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Abstract
The celebrated Taylor rule provides a simple formula that aims to capture how the central
bank interest rate is adjusted as a linear function of inflation and output gap. However, the rule
does not take explicitly into account the zero lower bound on the interest rate. Prior studies
on interest rate selection subject to the zero lower bound have not produced derivations of
explicit formulas. In this work, Taylor-like rules for central bank interest rates bounded below
by zero are derived rigorously using a multi-parametric model predictive control framework.
This framework is used to derive rules with or without inertia. The proposed approach is
illustrated through simulations. Application of the approach to US economy data demonstrates
its relevance and provides insight into the objectives underlying central bank interest rate
decisions. A number of issues for future study are proposed.
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1 Introduction and Motivation 

The general form of the celebrated Taylor rule suggests that the short-term interest 
rate ti  applied by the central bank at time t  can be set according to the simple 
formula 
 ( *) ( *) * *t y t ti y y rπφ φ π π π= − + − + +   (1) 

While the initial inspiration for the Taylor rule was based on fitting actual 
historical data, the rule, and a number of related variants, can be derived as a 
commitment policy through application of optimal control theory on a (quadratic) 
objective function, subject to the output gap, y , and inflation, π , responding to 
the interest rate i  according to a simple dynamic model of the economy (Ball, 
1999; Orphanides and Wieland, 2000; Giannoni and Woodford, 2002; Orphanides, 
2003).  Such derivations have mainly focused on how various forms of the 
objective function in the optimal control problem may result in corresponding 
Taylor-like rules, and have provided considerable insight into the underlying 
intents for interest rate decisions.  However, such derivations cannot be used when 
the interest rate is explicitly constrained by the zero lower bound (ZLB), namely 

0ti ≥ .  The usual approaches to handling the ZLB when deriving interest rate 
policies based on optimal control formulation can be broadly classified into two 
categories:   

• Explicit rules that truncate to zero the interest rate calculated by an 
unconstrained Taylor rule, when the latter produces a negative interest rate 
(Reifschneider and Williams, 2000; Williams, 2006; Nakov, 2008); and   

• implicit rules through numerical simulation, i.e. repeated numerical 
solution of a ZLB-constrained optimization problem, to determine the 
optimal values of interest rate for inflation and output gap values in a 
range of interest (Orphanides and Wieland, 2000; Hunt and Laxton, 2003; 
Jung et al., 2005; Kato and Nishiyama, 2005; Adam and Billi, 2007).  
Most studies in this category rely on a constrained dynamic programming 
formulation of the underlying optimization problem, whose explicit 
analytical solution is hard to get. 

However, neither of these two approaches is entirely satisfactory.  Indeed, 
truncation to zero the result of an unconstrained Taylor rule can no longer be 
guaranteed to be the solution of the corresponding ZLB-constrained optimal 
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control problem.  In addition, numerically derived optimal interest rates lack the 
appeal of a simple explicit rule.  Consequently, the following question can be 
raised:   

Is it possible to derive Taylor-like rules when explicitly including the ZLB 
constraint in the original optimal control problem that ordinarily would produce 
standard Taylor rules in the absence of ZLB?   

The main contribution of this paper is to demonstrate that this is possible, to 
formulate a corresponding general framework for development of such rules, and 
to present case studies where such rules are derived.  The proposed approach is 
based on the use of multi-parametric programming for solution of a stabilizing 
approximation to the corresponding constrained optimal control problem 
(Pistikopoulos et al., 2002; Darby and Nikolaou, 2007).  The key outcome from 
the proposed approach is that when the ZLB is present, the optimal interest rate 
can be determined by consulting a look-up table and using one of a finite number 
of explicit Taylor-like (piecewise linear) formulas, computed once off-line for 
repeated use over time.  These formulas are guaranteed to be stabilizing.  
Interestingly, while the resulting formulas are similar to truncated versions of the 
standard Taylor rule in some cases, they are different in others. 

In the rest of the paper we provide some preliminaries on optimal control, 
model predictive control (MPC) and Taylor rules in Section 2.  We present our 
main results in Section 3, namely how multiparametric MPC can produce Taylor-
like rules in the presence of ZLB.  We illustrate our approach in Section 4, and 
provide additional discussion and comparison with real data in Section 5.  
Conclusions and suggestions for further work are provided in Section 6. 

2 Preliminaries: Constrained Optimal Control and Taylor 
Rules 

While solution of a standard optimal control problem with quadratic objective and 
a linear model easily leads to the Taylor rule, the same approach cannot be used 
when the ZLB is present, since rigorously obtaining an explicit (closed-form) 
optimal solution in that case is not trivial.  Existing alternative approaches, as 
mentioned above, are based on either truncation the standard Taylor rules or on 
numerical solution of the corresponding constrained optimal control problems.  In 
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pertinent studies, it was observed that resulting policies may be nonlinear (rather 
than piecewise linear, according to truncated Taylor rules) and more aggressive for 
interest rates close to ZLB (a behavior characterized as pre-emptiveness).  
However, a rigorous derivation of optimal explicit Taylor rules subject to ZLB is, 
to our knowledge, not currently available.   

To develop a related formulation that does lead to an explicit solution in the 
presence of the ZLB, we rely on a finite-dimensional approximation of the 
standard optimal control problem and on its moving-horizon implementation, 
known in the engineering literature as model-predictive control (MPC) or receding 
horizon control (Maciejowski, 2000; Rawlings and Mayne, 2009).  Inequality-
constrained MPC involves an objective (cost function) and a model, both of which 
are discussed next, along with a brief formulation of MPC. 

2.1 Economy Model Structure 

A standard model around a baseline can describe the evolution of the economy as 

 ( )1 1
y

t t t t ty y i eρ ξ π+ += − − + ,   (2) 
 1 1t t t ty eππ π α+ += + + .   (3) 

Equation (2) comes from the standard IS equation with forward-looking, namely 

 ( )1 1 1[ ] y
t t t t t ty y i E eσ ξ π+ + += − − + ,   (4) 

where the future expectation 1[ ]t tE π +  is approximated by the noise-free 
counterpart of Eqn. (3) (the standard AS equation), namely 

 1[ ]t t t tE yπ π α+ = + .  (5) 

(Ball, 1999).  Note that the sampling period (time interval from time t  to 1t + ) is 
one year.   

The above model is similar in spirit to more complicated models used by many 
central banks.  The model’s main purpose is to capture the overall dynamic causal 
relationship between the manipulated input i  and the two controlled outputs, y , 
π .   

Note that Eqns. (2) and (3) capture the aggregate effect of the interest rate on 
the economy.  Effects due to phenomena such as rational expectations are assumed 
to have been incorporated in the model structure.  Other kinds of models can also 
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be converted to the aggregate form of Eqns. (2) and (3) (Kato and Nishiyama, 
2005). 

For the above model, at steady state (equilibrium point), we have *ti i= , 
0ty =  and *tπ π= , with * * *r i π= − .  Hence, in the terms of deviation variables 

from the equilibrium point, eqns. (2) and (3), can be written in vector-matrix form 
as 
 1 1t t t tu+ += + +x Ax B ε ,    (6) 
where 

 
*

ˆ ˆ
*

y y y
π π π

∆ −   
= =   ∆ −   

x , *ˆ ˆu i i i= ∆ = − , ˆ
ye

eπ
 

=  
 

e ,  (7)  

 ˆ
1

ρ ξ
α
 

=  
 

A ,    (8) 

 ˆ
0
ξ− 

=  
 

B .     (9) 

It should be stressed once more that the idea here is not to fully explain the 
complex dynamics of the economy with such a simple linear model.  Rather, the 
intended use of the above model is to help understand how optimal monetary 
policies can be derived and how such policies are affected by various objective 
functions and by a ZLB on the interest rate.  The dimension of the state vector x  is 
also limited to two, so that resulting policies can be easily derived and understood 
graphically in 2-D and 3-D plots.  The methodology presented below can be easily 
applied to different low-dimensional models as well. 

2.2 Economy Model Calibration 

The economy model expressed by eqns. (2) and (3) is calibrated using US revised 
economy data over the time period 1976–2007.  The annual revised output gap 
data is taken from the Congressional Budget Office (CBO, 2011).  Inflation is 
calculated as annual percentage change in the GDP deflator Q4/Q4 basis (Bureau 
of economic Analysis).  The real interest rate, r , is calculated as the annual 
average of the interest rate deflated by the annual inflation rate.  Interest rates are 
taken from the database of the Federal Reserve System.  Figure 1 plots these data 
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for the time period 1976–2010.  Based on these data, Table 1 presents estimated 
values of parameters for the economy model, obtained using the standard 
prediction-error method for least-squares estimation (Söderstrom and Stoica, 1989; 
Ljung, 1999).  Based on the parameter estimates in Table 1, the matrices A  and 
B  in eqns. (8) and (9) turn out to be 

 
0.63 0.19
0.12 1
 

=  
 

A ,  
0.19
0

− 
=  
 

B .  (10) 

 
Figure 1: Revised data for US output gap, GDP deflator inflation rate and federal fund 

rates in annual percentage for year 1976–2010 (CBO, 2011). 
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Table 1:  Parameter Estimates of US Economy Model 

Parameter Estimate Standard Error 

ρ  0.63 0.06 

ξ  0.19 0.05 

*r  1.9 0.74 

α  0.12 0.06 

ye
σ  1.4  

eπ
σ  0.93  

 
The eigenvalues of A  are 0.58 and 1.05, suggesting that the economy model 

for the US economy is mildly unstable.  Whether the economy model is stable or 
unstable, whatever control policy ones chooses to control the US economy, such a 
policy must be, at the very least, a stabilizing policy.  We develop below such a 
policy for the above model via MPC. 

2.3 Formulation of Central Bank’s Objective as MPC Optimization  

2.3.1 Standard Optimal Control Objective 

The central bank’s generalized cost function projected to infinity at time t  is 
generally assumed to be of the standard optimal control form  

 
0

ˆ( , )k
t k t t k t

k
L uβ

∞

+ +
=
∑ x .   (11) 

where (0,1)β ∈  is the discount factor;  ˆ t k t+x  is the expected value of x  at time 

t k+  using all information available at time t  and a model such as Eqn. (6);  t k tu +  

refers to the input value at time t k+  to be decided on at time t ;  and 
ˆ( , )t k t t k tL u+ +x  is usually a quadratic function of ˆ t k t+x  and t k tu +  such as  

 2 2ˆ ˆ ˆ( , ) T
t k t t k t t k t t k t t k tL u R u+ + + + += +x x Qx .  (12) 

 
with 2 0R ≥  and 0Q   (positive semi-definite). 
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Note that often, but certainly not always (Woodford, 1999; Orphanides and 
Williams, 2007), the cost function is considered to be of the form 

0
ˆ( )k

t k tk
Lβ∞

+=∑ x  

where the term ˆ( )t k tL +x  is a (typically quadratic) function of ˆ t k t+x  alone, without 

explicitly including a term that contains t k tu + .  We claim that explicit inclusion in 

the cost function of a term that penalizes the input t k tu + , as in Eqn. (12), is 

important, for the following three reasons: 

• The central bank is generally averse to drastic changes in the interest rate, 
which suggests a relative cost for interest rate changes. 

