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Abstract

The literature on treatment effects focuses on gross benefits from program participation.

We extend this literature by developing conditions under which it is possible to identify

parameters measuring the cost and net surplus from program participation. Using the

generalized Roy model, we nonparametrically identify the cost, benefit, and net surplus

of selection into treatment without requiring the analyst to have direct information on

the cost. We apply our methodology to estimate the gross benefit and net surplus of

attending college.

JEL Codes: I21, C31, C32
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1 Introduction

The traditional approach to the evaluation of public policy compares the benefits and

costs of policies. Measures of net surplus are used to determine whether policies should

be undertaken (see Hotelling, 1938; Tinbergen, 1956; Harberger and Jenkins, 2002; and

Chetty, 2009). The recent literature on program evaluation, or “treatment effects”, fo-

cuses on gross benefits of policies and considers neither the marginal costs nor the per-

ceived surplus associated with the programs being evaluated.1

We extend this literature using the generalized Roy model. In it, agents choose treat-

ment if their expected surplus from doing so is positive, so the benefit outweighs the

subjective cost. We present conditions under which we can use the economics of the

model to identify cost and surplus parameters even without direct information on the

cost of treatment. Information on revealed choices creates a simple relationship between

the cost and benefit parameters: for individuals who are indifferent towards treatment

participation, the benefit equals the cost and the surplus is zero. Building on existing

identification results for benefit parameters, we show how to identify surplus and cost

parameters by varying the margin of indifference. Our identification analysis applies

traditional exclusion restrictions that separately shift costs and benefits from treatment.

We use cost shifters to identify the benefit of treatment and benefit shifters to vary the

margin of indifference and thus to identify the cost of the treatment.

Our analysis complements and extends the work by Björklund and Moffitt (1987)

who first noted the duality between cost and benefit parameters in the generalized Roy

model. They estimate marginal gains and surpluses for policies within a parametric

normal generalized Roy model. They use structural econometric methods to identify the

components of the cost and benefit functions. This paper extends their analysis to a more

general setting. It develops and applies a nonparametric identification analysis of benefits,

costs, and surpluses without the need to identify all of the ingredients of a fully specified

structural model. This approach implements Marschak’s Maxim (Heckman, 2010) by

directly estimating the cost, benefit, and surplus parameters rather then constructing

1See the discussion in Heckman and Vytlacil (2007) and Heckman (2010).
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them from the estimates of a full structural model.

We present ex ante and ex post analyses of costs and benefits. Applying our methods

to the data on ex post gross benefits analyzed by Carneiro et al. (2011), we find that

heterogeneity in benefits, and not costs, is the main driver of the variability in the decision

to attend college.

Our analysis is reminiscent of the Heckman (1974) model of female labor supply. In

that analysis, the econometrician observes the offered wage only for the agents who choose

to work. The economist does not observe the reservation wage of any agent. Yet, his

analysis identifies the parameters of the offered wage equation and the reservation wage

equation by using the implication of the underlying economic model that agents decide

to work if the offered wage exceeds the reservation wage.2 In our analysis, we observe

program outcomes for agents who select into treatment, and we observe the no treatment

outcome for the agents who do not select into treatment. We do not observe the cost of

treatment for any agent. Yet, using the economics of the model, we are able to identify

the average benefit and average cost of treatment parameters by exploiting the agent’s

decision rule of selecting into treatment if the benefit exceeds the cost.

Our analysis is very different from analyses using randomized experiments to infer

treatment effects. In commonly implemented randomizations, it is not possible to identify

the choice probability (Heckman, 1992; Heckman and Smith, 1995). Instead of using

randomization to bypass problems of self-selection, we exploit the information that agents

self-select into treatment and infer information on the cost of the treatment that cannot

be recovered by standard randomized experiments.

The paper unfolds in the following way. Section 2 introduces the generalized Roy

model. Section 3 reviews the average benefit of treatment parameters from Heckman and

Vytlacil (1999, 2005, 2007), and develops and analyzes the dual cost parameters that

match the benefit parameters. Section 4 presents our identification analysis of the cost

and surplus parameters. Section 5 extends our analysis to allow agents to have imperfect

foresight about future outcomes. We apply our analysis to study the decision to attend

2The same methodology applies to search theory, see Flinn and Heckman (1982).
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college in Section 6. Section 7 concludes.
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2 The Generalized Roy Model

Suppose there are two potential outcomes (Y0, Y1), and a choice indicator D with D = 1

if the agent selects into treatment so that Y1 is observed and D = 0 if the agent does not

select into treatment so that Y0 is observed. Anticipating our empirical analysis, Y1 is the

annualized flow of income from college and Y0 is the annualized flow of income from high

school. The observed outcome Y can be written in switching regression form (Quandt,

1958, 1972):

Y = DY1 + (1−D)Y0, (2.1)

where E(Yj | X) = µj and

Yj = µj(X) + Uj (2.2)

for j = 0, 1. X is a vector of regressors observed by the economist while (U0, U1) are not.

Combining Equations (2.1) and (2.2),

Y = µ0(X) + {[µ1(X)− µ0(X)] + U1 − U0}D + U0.

The individual gross benefit of treatment associated with moving an otherwise identical

person from state “0” to “1” is B = Y1 − Y0 and is defined as the causal effect on Y of

a ceteris paribus move from “0” to “1”. Defining E(C | Z) = µC(Z), the subjective cost

of choosing treatment as perceived by the agent is

C = µC(Z) + UC , (2.3)

where Z is an observed random vector of cost shifters and UC is a random variable

unobserved by the econometrician. Individuals choose treatment if the perceived benefit

from treatment is greater than the subjective cost:

D = 1 if S ≥ 0 ; D = 0 otherwise, (2.4)
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where S is the surplus, i.e. the net benefit, from treatment:

S = (Y1 − Y0)− C

= {[µ1(X)− µ0(X)]− µC(Z)} − [UC − (U1 − U0)]

= µS(X,Z)− V,

with µS(X,Z) = [µ1(X)− µ0(X)]− µC(Z) and V = UC − (U1 − U0). Our identification

analysis of cost and surplus parameters does not assume particular functional forms for

µ0, µ1, and µC , nor does it assume that the distributions of U0, U1, and UC are of a

known parametric form.

The original Roy (1951) model assumes that there are no observed regressors, X, that

the cost of treatment is identically zero (i.e. µC = 0, UC = 0) and that (U0, U1) ∼ N(0,Σ).

Heckman and Honoré (1990) present an identification analysis for a nonparametric version

of the Roy model using variation in regressors and making no parametric assumption on

the distribution of (U0, U1). Their version of the Roy model also imposes the condition

that the cost of treatment is identically zero. In contrast, we allow for non-zero cost

of treatment. In fact, for our identification analysis we require nondegenerate cost of

treatment and observed cost shifters.3 From the point of view of the observing economist,

(X,Z) is observed and (U1, U0, UC) is unobserved. This model assumes that agents know

the gross benefit, B = Y1 − Y0, of treatment. We show in Section 5 that our results

extend to a broader class of models, where agents only have imperfect foresight about

the benefits of treatment. This model also supposes that there is no other aspect of the

benefit of treatment than Y1 − Y0. Implicitly, any subjective benefits of the program are

3Because Heckman and Honoré (1990) impose a Roy model with zero cost of treatment, they are
able to identify the joint distribution of (U0, U1). In contrast, because we allow for nonzero cost
of treatment (and, in particular, for unobserved costs of treatment), we are unable to identify the
dependence between U0 and U1 which precludes the identification of some potentially interesting
economic parameters. See Heckman (1990), Heckman and Smith (1998) and Heckman et al. (1997b)
for related analysis. With additional information, the joint distribution of (U1, U0, UC) can be iden-
tified. See, e.g., Carneiro et al. (2003), Aakvik et al. (2005), and Abbring and Heckman (2007).
D’Haultfoeuille and Maurel (2013) identify the cost of treatment in a related Roy model in which the
cost of treatment is a deterministic function of observed covariates. Their identification strategy is
fundamentally different from ours and critically relies on the restriction that the cost of treatment is
constant conditional on covariates.
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incorporated into the costs of treatment, i.e., the cost function includes the subjective

benefits of the treatment. For example, if job training allows the individual to work

in a job with preferred amenities, this is modeled as a (negative) contribution to the

subjective cost of treatment. The classification of effects in either positive benefits or

negative subjective cost (or vice versa) does not affect the definition of the surplus. To

simplify the exposition, we suppose that Z and X do not contain any common elements.

