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Abstract

The specification of parameters is a crucial task in the development of economic

models. The objective of this paper is to improve the standard parameter spec-

ification of computable general equilibrium (CGE) models. On that account, we

illustrate how Optimal Fingerprint Detection Methods (OFDM) can be used to

identify appropriate values for various parameters. This method originates from

climate science and combines a simple model validation exercise with a structured

sensitivity analysis. The new approach has three main benefits: 1) It uses a struc-

tured optimisation procedure and does not revert to ad-hoc model improvements.

2) It allows to account for uncertainty in parameter estimates by using information

on the distribution of parameter estimates from the literature. 3) It can be applied

for the specification of a range of parameters required in CGE models, for example

for the definition of elasticities or productivity growth rates.
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1 Introduction

The development of computable general equilibrium (CGE) models requires many as-

sumptions regarding their theoretical setup (e.g. the underlying factor market specifica-

tion) as well as the definition of required parameters (e.g. the specification of substitution

elasticities). While, without doubt, both elements of model design are important and

require utmost accuracy to avoid false model results, in this paper we discuss the ame-

lioration of the process of parameter specification and present an alternative approach

that can be used to parameterise CGE models.

For the specification of parameters, modelers normally make use of calibration tech-

niques (c.f. Dawkins et al., 2001) or build on estimates from the literature. These ap-

proaches entail some important limitations. Standard benchmark calibration for instance

does not account for fluctuations over time and is thus prone to errors when special events

or situations in the benchmark year are not specifically taken into account. Picture for

example building on a biased economic structure because of an inflated tourism and con-

struction sector in a year where the Olympic Games take place. Applying estimates from

the literature is also not straightforward. If for instance parameters are not specifically

estimated for the implementation in models or at least studied on the basis of the same

underlying theoretical structure, conceptual and definitional mismatches may lead to

the misspecification of parameter values (Browning et al., 1999). McKitrick (1998) illus-

trates the issue for the case of substitution elasticities. What is more, simply using values

from the literature neglects that in most cases the information originates from estimation

procedures and must thus associated with some degree of uncertainty. While for instance

most of the substitution elasticities estimated by Koesler and Schymura (forthcoming)

feature small standard deviations, some estimates imply an important amount of vari-

ability of which modelers should be aware of. All too often, modelers are also confronted

with a situation in which no estimates or data is available for the definition of required

parameters. In this case, they have to build on their experience and intuition and have

only few options to truly evaluate their model specification. This leads directly to the

critique of McKitrick (1998) that CGE models lack empirical foundations.

These difficulties motivate the main objective of this paper which is to improve the

parameter specification of CGE models. In the following we illustrate how Optimal

Fingerprint Detection Methods - an approach originally used in climate science (e.g.

IPCC, 2007; Forest et al., 2000, 2001) - can inspire the identification of appropriate

parameter values for CGE models. This method builds on a generalised multivariate

regression analysis and combines a simple model validation exercise with a structured

sensitivity analysis. Compared to other procedures, the new approach has three main

benefits: 1) It uses a structured optimisation procedure and does not revert to ad-hoc

model improvements. 2) It allows to account for uncertainty in parameter estimates by

using information on the distribution of parameter estimates from the literature. 3) It

can be applied for the specification of various parameters required in CGE models, for

example for the definition of elasticities or productivity growth rates.
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The paper is structured as follows. First, we briefly provide a background on Optimal

Fingerprint Detection Methods, henceforth referred to as OFDM. Second, we demon-

strate how OFDM can be applied in the context of CGE modelling and explore its

capabilities in a CGE framework using a stylised small scale CGE model. Subsequently

we apply the new approach to the still simple but full-fledged Basic WIOD CGE Model

developed by Koesler and Pothen (2013) and derive a set of substitution elasticities for

the specification of production in the model. Finally, we summarise and conclude in the

last section.

2 Optimal Fingerprint Detection Methods (OFDM)

OFDM originate from climate science (e.g. Hasselmann, 1997; Allen and Tett, 1999).