• It is well known in optimal control theory (Kailath, 1980; Anderson and 
Moore, 2007) that failure to include in the cost function an explicit term 
containing t k tu +  may result in destabilizing policies (when the inverse of 
the controlled system is unstable) or excessively large inputs. 

• As we discuss below, using a cost function along the lines of Eqn. (12) 
results in interest rate rules that follow the Federal Reserve Bank’s 
decisions fairly well for over two decades. 

Of course, the cost function can easily be made not to depend explicitly on the 
t k tu +  term by setting 2 0R =  in Eqn. (12). 

2.3.2 Unconstrained Optimal Control and the Taylor Rule 

Solution of the optimal control (minimization) problem comprising a quadratic 
cost function such as Eqn. (12), a linear model such as Eqn. (6), and no inequality 
constraints on t k tu + , results in the celebrated linear-quadratic regulator (LQR), 
namely  

 opt
| 1 2t t t t tu K y K p= = ∆ + ∆Kx .  (13) 

where opt
|t tu  is the optimal input to be implemented at time t ;  tx  is the actual state 

of the system (assumed to be measured at time t );  and 1 2[ ]TK K=K  is a 
constant matrix, computed from solution of the Riccati equation (Kailath, 1980; 
Anderson and Moore, 2007). 
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The structure of Eqn. (13) is clearly that of the Taylor rule.  The specific 
values of the coefficients 1,K  2K  depend on the particular values of the 
parameters in the linear model and quadratic cost function. 

2.3.3 Standard Optimal Control and Feedback 

It should be noted that the optimal solution sequence opt opt
| 1|{ , ,...}t t t tu u + , calculated at 

time t , is not what is going to be implemented on the actual system over time 
beyond t , as indicated visually in Figure 2.  Rather, the first optimal input value 

opt
|t t tu = Kx  of the sequence opt opt

| 1|{ , ,...}t t t tu u +  will be implemented at time t . 
 
Figure 2: Visual Representation of Moving-Horizon Optimization and Associated  

Optimal Control 

  

time 

 

 

 

 

 
 

time 

 

Optimal input sequence 
calculated by solving an 
optimal control problem 
starting at time . 

Optimal input sequence 
calculated by solving an 
optimal control problem 
starting at time . 
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Then, the system will be left to run until time 1t + ;  a new measurement of the 
state 1t+x  will be obtained at 1t + ;  the first optimal input value opt

1| 1 1t t ku + + += Kx  of 

the sequence opt opt
1| 1 2| 1{ , ,...}t t t tu u+ + + + , will be implemented at time 1t + ;  and so on to 

infinity.  Note that, in general, opt opt
1| 1 1|t t t tu u+ + +≠  (i.e. the optimal values of the input at 

time 1t +  calculated at times t  and 1t +  are not equal) because of various 
uncertainties (e.g. external disturbances, modeling inaccuracies, etc).  Note also 
that the overall procedure of measuring tx , deciding on and implementing tu , and 
repeating these tasks at subsequent times, 1t +  and onwards, is standard closed-
loop control. 

2.3.4 Inequality-Constrained Optimal Control 

The preceding discussion in Sections 2.3.2 and 2.3.3 and the resulting optimal rule 
in Eqn. (13) rely on the assumption that no ZLB is explicitly placed on the input.  
What would the optimal rule be if the ZLB were present?   

It is tempting to claim that the optimal rule in the presence of the ZLB would 
be a truncated version of the standard Taylor rule, namely the interest rate would 
be computed by Eqn. (13) as either *t ti i= +Kx , if * 0t i+ ≥Kx ;  or 0ti =  
otherwise.  While this is plausible, it is not necessarily correct.  For example, it 
could well be that, for interest rates near the ZLB, more aggressive action than 
normal would be required, i.e. the interest rate should be pre-emptively reduced 
more drastically than recommended by Eqn. (13), in anticipation of (and to 
counter) near-future situations where the optimal interest rate would be stuck at the 
ZLB.  It is then natural to ask the following: 

• Are there circumstances where the truncated version of the Taylor rule is 
optimal?  

• In circumstances where the truncated version of the Taylor rule is not 
optimal (e.g. in pre-emptive scenarios) would there be an equally simple 
alternative rule?   

• Can either kind of circumstances be easily detected and corresponding 
rules established?   

To answer these questions one can augment the optimal control problem from 
which The Taylor rule naturally emerges, by explicitly adding the ZLB constraint 
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while retaining the same quadratic cost function and linear model.  Unfortunately, 
the solution of this optimization problem is no longer a simple formula as in Eqn. 
(13), because of the ZLB constraint.  Indeed, one would have to solve a quadratic 
programming problem with an infinite number of decision variables, namely 

opt
| 0,...,{ }t k t ku + = ∞ , and with an infinite number of constraints, namely 

opt
| 0,...,{ * 0}t k t ku i+ = ∞+ ≥ .  This is not feasible.  As we explain below, however, it turns 

out that this infinite-dimensional constrained optimization problem can be very 
well approximated by a finite-dimensional counterpart, which, for relatively small 
linear models, as in Eqn. (6), admits an explicit solution.  The benefit from this 
realization is that Taylor-like (piecewise linear) rules can be developed when the 
ZLB is present.  We elaborate on this next. 

2.3.5 Inequality-Constrained Optimal Control and MPC 

It can be rigorously shown (Muske and Rawlings, 1993) that the solution of an 
infinite-dimensional constrained optimal control problem involving summation 
over infinite time, as in Eqn. (11), can be approximated arbitrarily well by the 
solution of a corresponding finite-dimensional problem, which involves 
summation of a finite number of terms plus a terminal cost and/or terminal 
equality constraints.  This is also known as finite-horizon approximation of an 
infinite-time horizon.  In fact, it has long been established, through experience 
from widespread application of MPC (Muske and Rawlings, 1993), that the 
dimension of the corresponding finite-dimensional problem is practically fairly 
low.  The preceding statements are crucial for developing Taylor-like rules via 
multi-parametric programming. 

In the above context, an objective for MPC at time t  can be formulated as 

( )
1

2 2 2 2 2 2

0

ˆ ˆ ˆ ˆmin
N

k T T N N
t k t t k t t k t t k t t N t t N t t N t

k
R u S u S uβ δ β β δ

−

+ + + + + + +
=

 
+ + + + 

 
∑u

x Qx x Qx  (14) 

where 

 
1 0

0ˆ
0
λ

λ
− 

=  
 

Q = ,  0 1λ< <   (15) 

 1ˆ
T

t t t N ti i + −
 = ∆ ∆ u  ,  (16) 
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 1ˆt k t t k t t k tu u uδ + + + −= − , 0,...,k N= ,  (17) 

and Q  is defined in Appendix A. 
Inclusion of penalties on t k tuδ +  in the above cost function is justified by the 

following two arguments. 

• The central bank is generally averse to drastic changes in the interest rate, 
which suggests a relative cost for t k tuδ + . 

• With stronger penalty on t k tuδ +  rather than on t k tu + , the state x  is 

guaranteed to asymptotically reach the desired value.  (This is known as 
the zero-offset property in engineering literature (Stephanopoulos, 1984)). 

Expected values ˆ t k t+x , predicted at time t , rely on use of the linear model in Eqn. 

(6) for k -step ahead predictions ˆ t k t+x  (Söderstrom and Stoica, 1989 ; Ljung, 

1999) as 
 

1

1
0

ˆ
k

k
tt k t t k tu

−

+ + − −
=

= +∑x A B A x




, 1,...,k N= , (18) 
with 
 ˆ tt t =x x ,  (19) 
where tx  refers to the measured state at time t . 

The inputs must satisfy the ZLB constraint, namely 

 *t k tu i+ ≥ − , 0,..., 1k N= − ,  (20) 

To complete the MPC formulation, additional equality constraints are included 
(eqns. (56) and (55) in Appendix A), such that stability of the resulting closed-loop 
scheme can be guaranteed. 

The values of 1 λ−  and λ  in Eqn. (15) determine the relative attention paid by 
the policy to the output gap and inflation, respectively. 

Finally, the values of the weights R  and S  determine the aggressiveness of 
the resulting control action, with small values of R  and S  encouraging more 
aggressive action and faster closed-loop response, at the cost of decreased closed-
loop robustness (Orphanides, 2003; Orphanides and Williams, 2007).  In 
particular, higher values of S  are preferred when persistent external disturbances 
force the interest rate i  away from its nominal equilibrium value *i .   
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In the absence of the ZLB (Eqn. (20)) the standard Taylor rule results for 
0S = , whereas for 0S ≠  the Taylor rule with inertia naturally emerges.  The 

constrained case, namely inclusion of Eqn. (20) in the MPC optimization, is 
discussed next. 

3 Taylor Rules from MPC Constrained with ZLB 

In this section we show how Taylor-like (piecewise linear) rules can be derived 
from application of multi-parametric MPC constrained with ZLB.  We generate 
such rules both without and with inertia, in Sections 3.1 and 3.2, respectively.  
Subsequently, we discuss the effects of various parameters on the resulting rules, 
before we turn to comparison with real data in the next section. 

3.1 The General Idea:  Taylor Rules in the Presence of ZLB 

When the interest rate must satisfy a ZLB constraint, the optimization problem to 
be solved by MPC at each time t  entails  

• the objective in Eqn. (14); 
• the model-based predictions, Eqn. (18); 
• the equality constraints in eqns. (19), (56), and (55); and 
• the inequality constraint corresponding to the ZLB, Eqn. (20).   

Following (Pistikopoulos et al., 2002), and assuming temporarily that 0R > , 
0S =  in Eqn. (14), it can be shown (see Appendix B) that, after equation 

reduction by use of all equality constraints, the above optimization problem can be 
cast in compact form as the inequality-constrained quadratic programming 
problem 

 1min
2

T 
 
 

z Hz
z

,  (21) 

subject to 
 t≤ +Gz w Dx ,  (22) 
where  

• the decision variable z  is defined in terms of interest rate as  
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 1ˆ T
m t

−= +z u H F x ,  (23) 

 with 

 

|

1

2

.ˆ

.

t t

t t

m

t m t

i
i

i

+

+ −

∆ 
 ∆ 
 =
 
 
 ∆  

u .  (24) 

• H , G , D , F  are constant matrices and w  a constant vector, depending 
on the parameters that appear in the model, objective function, and ZLB, 
as defined in Appendix B. 