Thus, all of our analysis can be seen as implicitly conditioning on all common elements

of X and Z.

We make the following technical assumptions:

(A-1) (U0, U1, UC) is independent of (X,Z).

(A-2) The distribution of µC(Z) conditional on X is absolutely continuous with respect

to Lebesgue measure.

(A-3) The distribution of V = UC − (U1 − U0) is absolutely continuous with respect to

Lebesgue measure and has a cumulative distribution function that is strictly increasing.

(A-4) The population means E|Y1|, E|Y0| and E|C| are finite.

Assumption (A-1) assumes that (U0, U1, UC) is independent of (X,Z). Thus, D is

endogenous, but all other regressors in both the treatment equation and the outcome

equation are exogenous. We implicitly condition on any regressors that enter both the

outcome equations and the cost equation. Thus, this condition should be interpreted

as an independence assumption for the error terms with regard to the unique elements

of X and Z conditional on the regressors that enter both equations. No independence

condition is required for the common elements. We also do not impose any restrictions

on the dependence among the unobservables. (A-2) requires that there exists at least one

continuous component of Z conditional on X. This assumption will only be required for

our identification analysis, and is not needed for our definition or analysis of the cost and

surplus parameters. (A-3) is a regularity condition. It allows for the possibility that UC

is degenerate (costs do not vary conditional on Z) or that U1−U0 is degenerate (benefits

do not vary conditional on X), though not both. Assumption (A-4) is required for the
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mean benefit and cost parameters to be well defined. An implication of our model with

Assumptions (A-1) and (A-3) is that 0 < Pr(D = 1 | X,Z) < 1 w.p.1, so that there is a

treated group and a control group for almost all (X,Z). Note that this restriction still

allows the support of the distribution of Pr(D = 1|X,Z) to be the full unit interval.

Let P (X,Z) denote the probability of selecting into treatment given (X,Z). Statisti-

cians call this the “propensity score” P (X,Z) ≡ Pr(D = 1 | X,Z) = FV (µS(X,Z)),

where FV (·) denotes the distribution of V .4 We sometimes denote P (X,Z) by P ,

suppressing the (X,Z) argument. We also work with US, a uniform random variable

(US ∼ Unif[0, 1]) defined by US = FV (V ). Different values of US denote different quan-

tiles of V . Given our previous assumptions, FV is strictly increasing, and P (X,Z) is a

continuous random variable conditional on X.

The generalized Roy model presented in this paper is a special case of the model

of Heckman and Vytlacil (1999, 2005). Under Assumptions (A-1)–(A-4), the model of

Equations (2.1)–(2.4) implies the model and assumptions of Heckman and Vytlacil (1999,

2005). From the analysis of Vytlacil (2002), the more general model is equivalent to the

conditions that justify the Local Average Treatment Effect (LATE) model of Imbens

and Angrist (1994). We impose more restrictions here. In particular, we impose the

generalized Roy model and the corresponding assumptions that will allow us to exploit

its structure for identification of subjective cost parameters. As in the conventional Roy

model (Heckman and Sedlacek, 1985), we assume additive separability in the outcome

equations. Additive separability is not required in Heckman and Vytlacil (1999, 2005)

but is required by our analysis in order to obtain additive separability in the latent index

equation consistent with the generalized Roy model.5 Thus our assumptions are most

appropriate for continuous outcome variables, and we exclude discrete outcomes from our

analysis. We also assume conditions on X that are not required in Heckman and Vytlacil

(1999, 2005) to identify the gross benefit parameters. Their analysis conditions on X and

4We will refer to the cumulative distribution function of a random vector A by FA(·) and to the
cumulative distribution function of a random vector A conditional on random vector B by FA|B(·).
We write the cumulative distribution function of A conditional on B = b by FA|B(· | b).

5Recall again that we are implicitly conditioning on all common elements of (X,Z), so that these need
not be additively separable from the error term.
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thus does not need to assume that X is independent of the error vector. In contrast, in

order to use the generalized Roy model to recover subjective cost parameters, we require

that the unique elements X are independent of the error vector.6

6In this respect, our analysis is broadly analogous to the identification strategies and conditions of
Vytlacil and Yildiz (2007) and Shaikh and Vytlacil (2011), who also require that there be exogenous
regressors in the outcome equation that is excluded from the treatment choice equation, and they
exploit variation in such regressors for identification.
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3 Benefit, Cost, and Surplus Parameters

This section defines and analyzes the benefit, cost, and surplus parameters. We maintain

the model of Equations (2.1)–(2.4), and invoke Assumptions (A-1) and (A-3)–(A-4). We

do not require Assumption (A-2) for the definition of the parameters but do require it

for our identification analysis.

Standard treatment effect analyses identify averaged parameters of the gross benefit

of treatment, B = Y1 − Y0. The most commonly studied treatment effect parameter

is the average benefit of treatment BATE(x) ≡ E(Y1 − Y0 | X = x) = µ1(x) − µ0(x).

This is the effect of assigning treatment randomly to everyone of type X = x, assuming

full compliance and ignoring any general equilibrium effects. Another commonly used

parameter is the average benefit of treatment on persons who actually take the treatment,

referred to as the benefit of treatment on the treated: BTT (x) ≡ E(Y1−Y0 | X = x,D =

1) = µ1(x) − µ0(x) + E(U1 − U0|X = x,D = 1). Heckman and Vytlacil (1999, 2005)

unify a broad class of treatment effect parameters including the BATE(x) and BTT (x)

through the marginal benefit of treatment, defined as BMTE(x, uS) ≡ E(Y1 − Y0|X =

x, US = uS) = µ1(x)− µ0(x) +E(U1 −U0|US = uS). BMTE(x, uS) is the treatment effect

parameter that conditions on the unobserved desire to select into treatment.

The conventional analysis of treatment effects does not define, identify, or estimate any

aspect of the cost of the treatment. We define a set of cost parameters parallel to the

benefit parameters, where cost is the subjective cost as perceived by the agent. Thus, we

define the average cost of treatment, the average cost of treatment on the treated, and

the marginal cost of treatment as follows:

CATE(z) = E(C|Z = z) = µC(z)

CTT (z) = E(C|Z = z,D = 1) = µC(z) + E(UC |Z = z,D = 1)

CMTE(z, uS) = E(C|Z = z, US = uS) = µC(z) + E(UC |US = uS).

Recalling that S = B −C = µS(X,Z)− V , where µS(X,Z) = [µ1(X)− µ0(X)]− µC(Z)

11



and V = UC − (U1 − U0), we can define the corresponding surplus parameters:

SATE(x, z) = E(S|X = x, Z = z) = µS(x, z)

SMTE(x, z, uS) = E(S|X = x, Z = z, US = uS) = µS(x, z)− E(V |US = uS)

and

STT (x, z) = E(S|X = x, Z = z,D = 1) = µS(x, z)− E(V |X = x, Z = z,D = 1).