Above all, they are used to detect climate change and to identify climate change drivers

(c.f. IPCC, 2007). On that account, a multivariate regression analysis is set up which

generally has the following form:

Y = Xa+ e, (1)

where the vector Y includes data from observations (i.e. the climate record), X is a

vector of (expected) response patterns which determine the climate system in the model,

a is a vector of scaling factors which are used to adjust the response patterns so that

the simulation outcomes correspond the observational data and e is a vector with error

terms that is to be minimised. The underlying logic is thereby that if the estimated

response patterns in vector X is capable of replicating real world observations under

normal circumstances, that is in a situation with no climate change, then if the elements

in the vector a do not equal one when trying to replicate the current climate, there is

some disturbance of the climate system. Deviations can then potentially be attributed

to climate change.

OFDM have however also been applied to specify parameters in models simulating the

climate. To that end, Forest et al. (2000, 2001) use a multivariate regression analysis as

described in Equation 1, but with the difference that in their work the vector X includes

simulation results instead of expected response patterns. This regression setup relates

the climate record one to one to the climate model output (e.g. observed temperature

to simulated temperature) and allows for a structured validation of model results with

observed data. Also in this context, the underlying logic of the OFDM approach is

straightforward. As long as not all elements in the scaling vector a are equal to one,

the model is not perfectly capable of replicating the observed data and thus needs to be

refined.

To judge the overall performance of the model when contrasting its output to ob-

served data, Forest et al. (2000, 2001) use a goodness-of-fit criterion r2 which builds

on the difference between actual observations and model results without scaling. That

is ũ = Y − X with a being a unity vector (ai = 1∀i). The error ũ captures element
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that are not taken into account by the model (e.g. internal climate variability) as well

as deviations that occur because of a non-perfect model specification. While the first

type of variability is intrinsic in any modeling approach - after all models are always

a simplification of the real world - it is the later that the method eventually seeks to

minimise. The criterion r2 itself is defined as:

r2 = ũTCOV−1ũ, (2)

where COV is the error covariance matrix, which - as we illustrate in the next section

- can be estimated using model control runs. The aim of the modeler must then be

to minimise r2, respectively the deviations resulting from any model misspecification.

This can be done by means of a sensitivity analysis implementing different parameter

specifications and reevaluating each model setup using the goodness-of-fit criteria. The

most apt parameter specification will then be the one which provides the lowest r2.

3 Illustrative application of OFDM to CGE framework

3.1 Process

As indicated in the previous section, OFDM consists basically of a validation exercise

combined with a sensitivity analysis. The process of using OFDM to find adequate

parameter specifications for a CGE model involves three main steps.

To begin with, modelers have to chose a set of parameters for which they require

guidance regarding their specification and must create a portfolio of different specifica-

tions that should be tested. While in principle any parameter value can be evaluated

using ODFM, the choice of possible values can be guided in particular by available es-

timates from the literature. In this case, it is recommendable to build the portfolio

of different parameter values not just using the actual estimates, but in addition any

available information of the distribution of the parameter value (i.e. information on

standard deviations and other higher moments). This allows to implement a more in-

formed sensitivity analysis similar to the structured sensitivity analyses described by

Harrison and Vinod (1992) or Hermeling et al. (2013) later in the process. This brings

the additional benefit of being able to account for the uncertainty attached to parameter

estimates when setting up the model.

The next step implements a validation exercise and investigates whether the CGE

model with a specific parameter setup from the portfolio developed in the previous

step is capable of replicating an observed record. Thereby a validation procedure as

described by Kehoe et al. (1995) and Kehoe (2005) is applied which contrasts historical

developments to model predictions. Although instead of using correlation and deviation

coefficients to judge the fit of the model output, here we use the goodness-of-fit criteria

presented in Equation 2. The procedure requires information on key economic indicators

at two points in time and knowledge of changes in variables exogenous to the model that
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have taken place in the meantime.1 The model is then calibrated to the earlier point

in time and equipped with the parameter setup that is to be tested. Subsequently, to

generate a set of predicted changes, the model is shocked with all observed changes in

exogenous variables. Finally the simulation result is compared to the observations from

the second point in time on the basis of the OFDM criteria from Equation 2. The

resulting value of r2 provides a first indication of the quality of the parameter setup

under investigation.

The third and final step can be referred to as the sensitivity analysis part of the

OFDM. Basically, it involves repeating the previous step for all parameter specifications

that are to be tested and to compare the respective r2 values. The parameters combina-

tion featuring the lowest r2 and thus providing the best fit to the observed data without

having to scale the model output, can then be considered the most adequate parameter

specification.