• tx  is the measured state of the system at time t , as defined in Eqn. (7). 

Eqns. (21) and (22) suggest that the optimization problems solved by MPC at 
successive points in time differ only by the right-hand side of Eqn. (22), which is 
affine in the state tx .  Note that tx  is not a decision variable but rather a parameter 
that is generally different at each time point (hence the term multi-parametric).  
While no single formula exists for the explicit solution of all of these problems, 
application of multi-parametric programming (Pistikopoulos et al., 2002), implies 
that the optimal solution can be expressed explicitly (in closed form) at each time 
point t  as 
 ( ) ( )1opt 1 1

|
T T

t t A A A A A t

−− −=z H G G H G w + D x , (25) 

where AG , Aw , AD  correspond to the set of active inequality constraints in Eqn. 
(22), and are finite in number.  Which inequality constraints in Eqn. (22) will be 
active (i.e. satisfied as equalities) at any time point t  depends only on tx , and this 
can be determined (Pistikopoulos et al., 2002) by checking whether the 
inequalities 
 ( ) ( )11 1T T

A A A A A t t

−− − < +GH G G H G w + D x w Dx  (26) 

and  
 ( ) ( )11 0T

A A A A t

−−− ≥G H G w + D x ,  (27) 
are satisfied for each of the possible choices for { , , }A A AG w D .  While the number 
of choices for { , , }A A AG w D  (i.e. the number of combinations of active/inactive 
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inequality constraints) may be generally large, we show in the sequel that this 
number is fairly small for the problem at hand, resulting in a small set of explicit 
rules in the form of Eqn. (25), which are shown to be Taylor-like (piecewise 
linear). 

More specifically, for a certain instance of { , , }A A AG w D , corresponding to a 
set of active inequality constraints in Eqn. (22), the inequalities in Eqn. (26) and 
(27) define a linear polytope for tx , for which the same sets of constraints remain 
active or inactive, and the same formula, Eqn. (25), can be used to express the 
optimal solution for any tx  in that polytope.  The collection of all polytopes, 
whose total number is finite, spans the entire set in which tx  lies and which is 
bounded for a stable closed loop.  Therefore, determining the active and inactive 
constraints in Eqn. (22), and consequently the corresponding AG , Aw , AD , is a 
simple matter of using a look-up table, to determine in which polytope tx  lies, i.e. 
for which of the finitely many possible instances of { , , }A A AG w D  in the look-up 
table eqns. (26) and (27) are satisfied.  Eqn. (25) can then be used to determine the 
optimal interest rate.  The corresponding simple rule can then be summarized as 
follows: 

 
Piecewise linear interest-rate rule 
Step 1:  Given the measured value of tx  at time t , select from the finite list of 
possible instances of { , , }A A AG w D  the one that satisfies eqns. (26) and (27). 
Step 2:  Depending on { , , }A A AG w D  determine the optimal interest rate either as 

  ( ) ( )( )11 1

1

[1 0...0] * *

( *) ( *) * *π

π

φ φ π π π

−− −

−

= − − + +

= − + − + +

T T T
t A A A t t

m

y t

i r

y y r

A AH G G H G w + D x F x
 (28) 

in the familiar Taylor-rule form (with ,yφ  πφ  functions of { , , }A A AG w D ) or as  
 0ti =   (29) 
namely at the ZLB value.  
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To our knowledge, the above development is the first rigorous derivation of an 
explicit Taylor-like rule that satisfies the ZLB without resorting either to ad hoc 
truncation of the interest rate value produced by a Taylor rule (Reifschneider and 
Williams, 2000; Williams, 2006; Nakov, 2008) or to numerical simulation 
(Orphanides and Wieland, 2000; Hunt and Laxton, 2003; Jung et al., 2005; Kato 
and Nishiyama, 2005; Adam and Billi, 2007).   

3.2 Variant of the General Idea:  Taylor Rules with Inertia in the 
Presence of ZLB 

Following the same approach as in the previous Section 3.1 but with 0R = , 0S > , 
the MPC optimization problem can be again cast in a similar form as  

 1min
2

Tz Hz
z

 


,  (30) 

subject to 
 t≤ +Gz w Dx  ,  (31) 
where 

• the decision variable z  is defined in terms of interest rate as  

 1ˆ T
m t

−= +z u H F x   ,  (32) 
 with mu  as in Eqn. (24). 

• tx  is defined as 

 

1 1

*
*ˆ ˆ
*

t t

t t t

t t

y y y

u u u
π π π

− −

∆ −   
   = ∆ = −   
   ∆ −   

x .  (33) 

• H , G , D , F  are constant matrices and w  a constant vector, depending 
on the parameters that appear in the model, objective function, and ZLB, 
as defined in Appendix B. 

Again, an explicit solution through Taylor-like formulas can be obtained by 
applying the multi-parametric MPC solution to get direct counterparts of Eqns. 
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(25) through (27), which eventually lead to the counterparts of eqns. (28) and (29), 
namely the following rule: 

 
 

Piecewise linear interest-rate rule with inertia 
Step 1:  Given the measured value of tx  at time t , select from the finite list of 
possible instances of { , , }A A AG w D   the one that satisfies eqns. (26) and (27). 
Step 2:  Depending on { , , }A A AG w D   determine the optimal interest rate either as 
 1( *) ( *) ( *) * *t y t t i ti y y i i rπφ φ π π φ π−= − + − + − + + . (34) 
in the familiar form of a Taylor rule with inertia (with ,yφ  ,πφ  iφ  functions of 
{ , , }A A AG w D  ), or 
 0ti =   (35) 
namely at the ZLB value.  

4 Numerical Simulations 

In this section both simulated and actual data are used to illustrate the Taylor-like 
(piecewise linear) interest rate rules resulting from application of the multi-
parametric MPC approach outlined in the previous Section 3, summarized by eqns. 
(21) and (22).  The economic model discussed in Section 2 underlies the multi-
parametric MPC problem formulation.  The values 80N = , 4m = , 0.99β =  are 
selected throughout this section for the MPC objective, Eqn. (14), as elaborated on 
in Appendix C.  For these values of ,N  ,m  and β , the resulting Taylor-like rules 
depend on the values of the weights ,λ ,R  and S  in the MPC objective, Eqn. (14). 
Taylor-like (piecewise linear) rules, resulting from 0S =  and a number of 
combinations of λ  and ,R  are discussed in Section 4.1.  Similar rules with inertia, 
resulting from 0R =  and a number of combinations of λ  and ,S  are discussed in 
Section 4.2. 
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4.1 Taylor Rules form MPC with ZLB 

For 0,S =  a value for each of λ  and R  results in a Taylor-like (piecewise linear) 
rule, the specific formula depending on the linear polytope in which the inflation 
and output gap lie, as presented in Table 2 through Table 7.  The corresponding 
values of { , }Rλ  in these tables, selected to illustrate rule patterns, are 
{0.05,0.07},  {0.05,0.55}, {0.8,0.07}, {0.8,0.55} , {0.5,0.07}, and {0.5,0.55} .  
For each choice of { , }Rλ  in these tables, a collection of linear polytopes is 
defined through a set of linear inequalities for each polytope.  The polytopes 
corresponding to each { , }Rλ  are shown graphically in 2D plots of inflation vs. 
output gap in Figure 3 through Figure 8.  Each polytope is numbered (1, 2, 3,…) 
for direct reference and comparison. 

Inspection of Table 2 through Table 7 and Figure 3 through Figure 8 shows 
that the following four classes of formulas appear for the optimal interest rate: 

a. Polytope 1:  Formulas similar in nature to the standard Taylor rule, Eqn. 
(1).  If the economy state, tx  (output gap and inflation) is in this polytope, 
the optimal policy is essentially the Taylor rule, and the interest rate does 
not reach the ZLB.  

b. Polytope 2:  Formulas that set the interest rate at its ZLB while 
maintaining closed-loop stability.  If the economy state falls in this 
polytope, the optimal interest rate is zero, and the economy state will 
eventually return to the desired value.  No action in addition to monetary 
policy is needed. 

c. Polytope 3:  Formulas that set the interest rate at its ZLB but without 
maintaining closed-loop stability.  If the economy state falls in this 
polytope, the optimal interest rate is zero, but the economy state will not 
eventually return to the desired value, unless action in addition to 
monetary policy is taken.  This is a case of liquidity trap (Reifschneider 
and Williams, 2000). 

d. Polytope 4 or higher:  Formulas that are piecewise linear but different 
from the corresponding Taylor-like formulas that would result from 
optimization without anticipation of ZLB activation in the future.  This is a 
case of pre-emptive behavior (Kato and Nishiyama, 2005; Taylor and 
Williams, 2010, and references therein). 
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Table 2: Multi-Parametric MPC Solution and State-Space Partition for 0.05λ = , 0.07R =  

No. Polytope bounds Interest rate ti∆  
Closed-loop 

Eigenvalues 

1 
0.78 0.62 0.98
0.14 0.99 1.71

t

t

y
π
∆− −     

≤    ∆− −    
 [ ]3.12 2.49 t

t

y
π
∆ 
 ∆ 

 
0.07 

0.96 

2 

0.78 0.62 0.98
0.27 0.96 3.70

0.76 0.65 1.03
0.62 0.79 1.39

t

t

y
π

−   
   ∆− −     ≤    ∆ − 
   

−   

 3.9−  
0.58 

1.05 

3 [ ]0.27 0.96 3.70t

t

y
π
∆ 

≤ − ∆ 
 3.9−  (Infeasible) 

0.58 

1.05 

4 

0.76 0.65 1.03
0.20 0.98 2.02

0.14 0.99 1.71

t

t

y
π

− −   
∆    − − ≤    ∆    −  

 [ ]3.15 2.70 0.36t

t

y
π
∆ 

+ ∆ 
 

0.07 

0.96 

5 

0.62 0.79 1.39
0.13 0.99 4.42

0.20 0.98 2.02

t

t

y
π

− −   
∆    − − ≤    ∆    −  

 [ ]3.52 4.49 4.05t

t

y
π
∆ 

+ ∆ 
 

0.05 

0.92 

6 
0.27 0.96 3.70

0.13 0.99 4.42
t

t

y
π
∆− −     

≤    ∆ −    
 [ ]5.55 19.6 71.3t

t

y
π
∆ 

+ ∆ 
 

0.00 

0.58 
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Table 3: Multi-Parametric MPC Solution and State-Space Partition for 0.05λ = , 0.55R =  