With these parameters, we can answer questions not only about the outcome change

from treatment but also about the subjective cost of treatment as well as the net sur-

plus. As the surplus from treatment participation STT (x, z) is always positive among the

treated, it follows immediately that BTT (x) > CTT (z) holds as well. Following Heckman

and Vytlacil (1999, 2005), we can represent the average treatment effects and treatment

on the treated as averaged versions of the marginal effects of treatment:

BATE(x) =
∫ 1

0
BMTE(x, uS)duS

BTT (x) =
∫ 1

0
BMTE(x, uS)

1−FP |X(uS |x)∫ 1
0 (1−FP |X(t|x))dt

duS.
(3.1)

Following the same line of argument as used by Heckman and Vytlacil (1999, 2005),

CATE(z) =
∫ 1

0
CMTE(z, uS)duS

CTT (z) =
∫ 1

0
CMTE(z, uS)

1−FP |Z(uS |z)∫ 1
0 (1−FP |Z(t|z))dt

duS,
(3.2)

and

SATE(x, z) =
∫ 1

0
SMTE(x, z, uS)duS

STT (x, z) = 1
P (x,z)

∫ P (x,z)

0
SMTE(x, z, uS)duS.

(3.3)

We now establish relationships among these parameters. First, consider the marginal

surplus parameter. Recall that US = FV (V ) with FV strictly increasing. Thus US = uS

12



is equivalent to V = F−1V (uS), and

SMTE(x, z, uS) = µS(x, z)− E
(
V |V = F−1V (uS)

)
= µS(x, z)− F−1V (uS).

F−1V is strictly increasing, and thus SMTE(x, z, uS) is strictly decreasing in uS. Individuals

with low uS want to enter the program the most and are those with the highest surplus

from the program, while individuals with high uS want to enter the program the least

and have the smallest surplus from the program. Using the fact that FV is strictly

increasing and that P (X,Z) = FV (µS(X,Z)), conditioning on us = P (x, z) is equivalent

to conditioning on V = µS(x, z). Thus

SMTE(x, z, P (x, z)) = µS(x, z)− E (V |V = µS(x, z)) = 0.

An individual with uS = P (x, z) is an individual who is indifferent between being

treated and untreated if assigned X = x and Z = z. Since SMTE(x, z, uS) is strictly

decreasing in uS, SMTE(x, z, uS) is positive for uS < P (x, z), is equal to zero at uS =

P (x, z), and is negative if uS > P (x, z). If we instead fix evaluation point uS and consider

how SMTE(x, z, uS) varies with (x, z), SMTE(x, z, uS) will be positive for all (x, z) such

that P (x, z) > uS and will be negative for all (x, z) such that P (x, z) < uS.

We have thus far discussed only the marginal surplus function. Using the relationship

SMTE(x, z, uS) = BMTE(x, uS)−CMTE(z, uS), we can translate statements about SMTE(x, z, uS)

into inequalities about the marginal benefit and marginal cost functions:

BMTE(x, uS) > CMTE(z, uS) ∀ (x, z, uS) s.t. P (x, z) > uS

BMTE(x, uS) = CMTE(z, uS) ∀ (x, z, uS) s.t. P (x, z) = uS

BMTE(x, uS) < CMTE(z, uS) ∀ (x, z, uS) s.t. P (x, z) < uS.

The benefit and cost parameters coincide when evaluated at uS = P (x, z) because at

this point the marginal cost equals the marginal benefit. We exploit this equality at the

margin of indifference in the next section to achieve identification of the cost parameters.

To fix ideas, in Figure 1 we display the full set of marginal effects for a numerical ex-
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ample. We plot the marginal effect functions for fixed values of (x, z), where it happens

that P (x, z) = 0.50. Individuals at that margin, uS = 0.50, have their benefit of treat-

ment just offset by their subjective cost and are thus indifferent between participation in

treatment and nonparticipation. The benefits are positive but so are the costs. Overall,

the surplus is zero. For uS < 0.50, the marginal benefit function lies above the marginal

cost function and thus the marginal surplus is strictly positive. The reverse is true for

uS > 0.50.

Figure 1: Marginal Effects of Treatment
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This example is constructed to have intuitive properties, with the marginal benefit of

treatment BMTE(x, uS) decreasing in uS and the marginal cost of treatment CMTE(z, uS)

increasing in uS. Agents with the greatest unobserved desire to select into treatment not

only have higher benefits but also have lower costs. These properties, while intuitive, need

not hold in general—individuals with lower values of uS (and thus a greater unobserved

desire to take treatment) must necessarily have higher net surplus than those with higher

values of uS, but they need not have higher benefits and lower costs. It is possible, for

example, that benefits and costs are so strongly positively correlated that those with the

greatest unobserved desire to participate have either the smallest benefits and the lowest

14



costs or the largest benefits and the highest costs. In Appendix A, we establish sufficient

conditions for intuitive properties on BMTE(x, uS) and CMTE(z, uS) to hold, as well as

testable implications of those conditions.
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4 Identifying the Surplus and Benefit Functions

Nonparametrically

Heckman and Vytlacil (1999, 2005) show that local instrumental variables (LIV) identify

the marginal benefit of treatment:

∂E( Y | X = x, P = p )

∂p
= BMTE(x, p). (4.1)

We can identify E(Y |X = x, P = p) and its derivative for all (x, p) ∈ Supp(X,P ),

where Supp(X,P ) denotes the support of (X,P (X,Z)).7 We can thus identifyBMTE(x, uS)

for all values of (x, uS) ∈ Supp(X,P ). For a fixed x, we can identify BMTE(x, uS) for

uS ∈ Supp(P |X = x). The more variation in propensity scores P conditional on X = x,

the larger the set of evaluation points uS for which we identify BMTE(x, uS). Variation

in propensity scores conditional on X is driven by variation in Z, the cost shifters. Thus,

if we observe regressors that produce large variations in costs, we will be able to identify

BMTE(x, uS) on a larger set.

We can identify BATE(x) and BTT (x) by identifying BMTE(x, uS) over the appropriate

support and then integrating the latter with the appropriate weights, which are known

given data on X and Z. By Equation (3.1), we identify BATE(x) if Supp(P |X = x) =

[0, 1]. For fixedX = x, this requires that there be enough variation in the cost shifters Z to

drive the probabilities P (x, Z) all the way to zero and to one. In other words, holding fixed

the regressors that enter the outcome equation, we must observe cost shifters such that

conditional on some values of those cost shifters, the cost to the agent is so low that the

agent will select into treatment with probability arbitrarily close to one, and, conditional

on other values of the cost shifters, the cost to the agent is so high that the agent will select

into treatment with probability arbitrarily close to zero. Likewise, we identify BTT (x)

if Supp(P |X = x) = [0, pmaxx ], where pmaxx is the supremum of Supp(P |X = x). This

support requirement in turn requires that, for fixed X = x, there be enough variation in

7For any random vectors A and B, we will write the support of the distribution of A as Supp(A) and
the support of distribution of A conditional on B = b as Supp(A|B = b).
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the cost shifters Z to drive the selection probability arbitrarily close to zero.8

Using Equation (4.1) and the relationship for people on the margin of choice that

BMTE(x, P (x, z)) = CMTE(z, P (x, z)), we have

∂E( Y | X = x, P = p )

∂p

∣∣∣∣
p=P (x,z)

= CMTE(z, P (x, z)). (4.2)

Using this relationship, we identify CMTE(z, uS) for all values of (z, uS) ∈ Supp(Z, P ).

We thus identify the marginal cost parameter without direct information on the cost

of treatment by using the structure of the Roy model and by identifying the marginal

benefit of treatment for individuals at the margin of participation. For a fixed z, we

identify CMTE(z, uS) for uS ∈ Supp(P |Z = z). The greater the variation in propensity

scores conditional on Z = z, the larger the set of evaluation points for which we identify

CMTE(z, uS). Variation in propensity scores conditional on Z = z is driven by variation

in X, the regressors that affect the potential outcomes and thus that drive the benefit of

treatment. If we observe X regressors that cause large variations in benefits, we will be

able to identify CMTE(z, uS) at a larger set of uS evaluation points. In contrast, if there

are no X regressors, then P only depends on Z and we can only identify CMTE(z, uS)

for uS = P (z).

