.00000 

(0.00173) (0.00152) (0.00052) (0.00023) (0.00006) (0.00000) 

2 
0.01272 0.93790 0.03723 0.01022 0.00157 0.00036 

(0.00093) (0.00218) (0.00192) (0.00081) (0.00035) (0.00012) 

3 
0.00024 0.00411 0.95197 0.03925 0.00392 0.00051 

(0.00004) (0.00021) (0.00083) (0.00073) (0.00027) (0.00005) 

4 
0.00024 0.00071 0.02382 0.95481 0.01661 0.00381 

(0.00003) (0.00011) (0.00055) (0.00076) (0.00040) (0.00029) 

5 
0.00020 0.00006 0.00482 0.05120 0.92452 0.01920 

(0.00012) (0.00004) (0.00052) (0.00240) (0.00280) (0.00156) 

Default 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Panel B: The one-year discrete-time ML transition matrix 

1 
0.94045 0.04672 0.00833 0.00388 0.00023 0.00039 

(0.00283) (0.00273) (0.00081) (0.00052) (0.00019) (0.00029) 

2 
0.03066 0.85443 0.08177 0.02993 0.00283 0.00038 

(0.00188) (0.00293) (0.00239) (0.00193) (0.00039) (0.00133) 

3 
0.00122 0.01982 0.87608 0.09555 0.00611 0.00122 

(0.00017) (0.00044) (0.00152) (0.00121) (0.00025) (0.00015) 

4 
0.00067 0.00261 0.07211 0.87706 0.04122 0.00633 

(0.00007) (0.00002) (0.00084) (0.00249) (0.00082) (0.00018) 

5 
0.00052 0.00054 0.01883 0.13331 0.78439 0.06241 

(0.00026) (0.00027) (0.00073) (0.00422) (0.00467) (0.00390) 

Default 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Both transition matrices are estimated for 1998–2008. The DTML transition matrix is based on all 

observation pairs with an inter-examination time of less than or equal to five years. Standard errors  

(in parentheses) are based on a non-parametric bootstrap approach with B = 1,000 replications. The 99% 

confidence interval is calculated at 0.0721–0.0824 by non-parametric bootstrapping. The diagonal entries are 

in bold for convenience. 
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4.3. Transition Probabilities in Time-Dependence 

Prior to investigating transition matrices in time-dependence, average transition matrices in  

time-homogeneity are initially estimated, on the basis of the bank loan portfolio under study, focusing 

only on the sub-sample of the domestic obligors. The one-year average cohort and the DTML 

estimations are summarized in Table 2. The SVDM∆  is estimated at 0.0912 (at 1% statistical 

significance; standard error of 0.006). This transition matrix displays similar characteristics as the 

earlier transition matrix estimated on the full sample. 

Table 2. Transition probabilities in time-homogeneity: Sub-sample—domestic obligors only. 

From → To 1 2 3 4 5 Default 

Panel A: The one-year cohort transition matrix 

1 
0.92706 0.03771 0.03112 0.00411 0.00000 0.00000 

(0.019662) (0.01233) (0.01781) (0.00406) (0.00000) (0.00000) 

2 
0.00281 0.93668 0.04612 0.01273 0.00166 0.00000 

(0.00199) (0.00590) (0.00441) (0.00231) (0.00088) (0.00000) 

3 
0.00044 0.00551 0.94806 0.04113 0.00482 0.00004 

(0.00021) (0.00084) (0.00272) (0.00233) (0.00071) (0.00022) 

4 
0.00000 0.00022 0.02572 0.95981 0.01322 0.00103 

(0.00000) (0.00021) (0.00162) (0.00217) (0.00188) (0.00044) 

5 
0.00000 0.00000 0.00492 0.07111 0.91564 0.00833 

(0.00000) (0.00000) 0.00182 0.00729 0.00833 0.00281 

Default 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Panel B: The one-year discrete-time ML transition matrix 

1 
0.83581 0.12773 0.01222 0.02378 0.00042 0.00004 

(0.02773) (0.02114) (0.00722) (0.00872) (0.00019) (0.00001) 

2 
0.00668 0.84458 0.11729 0.02871 0.00255 0.00019 

(0.00198) (0.00626) (0.00551) (0.00277) (0.00715) (0.00002) 

3 
0.00154 0.01622 0.84838 0.12521 0.00810 0.00055 

(0.00048) (0.00152) (0.00303) (0.00322) (0.00082) (0.00027) 