No. Polytope bounds Interest rate ti∆  Closed-loop 
Eigenvalues 

1 
0.39 0.92 1.47
0.28 0.96 1.67

t

t

y
π
∆− −     

≤    ∆− −    
 [ ]1.03 2.44 t

t

y
π
∆ 
 ∆ 

 0.50 
0.93 

2 
0.39 0.92 1.47
0.27 0.96 3.70

0.37 0.93 1.52

t

t

y
π

−   
∆    − − ≤    ∆    −  

 3.9−  
0.58 
1.05 

3 [ ]0.27 0.96 3.70t

t

y
π
∆ 

≤ − ∆ 
 3.9−  (Infeasible) 

0.58 
1.05 

4 
0.38 0.93 1.50
0.32 0.95 1.63

0.28 0.96 1.67

t

t

y
π

− −   
∆    − − ≤    ∆    −  

 [ ]1.13 2.77 0.59t

t

y
π
∆ 

+ ∆ 
 

0.50 
0.92 

5 
0.37 0.93 1.52

0.32 0.95 1.63
t

t

y
π
∆− −     

≤    ∆ −    
 [ ]1.34 3.39 1.65t

t

y
π
∆ 

+ ∆ 
 

0.48 
0.89 
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Table 4: Multi-Parametric MPC Solution and State-Space Partition for 0.8λ = , 0.07R =  

No. Polytope bounds Interest rate ti∆  Closed-loop 
Eigenvalues 

1 
0.35 0.94 0.40
0.17 0.98 0.74

t

t

y
π
∆− −     

≤    ∆− −    
 [ ]3.39 9.09 t

t

y
π
∆ 
 ∆ 

 0.22 
0.76 

2 

0.35 0.94 0.98
0.27 0.96  3.70

0.28 0.96 0.57
0.33 0.95 0.45

t

t

y
π

−   
   ∆− −     ≤    ∆ − 
   

−   

 3.9−  
0.58 
1.05 

3 [ ]0.27 0.96 3.70t

t

y
π
∆ 

≤ − ∆ 
 3.9−  (Infeasible) 

0.58 
1.05 

4 
0.33 0.95 0.45
0.21 0.98 0.76

0.17 0.98 0.74

t

t

y
π

− −   
∆    − − ≤    ∆    −  

 [ ]3.65 10.6 1.13t

t

y
π
∆ 

+ ∆ 
 

0.21 
0.72 

5 
0.28 0.96 0.57

0.21 0.98 0.76
t

t

y
π
∆− −     

≤    ∆ −    
 [ ]5.17 17.5 6.48t

t

y
π
∆ 

+ ∆ 
 

0.04 
0.61 

 

Table 5:  Multi-Parametric MPC Solution and State-Space Partition for 0.8λ = , 0.55R =  

No. Polytope bounds Interest rate ti∆  Closed-loop 
Eigenvalues 

1 [ ]0.28 0.96 0.86t

t

y
π
∆ 

− − ≤ ∆ 
 [ ]1.29 4.36 t

t

y
π
∆ 
 ∆ 

 0.56 
0.83 

2 
0.28 0.96 0.86
0.27 0.96 3.70

t

t

y
π
∆ −    

≤    ∆− −    
 3.9−  

0.58 
1.05 

3 [ ]0.27 0.96 3.70t

t

y
π
∆ 

≤ − ∆ 
 3.9−  (Infeasible) 

0.58 
1.05 
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Table 6: Multi-Parametric MPC Solution and State-Space Partition for 0.5λ = , 0.07R =  

No. Polytope bounds Interest rate ti∆  Closed-loop 
Eigenvalues 

1 
0.44 0.90 0.49

0.14 0.99 0.72
t

t

y
π
∆− −     

≤    ∆−    
 [ ]3.51 7.11 t

t

y
π
∆ 
 ∆ 

 0.12 
0.84 

2 

0.44 0.90 0.49
0.27 0.96  3.70
0.41 0.91 0.52
0.32 0.95 0.66

t

t

y
π

−   
   ∆− −     ≤    ∆ − 
   

−   

 3.9−  
0.58 
1.05 

3 [ ]0.27 0.96 3.70t

t

y
π
∆ 

≤ − ∆ 
 3.9−  (Infeasible) 

0.58 
1.05 

4 
0.44 0.91 0.52
0.18 0.98 0.86

0.14 0.99 0.72

t

t

y
π

− −   
∆    − − ≤    ∆    −  

 [ ]3.67 8.26 0.84t

t

y
π
∆ 

+ ∆ 
 0.12 

0.81 

5 
0.32 0.95 0.66

0.18 0.98 0.86
t

t

y
π
∆− −     

≤    ∆− −    
 [ ]4.72 13.95 5.82t

t

y
π
∆ 

+ ∆ 
 

0.04 
0.69 
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Table 7:  Multi-Parametric MPC Solution and State-Space Partition for 0.5λ = , 0.55R =  

No. Polytope bounds Interest rate ti∆  
Closed-loop 
Eigenvalues 

1 
0.31 0.95 1.0
0.29 0.96 1.09
0.27 0.96 1.14

t

t

y
π

− −   
∆    − − ≤    ∆    − −   

 [ ]1.21 3.71 t

t

y
π
∆ 
 ∆ 

 0.53 
0.87 

2 
0.31 0.95 1.00
0.27 0.96 3.70

0.30 0.95 1.04

t

t

y
π

−   
∆    − − ≤    ∆    −  

 3.9−  
0.58 
1.05 

3 [ ]0.27 0.96 3.70t

t

y
π
∆ 

≤ − ∆ 
 3.9−  (Infeasible) 

0.58 
1.05 

4 
0.61 0.79 2.03
0 1 4.51
0 1 2.99

t

t

y
π

− −   
∆    − ≤    ∆    −  

 [ ]1.4 4.38 0.8t

t

y
π
∆ 

+ ∆ 
 0.53 

0.84 

5 
0.61 0.79 2.03
0 1 4.51
0 1 2.99

t

t

y
π

− −   
∆    − ≤    ∆    −  

 [ ]1.77 5.63 2.23t

t

y
π
∆ 

+ ∆ 
 0.51 

0.79 
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Figure 3: State-Space Partition for 0.07R =  and 0.05λ =  

 
Note: Corresponding rules are in Table 2, o  represents actual economy data points for period 08Q1–
11Q1, +  represents actual economy data points for period 98Q1:99Q4, solid curve represent closed 
loop response from initial state (–3.7, 1.9), dashed line represents truncated solution of unconstrained 
case. 

Figure 4: State-Space Partition for 0.55R =  0.05λ =  

 
Note: Corresponding rules are in Table 3, o  represents actual economy data points for period 08Q1–
11Q1, +  represents actual economy data points for period 98Q1:99Q4, solid curve represent closed 
loop response from initial state (–3.7, 1.9), dashed line represents truncated solution of unconstrained 
case.  
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Figure 5: State-Space Partition for 0.07R = , 0.8λ =  

 
Note: Corresponding rules are in Table 4, o  represents actual economy data points for period 08Q1–
11Q1, +  represents actual economy data points for period 98Q1:99Q4, solid curve represent closed 
loop response from initial state (–3.7, 1.9), dashed line represents truncated solution of unconstrained 
case. 

Figure 6: State-Space Partition for 0.55R = , 0.8λ =  

 
Note: Corresponding rules are in Table 5, o  represents actual economy data points for period 08Q1–
11Q1, +  represents actual economy data points for period 98Q1:99Q4, solid curve represent closed 
loop response from initial state (–3.7, 1.9), dashed line represents truncated solution of unconstrained 
case. 
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Figure 7: State-Space Partition for 0.07R =  0.5λ =   

 
Note: Corresponding rules are in Table 6, o  represents actual economy data points for period 08Q1–
11Q1, +  represents actual economy data points for period 98Q1:99Q4, solid curve represent closed 
loop response from initial state (–3.7, 1.9), dashed line represents truncated solution of unconstrained 
case. 

Figure 8: State-Space Partition for 0.55R = , 0.5λ =  

 
Note: Corresponding rules are in Table 7, o represents actual economy data points for period 08Q1–
11Q1, +  represents actual economy data points for period 98Q1:99Q4, solid curve represent closed 
loop response from initial state (–3.7, 1.9), dashed line represents truncated solution of unconstrained 
case. 
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Table 3 and the associated Figure 4 suggest a formula in polytope 1 for 
0.05λ = , 0.55R =  that is closest to the standard Taylor rule, in terms of the 

following two criteria: 

• closeness of the values of { , }y πφ φ  of the formula in polytope 1 vs. the 
standard Taylor rule (namely {1.0,2.4}  vs. {0.5,1.5}, respectively);  and 

• closeness of the eigenvalues of the closed loop resulting from substitution 
of the interest rate in Eqn. (2) by either the formula in polytope 1 or by the 
Taylor rule (namely {0.50,0.94}  vs. {0.56,0.97} , respectively). 

Further inspection of the results reveals that the optimal rules follow an 
asymmetric pattern for small values of R  (Figure 3, Figure 5, Figure 7), namely 
the optimal policies are different when the economy state is above or below the 
desired values.  Similar asymmetry has also been observed in literature in a 
number of numerical studies with 0R =  (Orphanides and Wieland, 2000; Kato 
and Nishiyama, 2005; Williams, 2006; Taylor and Williams, 2010).  However, this 
asymmetry practically disappears (i.e. it would be observable only for 
unrealistically large output gaps) for large values of R  (Figure 6, Figure 8), 
namely for very sluggish policies.   

The asymmetry-related results show that for negative output gap, truncation 
the standard Taylor rule is the optimal policy.  In addition, for negative output 
gap, when the interest rate is close to zero and future violations of the ZLB are 
anticipated, no more aggressive adjustment of interest rate is needed than 
indicated by the standard Taylor rule. 

On the other hand, for positive output gap and low inflation, more interesting 
behavior is observed, namely a small number of piecewise linear formulas result, 
corresponding to the linear polytopes numbered 4 and above.  These formulas 
become more aggressive as the interest rate approaches the ZLB.  This behavior 
(pre-emptiveness) has also been observed in numerical studies (Kato and 
Nishiyama, 2005; Taylor and Williams, 2010, and references therein).  However, 
in contrast to these numerical simulation studies, explicit rules are derived here, 
and the corresponding formulas are (piecewise) linear rather than nonlinear. 
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4.2 Taylor Rules with Inertia form MPC with ZLB 

For 0.55S =  and 0.5λ = , the resulting piecewise linear policies and 
corresponding polytopes are shown in Table 8.  The parameter space of multi-
parametric MPC, which is now three-dimensional (corresponding to ,ty  ,tπ  and 

1tu − ), is partitioned in 6 polytopes shown in Figure 9.   