3.2 Stylised CGE model

Before applying the OFDM method to a full scale CGE model, we demonstrate the

process and capabilities of OFDM in a CGE setting by making use of a small stylised

CGE model. The model is deliberately simple and features only one region, one final

demand agent and two production sectors. The model covers the time period t to t+ n

with n ≥ 1. Agents are assumed behave myopic and do not link different periods through

saving or investment. In accordance to this, in the following, we drop the time subscript

when describing agents behaviour.

The final demand agent supplies capital K and labour L and consumes two different

commodities A and B. Its consumption function is characterised by a constant elasticity

of substitution (CES) function of the form:

C = (αCA
ρC + (1− αC)B

ρC )
1

ρC (3)

where ρC is the substitution parameter of final consumption which relates to the elasticity

of substitution for final consumption through ρC = σC−1
σC

and αC the input share of final

consumption goods. The factor endowments grow at the constant rate γ every period.

In addition, there are two sectors A and B that produce commodities A and B on

the basis of two CES production functions:

A =

(
αA
KLM

(
αA
KLK

ρKL +
(
1− αA

KL

)
LρKL

) ρKLM
ρKL

+
(
1− αA

KLM

) (
αA
MAρM +

(
1− αA

M

)
BρM

) ρKLM
ρM

) 1
ρKLM

(4)

1While in general it is fairly easy to have access to data describing two points in time, it is difficult

to account for all changes that have taken place in between. We are aware of this problem, which we

believe is intrinsic in any validation exercises, and discuss this issue in more detail in Section 3.5.
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Table 1: Structure of generic model economy in period t and t+1

Period t Sector A Sector B Period t+1 Sector A Sector B

Input A 30.00 10.00 Input A 30.48 10.16

Input B 10.00 30.00 Input B 10.37 31.11

Capital 25.00 75.00 Capital 26.25 78.75

Labor 75.00 25.00 Labor 75.00 25.00

Output 140.00 140.00 Output 142.10 145.02

Final Demand 100.00 100.00 Final Demand 101.46 103.54

and

B =

(
αB
KLM

(
αB
KLK

ρKL +
(
1− αB

KL

)
LρKL

)ρKLM
ρKL

+
(
1− αB

KLM

) (
αB
MAρM +

(
1− αB

M

)
BρM

)ρKLM
ρM

) 1
ρKLM

,

(5)

where again ρ are the substitution parameters and α the input share parameters for the

different production nests.

For the sake of being able to assess the potential of OFDM, we assume that the ’true’

setup of the model involves all substitution elasticities being equal to one (σC = σKL

= σM = σKLM = 1), the capital growth rate γK is 5%, and there is no change in the

endowments of labour (γL = 0). However, to make the case for the need of an approach

to find an adequate parameter specification, we also assume that the true values of the

elasticities and the endowment growth rates are initially unknown. The objective of the

OFDM is then to identify the ’true’ parameter values. The input share parameters α

are calibrated to the overall structure of the economy which is given in Table 1 for the

periods t and t+1. The data for t+1 has been generated by running the model featuring

the aforementioned ’true’ parameter specification for one period.

Besides illustrating how OFDM can be applied to the CGE framework, the stylised

CGE model allows to explore its potential in a general equilibrium setting and how it is

best applied in this context. On that note, we seek to answer three main questions: 1) Is

OFDM successful in identifying an apt parameter specification and for what parameters

can it be applied? 2) What output variables should be included in the computation

if the goodness-of-fit criterion? 3) What type of shocks can be used in the validation

process necessary for OFDM?

3.3 Computation of covariance matrix

As becomes clear from Equation 2, OFDM requires knowledge of the interrelationship

between model output variables or more formally the covariance matrix COV. Ideally

COV would emerge from actual observations, but given the artificial nature of the

stylised model used in this section this is obviously no option. As a matter of fact,
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deriving COV is also a problem that climate scientist face when applying OFDM. The

size of their models does not allow inferring COV from the relatively short available

climate record as there are are not enough degrees of freedom available and the record

might be affected by external forcings which would lead to a bias (IPCC, 2007). The

first issue is also a problem when applying OFDM in the context of CGE modelling,

as also here there rarely exist appropriate time series data that could be used. The

problem can however be overcome by using ’pseudo-observations’ generated by control

runs of the model (Allen and Tett, 1999). The underlying idea is thereby to use the

model itself and a series of simulations to generate a data set that mimics the missing

actual observations.