From Equation (3.2), we can identify CATE(z) if Supp(P |Z = z) = [0, 1]. This re-

quires, for fixed Z = z, for there to be enough variation in the outcome shifters X to

drive the probabilities P (X,Z) all the way to zero and to one. In other words, holding

fixed the regressors that enter the cost equation, we must observe outcome shifters such

that conditional on some values of those outcome shifters, the benefit to the agent is so

high that the agent will select into treatment with probability arbitrarily close to one;

conditional on other values of the outcome shifters, the benefit to the agent is so low

that the agent will select into treatment with probability arbitrarily close zero. Like-

wise, we identify CTT (x) if Supp(P |Z = z) = [0, pmaxz ] where pmaxz is the supremum of

8Heckman and Vytlacil (2001a) show that one can identify BATE(x) and BTT (x) under slightly weaker
conditions than those required to follow this strategy of first identifying BMTE(x, u) over the appro-
priate support. In particular, they show that the necessary and sufficient condition for identification
of BATE(x) is that {0, 1} ∈Supp(P |X = x) and for BTT (x) that {0} ∈Supp(P |X = x).
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Supp(P |Z = z). This support requirement in turn requires that, for fixed Z = z, there is

sufficient variation in the outcome shifters X to drive the probabilities arbitrarily close

to zero.

Finally, consider identification of the surplus parameters. Using the fact that

SMTE(x, z, uS) = BMTE(x, uS)− CMTE(z, uS),

we can identify the marginal surplus parameter at (x, z, uS) such that (x, uS) ∈ Supp(X,P )

and (z, uS) ∈ Supp(Z, P ). By Equation (3.3), we can integrate SMTE(x, z, uS) using

the appropriate weights (which are identified from the data on X and Z) to identify

SATE(x, z) and STT (x, z) under the appropriate support conditions. For example, we

identify SATE(x, z) if Supp(P |X = x) = [0, 1] and Supp(P |Z = z) = [0, 1].

Thus, for identification of the treatment parameters we need sufficient variation in cost

shifters conditional on the outcome shifters. For identification of the cost parameters,

we need sufficient variation in the outcome shifters conditional on the cost shifters. For

identification of the surplus parameters we need sufficient variation in both sets of regres-

sors. We can thus identify the marginal cost, the average cost, and the cost of treatment

without direct information on the cost. Consequently, we can also identify the corre-

sponding surplus parameters as well. Our ability to do so is directly related to the extent

of variation in observed regressors that shift the benefit of the treatment.

We summarize our discussion in the form of a theorem:

Theorem 1. Assume that Equations (2.1)–(2.4) and our Assumptions (A-1)–(A-4) hold.

1. BMTE(x, uS) is identified for (x, uS) ∈ Supp(X,P ); CMTE(z, uS) is identified for

(z, uS) ∈ Supp(Z, P ); and SMTE(x, z, uS) is identified for (x, z, uS) such that

(x, uS) ∈ Supp(X,P ) and (z, uS) ∈ Supp(Z, P ).

2. BATE(x) is identified if Supp(P |X = x) = [0, 1]; CATE(z) is identified if

Supp(P |Z = z) = [0, 1]; SATE(x, z) is identified if Supp(P |X = x) = [0, 1] and

Supp(P |Z = z) = [0, 1].
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3. BTT (x) is identified if Supp(P |X = x) = [0, pmaxx ]; CTT (z) is identified if

Supp(P |Z = z) = [0, pmaxz ]; STT(x, z) is identified if Supp(P |X = x) = [0, pmaxx ]

and Supp(P |Z = z) = [0, pmaxz ].

Our results allow for unobserved heterogeneity in costs and benefits conditional on

the observed regressors. If there is no unobserved (by the economist) heterogeneity in

the costs of treatment, UC = 0, then CMTE(z, uS) = CTT (z) = CATE(z) and thus we

can identify the cost of treatment on the treated and average cost parameters without

the additional support conditions. Likewise, if we impose that there is no unobserved

heterogeneity in the benefits of treatment, U1−U0 = 0, we have BMTE(z, uS) = BTT (z) =

BATE(z) and can thus identify all of the benefit parameters without additional support

conditions.

We establish identification of the marginal effect parameters within the conditional

support of P . However, exploiting additive separability, we are able to extend the margin

of identification to the unconditional support of P by a chaining argument. We illustrate

the reasoning behind this for the BMTE(x, uS), but the analogous result applies to the

marginal cost and surplus functions as well.

Recall that BMTE(x, uS) = µ1(x) − µ0(x) + E(U1 − U0|US = uS) is identified for all

(x, uS) ∈ Supp(X,P ). How BMTE(x, uS) varies with x does not depend on the point of

evaluation of uS, and how BMTE(x, uS) varies with uS does not depend on the point of

evaluation of x. This insight is helpful in securing identification of BMTE(x, uS) for other

(x, uS) pairs.

For example, consider two potential values of X, x0 and x1, and suppose that there

exists some p∗ such that p∗ ∈ Supp(P |X = x0) ∩ Supp(P |X = x1) so that BMTE(x0, p
∗)

and BMTE(x1, p
∗) are both identified by Theorem 1. BMTE(x, uS) is additively separable

in x and uS. As a consequence of additive separability, it follows directly that

BMTE(x0, uS)−BMTE(x0, p
∗) = BMTE(x1, uS)−BMTE(x1, p

∗). (4.3)

If uS ∈ Supp(P |X = x1), we identify BMTE(x1, uS) by Theorem 1. We can solve Equation
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(4.3) to identify BMTE(x0, uS) even if uS 6∈ Supp(P |X = x0). Alternatively, if uS ∈

Supp(P |X = x0), we identify BMTE(x0, uS) by Theorem 1 and can now solve Equation

(4.3) to identify BMTE(x1, uS) even if uS 6∈ Supp(P |X = x1). Thus, if there exists some p∗

such that p∗ ∈ Supp(P |X = x0) ∩ Supp(P |X = x1), we can chain together identification

of BMTE(x0, uS) for uS ∈ Supp(P |X = x0) and identification of BMTE(x1, uS) for uS ∈

Supp(P |X = x1) to obtain identification of BMTE(x0, uS) and BMTE(x1, uS) for all uS ∈

Supp(P |X = x0) ∪ Supp(P |X = x1). One can iterate to further increase the range

of values for which BMTE(x, uS) is identified. Under an additional rank condition, we

can use this strategy to identify BMTE(x, uS) for all (x, uS) ∈ Supp(X) × Supp(P ). In

particular, we consider the following assumption:

(A-5) X and P (X,Z) are measurably separated; i.e., any function of X that almost

surely equals a function of P (X,Z) must be almost surely equal to a constant.

Measurable separability between X and P is a rank condition. A necessary condition

for measurable separability between X and P (X,Z) is for P (X,Z) to be nondegenerate

conditional on X, as implied by P (X,Z) = FV (µS(X,Z)) along with Assumptions (A-2)

and (A-3). In Theorem 5 in Appendix A, we build on Theorem 2 of Florens et al. (2008)

to provide sufficient conditions on our model for measurable separability between X and

P (X,Z). As shown by that theorem, strengthened versions of Assumptions (A-2) and (A-

3), along with an additional support condition, are sufficient for measurable separability

between X and P (X,Z).

Using Assumption (A-5), we obtain the following identification result:

Theorem 2. Assume that Equations (2.1)–(2.4) and our Assumptions (A-1)–(A-5) hold.

Then, for x ∈ Supp(X) and z ∈ Supp(Z),

1. BMTE(x, uS), CMTE(z, uS), and SMTE(x, z, uS) are identified for uS ∈ Supp(P ).

2. BATE(x), CATE(z), and SATE(x, z) are identified if Supp(P ) = [0, 1],

and

3. BTT (x), CTT (z), and STT(x, z) are identified if Supp(P ) = [0, pmax].
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The proof of Theorem 2 is in Appendix B. The theorem shows that, under our main-

tained assumptions and condition (A-5), identification of the treatment parameters de-

pends on the marginal support of P , not on the support of P conditional on X or Z.