• Polytope 1 corresponds to no constraint being active and hence it produces 
a rule as in Eqn. (44).   

• In polytope 2 the ZLB is active, i.e. the optimal policy is at zero.   
• Polytopes 4, 5 and 6 entail rules that are different from the Taylor-like rule 

of polytope 1, in anticipation of future ZLB activation.   
• The infeasibility polytope remains the same.   

From Table 8 and Figure 9 it can be concluded that in polytopes of low 
inflation and negative output gap, if the lagged interest rate 
2 2 2 ( 1) 0y πρ ξφ αξ φ+ − + − >  is high (polytopes 4 and 6), the optimal rule 

becomes less aggressive than the rule in the unconstrained case.  However, for low 
2 2 2 ( 1) 0y πρ ξφ αξ φ+ − + − > , the optimal rule is just a truncation to zero of the 

unconstrained case, Eqn. (44). Also, in polytope 5, characterized by low inflation, 
high output gap, and high 2 2 2 ( 1) 0y πρ ξφ αξ φ+ − + − > , the optimal rule is more 

aggressive than the rule in the unconstrained case, Eqn. (44).  Therefore, an 
important conclusion is that for rules with inertia ( 0S > ), the optimal policy 
becomes asymmetrical with respect to both lagged interest rate and output gap for 
low inflation economic conditions.  
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Table 8: Multi-Parametric MPC Solution and State-Space Partition for 0.55S = , 0.5λ =  

No. Polytope bounds Interest rate ti∆  Closed-loop 
Eigenvalues 
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1

0.31 0.94 0.16 1.27
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Figure 9: State-Space Partition for 0.55S =  and 0.5λ =   

 
Note: Corresponding rules are in Table 8. 

Figure 10: Closed-Loop Simulation for ( ),y π = (–7.1, 1.5) 2009Q3 and  
( ),y π = (–7.0, 0) Virtual Point for 0.07R =  0.5λ =  

 
Note: The later state lies in infeasibility polytope and no positive interest rate can stabilize the closed 
loop. 
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4.3 Remarks on Rules from MPC 

The following can be observed in the results of Sections 4.1 and 4.2. 
• Polytope 1, where no constraint is active, grows in size with increasing R  

or S .  This is intuitively understandable, as increasing R  or S  makes 
results in less aggressive policies. 

• The policy becomes sluggish and the size of polytopes 2, 4 and higher 
decreases as R  or S  increase. 

• The state of the economy may reach a point where tx  or tx  are such that 
no feasible interest rate can be found (i.e. the optimal rate would have to 
be negative).  It can be shown (Appendix H) that for an economy model 
such as described by eqns. (6)-(9) the infeasibility polytope for tx  is 
characterized by the inequality 

 u
u *

1

T
T

t
u

i
J

>
−

v Bv x


   (36) 

It is clear that the state tx  may satisfy Eqn. (36) fairly easily for 
economies with low *i , i.e. such economies at corresponding conditions 
run the risk of falling into the infeasibility polytope where a stabilizing 
interest rate above the ZLB may not exist.  This situation has also been 
studied in literature numerically (e.g., Williams, 2009). 

• For tx  in a polytope such that a feasible MPC solution exists but not all of 
the corresponding closed-loop eignevalues are inside the unit disk, the 
state will definitely escape from that polytope and will enter one where 
stability is guaranteed.  By contrast, for tx  in a polytope such that no 
feasible MPC solution exists and not all of the corresponding closed-loop 
eigenvalues are inside the unit disk, instability will persist.  This is 
illustrated further in Figure 10, discussed below. 

• It should be noted that entering into the polytope 2, where the ZLB 
is active, is an alarming situation, as the infeasibility polytope 3 
seats next to this polytope.  The longer the economy stays at ZLB, 
the higher the chance of getting into the infeasibility polytope (a 
case of liquidity trap) as a result of sudden adverse fluctuations inthe 
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economy.  Similar observations have been made in literature based 
on numerical simulation (Reifschneider and Williams, 2000). 

• In Figure 3 through Figure 8 real-time economy data are plotted for 
2008Q1:2011Q1. It is clear from Figure 3, Figure 5, and Figure 7 
( 0.07)R =  that truncation to zero is the optimal interest rate for nearly all 
economy points, while in Figure 4, Figure 6, and Figure 8 ( 0.55)R =  
more of the economy data indicate non-zero interest rate due to the policy 
rule being sluggish. 

4.4 Illustration of Proposed Approach 

The first set of simulations serves to simply illustrate the effects of ZLB on the 
closed-loop system.  Simulations are shown using the rules presented in Table 2 
through Table 7, as well as the rules with inertia shown in Table 8 along with five 
additional rules with similar structure but different MPC weights R  and S  (not 
shown in Table 8 for brevity).  For this set of simulations the economy is 
considered to be at 3.7y = −  and 1.9π =  in year 1, corresponding to 2009Q1.  
The results are summarized in Figure 11 and Figure 12.  The resulting sums of 
squared errors (discrepancies between actual and desired values) are summarized 
in Table 9 and Table 10.   

Based on these simulation results, it is clear that for small values of R  or S , 
optimal interest rate rules are aggressive and more likely to produce interest rate 
values at the ZLB when corresponding conditions arise.  Conversely, increase in 
the values of R  or S  results in sluggish response, as expected.  

The second set of simulations illustrates a case of liquidity trap.  Figure 10 
shows state-space partition for 0.07R =  and 0.5λ = .  Two different initial 
conditions of the economy are considered.  For the first case we let the initial point 
be 1 7.1y = − , 1 1.5π =  (2009Q3), which lies in polytope 2 in Figure 10 and hence 
the corresponding optimal interest rate is zero.  For the second case we let 

1 7.1y = − , 1 0π = , which lies inside the infeasibility polytope 3, namely no non-
negative interest rate can stabilize the economy at that point.  A zero interest rate 
alone results in an unstable closed loop.  The only way to stabilize the closed loop 
would be through additional external stimulus.  
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Figure 11: Closed-Loop Simulation for US Economy (Start Point is 2009Q1) for 0.05λ =  

 
 
 

Figure 12: Closed-Loop Simulation for US Economy (Start Point is 2009Q1) for 0.8λ =  
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Table 9:  Sum of Squared Errors for Closed-Loop Simulations with 0.05λ =  

 0, 0.07S R= =  0, 0.55S R= =  0.07, 0S R= =  0.55, 0S R= =  

20 2
2 tt

y
=∑  3.30 4.12 3.29 3.65 

20 2
2
( 2)tt
π

=
−∑  7.21 6.69 7.22 6.52 

19 2
1
( 3.9)tt
i

=
−∑  54.5 53.2 54.4 54.3 

19 2
11

( )t tt
i i −=
−∑  3.63 1.52 3.32 1.54 

 

Table 10:  Sum of Squared Errors for Closed Loop Simulations with 0.8λ =  

 0, 0.07S R= =  0, 0.55S R= =  0.07, 0S R= =  0.55, 0S R= =  
20 2

2 tt
y

=∑  7.14 5.75 7.43 7.99 

20 2
2
( 2)tt
π

=
−∑  3.02 3.72 2.97 2.93 

19 2
1
( 3.9)tt
i

=
−∑  84.0 71.2 85.8 88.4 

19 2
11

( )t tt
i i −=
−∑  4.27 1.43 3.59 2.47 

 
 
Given the fact that it is practically difficult to exactly quantify the polytope of 
liquidity trap, the central bank should focus on external stimulus as soon as the 
ZLB is reached. Closed-loop simulations, the results of which are shown in Figure 
13, confirm the preceding assertions for both cases.  It is also interesting to note 
that even though the interest rate in the first case is stabilizing, recovery of the 
economy is very slow due to the effect of ZLB (inflation stabilization, in 
particular, takes many years). 
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Figure 13:  Closed-Loop Simulation for Figure 10 

 
 

5 Discussion:  Parametric Studies and Comparison with 
Standard Rules and Real Data 

In this section we provide additional insight into the proposed MPC approach.  In 
particular, we compare rules generated by MPC to existing Taylor rules, show how 
rules with inertia arise naturally from MPC, elaborate on closed-loop stability 
issues, and provide comparison to real data. 

5.1 Effects of MPC Objective Function Weights on Resulting 
Taylor Rules 

For the choice of 80N = , 4m = , and 0.99β = , discussed in the preceding 
sections, we now proceed to examine the effect of R  and λ  on the resulting 
Taylor rules, via Eqn. (79).  Following the calculations in Appendix D, the 
matrices H  and F  in Eqn. (77) are calculated as functions of R  and λ , and 
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coefficients of the output gap and inflation in the Taylor rule or Eqn. (1) are 
expressed analytically in terms of R  and λ , as  

 
6 4
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( ) ( ) ( )
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y y y y
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φ

λ λ λ
+ + +
+ + +

= , (38) 

respectively, where the values of the corresponding parameters are shown in Table 
11.  In general, the numerator and denominator for yφ  and πφ  are polynomial 

functions of degree 1m −  in both 2R  and λ . 
Figure 14 employs the preceding eqns. (37) and (38) to calculate the policy 

coefficients yφ , πφ  for a range of values of R  and λ .  The point corresponding to 
the original Taylor rule ( 0.5yφ = , 1.5πφ = ) is not present in Figure 14.   

Table 11:  Polynomial Coefficients in Equations (37) and (38) as Functions of λ   
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Figure 14: Taylor-Like Interest Rate Rule in the Absence of ZLB Constraint on Interest 
Rate for Various Values of Tuning Parameters R  and λ  

 
Note: Solid and dotted lines represent inflation and output gap coefficient respectively based on Eqn. 
(37)–(38). This solution is also valid when no constraint is active in case of constrained MPC. 

 

However, various values of R  and λ  result in yφ  in the range of 1 to 3 (Figure 
15) and πφ  in the range of 2 to 6 (Figure 16). 

The following general observations can be made on Figure 15 and Figure 16: 

• When R  is small (i.e. control is aggressive) it has a strong effect on yφ  
and πφ . 

• The value 0R =  results in large values of yφ  and πφ , i.e. aggressive 

policy. 
• When R  is small, the inflation coefficient πφ  is more sensitive to the 

choice of λ  than yφ  is. 