We apply this approach and generate a series of pseudo observations in the form

of an artificial time series by solving the stylised CGE model described above with the

’true’ parameter setting for the period t = 0 to t = 150.2 Note, although we make use

of a change in factor endowments by applying the growth rate γ for different points in

time, the pseudo observations could in principle also be generated by using a change in

any other exogenous variable as a shock. Subsequently, to break the direct relationship

between the reported variables and to overcome the deterministic nature of the data

generated by the model, we multiply all reported variables with a parameter which

follows a normal distribution of the form N (1, 0.01). Finally, COV can be estimated

by:

ĈOV =
1

n
YPOY

T
PO, (6)

where n is the number of observation vectors (here 151) and YPO a matrix including

all observation vectors derived from the generated pseudo observations. The choice of

variables that is included in the observation vectors depends on the variable that will

be used in the actual OFDM process. Exploring which these should be in order to

have optimal results of the OFDM is one of the objectives of the next section. For the

illustrative example of this section, we eventually use all input variables, sectoral output

and total final demand.

3.4 Potential and best practice of OFDM in CGE context

3.4.1 Type of parameters that can be specified using OFDM

In CGE models there exists multitude of different parameters that need to be specified.

This includes in particular elasticities, input shares and growth rates. For the objective

of this paper we focus on substitution elasticities and the growth rates of productivity or

endowments. However, in principle, the approach could also be applied to other required

parameters.

To explore if applying the OFDM to the stylised model reveals the ’true’ underlying

substitution elasticities and growth rates we first generate a portfolio of different param-

2We demonstrate later in the paper that the pseudo observations could also be generated using a

model with other parameter settings.
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eter setups. For this we choose for each elasticity of substitution (σC , σKL, σM , σKLM)

250 different values on the basis of a normal distribution of the form N (1, 0.5). If this

process provides negative values for any of the elasticities, we repeat the draw and even-

tually implement a truncated normal distribution. Analogous to this but assuming a

distribution of the form N (0.05, 0.05), we also determine 250 different values for the

growth rates of capital γK and labour γL. Here negative values are not discarded. Be-

sides using these stochastic process to generate parameter values, we also include the

’true’ parameter values presented above in the portfolio. Subsequently the model is run

several times and for each simulation one or two different parameter setting from the

parameter portfolio is applied. Parameters values that are not iterated remain at their

’true’ values. For each run the model output is then contrasted to the ’observations’ in

time t + 1 presented in Table 1 and we compute the goodness-of-fit criterion r2 of the

OFDM. Thereby and for the time being, we focus on the model predictions for factor

input, intermediate input, sectoral output and overall final demand. If the OFDM ap-

proach works, then r2 should be minimal - or even zero - for all model runs that apply

a parameter setup close to the ’true’ parameter values of the stylised model.

Figure 1 presents the r2 values for different model runs. Each dot represents a

different parameter specification. The axes depict the parameter values and the color

of the dots indicate the value of r2. Green dots translate into low levels of r2 and red

dots to high levels of r2. As becomes clear from all graphs and also when exploring the

underlying numerical values, there is only one parameter specification with a minimal

r2. Moreover, the parameter specification with the minimal r2 - in this illustrative

the situation where r2 = 0 - corresponds to the ’true’ parameter values of the stylised

model. Therefore we can conclude that the OFDM is capable of identifying the (here by

definition) most apt parameter setup for all substitution elasticities and growth rates.

Another important insight from all graphs in Figure 1 is that as the tested parameter

values approach their ’true’ value, deviations of model results and observed data become

smaller and r2 decreases.3 This suggests that even in a situation where the number

of parameter setups that can be tested is limited (e.g. because of long solving times)

OFDM is useful, because even then it can give guidance in what direction parameters

should be adjusted.

The combination of parameters that are iterated in the model runs is of no importance

for the accuracy of the OFDM procedure. As becomes clear from Graphs 1d and 1e,

OFDM is in both cases capable of identifying the ’true’ parameter value of the growth

rate of capital. This holds regardless of whether the capital growth rate is tested jointly

with a substitution elasticity or the labour growth rate.