21



5 Extension to the Case of Limited Information by the

Agent

Thus far, our analysis has assumed choice Equation (2.4), i.e., that D = 1[S ≥ 0]

where S = (Y1 − Y0) − C. This implicitly assumes that agents have perfect foresight

about their net benefit. In this section, we extend the choice model of Equation (2.4)

to allow for limited information on the part of the agents, while maintaining the model

for latent outcomes (Y0, Y1) and cost C of Equations (2.2) and (2.3). We assume that

agents form valid expectations about their outcomes and costs given the information that

they have at the time of their treatment choice and that they select into treatment if the

expected surplus is positive. We allow agents to know only some elements of (X,Z), and

possibly to have incomplete knowledge of (U0, U1, UC) and hence their own idiosyncratic

benefit and cost of treatment. We now show that the preceding analysis goes through

with minor modifications, though it is now important to distinguish conditioning sets:

what is known to the agent at the time of treatment choice (which might include some

information not known to the econometrician), what is known to the econometrician

(which might include some information not known to the agent at the time of treatment

choice), and what is realized ex post. The essential change in our procedure in the case

of incomplete information is that the marginal benefit of treatment identified by LIV

must be projected onto the agent’s information set when selecting treatment to form the

expected marginal benefit of treatment conditional on the information available to the

agent. This coarsened version of BMTE is used to identify the marginal cost parameter.

In addition, only components of X that are known to the agent at the time of treatment

choice can aid in identification of the cost parameters. The exclusion restrictions for

identification of the cost parameter are variables in X that are not in Z and that are

known to the agent at the time of choosing treatment.

Let (XI , Z) denote components of (X,Z) that are observed by the agent when choos-

ing whether to select into treatment.9 Suppose that the agent’s information set is

9We assume that agents know all components of Z, while we allow agents to be ignorant of some
components of X. This assumption simplifies our notation and conforms to our empirical analysis
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(XI , Z, UI).
10 UI is the private information of the agent relevant to his or her own

benefits and cost of treatment, and is not observed by the econometrician.

We revise assumption (A-1) in the following way:

(A-1′) (U0, U1, UC , UI) is independent of (X,Z), and X is independent of Z conditional

on XI .

Assumption (A-1′) imposes the requirement that the private information of the agent is

independent of the observed regressors. Note that, under this independence assumption,

(U0, U1, UC , UI) ⊥⊥ (XI , Z), and

E(V |X,Z, UI) = E(V |XI , Z, UI) = E(V |UI),

using the definition V = UC − (U1 − U0).

Assumption (A-1′) implies that (X,Z) ⊥⊥ UI | (XI , Z), so that UI does not help the

agent predict elements of (X,Z) that are not contained in (XI , Z). Thus, we allow the

agents to have private information about their own idiosyncratic benefits (U1 − U0) and

costs UC , though we impose the restriction that the only information known by the agent

that is useful for predicting X is (XI , Z). Furthermore, Assumption (A-1′) requires that,

conditional on the components of X known to the agent at the time of selecting into

treatment, Z does not help to predict those elements of X not known at the time of

treatment selection. This restriction is only imposed for notational convenience and can

be easily relaxed.

We restate Assumption (A-3) as:

(A-3′) The distribution of Ṽ = E(V |UI) is absolutely continuous with respect to Lebesgue

measure, and the cumulative distribution function of Ṽ is strictly increasing.

An implication of (A-3′) is that E(V |UI) is a nondegenerate random variable, and

thus that agents have some nontrivial information about their own idiosyncratic cost or

of Section 6. The analysis can be extended (at the cost of somewhat more cumbersome notation) to
allow agents to know only a subvector of Z as well as only a subvector of X at the time of selection
into treatment.

10In other words, the information set of the agent equals σ(X,Z,UI), the sigma-algebra generated by
(X,Z,UI).
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benefit from treatment when deciding whether to select into treatment. We maintain

Assumptions (A-2) and (A-4) as before.

Define µIj (XI) = E(Yj|XI) for j = 0, 1, and µIC(Z) = E(C|Z), and note that given our

independence assumptions and the law of iterated expectations, µIj (XI) = E(µj(X)|XI),

µIC(Z) = E(µC(Z)|Z). Define µIS(XI , Z) = E(S|XI , Z). Under our assumptions,

E(S|XI , Z, UI) = µIS(XI , Z)− Ṽ = µI1(XI)− µI0(XI)− µIC(Z)− Ṽ .

The decision rule becomes

D = 1 if E(S|XI , Z, UI) ≥ 0 ; D = 0 otherwise, (5.1)

where E(S|XI , Z, UI) is the expected surplus from treatment, with the expectation con-

ditional on the agent’s information set. We thus have

D = 1[µIS(XI , Z)− Ṽ ≥ 0],

where our independence assumptions imply Ṽ ⊥⊥ (XI , Z), and thus the selection model

is of the same form as that used by Heckman and Vytlacil (1999), which allows us to

use LIV to identify BMTE(x, uS). Redefining US = FṼ (Ṽ ) and P (XI , Z) = Pr(D =

1|XI , Z) = FṼ (µIS(XI , Z)), we have

D = 1[P (XI , Z)− US ≥ 0],

with US distributed unit uniform and independent of (X,Z) and thus independent of

(XI , Z).

Define BMTE
I (xI , uS) ≡ E(Y1 − Y0|XI = xI , US = uS), CMTE

I (z, uS) ≡ E(C|Z =

z, US = uS), and SMTE
I (xI , z, uS) ≡ BMTE

I (xI , uS) − CMTE
I (z, uS), the marginal benefit,

cost, and net surplus of treatment conditional on the agent’s information set, where again
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by the law of iterated expectations and our independence assumptions

BMTE
I (xI , uS) = E(BMTE(X, uS)|XI = xI , US = uS) = E(BMTE(X, uS)|XI = xI)

CMTE
I (z, uS) = E(CMTE(Z, uS)|Z = z, US = uS) = E(CMTE(Z, uS)|Z = z).

Evaluating SMTE
I (xI , z, uS) at uS = P (xI , z), we obtain

SMTE
I (xI , z, P (xI , z)) = µIS(xI , z)− E(V |US = P (xI , z))

= µIS(xI , z)− E(V |Ṽ = µIS(xI , z))

= µIS(xI , z)− E(V |E(V |UI) = µIS(xI , z))

= µIS(xI , z)− E(E(V |UI)|E(V |UI) = µIS(xI , z))

= µIS(xI , z)− µIS(xI , z)

= 0,

where the second equality is obtained by plugging in the definition of US, the third equality

is obtained by plugging in the definition of Ṽ , and the fourth equality is obtained using

the law of iterated expectations and the fact that E(V |UI) is degenerate given UI . Since

SMTE
I (xI , z, uS) = BMTE

I (xI , uS)− CMTE
I (z, uS), we have

BMTE
I (xI , uS) = CMTE

I (z, uS) for uS such that uS = P (xI , z).

Thus, identification of BMTE
I (xI , P (xI , z)) provides identification of CMTE

I (z, P (xI , z)).