• After approximately 1R > , further increase in R  has very small effect on 
yφ  and πφ . 

For the economy model under consideration, the nearest point to the original 
Taylor rule is found at 1yφ = , 2.4πφ =  for 0.55R =  and 0.05λ = .  These values 
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are close to the original Taylor rule and other Taylor-like rules (Rotemberg and 
Woodford, 1997; Orphanides and Wieland, 2000). 

Figure 15: Output Gap coefficient yφ  for Taylor Rule when 0.99β =  

 

Figure 16: Inflation Coefficient πφ  for Taylor Rule when 0.99β =  

1πφ =  
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5.2 Original Taylor Rule in MPC Framework 

Even though the specific yφ  and πφ  values of the original Taylor rule were not 
recovered in the preceding section for the value of β  used mostly in literature, 
such values can be obtained if a different value of β  is considered.  It turns out 
that the original Taylor rule can be recovered for 0.96β ≤ , for which expressions 
for yφ  and πφ  similar to eqns. (37) and (38) can be derived in the same way.  As 
shown in Figure 17 and Figure 18, the original Taylor rule values for yφ  and πφ  
can be derived when 0.96β =  for 1.06R =  and 0.36λ =  in Eqn. (14).   
In general, determining values of MPC weights that would correspond to specific 
values of yφ  and πφ  is an instance of the inverse linear quadratic regulator 
problem.  An infinite number of solutions generally exist for that problem.  
Feasibility and characterization of these solutions can be obtained in terms of 
linear matrix inequality algorithms (Boyd et al., 1994, section 10. 6, p. 147).  This 
issue will be explored elsewhere. 

 
 

Figure 17: Output Gap Coefficient yφ  for Taylor Rule when 0.96β =  

 
Note: The location of Taylor coefficient 0.5yφ =  is shown by the circle. 
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Figure 18: Inflation rate coefficient πφ  for Taylor rule when 0.96β =   

 
 

Note: The location of Taylor coefficient 1.5πφ =  is shown by the circle. 

5.3 Taylor Rules and Resulting Closed-Loop Stability  

For any rule proposed, it is important to determine, at the very least, whether such 
a rule results in a stable closed loop.  Combination of the Taylor rule in Eqn. (1) 
with the simple economy model, Eqn. (6), yields (Appendix E) the closed loop 
structure 
 1 CL 1t t t+ += +x A x ε ,  (39) 
where 

 CL ˆ
1

yT πρ ξφ ξ ξφ
α
− − 

= =  
 

A A + Bc .  (40) 

It can be shown (Appendix E) that both eigenvalues of CLA  are inside the unit 
disk, i.e. the closed-loop system is stable, if and only if 

 1πφ > ,  (41) 
 2.1 0.12 8.5 0.06yπ πφ φ φ− + < < + .  (42) 



 

www.economics-ejournal.org  40 

as illustrated in Figure 19.  This is in agreement with the well-established Taylor 
principle that the central bank should raise its interest rate more than one-for-one 
with increase in inflation (Woodford, 2001; Davig and Leeper, 2007).  Figure 16 
shows that this requirement is satisfied for all combinations of the MPC weighting 
parameters R  and λ .  In fact, Figure 20 illustrates that the stability conditions, 
eqns. (41) and (42), are satisfied for all choices of R  and λ  when 0.99β = .  
However, this is not the case for 0.95β ≤ , as illustrated in Figure 21, which 
shows that as the value of β  is reduced, the value of R  should not be too small, 
to avoid closed-loop instability. 

It is interesting to note that as R →∞ , namely high values of interest rate are 
heavily penalized, the closed loop remains stable, due to the stabilizing equality 
constraint, Eqn. (56). For R →∞ , eqns. (37) and (38) suggest that 

,3

3

0.70y
y

q
p

φ ==  and ,3

3

2.5
q
pp
pφ = = . 

Following the preceding observations, it should be noted that the widespread 
practice of using a discount factor β  may be more problematic than realized, in 
the sense that it may not result in robustly stabilizing strategies.  This situation, 
namely the need to shape weights of the terms in the MPC objective in an 
increasing rather than decreasing fashion in order to ensure robustness, has been 
rigorously analyzed in the past (Genceli and Nikolaou, 1993; Vuthandam et al., 
1995) and should be explored further. 

5.4 Taylor Rules with Inertia from MPC 

Taylor-like rules with inertia, Eqn. (34), have been proposed based on empirical 
arguments and simulation studies, in efforts to reduce large interest rate 
fluctuations (Goodfriend, 1991; Taylor and Williams, 2010, and references 
therein).  We explain below that such rules result naturally from appropriate 
tailoring of the MPC objective function to include terms that penalize the rate of 
change of interest rate. 

To illustrate this, consider again the MPC optimization problem formulated in 
Eqn. (14) with 0R =  and 0S > , namely no penalty on the interest rate itself, but a 
penalty on its rate of change.  It can be shown (Appendix F), that the resulting 
MPC optimization in this case becomes 
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Figure 19: Closed-Loop Stability Region for the US Economy Model in Terms of Taylor 
Rule Coefficients yφ  and πφ  when 0.99β =  

 

 
 

Figure 20: Closed-Loop Stability Region in Terms of MPC Tuning Parameters R  and λ  
for 0.99β =  
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Figure 21:  Closed-Loop Stability Region (Shaded) in Terms of MPC Weight Parameters 
R  and λ  for Various Values of 0.95β <   

        

      
Note: The location of original Taylor rule is shown by circle. 
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 1 1min
2 2m

T T T
m m t m t t

 + +  u
u Hu x Fu x Yx     ,  (43) 

where ( 1) ( 1)m m− × −∈ℜH , 3 ( 1)m× −∈ℜF , 3 3×∈ℜY  are functions of A , B , S , and λ ;  
and tx  is as in Eqn. (33). 

In the absence of a ZLB, the minimum in the optimization problem in Eqn. 
(43) is attained at opt 1 T

m t
−= −u H F x   , resulting in the optimal interest rate 
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which in exactly Eqn. (34). 
A parametric analysis similar to that in Section 5.1 can be performed again to 

assess the effect of the MPC weights S  and λ  on the parameters yφ , πφ , and iφ .  
Similar choices of 80N = , 4m =  and 0.99β =  as before yield 
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respectively, where the values of the corresponding parameters are shown in Table 
12.  From Eqn. (47) it is clear that the inertial term iφ  is zero for 0S = . Use of 
eqns. (45), (46), and (47) yields the patterns shown in Figure 22, Figure 23, and 
Figure 24 for the coefficients yφ , πφ , iφ  as functions of λ  and S .  The following 

trends can be observed: 

• The policy coefficients yφ  and πφ  decrease with increase in S . 

• When S  is small the effect of λ  on πφ  is dominant compared to the effect 
on yφ . 
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• After approximately 2S >  further increase on S  does not change the 
policy coefficients by much.  

• The inertial term iφ  increases with increase in S  and eventually converges 
to 0.7. This result can be explained on the basis of the stabilizing policy 
criterion. If iφ  is large compared to πφ  and yφ , the closed loop will 

behave like an open loop and due to the unstable nature of the open-loop 
economy model, related policies will not stabilize the economy. These 
results are consistent with prior literature observations (Taylor and 
Williams, 2010, and references therein).   
 

Table 12:  Polynomial Coefficients in Eqns. (45)–-(47) as Functions of λ  
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Figure 22: Output Gap Coefficient yφ  for Taylor Rules with Inertia 

 

 
 
 

Figure 23: Inflation Coefficient πφ  for Taylor Rules with Inertia 

 

 
 



 

www.economics-ejournal.org  46 

Figure 24: Lagged Inertest Rate Coefficient iφ  for Taylor Rules with Inertia 

 

 

5.4.1 Inertia-Based Rules and Resulting Closed-Loop Stability  

For Taylor rules with inertia as in Eqn. (34) the corresponding closed-loop is 

 CL
1t tψ ψ
+

   
=   

   

x x
A ,  (48) 

where 

 CL 1 0ˆ ˆ
yT

T
i i

i y i i
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φ φ
φφ φφ φ
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A Bc B
A

c
 , (49) 

and T
t t tuψ = − c x .  It can be shown (Appendix G) that all eigenvalues of CLA  are 

inside the unit disk if and only if 

 1i πφ φ+ >   (50) 
 142 142 16.7i yπφ φ φ> − − +   (51) 
 176 108 i πφ φ− >    (52) 
 33.5 35.5 16.7i y πφ φ φ− + >   (53) 
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 217.2 10.5 8.33 ( 28.1 5.06 )i y i y πφ φ φ φ φ+ + + − − >  (54) 

as shown in Figure 25.  As in Section 5.1, it is also found that all combinations of 
S  and λ  result in stabilizing monetary policies.  Eqn. (50) is the counterpart of 
Eqn. (41)and has been derived before in a different setting, using a rational 
expectations approach (Woodford, 2003). 

It is again interesting to note that as S →∞ , namely as aggressive changes in 
the value of interest rate are heavily penalized, the closed loop remains stable, due 
to the stabilizing equality constraint, Eqn. (56).  For S →∞ , eqns. (45)-(47) 

suggest that ,3

3

0.095y
y

q
p

φ ==



 , ,3

3

0.34
q
p
p

pφ ==



 , and ,3

3

0.71i
iq
p

φ ==



 , which satisfy 

the inequalities in eqns. (51)–(54). 
 

Figure 25: Closed-Loop Stability Region for the US Economy Model in Terms of 
Coefficients yφ , πφ  and iφ  for Taylor Rule with Inertia 
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5.5 Comparison with Historical Data 

In the original publication (Taylor, 1993) it was assumed that * 0y = , * 2%π = , 
* 2%r = , 1.5πφ = , 0.5yφ = , with quarterly data for output gap, and annual data 

for inflation rate.  Variants of the above basic Taylor rule have been studied in 
literature, such as rules with an inertia term containing 1ti −  (Goodfriend, 1991; 
Woodford, 1999; Orphanides and Williams, 2007), more lagged terms of i  (Judd 
and Rudebusch, 1998; Clarida et al., 2000), and/or with projected future values of 
π  and y  in the right-hand side of Eqn. (1) (Taylor and Williams, 2010, and 
references therein).  

We use real-time data available to the central bank at the time of making a 
decision on the interest rate, for the period 1987Q4:2008Q4.  For output gap we 
use Greenbook data over the period 1987Q4:2005Q4;  for the remaining period we 
consider CBO data (Nikolsko-Rzhevskyy and Papell, 2012).  The real-time 
inflation data is also taken from the same publication. 