While all other graphs in Figure 1 have been generated using the ’true’ parameter

specification described in the previous section, Graph 1f emerges from model setup

3At first sight, this may not be the case in Graph 1d. Note however that this is due to the fact that

as closer the growth rate of capital is to zero, the less important is the level of the substitution elasticity

σC and thus potentially any value of σC provides the same result.
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where the ’true’ parameter values for the substitutability between intermediates and

value added (the capital-labour-composite) is no longer σA
KLM = σA

KLM = 1 but is set to

be σA
KLM = 1.25 and σB

KLM = 0.75. Since we use the same covariance matrix as before,

this also implies that here COV has been derived from pseudo-observations which have

been generated using an ’incorrectly’ specified model. What is more, in this particular

OFDM process, all substitution elasticities that are not tested have been set so that

they deliberately not match their ’true’ value, that is for this analysis we specify the

model such that (σC = σM = σKLM = 0.9). As OFDM is also in this case capable of

giving an identifying of the true parameter values, this allows to reveal three important

capabilities of OFDM. First, the approach is not limited to a situation where where

all elasticities are equal to one. Second, OFDM also works in a setting where not just

the tested parameters are unknown and potentially not correctly specified. Third, the

method is not affected by the (mis)specification of parameter values in the model that

is used to generate the pseudo-observations required for the estimation of the COV.

However, it must be noted that in this case the precision of the process is reduced. The

lowest r2 is achieved for σA
KLM = 1.11 and σB

KLM = 0.67, so the ’true’ values are slightly

missed.

3.4.2 Choice of output variables included in goodness-of-fit criteria

The computation of the goodness-of-fit measure r2 and therefore also the covariance ma-

trix ĈOV requires choosing a set of relevant output variables. CGE models generally

provide a wide range of simulation results, including information on prices, output levels,

trade activities, factor use, employment, environmental indicators. In addition, poten-

tially all data is available on a sectoral and/or regional level therewith increasing the

number of output variables. This raises the question, which of the output variables are

crucial and should be used in the OFDM process. While at first sight it seems tempting

to include all available variables, it soon becomes clear that even for small models this

involves processing a large amount of data. Especially for the computation of the covari-

ance matrix including a large number of output variables is problematic as it requires to

increase the amount of observations accordingly in order to ensure that enough degrees

of freedom are available. The issue is aggravated by the use of pseudo-observations when

deriving the covariance matrix. In a general equilibrium context, many of the output

variables feature linear relationships, thus feature a high correlation, and therefore make

it impossible to compute the inverse of the covariance matrix required by Equation 2.

For this reason for example total factor input and total final demand cannot be used

simultaneously in the computation of r2.

But if more is not better, what is the least amount of variables that should be

considered? Figure 2 provides the results of an analysis of σM , whereas once more the

OFDM procedure has been applied to the stylised model with the original ’true’ values

of σC = σKL = σM = σKLM = 1, γK = 0.05 and γL = 0, but with the difference

that here various output variables are used to compute ĈOV and r2. For Graph 2a
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only intermediate inputs into the production of good A and B are considered. Although

σM = 1 is part of the parameter sets that can be deemed to provide a good fit, the

’true’ value can not be identified as the only apt specification. But if in addition to the

intermediate inputs also factor inputs to the two sectors are considered, as it is in Graph

2b, the ’true’ value of σM is revealed unambiguously. Then again, using only output

variables in the OFDM process that are not directly related to the tested parameter, such

as for example sectoral output and total final demand in Graph 2c, makes it impossible

to find an adequate parameter specification. However, as becomes the clear from Graph

2d, adding these variables to the analysis using all input variables does not affect the

good result of the OFDM process. This allows us to reason that in order to ensure

that OFDM works well, at least the directly affected variables should be included in the

process and more variables do not harm the process - as long as the number of variables

is still tractable and variables are not a linear combination of each other. In accordance

to this and if not stated otherwise, we use for the OFDM applications in this paper all

input variables, sectoral output and total final demand to compute r2 and ĈOV.

3.4.3 Type of shocks that can be used for ODFM

For a real world application, the validation step in the OFDM procedure will eventually

require keeping track of various types of changes and using these in the replication at-

tempt. This implies that OFDM must be able to identify the ’true’ underlying parameter

values independent of the type of shock that is applied. To explore this issue, we run

yet another series of OFDM procedures and seek to identify the ’true’ value of σKLM for

sector A and B, but this time use three different types of shocks. Figure 3 presents the

corresponding results. The first shock used for Graph 3a is an increase in the available

endowments, which is the type of shock that we have used so far in our deliberations.