4 
0.00051 0.00177 0.08221 0.87883 0.03198 0.00470 

(0.00021) (0.00031) (0.00372) (0.00333) (0.00278) (0.00069) 

5 
0.00005 0.00062 0.00923 0.13302 0.80487 0.05221 

(0.00002) (0.00061) (0.00140) (0.01662) (0.01442) (0.00523) 

Default 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Both transition matrices are estimated for 1998–2008. The DTML transition matrix is based on all 

observation pairs with an inter-examination time of less than or equal to five years. Standard errors  

(in parentheses) are based on a non-parametric bootstrap approach with B = 1000 replications. The 99% 

confidence interval is calculated at 0.0811–0.1466, obtained by non-parametric bootstrapping. The diagonal 

entries are in bold for convenience. 

Table 3 summarizes the results on time-homogenous one-year transition matrices in boom and 

contraction phases, based on the DTML approach. The SVDM∆  is estimated at 0.0133 (at 6% statistical 

significance; standard error of 0.007). As indicated (shaded transition probability cells), four transition 

probabilities in each of the two ML-estimated transition matrices (boom and contraction phases) 
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remain below the 0.03% bound, which satisfies relevant Basel guidelines. The probability of remaining 

at the lowest risk grade 1 is significantly larger in the boom than in the contraction transition matrix 

(by 0.05663 point). Furthermore, a higher probability of improvement in the expansionary phase is 

seen in grade 4 (4 → 1, 4 → 2 and 4 → 3). The other transition probabilities exhibit a wavering 

behavior, depending upon the business cycle state and the risk grade they correspond to. Most of 

transition probabilities (10 out of 15) that reflect risk-grade improvement (cells on the left of the 

diagonal) are higher during booms, as anticipated. Significant differences are also seen in default 

probabilities (all of which are found to be lower in booms). These findings support the robustness of 

CUI as a key macroeconomic variable to produce transition matrices in different states of the economy 

in the context of this study. 

Table 3. Transition probabilities in time-homogeneity: Discrete-time maximum likelihood 

(DTML) results on business cycle states. 

From → To 1 2 3 4 5 Default 

Panel A: The one-year ML boom transition matrix 

1 
0.84978 0.11443 0.00634 0.02877 0.00066 0.00002 

(0.02555) (0.02288) (0.00421) (0.01729) (0.00027) (0.0000) 

2 
0.00524 0.83984 0.11960 0.03175 0.00351 0.00006 

(0.00143) (0.00911) (0.00832) (0.00420) (0.00165) (0.00002) 

3 
0.00087 0.01332 0.85209 0.12778 0.00582 0.00012 

(0.00038) (0.00144) (0.00525) (0.00425) (0.00096) (0.00004) 

4 
0.00053 0.00177 0.08465 0.86928 0.04230 0.00147 

(0.00024) (0.00048) (0.00363) (0.00488) (0.00264) (0.00049) 

5 
0.00006 0.00133 0.00843 0.27555 0.67904 0.03559 

(0.00002) (0.00096) (0.00061) (0.01664) (0.01773) (0.00521) 

Default 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Panel B: The one-year ML contraction transition matrix 

1 
0.79315 0.18223 0.01223 0.01188 0.00048 0.00003 

(0.03882) (0.03216) (0.008150) (0.01929) (0.00028) (0.00001) 

2 
0.00799 0.83415 0.12833 0.02811 0.00126 0.00016 

(0.00221) (0.00836) (0.00825) (0.00372) (0.00182) (0.00003) 

3 
0.00187 0.01722 0.86320 0.10277 0.01322 0.00172 

(0.00056) (0.00177) (0.00523) (0.00449) (0.00142) (0.00033) 

4 
0.00032 0.00066 0.08280 0.86913 0.04221 0.00488 

(0.00028) (0.00015) (0.00427) (0.00522) (0.00303) (0.00161) 

5 
0.00003 0.00007 0.01722 0.27731 0.65329 0.05208 

(0.00002) (0.00003) (0.00466) (0.01662) (0.01734) (0.00911) 

Default 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Both transition matrices are estimated for 1998–2008. Both DTML transition matrices are based on all 

observation pairs with an inter-examination time of less than or equal to five years. Standard errors  

(in parentheses) are based on a non-parametric bootstrap approach with B = 1000 replications. The 99% 

confidence interval is calculated at 0.0006–0.0311, obtained by non-parametric bootstrapping. The diagonal 

entries are in bold for convenience. 
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The log-likelihood function (Equation (16)) is now implemented to determine the time-dependent 

one-quarter transition matrix (as in Equation (17)). All available observation pairs are incorporated to 

estimate α and β by maximizing Equation (16); this results into α = −5.6121 and β = 0.0641. 

