Hussinger, Katrin; Pacher, Sebastian

Working Paper
Information ambiguity and firm value

ZEW Discussion Papers, No. 14-093

Provided in Cooperation with:
ZEW - Leibniz Centre for European Economic Research

Suggested Citation: Hussinger, Katrin; Pacher, Sebastian (2014) : Information ambiguity and firm value, ZEW Discussion Papers, No. 14-093, Zentrum für Europäische Wirtschaftsforschung (ZEW), Mannheim, http://nbn-resolving.de/urn:nbn:de:bsz:180-madoc-373800

This Version is available at:
http://hdl.handle.net/10419/103547

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Discussion Paper No. 14-093

Information Ambiguity and Firm Value

Katrin Hussinger and Sebastian Pacher
Information Ambiguity and Firm Value

Katrin Hussinger a,b,c and Sebastian Pacher d

a University of Luxembourg (Luxembourg)
b K.U. Leuven, Dept. of Managerial Economics, Strategy and Innovation (Belgium)
c Centre for European Economic Research (ZEW), Mannheim (Germany)
d Kienbaum Management Consulting (Germany)

October 2014

This paper is forthcoming in Applied Economics Letters

Abstract

A recent theoretical model by Epstein and Schneider (2008) predicts that a firm’s assets will be undervalued by the market if the information surrounding these assets is ambiguous. The model further predicts that this effect is amplified if the underlying fundamentals are volatile. This paper provides an empirical test.
1. Introduction

Recent advances in asset pricing strategy analyze financial market reactions to new information when knowledge about the quality of this information is incomplete (Epstein and Schneider, 2008; Zhang, 2006). When information quality is difficult to judge, investors treat signals as ambiguous. Ambiguous information is defined as information with uncertain implications for a firm’s value (Zhang, 2006). Investors are assumed to be ambiguity-averse so that they require compensation. The market’s discomfort with difficult-to-interpret information is expected to negatively impact firm value. Epstein and Schneider (2008) further predict that the negative impact of information ambiguity is larger when the underlying fundamentals are volatile. This paper provides empirical evidence for these theoretical predictions by Epstein and Schneider (2008).

2. Sample and variables’ definitions

We assemble a rich dataset of annual firm-level data from a variety sources. Firm-level accounting data is taken from the Compustat database. We link this information to the Institutional Brokers Estimates System (I/B/E/S) database, which covers information on analyst forecasts which we use to derive a measure for information ambiguity. We supplement the firm data by patent data in order to account for the fact that intangibles account for a large share of the companies’ market value. We use all U.S. utility patents granted between 1975 and 2006 and the citations that these patents receive (we have citation data until 2010) from the United States Patent and Trademark Office (USPTO). We further retrieve data on daily stock-price data from the Centre of Research in Security Prices (CRSP) in order to derive a measure for the idiosyncratic risk. We

2 Following prior research, we use the unadjusted summary dataset (Diether et al., 2002).
include all stocks listed on the AMEX, NYSE, and NASDAQ. Lastly, we retrieved daily Fama and French (1993) risk factors from Kenneth French’s homepage.

Our dependent variable capturing firms’ market value is Tobin’s q – the ratio of firms’ market value to the replacement costs of assets – as dependent variable. We compute the market value of assets as the sum of firm’s market capitalization (shares outstanding multiplied by share price), long-term debt, and preferred stock. The replacement costs of assets are defined as the sum of property, plant, and equipment, inventories, and net short term assets.

Our main regressors are proxies for information ambiguity and idiosyncratic risk. Information ambiguity is defined based on analyst forecast dispersion, i.e. the standard deviation of all outstanding analyst forecasts scaled by the mean consensus forecast for each calendar month, following. Forecast dispersion is a widely accepted measure of information uncertainty, parameter risk, or estimation risk (Anderson et al., 2005, 2009; Doukas et al., 2006; Dittmar and Thakor, 2007; Erickson et al., 2012; Güntay and Hackbarth, 2010; Johnson, 2004; Kumar et al., 2008). Dispersion is a measure for disagreement among analysts and among market participants in general. We aggregate forecast dispersion by computing the mean forecast dispersion over all month prior to a firm’s earnings announcement.