Note that this type of shock corresponds to a change in factor productivity. For the

second Graph 3b we apply a tax on output of sector A and for the third Graph 3c we

consider a tax on capital inputs in sector A. Thereby it can be expected that the effect

of taxes will be similar to that of tariffs, although due to the limited scope of our single

region model we cannot undertake a true analysis of this here. As can be seen from all

graphs, OFDM always succeeds in identifying the ’true’ value of σKLM . Thus we can

conclude that OFDM appears to work with a variety of different shocks. It must be

noted however, that the shock that is applied must have a certain magnitude to allow

OFDM to work reliably. In our stylised example for instance, the results become blurry

if a tax of 5% or less is applied.

3.5 Discussion

Limits of validation OFDM builds on a series of validation exercises. Therefore

its results strongly dependent on the availability of data for two different points in

time and information on the exogenous shocks that moved the economy from one state

to the other. In particular the latter is generally hard to come by, because at any
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the computation of r2 and ĈOV [axes give parameter values, color gives value of r2]
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moment in time there exists a multitude of different shocks that influence the economy

and it is clearly impossible to account for all of them. This however implies that any

validation exercise will always miss a potentially important element of change and will

as a consequence attribute the adjustment of the system to a different (but accounted)

channel. Ultimately this will also affect the capabilities of the OFDM method. Research

can however confine the problem by limiting the number of relevant changes that are not

accounted for. For this purpose using comprehensive datasets such as the World Input-

Output Database (WIOD, Timmer et al. (2012); Dietzenbacher et al. (2013)) offer an

opportunity to modelers. WIOD offers a rich and consistent representation of most

important economies and their trade linkages in the form a time series. This allows to

infer many changes that have taken place over time, for example with respect to changes

in endowments, taxes and tariffs, trade structure, interregional and intertemporal saving

and borrowing, and to take them into account when validating models.

Multiple adequate parameter setups In a general equilibrium model, the value of

some parameters may influence the level or importance of other parameters. To be able to

judge the flexibility of production for example, it is necessary to consider all substitution

elasticities related to the process. If the substitutability between intermediate and value

added is very low, then the elasticity of substitution between capital and labour may

become less important when assessing a shock in factor supply and could in an extreme

case take any value without affecting the model outcome. Potentially this may lead to

a situation where there exists more than one ’true’ parameter setup. For the OFDM

process, this would imply that there is not just one minimal r2, but many locally minimal

r2. Although such as situation has never occurred when using OFDM in our small

stylised model framework, it is in principle a possible outcome of OFDM. In this case

either parameter setup seems equally valid, as from a modelling perspective they all

minimise the deviation of model output to observations. To be able to judge whether

there are multiple adequate parameter setups, modellers should always consider in their

parameter portfolio a sufficiently large range of values and ideally include all possible

parameter values in the OFDM process. Taking a broader perspective with regard to

possible parameter values also helps to prevent identifying a locally minimal r2 as the

optimal value by mistake.

Inaccuracy of OFDM if parameters are misspecified As illustrated when dis-

cussing Graph 1f, OFDM appears become imprecise if some of the model parameters

are misspecified when seeking an adequate specification for another set of parameters.

Unfortunately, due to the lack of information on adequate parameter values criticised in

the outset of this paper, in any real world application this will most likely be an issue

for most applications of OFDM. The problem can however be overcome by including all

parameters of which modelers are unsure of in the OFDM procedure. While this may

require to enlarge the portfolio of parameter setups that is to be tested and thus will be

more demanding from a computational perspective, it increases the degree of freedom
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Figure 4: Goodness-of-fit criteria of OFDM for σKLM which includes all other elasticities

in the analysis [axes give parameter values, color gives value of r2]

and therefore the likelihood of applying the ’true’ parameter setup in one of the model

runs. This in turn will allow to find a model setup with truly minimal deviations and

thus most adequate parameter values. Figure 4 demonstrates the functioning of this

comprehensive approach. Here, the setup is similar to the OFDM process used to gen-

erate Graph 1f, but instead of applying the false parameter specifications, we include all

elasticities in the process. Eventually and in contrast to the earlier attempted, the ’true’

values of σA
KLM = 1.25, σB

KLM = 0.75 and although not pictured σC = σKL = σM = 1

are identified without any inaccuracy.