Since our model is a special case of Heckman and Vytlacil (1999), we can follow them

in using LIV to identify BMTE(x, uS) for (x, uS) in the support of (X,P (XI , Z)). It is

important to note that LIV does not identify the BMTE(x, uS) that is relevant to the

agent’s decision problem. LIV identifies BMTE(x, uS) = E(Y1 − Y0|X = x, US = uS), not

BMTE
I (xI , uS) = E(Y1−Y0|XI = xI , US = uS). However, we can project the BMTE(x, uS)

identified by LIV on the information known to the agent at the time of selecting into

treatment and coarsen the set used to define and identify BMTE(x, uS), to identify the

BMTE
I (xI , uS) relevant to the agent’s decision problem. It is the latter that is relevant
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for identifying the cost functions. By the law of iterated expectations, we obtain

BMTE
I (xI , uS) = E(BMTE(X, uS)|XI = xI) =

∫
BMTE(x, uS)dFX(x|XI = xI), (5.2)

where FX( · |XI = xI) is the cumulative distribution function of X conditional on XI =

xI . We directly identify FX( · |XI = xI), and thus, for given uS, obtain identification of

BMTE(x, uS) for all x ∈ Supp(X|XI = xI) implies identification of BMTE
I (xI , uS). Since,

for a given x, we identify BMTE(x, uS) if uS ∈ Supp(P (XI , Z)|X = x), we thus identify

BMTE
I (xI , uS) if

uS ∈
⋂

x∈Supp(X|XI=xI)

Supp(P (XI , Z)|X = x).

In other words, to identify ex ante BMTE
I (xI , uS), we need to identify ex post BMTE(x, uS)

for every value x that X can take given XI = xI , and thus we need for uS to be an

element of Supp(P (XI , Z)|X = x) for each value x that X can take given XI = xI .

However, using the fact that XI is a subvector of X and independence assumption (A-

1′), it follows that Supp(P (XI , Z)|X) = Supp(P (XI , Z)|XI), and thus using Equation

(5.2) we identify BMTE
I (xI , uS) for (xI , uS) in the support of (XI , P (XI , Z)). Using the

fact that BMTE
I (xI , P (xI , z)) = CMTE

I (z, P (xI , z)), we identify CMTE
I (z, uS) for (z, uS) in

the support of (Z, P (XI , Z)). We have thus identified the marginal cost parameter, and

can integrate it to obtain other cost parameters. We can also combine it with the benefit

parameters to identify net surplus parameters as before. The only elements of X that

are useful for identifying the cost parameters are those elements that are in X, but not

in Z, and which are known to the agent at the time of selection into treatment (i.e., are

contained in XI).
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6 Estimating the Cost and Surplus from Educational

Choices

We apply our methodology to an analysis of educational choice and estimate the marginal

benefit, cost, and surplus from a college education. Carneiro et al. (2011) provide esti-

mates of the marginal benefit of attending college. We extend their work by adding

results for the subjective cost and surplus. Björklund and Moffitt (1987) provide fully

parametric estimates of cost and surplus in the context of a manpower training program

in Sweden. Application of their approach offers a useful benchmark to gauge our more

flexible estimation strategy. Our nonparametric identification analysis follows Marschak

(1953) who noted that for many policy analyses only combinations of structural param-

eters are required. We embrace Marschak’s Maxim (Heckman, 2010) and implement an

estimation strategy with minimal assumptions and transparent sources of identification

for the marginal effects of treatment.

We analyze a sample of 1,747 white males from the National Longitudinal Survey of

Youth of 1979 (NLSY79).11 The outcome variable is the log of the mean non-missing

values of the hourly wage between 1989 and 1993, which we interpret as an estimate of

the log hourly wage in 1991, and an approximation to the long-run wage. Schooling is

measured in 1991 when individuals are between 28 and 34 years of age. We separate

individuals into two groups: persons with no college (D = 0) and persons with at least

some college (D = 1). We present annualized returns to education, obtained by dividing

all our estimates by four which is the average difference in years of schooling between

those with D = 1 and those with D = 0.

To identify the CMTE
I (z, uS), we require variables that do not affect the cost of attending

college but that change future wages and are known to the agent at college entry (benefit

shifters). We measure long-run labor market conditions by permanent local wages and

compute average earnings between 1973 and 2000 for each location of residence at 17 as

a proxy. Since we will also condition on current labor market conditions at the time of

11See Bureau of Labor Statistics (2005) for a detailed description of the NLSY79 and Appendix C for
details on the construction of the variables.
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potential enrollment, these regressors should only affect the schooling decision through

their effect on agent’s expected future wages and thus the expected benefit of treatment.

We assume that the main benefits to a higher education are through earnings. Any other

subjective benefits, such as allowing access to jobs with preferred amenities, are implicitly

included (as a negative contribution) in costs. The validity of our exclusion restriction

would be threatened if our measure of permanent local wages affects the subjective benefit

of education.

We identify BMTE(x, uS) and BMTE
I (xI , uS) using variables that do not affect future

wages but only the cost of attending college (cost shifters). We use current fluctuations in

local labor market conditions such as local wages at the time of the educational decision,

which shift the opportunity cost of schooling. They should not help to predict the agent’s

expected future wages as we also control for permanent local labor market conditions.

Effectively, we use only the innovations in local wages as cost shifters. We also include

tuition cost, a dummy variable indicating urban residence at age 14, and distance to

college as shifters that affect the direct cost of attending college.

Table 1 presents the covariates used in our empirical analysis. We highlight the two

different types of exclusion restrictions. Variables that affect benefits as well as costs of

treatment (common elements) include the Armed Forces Qualifying Test (AFQT) scores,

mother’s education, number of siblings, and cohort dummies. In what follows, we keep

this set of observables in the background to ease notation. X and Z continue to denote

the benefit and cost shifters respectively. XI is the subvector of X which is known to

the agent at the college entry decision. We include two variables in X not included in

XI : years of experience and wages in the county of residence. The excluded variables are

measured approximately 12 years after the agent’s college entry decision and thus not

in the individual’s information set at the time of the treatment decision. We follow the

analysis of Section 5 and allow agents to have imperfect foresight about the realizations of

these variables. They form expectations about their future wages but do not have perfect

information. In line with our exposition, we assume that Z does not help to predict the

ex post realization of X conditional on XI and denote the agents’ information about their
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idiosyncratic cost and benefit from treatment as Ṽ = E (V | UI).

We specify a linear version of the generalized Roy model. Define potential outcomes:

Y1 = Xβ1 + U1 and Y0 = Xβ0 + U0.

The choice equation is:

D = 1
[
XI(α1 − α0)− Zγ > Ṽ

]
,

where we assume that agents form valid expectations about their own outcomes so that

E (X(β1 − β0) | XI) = XI(α1 − α0) holds. Note that XI does not only affect the returns

to education directly but also helps to predict the ex post realization of those elements

of X not contained in XI .

We first implement the traditional structural approach and explicitly estimate all com-

ponents of the generalized Roy model and combine them to form the marginal effect pa-

rameters (Björklund and Moffitt, 1987). We impose normality for the unobservables and

fit the model by maximum-likelihood. As the participation decision is based on the net

surplus and X does not affect the cost of treatment, this implies a cross-equation restric-

tion between the coefficients onX in the outcome equations andXI in the choice equation.

We account for agents’ imperfect foresight and set (α1−α0) = (X̄ ′I X̄I)
−1 X̄ ′I X̄(β1− β0),

where (X̄, X̄I) denote the matrices with the outcome shifters of the whole sample. We

estimate the whole model in one step. In a standard Probit model, the coefficients can

only be identified up to a factor of proportionality. However, as the wage gain (α1−α0)XI

appears with a coefficient of one in the choice equation, we do not need to normalize the

variance of Ṽ and estimate it instead. We can then construct the marginal effects of
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treatment based on the results:

BMTE(x, uS) = x(β1 − β0) +
(
σU1−U0,Ṽ

σ2
Ṽ

)
Φ−1σṼ (uS)

BMTE
I (xI , uS) = xI(α1 − α0) +

(
σU1−U0,Ṽ

σ2
Ṽ

)
Φ−1σṼ (uS)

CMTE
I (z, uS) = zγ +

(
σUC,Ṽ

σ2
Ṽ

)
Φ−1σṼ (uS)

SMTE
I (xI , z, uS) = xI(α1 − α0)− zγ − Φ−1σṼ (uS),

where σU1−U0,Ṽ
and σUC ,Ṽ

denote the covariance between (U1 − U0, Ṽ ) and (UC , Ṽ ), re-

spectively. Φ−1σṼ indicates the inverse of a normal cumulative distribution function with

standard deviation σṼ .