To ensure that the standard deviation of analysts’ earnings forecast is a meaningful proxy for information uncertainty, we require all firms to be covered by at least two analysts in each calendar month in order to be included in the sample. Following prior literature (Hall et al., 2005), we restrict our study to firms in manufacturing industries (SIC 20-39). We exclude all firms for which we have less than two consecutive observations with non-missing data. Our final sample is an unbalanced panel with 3,670 firm-year observations corresponding to 382 firms in the manufacturing sector between 1992 and 2006.

Our measure for fundamental risk is based on the idiosyncratic volatility of stock prices. We compute idiosyncratic volatility from daily stock returns and two Fama and French (1993) risk
factors. The advantage of using high-frequency stock market data for measuring risk is that stock prices, in principle, include all factors in a firm’s environment that investors perceive to be important. Similar to Ang et al. (2009) and Fu (2009), we estimate idiosyncratic volatility as the standard deviation of the residual obtained from (1).

\[
(r_{ij} - r_i^f) = \alpha_i + \beta_i^M (r_{ij}^M - r_i^f) + \beta_i^{SMB} SMB_i + \beta_i^{HML} HML_i + u_{ij},
\]

(1)

where \(i\) indexes firms, \(t\) indexes trading days in year \(t\). \(r_i\) denotes the firm’s daily stock return, \(r^f\) the one-month treasury bill rate (i.e., the risk-free rate), \(r^M\) the value-weighted return on the market as a whole, \(\Delta SMB\) the difference between the return on a portfolio of small stocks and the return on a portfolio of large stocks, and \(HML\) the difference between the return of a portfolio of high book-to-market stocks and the return on the portfolio of low book-to-market stocks. Measuring uncertainty by stock market data is widely accepted in the economics literature (e.g. Baum et al., 2007; Bloom and Van Reenen, 2002; Bloom et al., 2007). We use the logarithm of analyst dispersion and fundamental risk in order to take the skewness of the variables’ distributions into account.

We further control for knowledge assets of the company. We define R&D intensity as the ratio between a firm’s R&D stock and the book value of assets. R&D stocks are calculated as the perpetual inventory of firms’ past and contemporaneous R&D expenditures. We use a constant annual depreciation rate \((\delta)\) for R&D of 15\% and compute R&D stocks as:

\[
RD_{it}^{stock} = (1 - \delta) \times RD_{it-1}^{stock} + RD_{it}^{flow}
\]

(2)

where the flow variable is a firm’s current year R&D expenditure as reported by Compustat. We construct patent stocks based on the same formula (Hall et al., 2005). We further control for the patent citation stock that the firms’ patents receive. Descriptive statistics are presented in Table1.

See also Hall (2005) for a discussion on the appropriate depreciation rate for R&D.
It is also worth noting that the correlation between the measures for forecast dispersion and idiosyncratic risk is low with a correlation coefficient of 0.233. See Figure 1 for a graphical illustration.