We focus on the interest rate rule with inertia, Eqn. (34), with * 1.9r =  and 
* 2.π =   Since the coefficients yφ , πφ  and iφ  are functions of the weights S  and 

λ  as given by eqns. (45)–(47), these weights and corresponding coefficients are 
estimated using regression to fit the historical data.  Estimated values over the 
entire period of data are shown in Table 13.  Figure 26 and Figure 27 compare the 
interest rate resulting from fitting Eqn. (34) to the interest rate implemented, as 
well as to the interest rate suggested by the standard Taylor rule (Eqn. (1) with 

0.5yφ = , 1.5πφ = ), and by the Taylor rule with values fitted over the entire period 
of data examined (Eqn. (1) with 0.77yφ = , 2.0πφ = ).  It is clear that the inertial 

rule captures the central bank decisions better, as also demonstrated by the 
residuals shown in Figure 28.   

It is also interesting to examine whether additional insight may be gained by 
fitting data over short periods for which large residuals result from fitting the 
entire data set.  One such period with large residuals is 2000Q1:2004Q4.  Table 13 
(line 2a) suggests that this period may be problematic, in that the corresponding 
inertial rule, if applicable, is not stabilizing, i.e. the fitted value of iπφ φ+  is greater 
than 1, thus violating the closed-loop stability condition in Eqn. (50).  In fact, it is 
dubious whether the same objective as on the average was used over that 
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Table 13: Inertial Policy Estimation for US Interest Rate Rule Based on Real-Time Data 

 Period S  λ  yφ  πφ  iφ  iπφ φ+  

 1987Q4:2008Q4 0.83(0.23) 0.09(0.03) 0.29 0.71 0.62 1.33 
1 1987Q4:1999Q4 1.1(0.43) 0.10(0.06) 0.24 0.67 0.64 1.31 
2a 2000Q1:2004Q4 0.15(0.08) –0.07(0.03) 0.66 0.13 0.47 0.60 
2b 2000Q1:2004Q4 0.3 0 0.48 0.60 0.55 1.15 
3 2005Q1:2008Q4 0.44(0.26) 0.16(0.1) 0.53 1.25 0.55 1.80 

Note: Standard deviations are reported in parentheses. 

 

Figure 26: Federal Funds Rate, Standard Taylor Rule, Fitted Inertial and Fitted Taylor 
Rules (Fitting Period 1987Q4: 2008Q4) for Period 1987Q4: 2011Q1  

 
Note: The interest rate reduction in 2008 suggested by the inertial Taylor rule is more drastic than 
that suggested by the standard Taylor rule.  The actual interest rate over the period 2002–2005 is 
captured fairly well by the inertial Taylor rule, while the standard Taylor rule produces significantly 
larger values, as has been studied extensively by Taylor (Taylor, 2009)) 
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Figure 27: Magnified View of Figure 26 when Interest Rates are Near Zero  

 
 

Figure 28: Residuals for Policies in Figure 26 for Fitting Period 1987Q4: 2008Q4 
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period, since the value of λ  fitted over that period is negative, hence unacceptable.  
Constrained fitting (i.e. enforcing 0 1λ≤ ≤ ) produces parameter values that do 
correspond to a stabilizing rule (Table 13, line 2b) but nonetheless places all 
emphasis on output gap (growth).  The actual policy implemented over that period 
and its role on stimulating over-expansion of the economy has been the subject of 
intense discussion (Taylor, 2009). 

6 Conclusions and Future Work 

The main issue addressed in this work is the effect of zero lower bound on the 
optimal interest rate determined by a central bank.  We address this issue in a 
multi-parametric model predictive control framework, which allows the derivation 
of explicit feedback rules even when inequality constraints are present.  
Application of this framework to a simple model of the US economy produced a 
number of Taylor-like rules, depending on the form and parameter values in the 
objective function employed by MPC.  The results suggest that a small number of 
simple Taylor-like formulas can be applied at each time, depending on the state of 
the economy.  However, it was also shown that simply truncating to zero negative 
interest rates produced by unconstrained Taylor rules is optimal in situations of 
negative output gap, as happened recently.  Furthermore, it was observed, as has 
been noted elsewhere, that rules with inertia appear to better capture past decisions 
by the central bank.  Such rules have been systematically derived here by 
considering penalties on the rate of interest rate change in the MPC objective 
function. 

A number of issues touched in this work warrant further investigation, 
including the following: 

• The inverse problem:  Given a suggested Taylor-like rule, what objective 
function, as in Eqn. (14), is minimized?  A promising approach is 
suggested in Section 5.2. 

• Robust stability and performance:  There is a vast body of work in the 
automatic control community addressing the robustness issue, namely how 
a controller performs when the model assumed in controller design has 
quantifiable uncertainty. 
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• Modeling and selection of controlled variables:  Should the pair output gap 
and inflation be the main focus or could variables such unemployment 
(Orphanides and Williams, 2007) be central in controlling an economy? 

• Policy adaptation:  The main attractiveness of a fixed rule is its simplicity 
and predictability (Williams, 2009).  However, such a rule may become 
sub-optimal over time, as the economy or disturbance models change 
(Orphanides, 2003).  Can a fixed rule be replaced by a fixed rule 
adaptation policy that maintains robustness? 

We hope to address the above issues in forthcoming publications. 
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Notation 
 y   output gap (deviation of real GDP from potential GDP as percent of 

potential GDP) 
 π   inflation rate 
 t   time  
 i   interest rate   
 ˆr i π= −   real interest rate   
 yφ , πφ   coefficients associated with the output gap and inflation rate, 

respectively 
 α  positive constant in economy model 
 ξ   positive constant in economy model 
 σ   positive constant in economy model 
 [ )0,1ρ ∈  constant in economy model 
 1

y
te +  zero-mean white noise in output gap equation 

 1teπ+   zero-mean white noise in inflation equation  
 *  desired equilibrium value; 
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Appendices 
 
Appendix A: MPC Formulation 
Following Muske and Rawlings (1993), the following equality constraints are 
included in the MPC formulation. 

• Input move restriction constraints 
 1t k t t m tu u+ + −= , ,..., 1k m N= − ,  (55) 

The above equality constraints set all input values, to be decided on at time t , 
equal to each other after time point 1t m+ −  within the moving horizon.  This 
reduces the dimension of the optimization problem without sacrificing 
performance. 

• Unstable mode stabilization constraints 

 1 2
u u, ,...,T N N T N

t
− −  = − v A B A B B u v A x  , (56) 

with the vectors sv  (along with sv ) coming from the diagonalization (Jordan 
form) of the matrix A  as 

 uu1
u s

ss

0
0

T

T

J
J

−
   

= =    
      

v
A VJV v v

v



, (57) 

where uJ  and sJ  refer to the unstable and stable eigenvalues of the matrix A  
with corresponding eigenvectors, uv  and sv , respectively. 
 Finally, 

 s s
s2

s

0ˆ
1

T
T

sJβ
=

−
v QvQ v v  = .  (58) 

The main rationale behind the above MPC formulation is that closed-loop 
stability can be guaranteed by including the terminal penalty term ˆ ˆT

t N t t N t+ +x Qx  in 

the objective, Eqn. (14), and by explicitly forcing a terminal constraint, Eqn. (56), 
to stabilize the unstable mode corresponding to the eigenvalue uJ . 
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Appendix B: Multi-Parametric MPC Formulation for Taylor Rules 
with Inertia 
The derivation of the formulas will proceed in two steps, namely MPC 
optimization without and with ZLB, respectively. 
 

a. MPC Optimization without ZLB 

Based on the optimization function in Eqn. (14) and the method discussed in 
Muske and Rawlings (1993) with discount factor β , the terminal penalty weight 
matrix Q  is 
 

0

iT i i

i
β

∞

=

=∑Q A QA   (59) 

Since the unstable mode is constrained to be equal to zero at time k N+ , it 
follows that 
 T

s s= ∑Q v v    (60) 
where 

 21

T
s s

s

Q
Jβ

∑ =
−

v v .  (61) 

From Eqns. (60) and (61) it follows that 

 21

T
Ts s

s s
sJβ

=
−

v QvQ v v  .  (62) 

Further, Eqn. (56) along with Eqn. (55) results in 

 1
T T
m t m mt m tu + − = +a x b u ,  (63) 

where 
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u

u .....

T N
T
m T N m−
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v A B AB B
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
 (64) 

and the optimization variable mu  contains the first 1m −  elements of u . 
Using eqns. (18) and (55) for the case when k m>  yields 

 
1

1 1
1

ˆ
m k

k k k
tt k t t t t m t

m
x u u

−
− −

+ + − + −
= =

 
= + +  

 
∑ ∑x A A B A B 


 

. (65) 

Using Eqns. (63) and (65) yields 
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  =  < ≤
 < >

∑A A B
h

A B

 




 







, (67) 

 

2 ( 1)
,1 , 1

,

......

for 

for 

m
k k k m

k
k k l T

mk
k

k m

k m

× −
−

−

=

 = ∈ℜ 


+ ≥= 
 <

∑

f f f

A A Ba
f

A


,  (68) 

 ( 1) ( 1)
,1 , 1...... m m

k k k m
− × −

− = ∈ℜ h h h .  (69) 

Substituting eqns (66)-(69) into Eqn. (14) with 0S =  yields Eqn. (77). 
 The solution to Eqn. (77) is 
 1 T

m t
−= −u H F x .  (70) 

where 

 
11

2

1 1

m NN
T k T N T
k k N N R

k
R β ββ β

β

−−

=

 −
= + + + − 
∑H h Qh h Qh ββ D , (71) 

 2diag 1 . .ˆ m
R β β − =  D   (72) 

 
11

2

1 1

m NN
T k T N T
k k N N

k
R β ββ β

β

−−

=

− 
= + +  − 
∑F f Qh f Qh aβ . (73) 

 
b. MPC Optimization with ZLB 

Using the equality constraints in Appendix D, the ZLB constraint given in Eqn. 
(20) can be written as, 
 m t≤ +Gu w Ex ,  (74) 
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where ˆ T

− 
=  − 

I
G

b
; I  is the identity matrix in ( 1) ( 1)m m− × −ℜ ; 

[ ]* * ;ˆ T mi i= ∈ℜw    
T

 
=  
 

Θ
E

a
;  ( 1) 20 0

0 0

T
m− × 

= ∈ℜ 
 

Θ



.  Therefore, the 

optimization problem Eqn. (77) subject to the constraint Eqn. (74) can be 
formulated as  

 1min
2

T

z
z Hz   (75) 

 t≤ +Gz w Dx   (76) 
where 1ˆ T

m t
−= +z u H F x , 1ˆ T−= +D E GH F . 