Optimisation vs. sensitivity analysis Instead of using a structured sensitivity

analysis with different parameter setups to identify the most apt parameter setup, re-

searchers could also apply an optimisation process which minimises the goodness-of-fit

criterion r2 to derive a suitable parameter specification. Such an idea would follow an

approach presented by Liu et al. (2004) in a paper seeking to find a set of optimum

Armington elasticities. Compared to a self-contained optimisation, a sensitivity anal-

ysis has two main advantages. First, it does not require to solve a complex system of

equations and can be expected to be much less computationally demanding. Second,

it allows for an easy and straightforward implementation of additional information on

potentially good parameter values that has been supplied for example by estimates from

the literature. However, using the goodness-of-fit criteria from OFDM in an optimisation

approach and contrasting the results to a standard OFDM procedure is an interesting

question for future research.

4 Application of OFDM to Basic WIOD CGE model

After having presented and illustrated OFDM on the basis of a small stylised CGE

model, in this section we apply the method to a full scale CGE model. On that account,

we seek to identify adequate substitution elasticities for the specification of production

(σKL, σKLE and σKLEM) for the Basic WIOD CGE Model. This model is a static,
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multi-region, multi-sector CGE model. With regard to the basic economic structure,

it builds on the comprehensive World Input-Output Database (WIOD, Timmer et al.

(2012); Dietzenbacher et al. (2013) which will be an advantage for the validation part of

OFDM.4 Details on the Basic WIOD CGE Model are provided in the Appendix and in

Koesler and Pothen (2013).

Most importantly for our analysis, the model distinguishes between three groups

of commodities: energy commodities Y(eg,r), industry commodities Y(ind,r) and services

Y(ser,r). The production of these goods is characterised by production functions with

constant elasticities of substitution (CES) and constant returns to scale. Nested func-

tions with three levels are employed to specify the substitution possibilities between

capital K, labour L, energy inputs A(eg,r) and non-energy A(neg,r) inputs (including in-

termediates form industry and services). We apply a KLEM production structure, thus

capital and labour enter the production function on the lowest level, on the second level

value added is combined with energy and finally on the top level of the CES function the

energy-value-added composite is combined with a non-energy material aggregate. An

overview of the production structure is given in Figure 5.

Y(i,r)
ρKLEM
(i,r)

A(neg,r)
ρKLE
(i,r)

A(eg,r)
ρKL
(i,r)

K(r) L(r)

Figure 5: Structure of KLEM production function in Basic WIOD CGE Model

For our purpose, the WIOD data is aggregated into two regions (Europe (EUR)

and ’Rest of the World’ (ROW)), three sectors (energy goods (EG), industry (IND)

and services (SER)) and two final demand agents (households (FC HH) and government

(GOV)). Additional information on the aggregation is given in the Appendix of this

paper. With regard to the specification of parameters, the model is calibrated to the

year 2003. We choose 2003 to avoid possible distortions from the economic crisis in later

years. The required Armington elasticities are taken from GTAP7 (Badri and Walmsley,

2008; Hertel et al., 2007, 2008) and are mapped to the sectors we consider prior to the

implementation into the model. Consumption and the intermediate mix in production

are characterised by a Leontief function. In its initial setup and if not stated otherwise,

we use estimates from Koesler and Schymura (forthcoming), henceforth abbreviated as

KS, to specify the flexibility of production with regard to different inputs. The re-

spective substitution elasticities are given in Table 3. But eventually OFDM is applied

4The WIOD database is available at http://www.wiod.org. We use data downloaded on the 17th of

April 2013.
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to determine an adequate specification of the substitution elasticities σKL, σKLE and

σKLEM .

For the descriptive purpose of this paper, we undertake three different OFDM pro-

cesses. The first is limited to an investigation of the elasticity of substitution between

capital and labour in the energy sector (σEG
KL). The second explores substitutability on

a more general basis and considers different values for σKL, σKLE and σKLEM for all

sectors on the basis of a OFDM process without starting values. The third repeats the

second process but this time takes estimates from KS as starting values.

For the reasons presented before, it is also not possible to use the time series data

provided in WIOD to derive the required covariance matrix. Therefore, we generate a

set of 250 pseudo observations by shocking the model with a series of different changes

in total factor productivity, respectively a uniform increase in the endowment of labour

and capital of households to be able to estimate the covariance matrix. Furthermore,

following the insights from the previous section, we use output variables for total final

demand, sectoral output as well as total factor and intermediate input in production to

compute ĈOV.