The sign of the slope of the marginal effect parameters is determined by σUC ,Ṽ
and

σU1−U0,Ṽ
as σ2

Ṽ
> 0. We present our results for these parameters in Table 2. The esti-

mate for σU1−U0,Ṽ
is negative and thus the marginal benefits of treatment decrease when

moving along the margins of Ṽ . The opposite is true for σUC ,Ṽ
and so the marginal cost

increases in uS. However, only σU1−U0,Ṽ
is significantly different from zero at the 10%

level.

Figure 2 presents our fully parametric results for the ex post marginal benefit and ex

ante cost and surplus parameters. We plot them as a function of uS and evaluate them

at the sample mean of (XI , Z). As agents are assumed to form valid expectations about

their future benefits, the ex ante and ex post marginal benefits are identical. Individuals

with a high unobserved desire for treatment (low uS) have the highest benefit, strictly

decreasing from +16% to −4%. The estimated surplus is positive for low values of uS and

decreases when moving along the margins of Ṽ . The opposite holds for the marginal cost,

which is always positive and slightly increasing. The cost is lowest for individuals with

low values of uS and ranges from +3% to +10%. In summary, the benefit is highest and

cost lowest for those most likely to pursue a higher education. However, the estimates

are not precisely determined. The marginal benefit of treatment is significantly different

from zero for roughly half of the individuals. Along all margins of Ṽ , the marginal cost of

a college education does not significantly differ from zero. By construction, the marginal

surplus is strictly positive for all those individuals who participate in the treatment and
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negative for those that do not. Conditional on the observables set to their sample mean,

Figure 2: Marginal Effects of Treatment, Parametric
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(a) Marginal Benefit of Treatment (ex post)
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(b) Marginal Cost of Treatment
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(c) Marginal Surplus of Treatment

individuals are indifferent towards treatment when uS = 0.51.

Figure 2 presents the marginal effect parameters over the full unit interval from the

structural model. The distributional assumptions on (U1, U0, Ṽ ) expand the margins for

which we can identify the marginal effects of treatment. As we assume full independence

between all observables and unobservables, we identify the marginal effects of treatment

over the unconditional common support of P (XI , Z). In our sample, this support ranges

between 0.03 and 0.98. Adding joint normality, we can extrapolate even further and cover

the full unit interval.

However, our formal analysis demonstrates that in a fully nonparametric setting we

are only able to identify the BMTE
I (xI , uS) over the support of P (XI , Z) conditional on
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XI = xI and the CMTE
I (z, uS) over the support of P (XI , Z) conditional on Z = z.

We identify the SMTE
I (xI , z, uS) over the intersection of the two supports. In Figure

3 we plot the conditional densities of P (XI , Z) in our data. As XI and Z are both

multidimensional, we condition on the decile of the relevant index, i.e. on XI(α1 − α0)

for the BMTE
I (xI , uS) and Zγ for the CMTE

I (z, uS).12 The support is very limited and

thus the results of a fully parametric implementation rely heavily on extrapolation based

on the distributional assumptions.

12We trace out the remaining variation in P (XI , Z) by applying a two-dimensional kernel density esti-
mation with a bivariate normal kernel.

32



Figure 3: Conditional Support
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We now develop a semiparametric estimation strategy that relies on fewer assumptions

and provides more transparent sources of identification. We apply Marschak’s Maxim,

estimating only those combinations of structural parameters needed for the marginal

effect parameters. To fix ideas, consider the estimation of the BMTE(x, uS), where the

conditional expectation of (U1 − U0) along the margins of Ṽ is a key element. In the

fully parametric normal-theory approach, it is directly constructed from estimates of

(σU1,Ṽ
, σU0,Ṽ

) and σ2
Ṽ

:

E (U1 − U0 | US = uS) =

(
σU1−U0,Ṽ

σ2
Ṽ

)
Φ−1σṼ (uS).

Instead, in what follows, we directly obtain E (U1 − U0 | US = uS) without having to esti-

mate all structural components. We will also carefully recognize the relevant conditional

support of P for each parameter and thus present a data-sensitive structural analysis

(Heckman, 2010).

We determine the support of P by building on an estimator of the joint support of the

distribution of (X,Z):

ŜX,Z = {(x, z) : ||(Xi, Zi)− (x, z)|| ≤ ε for some i},

where || · || corresponds to the Euclidean norm and i denotes a generic observation in

our data.13 Then, letting xI(x) indicate the appropriate subvector of x, our resulting

estimator for the support of (XI , Z) is:

ŜXI ,Z = {(x∗I , z∗) : ∃(x, z) ∈ ŜX,Z such that (xI(x), z) = (x∗I , z
∗)}.

We can use these estimates to construct our desired support for the marginal cost and

13In practice, we set ε such that at most 5% of the sample are within the support for a given pair of
(Xi, Zi).
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benefit parameters:

ŜX,P = {(x∗, p∗) : ∃(x , z) ∈ ŜX,Z such that (x, P (xI(x), z)) = (x∗, p∗)}

ŜXI ,P = {(x∗I , p∗) : ∃(xI , z) ∈ ŜXI ,Z such that (xI , P (xI , z)) = (x∗I , p
∗)}

ŜZ,P = {(z∗, p∗) : ∃(xI , z) ∈ ŜXI ,Z such that (z , P (xI , z)) = (z∗, p∗)}.

Note, that the variation in p for a given x and xI(x) is the same in ŜX,P and ŜXI ,P . Thus

we can identify the BMTE(x, uS) and BMTE
I (xI(x), uS) over the same margins. Finally,

for the marginal surplus parameter, we collect in ŜXI ,Z,P all (xI , z, p) where the relevant

subsets in ŜXI ,P and ŜZ,P overlap in p. We only report estimates for the margins within

these sets and thus acknowledge the limitations of the data.

We estimate the BMTE(x, uS) using the method of local instrumental variables (LIV)

proposed in Heckman and Vytlacil (1999, 2001b, 2005). They show that under our

conditions the BMTE(x, uS) is identified by differentiating the conditional expectation of

observed outcomes:

∂E( Y | X = x, P = p )

∂p

∣∣∣∣
p=uS

= BMTE(x, uS). (6.1)

Applied to sample data, this is the LIV estimator of Heckman and Vytlacil (1999).14 As

noted in Carneiro et al. (2011), it is empirically very difficult to apply the LIV estimator

while conditioning on all variables in the outcome equations. Thus we proceed by invoking

the stronger assumption that in addition to the variables in X, all elements common

to outcome and choice equations are independent of (U1, U0, Ṽ ) as well. Because our

generalized Roy model is also linear, the conditional expectation of Y simplifies to:

E( Y | X = x, P = p ) = E( DY1 + (1−D)Y0 | X = x, P = p )

= xβ0 + px(β1 − β0) +K(p), (6.2)

14See the Web Appendix of Heckman et al. (2006) for a detailed description of the implementation of
the LIV estimator.
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where K(p) = E(U1 − U0 | D = 1, P = p) can be estimated nonparametrically. We

determine the parameters of Equation (6.1) by a partially linear regression of Y on X

and P . We proceed in two steps. The first step is the construction of P , and the second

step is the estimation of β1 and β0 using the estimated P . We carry out the first step

using a Probit regression of D on (XI , Z). In the second step we use Robinson (1988)’s

method for estimating partially linear models as extended in Heckman et al. (1997a).15

Next, consider the estimation of K(P ). Equation (6.2) implies that E( Ỹ ) = K(p), where

Ỹ = Y − xβ0 − px(β1 − β0) is the residualized observed outcome. We thus use a local

quadratic regression of Ỹ on P to estimate K(P ) and its partial derivative with respect

to P .16 We construct the ex post marginal benefit of treatment BMTE(x, uS) based on

these estimates:

BMTE(x, p) = x(β1 − β0) +
∂K(p)

∂p
∀ (x, p) ∈ ŜX,P .