Convenient restrictions are then set on γ, in order to ensure that that P(γ) fulfills transition matrix 

requirements. Thus, the range of upper and lower values γ is allowed to take runs from 69.23–89.81 

percent; these values correspond to minimum and maximum values that γ has recorder historically 

over the study period (1998–2008). Hence, Equation (15) can be re-written as in Equation (21): 

)(γquarterP = ))(*0641.06121.5( exp recessionansionaverage PPP −+−+ γ  (21) 

Table 4 summarizes the empirical findings from the estimation of one-year transition matrices  

on different business cycle states of the economy. The γ coefficient can obtain four different values 

(one for every quarter of the year) that represent different economic scenarios, on the basis of quarterly 

observations (as in panels A to D; Table 4). Panels A and B correspond to phases of boom and 

contraction, respectively; panel C corresponds to transition states in the economy, namely a slump or 

recovery phase (in-between recession and boom phases); finally, panel D corresponds to mixed 

economic states, incorporating all eligible γ values and demonstrating the course of the economy on a 

business cycle (from boom to contraction). The largest ∆’s in SVDM∆  are obtained in a contraction 

scenario (as of Equation (19); at 1% statistical significance). 

The default probabilities for risk-grades 1, 2, and 3 are seen to be lower in the “average state” panel 

than in the “mixed state” panel. More frequently, the largest part of data for defaults corresponds to 

risk grade 5 surpassing any other risk-grade. This implies that default transition comparisons could be 

restricted to the transition from risk-grade 5 to default. When comparing migration probabilities from 

risk-grade 5 into default in all four matrices on different business cycle scenarios, PDs increase from 

the lowest in the boom state, followed by the average and mixed states and ending, finally, into the 

highest in the contraction state. As anticipated, the worse (more unstable) the state of the economy is, 

the higher the respective PDs are. 

Past studies argue that PDs should be preferably overestimated in boom states rather than 

underestimated in contraction states [39]. Default risk during contraction (boom) is statistically and 

economically overestimated (underestimated) by the naive cyclical approach relative to the mixture of 

Markov chains approach and more so for longer prediction horizons [17]. The comparison of  

time-homogenous and time-dependent functions in this study, during the boom state for instance, 

reveals that the estimated rating migration matrix in the context of the latter function displays a higher 

probability from risk-grade 5 to default than of the former function (0.05281 and 0.03559, 

respectively). This indicates that the time-dependent function overestimates PDs during boom phases. 

A reason for this may be that the PDs of the time-dependent contraction transition matrix (Panel B; 

Table 4) are higher than the time-homogenous average contraction transition matrix (Panel B; Table 3). 
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Table 4. Transition probabilities in time-dependence: DTML results on different business 

cycle scenarios. 

From → To 1 2 3 4 5 Default 

Panel A: The one-year ML boom transition matrix 

1 0.83987 0.11701 0.01752 0.02505 0.00051 0.00004 

2 0.00611 0.84785 0.11761 0.02551 0.00276 0.00016 

3 0.00177 0.01882 0.85582 0.11662 0.00623 0.00074 

4 0.00063 0.00152 0.08339 0.87966 0.03119 0.00361 

5 0.00005 0.00094 0.00735 0.29901 0.64047 0.05218 

Default 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

γi = 89.81 (i = 1, 2, 3, 4) 

Panel B: The one-year ML contraction transition matrix 

1 0.7785 0.17772 0.02881 0.01455 0.00038 0.00004 

2 0.00731 0.84295 0.12673 0.02117 0.00166 0.00018 

3 0.00155 0.01773 0.84886 0.11732 0.01282 0.00172 

4 0.00038 0.00722 0.08221 0.86740 0.03661 0.00618 

5 0.00003 0.00009 0.01662 0.17629 0.73488 0.07209 

Default 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

γi = 69.23 (i = 1, 2, 3, 4) 