Table 1: Summary statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>S.D.</th>
<th>Min.</th>
<th>Median</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiosyncratic volatility</td>
<td>2.096</td>
<td>0.928</td>
<td>0.602</td>
<td>1.866</td>
<td>6.196</td>
</tr>
<tr>
<td>Forecast dispersion</td>
<td>0.058</td>
<td>0.080</td>
<td>0.002</td>
<td>0.032</td>
<td>0.868</td>
</tr>
<tr>
<td>Tobin’s q</td>
<td>2.480</td>
<td>1.780</td>
<td>0.491</td>
<td>1.909</td>
<td>19.413</td>
</tr>
<tr>
<td>Presample mean of Tobin’s q</td>
<td>2.402</td>
<td>2.07</td>
<td>0.551</td>
<td>1.788</td>
<td>23.209</td>
</tr>
<tr>
<td>R&D stock/Assets</td>
<td>0.241</td>
<td>0.233</td>
<td>0.000</td>
<td>0.166</td>
<td>1.985</td>
</tr>
<tr>
<td>Patent stock/R&D stock</td>
<td>3.670</td>
<td>23.304</td>
<td>0.000</td>
<td>0.312</td>
<td>495.647</td>
</tr>
<tr>
<td>Citation stock/Patent stock</td>
<td>14.330</td>
<td>9.684</td>
<td>0.000</td>
<td>11.929</td>
<td>65.791</td>
</tr>
</tbody>
</table>

Notes: N = 3,670 firm-year observations. Year and industry dummies are omitted for space reasons.

Figure 1
Log (Idiosyncratic volatility) vs. Log (Forecast dispersion)
3. Empirical model and results

Our empirical analysis is based on the market value approach (e.g. Hall et al., 2005). The market value approach draws from the hedonic price model viewing firms as bundles of assets and capabilities, from plants and equipment to intangible assets such as brand names, goodwill and knowledge. We start with the standard market value equation with \(V_{it} \) denoting Tobin’s Q, \(A \) representing the physical assets and \(K \) the knowledge assets of firm \(i \) at time \(t \):

\[
V_{it}(A_{it}, K_{it}) = q(A_{it} + \gamma K_{it})
\]

(3)

We add volatility of the firms’ fundamentals \(\nu_{it} \) and information ambiguity \(\sigma_{it} \):

\[
V_{it}(A_{it}, K_{it}) = q\nu_{it}\sigma_{it}(A_{it} + \gamma K_{it})
\]

(4)

We take the logarithms of equation (4) and estimate the following model:

\[
\log q_{it} = \log g \left(\frac{V_{it}}{A_{it}} \right) = \log q + \frac{\log (1 + \gamma \frac{K_{it}}{A_{it}})}{\sigma_{it}} + \alpha \nu_{it} + \beta \sigma_{it} + \epsilon_{it}
\]

(5)

In order to test whether information ambiguity has a stronger effect if fundamentals are volatile we incorporate an interaction term of \(\nu_{it} \) and \(\sigma_{it} \) in a second specification.

The results from non-linear least squares (NLLS) regressions and OLS regressions are presented in Table 2. We control for unobserved heterogeneity across firms by including the pre-sample mean of log Tobin’s q from a five-year pre-sample period (e.g. Lach and Schankerman, 2008). The results clearly support the theoretical predictions by Epstein and Schneider (2008). First, we find that information ambiguity has a significant negative impact on the firm’s market value. Second, we confirm the theoretical prediction that information ambiguity has a stronger negative effect if the underlying fundamentals are volatile which is shown by the significant negative interaction effect of information ambiguity and idiosyncratic volatility. The estimated effects for the innovation parameters are in line with prior literature (e.g. Hall et al., 2005).
Table 2
Uncertainty and the market value of R&D