For the ex ante marginal benefit of treatment, we account for the agents’ imperfect

foresight about the future realization of components of X. As agents form valid ex-

pectations, we calculate (α1 − α0) = (X̄ ′I X̄I)
−1 X̄ ′I X̄(β1 − β0)17 and then construct the

BMTE
I (xI , uS) as follows:

BMTE
I (xI , p) = xI(α1 − α0) +

∂K(p)

∂p
∀ (xI , p) ∈ ŜXI ,P .

We can identify the CMTE
I (z, uS) using the equality of the marginal cost and benefit

parameter at the margin of indifference:

CMTE
I (z, p) = BMTE

I (xI , p) ∀ (z, p) ∈ ŜZ,P . (6.3)

15We run kernel regressions of each of the regressors on P using a bandwidth of h = 0.05. We compute
the residuals of each of these regressions and then run a linear regression of Y on these residuals.

16We choose the bandwidth that minimizes the residual square criterion proposed in Fan and Gijbles
(1996), which gives us a bandwidth of h = 0.3.

17The economics of the model imply a restriction on the coefficients (α1 − α0) in the choice equation,
which depend on the estimated values of (β1−β0). However, we only learn about the values of (β1−β0)
using an initial estimate of P . We insure internal consistency of our estimation routine by iterating
between the estimation of the BMTE(x, uS) and P with restricted (α1 − α0) until convergence.

36



This step directly mirrors Equation (4.2) from our nonparametric identification analy-

sis. We obtain an estimate for the marginal cost of treatment using only information on

the marginal benefits. We do not exploit any additional distributional assumptions such

as joint normality of the unobservables.

We finally determine the SMTE
I (xI , z, uS) by taking the difference between benefits and

costs:

SMTE
I (xI , z, p) = BMTE

I (xI , p)− CMTE
I (z, p) ∀ (xI , z, p) ∈ ŜXI ,Z,P . (6.4)

Figure 4 presents our semiparametric results for the ex ante benefit, cost, and surplus

parameters as well as the ex post benefit. We calculate the marginal effects at the

mean values in the sample (x̄, z̄) and at two additional points of evaluation (xA, zA) and

(xB, zB). We plot them as a function of uS within the relevant conditional support and

compute the 90% confidence bands using the bootstrap.18

18We use 2,000 bootstrap replications. In each iteration of the bootstrap we re-estimate P so all standard
errors account for the fact that P itself is an estimated object.

37



Figure 4: Marginal Effects of Treatment, Semiparametric
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(a) Marginal Benefit of Treatment (ex post)
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(b) Marginal Benefit of Treatment (ex ante)
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(c) Marginal Cost of Treatment
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(d) Marginal Surplus of Treatment
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Our estimates show that individuals with a high unobserved desire for treatment (low

uS) have high benefits as well as high costs from participation. When moving up the

margins of uS the benefits fall more quickly than the costs as the surplus decreases. The

BMTE
I (xI , uS) ranges from +37% within the support of xA to as low as −12% within

the support of xB. The CMTE
I (z, uS) varies between +32% and −6% overall, but within

each margin of support the variation is limited to about 4% in absolute value. We can

calculate the SMTE
I (xI , z, uS) which ranges from +5% to −5% as the difference between

ex ante benefits and costs within the overlap of the support. Note that the estimates

for the marginal benefits at xB are all negative. However, costs are as well and so the

surplus is still positive at the lower end of the conditional support. After conditioning on

observables, it is unobservable heterogeneity in benefits and not costs that is driving the

college entry decision. However, all estimates are rather imprecise, precision is highest at

the mean values in the sample.

The conditional support is limited as shown in Figure 3. The location and range of

the support depends on the point of evaluation. In general, we can identify BMTE(x, uS)

and BMTE
I (xI , uS) over longer stretches of uS than the CMTE

I (z, uS) function. In fact, for

all xI , z evaluation points considered, the values of uS for which we identify CMTE
I (z, uS)

is a subset of the values of uS for which we identify BMTE
I (xI , uS). Hence, for the xI , z

evaluation points considered, we can identify SMTE
I (xI , z, uS) only over the set of uS

values corresponding to the smaller set of uS values for which we identify CMTE
I (z, uS).

The conditional variation in P is largest at x̄I where we can identify the longest stretch

for the BMTE
I (x̄I , uS) with uS ∈ (0.42, 0.61), while it is smallest for CMTE

I (zB, uS) with

uS ∈ (0.81, 0.89). Note that we identify all marginal effect parameters around the margin

of indifference at SMTE
I (xI , z, uS) = 0.

We can also assess the magnitude of the expectation errors due to the agents’ imperfect

foresight about parts of their future benefits. Given our prediction model, the ex post and

ex ante benefits coincide for the average individual (x̄, z̄). However, a comparison between

realized and predicted benefits reveals that at xA, ex post benefits are overestimated by

about 9%, while at xB the prediction is only off by 3%.
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We can compare the results for the marginal effects of treatment between the two

estimation approaches at (x̄, z̄) within the conditional support. The semiparametric

approach indicates larger heterogeneity in benefits and costs due to the steeper slope

of the marginal effect parameters. In both cases, benefits decrease considerably when

moving along the margins of Ṽ while variation in costs is limited. Thus, it is heterogeneity

in benefits that drives the college attendance decision. This is in line with the results

by Björklund and Moffitt (1987), who also find that heterogeneity in rewards is more

important than heterogeneity in costs for the participation decision in their context of a

manpower training program in Sweden.
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7 Summary and Conclusion

This paper extends the modern treatment effect literature by developing a framework

for identifying both the marginal benefit and marginal cost of policies. The treatment

effect literature focuses only on the benefit side and does not address the question of

the subjective cost of treatment as perceived by the agents attempting to take it. We

build on the pioneering parametric analysis of Björklund and Moffitt (1987) by extend-

ing the nonparametric analysis of Heckman and Vytlacil (1999, 2005, 2007) to identify

subjective cost and surplus functions. We provide identification results for the case of

perfect foresight (as in the previous literature) as well as cases with imperfect foresight

not previously considered. An analysis of college-going finds unobserved heterogeneity in

the benefits as well as costs of attending college, with agents selecting into college based

on both their idiosyncratic expected benefit and perceived cost of attending college. We

find more heterogeneity in expected benefits than in perceived cost. Thus, the observed

variability in college attendance is mainly driven by the variability in expected benefits.
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Table 1: Specification

X XI Z Common

Years of Experience (in 1991) X

Current Local Wages (in 1991) X

Permanent Local Wages X X

AFQT Scores X

Mother’s Education X

Number of Siblings X

Cohort Dummies X

Urban Residence X

Local Presence of Public College (age 14) X

Local Tuition at Public College (age 17) X

Local Wages (age 17) X

Notes: Our main specification includes years of experience (linear and squared), current local

wages (linear), permanent local wages (linear and squared), AFQT scores (linear and squared),

mother’s education (linear and squared), number of siblings (linear and squared), urban residence

(linear), cohort dummies (linear), local presence of public colleges (linear), local tuition of public

college (linear), and local wages (linear). All exclusions from the benefit equation are interacted

with AFQT scores, mother’s education, and number of siblings.
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Table 2: Slope Parameters

Parameter Estimate 90% Confi. p -val.

σ(U1−U0),Ṽ
-0.043 -0.206 / 0.002 0.06

σUC ,Ṽ 0.017 -0.020 / 0.550 0.29

σ2
Ṽ

0.060 0.005 / 0.720 0.00

Notes: Confi. = Confidence Interval, p - val. = p -values.
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