Panel C: The one-year ML average transition matrix 

1 0.81204 0.14422 0.01442 0.02884 0.00044 0.00004 

2 0.00644 0.82010 0.14802 0.02319 0.00211 0.00014 

3 0.00141 0.01622 0.83144 0.14290 0.00711 0.00092 

4 0.00052 0.00162 0.08518 0.86802 0.03981 0.00485 

5 0.00005 0.00070 0.00852 0.16619 0.77172 0.05282 

Default 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

γi = 74.33 (i = 1, 2, 3, 4) 

Panel D: The one-year ML mixed transition matrix 

1 0.82524 0.12773 0.01883 0.02771 0.00044 0.00005 

2 0.00641 0.85217 0.11662 0.02188 0.00275 0.00017 

3 0.00177 0.01622 0.87185 0.10031 0.00851 0.00134 

4 0.00057 0.00166 0.08510 0.87538 0.03287 0.00442 

5 0.00004 0.00056 0.00955 0.17739 0.75950 0.05296 

Default 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

γ1 = 89.81; γ2 = 74.33; γ3 = 74.33; γ4 = 69.23 

The DTML transition matrices are estimated for 1998–2008 and are based on all observation pairs with an 

inter-examination time of less than or equal to five years. The γi’s values refer to the i quarter of the year  

(i = 1, 2, 3, 4) and correspond to different economic scenarios and combinations of business cycle states for 

each quarter of the year. Panels A and B correspond to boom and contraction phases, respectively; panel C 

corresponds to transition states in the economy, namely a slump or recovery phase; panel D corresponds to 

mixed economic states, incorporating all eligible γ values and demonstrating the course of the economy on a 

business cycle (from boom to contraction). The diagonal entries are in bold for convenience. ∆ΜSVD (Boom − 

Contraction) = 0.01726; ∆ΜSVD (Average − Boom) = −0.00352; ∆ΜSVD (Average − Contraction) = 0.01172; 

∆ΜSVD (Mixed − Boom) = −0.05281; ∆ΜSVD (Mixed − Contraction) = 0.00825; ∆ΜSVD (Mixed − Average) = 

−0.00168. 
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To sum up, this study contributes certain interesting and useful empirical findings to the relevant 

empirical literature. First, comparing different estimation methods on time-homogenous average 

transition probabilities, the ML transition matrix is found to have a better capture rating transition 

mobility relative to the more diagonal-dominant cohort estimated transition matrix. Second, the 

application of the DTML method to business cycle states (in order to examine time-homogenous 

average transition probabilities) indicates that most transition probabilities reflecting risk-grade 

improvement are, conceivably, higher during the boom state. Third, there appears to be significant 

differences in default probabilities but all of them are seen to be lower in the boom state. Forth, 

empirical evidence supports the robustness of CUI index as a key macroeconomic variable that can 

adequately contribute to transition matrices that incorporate different states in the economy. Finally, 

comparing probability migrations from risk-grade 5 to default in different business cycle scenarios, the 

DTML approach indicates that the PDs increase from the lowest in the boom state, followed by the 

average and mixed states and ending in the highest in the contraction state, justifying that the worse the 

state of the economy is, the higher the respective PDs are. The discrete-time (versus continuous-time) 

framework is seen to be convenient and efficient in studying credit rating migration settings. 

5. Conclusions 

A focal issue in Basel directives emphasizes on the intensified sensitivity banks should pay to 

capital requirements in correspondence to the risk exposures of the bank’s assets. In other words, the 

level of capital a bank should hold is to be directly related to the riskiness of its underlying assets 

portfolio. Nevertheless, business cycle fluctuations can exert an impact on bank capital adequacy 

requirements. Under Basel guidelines, banks are allowed to incorporate own estimates to critical risk 

parameters in order to calculate regulatory capital. 

Given that regulatory measures of financial robustness (such as the Tier-1 capital ratio) refer to core 

bank capital and risk-weighted assets, the empirical estimation of convenient credit risk migration 

matrices remains a critical exercise for bank capital requirements against unexpected losses in the loan 

portfolio as well as for efficient risk control. This paper enriches and expands past empirical literature 

by examining the linkages between credit risk management and macroeconomic states. This appears to 

be one of the first studies to empirically estimate and compare the DTML and CTML approaches and 

then apply the DTML approach to four different business cycle scenarios (boom, contraction, average 

and mixed economic states) to produce risk transition matrices. Further empirical research in this field 

remains useful and timely. 
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