<table>
<thead>
<tr>
<th>Variable</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D stock/Assets</td>
<td>0.737***</td>
<td>0.727***</td>
<td>0.902***</td>
<td>0.896***</td>
<td>0.923***</td>
<td>0.386***</td>
<td>0.388***</td>
<td>0.479***</td>
<td>0.477***</td>
<td>0.480***</td>
</tr>
<tr>
<td></td>
<td>(0.195)</td>
<td>(0.191)</td>
<td>(0.194)</td>
<td>(0.198)</td>
<td>(0.106)</td>
<td>(0.105)</td>
<td>(0.102)</td>
<td>(0.102)</td>
<td>(0.102)</td>
<td>(0.102)</td>
</tr>
<tr>
<td>Patent stock/R&D stock</td>
<td>0.002*</td>
<td>0.002*</td>
<td>0.002**</td>
<td>0.002*</td>
<td>0.001**</td>
<td>0.001**</td>
<td>0.001**</td>
<td>0.001**</td>
<td>0.001**</td>
<td>0.001**</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
</tr>
<tr>
<td>Citation stock/Patent stock</td>
<td>0.015***</td>
<td>0.015***</td>
<td>0.014***</td>
<td>0.014***</td>
<td>0.015***</td>
<td>0.008***</td>
<td>0.009***</td>
<td>0.008***</td>
<td>0.008***</td>
<td>0.008***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Log (Idiosyncratic volatility)</td>
<td>-0.190***</td>
<td>-0.031</td>
<td>-0.229**</td>
<td>-0.195***</td>
<td>-0.037</td>
<td>-0.231**</td>
<td>-0.195***</td>
<td>-0.037</td>
<td>-0.231**</td>
<td>-0.195***</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.042)</td>
<td>(0.091)</td>
<td>(0.043)</td>
<td>(0.042)</td>
<td>(0.093)</td>
<td>(0.043)</td>
<td>(0.042)</td>
<td>(0.093)</td>
<td>(0.093)</td>
</tr>
<tr>
<td>Log (Forecast dispersion)</td>
<td>-0.152***</td>
<td>-0.148***</td>
<td>-0.104***</td>
<td>-0.152***</td>
<td>-0.148***</td>
<td>-0.104***</td>
<td>-0.152***</td>
<td>-0.148***</td>
<td>-0.104***</td>
<td>-0.105***</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.019)</td>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.019)</td>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.019)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Log (Idiosyncratic volatility) × Log (Forecast dispersion)</td>
<td>-0.058**</td>
<td>-0.058**</td>
<td>-0.058**</td>
<td>-0.057**</td>
<td>-0.058**</td>
<td>-0.058**</td>
<td>-0.058**</td>
<td>-0.058**</td>
<td>-0.058**</td>
<td>-0.058**</td>
</tr>
<tr>
<td>Presample-mean of Tobin's q</td>
<td>0.219***</td>
<td>0.236***</td>
<td>0.230***</td>
<td>0.223***</td>
<td>0.237***</td>
<td>0.228***</td>
<td>0.245***</td>
<td>0.237***</td>
<td>0.240***</td>
<td>0.244***</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.037)</td>
<td>(0.035)</td>
<td>(0.034)</td>
<td>(0.034)</td>
<td>(0.041)</td>
<td>(0.038)</td>
<td>(0.035)</td>
<td>(0.035)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.368**</td>
<td>0.464***</td>
<td>-0.072</td>
<td>-0.045</td>
<td>0.103</td>
<td>0.417**</td>
<td>0.513***</td>
<td>-0.028</td>
<td>0.005</td>
<td>0.150</td>
</tr>
<tr>
<td></td>
<td>(0.182)</td>
<td>(0.166)</td>
<td>(0.141)</td>
<td>(0.143)</td>
<td>(0.151)</td>
<td>(0.188)</td>
<td>(0.171)</td>
<td>(0.146)</td>
<td>(0.148)</td>
<td>(0.157)</td>
</tr>
<tr>
<td>Year fixed-effects</td>
<td>Yes</td>
</tr>
<tr>
<td>Industry fixed-effects</td>
<td>Yes</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.434</td>
<td>0.445</td>
<td>0.492</td>
<td>0.493</td>
<td>0.495</td>
<td>0.413</td>
<td>0.425</td>
<td>0.473</td>
<td>0.474</td>
<td>0.475</td>
</tr>
</tbody>
</table>

Notes: ***, **, * indicate statistical significance at the 1%, 5% and 10% level.
7. Conclusions

We provide an empirical test for the predictions made by Epstein and Schneider (2008). Our results confirm that 1. information ambiguity has a negative impact on the firm’s market value, 2. that the effect of information ambiguity is stronger if the underlying fundamentals are volatile.

References