 
Appendix C: MPC Parameters 
In this Appendix we explore choices for the parameters N , m , β  that appear in 
MPC optimization.  
 

a. Choice of Prediction Horizon Length, N  

For an unstable system such as the one described by eqns. (2) and (3), the horizon 
length, N , should be made long enough to ensure that the MPC optimization 
problem is feasible and ensure closed-loop stability.  Systematic methods can be 
used for selecting N  (Chmielewski and Manousiouthakis, 1996; Scokaert and 
Rawlings, 1998; Grieder et al., 2004). 

In all developments we consider 80N = . 
 

b. Choice of Control Horizon Length, m  

As Eqn. (55) indicates, only a small number of inputs are included as decision 
variables in the MPC optimization.  In addition to convenience (i.e. a small 
number of decision variables) there are deeper reasons for this choice.   

First, increasing the value of m  (with 1 m N≤ ≤ ) quickly reaches a point of 
diminishing returns, namely no appreciable change in the closed-loop dynamics.  
Table 14 substantiates this claim by example, showing that the closed-loop poles 
remain almost unchanged after increasing the value of m  beyond 4. 
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Table 14:  Closed-Loop Eigenvalues for Taylor-Like Rules Derived from 
Unconstrained MPC for 0.05λ =  and 0.07R =  

m  

N  
20 40 60 80 

1µ  2µ  1µ  2µ  1µ  2µ  1µ  2µ  

2 0.05 0.95 0.05 0.95 0.05 0.95 0.05 0.94 
3 0.07 0.95 0.07 0.97 0.07 0.96 0.07 0.96 
4 0.07 0.95 0.07 0.97 0.07 0.97 0.07 0.96 
8 0.07 0.95 0.07 0.97 0.07 0.97 0.07 0.97 

12 0.07 0.95 0.07 0.97 0.07 0.97 0.07 0.97 
16 0.07 0.95 0.07 0.97 0.07 0.97 0.07 0.97 

Table 15: Output Gap and Inflation Coefficients in Taylor-Like Rules (Eqn. (1)) Derived 
from Unconstrained MPC for 0.05λ =  and 0.07R =  

m  

N  
20 40 60 80 

yφ  
πφ  yφ  

πφ  yφ  
πφ  yφ  

πφ  

2 3.2 2.9 3.1 2.4 3.1 2.4 3.1 2.5 
3 3.2 2.9 3.1 2.4 3.1 2.4 3.1 2.5 
4 3.2 2.9 3.1 2.4 3.1 2.4 3.1 2.5 
8 3.2 2.9 3.1 2.3 3.1 2.3 3.1 2.3 
12 3.2 2.9 3.1 2.2 3.1 2.2 3.1 2.2 
16 3.2 2.9 3.1 2.2 3.1 2.1 3.1 2.2 

 

The associated Table 15 shows the resulting coefficient for the Taylor-like solution 
provided by MPC.   

Second, it has been rigorously shown that keeping m  small improves the 
robustness of the closed loop, namely it helps maintain closed-loop stability in the 
presence of discrepancies between the model used by MPC and the actual system 
under control (Garcia and Morari, 1982; Genceli and Nikolaou, 1993; Vuthandam 
et al., 1995).   

In all developments we consider 4m = .  
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c. Choice of Discount Factor, β  

Following the literature (Jung et al., 2005; Adam and Billi, 2007) we use a value 
of the discount factor 0.99β = , except in situations where we explicitly specify a 
different value.  We comment in the Discussion section on how different values of 
β  affect the resulting Taylor rules, particularly closed-loop stability and 
performance. 

 
Appendix D:  Multi-Parametric MPC Formulation for Taylor Rules 
In the absence of ZLB, Eqn. (20), and without penalty on the change of interest 
rate ( 0)S = , the MPC optimization with objective function in Eqn. (14) subject to 
equality constraints in eqns. (18)-(55) results in the unconstrained quadratic 
minimization  

 1 1min
2 2m

T T T
m m t m t t

 + +  u
u Hu x Fu x Yx ,  (77) 

where ( 1) ( 1)m m− × −∈ℜH , 2 ( 1)m× −∈ℜF , 2 2×∈ℜY  are function of A , B , β , N , m , 
and the weights R  andλ ;  and the decision variable is 

 
1

2

.ˆ

.

t

t t

m

t m t

i
i

i

+

+ −

∆ 
 ∆ 
 =
 
 
 ∆  

u .   (78) 

 
The minimum in Eqn. (77) is attained at opt 1 T

m t
−= −u H F x , resulting in the 

optimal interest rate 
 [ ] 1

1

1 0...0 * * ( *) ( *) * *T
t t y t

m

i r y y rππ φ φ π π π−

−

= − + + = − + − + +H F x
))(

 (79) 
at time t , which is clearly a Taylor-like rule, as in Eqn. (1).  It is also clear that 

,yφ  πφ  are functions of the economic model matrices A , B , and of the weights 
R , λ , given N , m  and β . 
 
 



 

www.economics-ejournal.org  64 

Appendix E:  Closed-Loop Stability for Taylor Rule  
The standard Taylor rule can be written as 
 T

t tu = c x ,   (80) 
where ˆT

y πφ φ =  c .  
The characteristic equation for the matrix CLA  in Eqn. (40) is given by  

 ( ) ( )2( ) 1ˆ y yf πµ µ ρ αξ ξf αξf µ ρ ξf= − + + − − + − , (81) 

where µ  is an eigenvalue of the matrix CLA .  For closed-loop stability the 
eigenvalues of the matrix CLA  should lie inside the unit disk, which is guaranteed 
(by the Jury-Routh–Hurwitz stability criterion) if and only if 

 2 2 2 ( 1) 0y πρ ξφ αξ φ+ − + − > ,  (82) 
 1 ( 1) 0y πρ ξφ αξ φ− + − − > ,  (83) 
 ( 1) 0παξ φ − > .  (84) 

Given that 0αξ > , Eqn. (84) is satisfied if and only if 1πφ > . 
 
Appendix F:  Multi-Parametric MPC Formulation for Taylor Rules 
with Inertia 
Adopting the same approach as shown in Appendix D, a similar kind of expression 
for the optimization problem set-up in Eqn. (14) can be derived when 0S >  as  

 1 1min
2 2m

T T T
m m t m t t

 + +  u
u Hu x Fu x Yx     ,  (85) 

where, 

 

1

ˆ
t

t t

t

y

u
π

−

∆ 
 = ∆ 
 ∆ 

x ,  (86) 

 
( )( )( )

1

1 1
1

2 1 1
0 0 0

N
T k T N

m m k k N N
k

Tm N TS

β β

β β

−

− × −
=

− −

= + +

− − + +

∑H h Qh h Qh

ββββββ     S



, (87) 

where [ ] 1
0 0 0 1 T m−= ∈ℜb  , ( 1) ( 1)

0
m m− × −∈ℜS  is given by,  
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( )1
,

2
,

0 ,
,

,

1 , , 1

, , 1
ˆ

, 1

0, 1

i
i j

m
i j

i j
i j

i j

s i j i m

s i j i m
s

s i j

s i j

β β

β

β

−

−

 = + = ≠ −


= = = −
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S , (88) 

and 

( )( )
1

2 1 1
0

1
3 1

2

2

,0.......0

N
TT T m N T

k k N N
k

m

m

S

S

β β
−

− −

=
× −

−

    + + − +     =  
 −
  

∑f Qh f Qh a βββ 
F

(

. (89) 

When there is no inequality constraint, the solution to Eqn. (85) is given by  

 1 T
m t

−= −u H F x   .  (90) 

ZLB constraint given by Eqn. (20) is equivalent to,  
 m t≤ +Gu w Ex  ,  (91) 

where [ ]0=E E E  and [ ]0 0 0 T m= ∈ℜE  .  Eqns. (85) and (91) can be 
formulated as, 

 1min
2

T

z
z Hz



    (92) 

 t≤ +Gz w Dx    (93) 

where 1ˆ T
m t

−= +z u H F x   , 1ˆ T−= +D E GH F    .  Eqn. (92) and inequality constraints 
Eqn. (93) are used for multi-parametric MPC formulation to derive explicit inertia-
based Taylor rules with ZLB constraints. 
 
Appendix G:  Closed-Loop Stability for Inertial Taylor-like Rule  
The interest rate rule is 
 1

T
t i t tu uφ −= + c x ,  (94) 

The characteristic equation for the matrix CLA  is given by  

 
( )

( ) ( )( ) ( )

3 2( ) 1ˆ

1 1

y i

y i i

f

π

µ µ ρ ξff  µ

ρ ξf ρ f αξ f µ ρ αξ f

= − + − +

+ − + + − − − −


 (95) 
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Closed-loop stability is guaranteed (by the Jury-Routh–Hurwitz stability criterion) 
if and only if 

 2 2 2 (1 ) 2 (1 ) 0i i y i πφ ρ φ ξφ αξ φ φ+ + + − − + − > , (96) 
 4 4 (1 3 ) 0i i πρφ αξ φ φ− + + − > ,  (97) 
 2 2 2 ( 1 ) 2 (1 3 ) 0i i y i πφ ρ φ ξφ αξ φ φ− + − + + + − − > , (98) 
 ( 1) 0iπαξ φ φ+ − > ,  (99) 

 
( ) ( )( )( )
( ) ( )( )

2

2

8 1 1

1 2 1 1 0

i i i i y

i i y π

αξφ ρφ ρ ρφ φ ξφ

αξ ρ φ φ ρ ξφ φ

− + − − + − +

+ − + + − + − >
, (100) 

 
Appendix H: Infeasibility Polytope  
The model decomposition of A  is represented by, 

 uu1
u s

ss

0
0

T

T

J
J

−
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A VJV v v

v
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 (101) 

where 
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Equation (101) implies 
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 (104) 

From Eqn. (104) stable and unstable modes can be treated separately.  In terms of 
the unstable mode 
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u u u1
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k
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If tx  lies in the polytope of attraction, then 
 u ˆlim 0T

k t k t→∞ + =v x   (106) 
and 
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since 1 *t k tu i+ − −− ≤


. 

The polytope of attraction is given by 
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T k T
t k uJ i

= −
−

→∞
=

 
≤  
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t
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i
J
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−

v Bv x


 .  (108) 

 Hence the infeasibility polytope is characterized by, 

 u
u *

1

T
T

t
u

i
J

>
−

v Bv x


 .  (109) 

Similarly, in the case of inertial policy the above exercise can be repeated and the 
counterpart of Eqn. (108) can be derived. 
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