For the validation step in all three OFDM processes, we seek to replicate with the

model the economy of the year 2004. An that account, we first compute all changes

from 2003 to 2004 that we can observe in the WIOD dataset and subsequently apply

the changes to the model in the form of a series of simultaneous shocks. This involves

changes in household labour and capital endowments, intertemporal and interregional

saving or borrowing, the prevailing tax structure, and international transport margins.

As discussed before, our approach will clearly miss some changes that have occurred

during this period. But given the comprehensive coverage of WIOD we hope to limit

the number of omitted variables to a minimum.

4.1 Factor substitutability in the energy sector

In the first of three applications of OFDM, we seek to determine σKL for the sector

producing the energy good (EG) in both regions EUR and ROW. On that account, we

generate a portfolio of 250 different specifications of σEG,EUR
KL and σ

EG,ROW
KL that are

to be tested. Thereby we arbitrary draw parameter values from a distribution of the

form N (1, 1), whereas we repeat the draw if values smaller than zero or bigger than ten

occur.5

The results of applying the parameter setups in the validation of is presented in

Figure 6. To ease the presentation, we standardised the goodness-of-fit measure using:

r2Standard =
|r2|

|r2MAX |
, (7)

such that 0 ≤ r2Standard ≤ 1. Thus parameter specifications featuring a r2Standard of zero

5The CES functional form used in the model requires all elasticities to be weakly positive and as in

the context of CGE models a substitution elasticity of ten already implies a very high substitutability,

we do not consider values bigger than ten.
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Figure 6: Standardised goodness-of-fit criteria of OFDM for σKL of the energy sector

(EG) in Europe (EUR) and ’Rest of the world’ (ROW) [axes give parameter values, color

gives value of r2Standard]

achieve a perfect fit and a r2Standard value of one indicates that the parameter setup in

question is the worst of all tested specifications. Although no clear locus with adequate

parameter values can be identified in Figure 6, the OFDM clearly suggest that low values

for σEG,ROW
KL are better than high values. The parameter values featuring the smallest

r2Standard are σEG,EUR
KL = 2.76 and σ

EG,ROW
KL = 0.03. But given the big range of σEG,EUR

KL

with relatively similar low r2Standard values, the factual best result for σ
EG,EUR
KL should

not be overrated.

4.2 General input substitutability in production

For the next application we broaden the scope of the OFDM process and consider differ-

ent values for σKL as well as σKLE and σKLEM for all sectors. We once more generate a

portfolio of 250 parameter setup using the aforementioned distribution and constraints.

Thereby all 18 parameters are iterated simultaneously.

Figure 7 presents the result of this OFDM application for the Basic WIOD CGE

Model. From the different graphs it becomes clear that for all sectors and elasticities,

some parameter specification are better suited than others to replicate the 2004 situa-

tion. But in this bigger application, the graphs are not as informative in our previous

applications and in most cases we cannot identify a parameter area around which the

fit is better than elsewhere. Only for σKL in Graphs 7a-c we can identify patterns. It

suggest that for in EG and SER lower values seem to fit better for σKL, while in IND

higher values seem more appropriate. The reason for the graphical ambiguity is that

because all 18 values for σKL, σKLE and σKLEM are iterated simultaneously, even pa-

rameter settings that seem similar in one of the graphs potentially feature very different

values for the other 16 parameter values. The graphical interpretation of the results

is therefore limited. Still, from looking at the numerical values of r2Standard we can de-

rive the parameter setup which provides the best model fit. The respective values for

σKL, σKLE and σKLEM are given in Table 2. Note also that compared to the previous
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Figure 7: Standardised goodness-of-fit criteria of OFDM for σKL, σKLE and σKLEM

when applied to Basic WIOD CGE Model [axes give parameter values, color gives value

of r2]
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Table 2: Results of OFDM for σKL, σKLE and σKLEM when applied to Basic WIOD

CGE Model

ROW EUR

EG IND SER EG IND SER

σKL 0.12 6.82 0.31 3.62 4.54 5.33

σKLE 4.25 5.92 4.06 8.37 0.49 0.60

σKLEM 0.83 4.10 4.07 0.97 1.77 1.79

analysis the overall goodness-of-fit tends to be better which results in lower r2Standard

values. The reason for this is straightforward, including more parameters in the OFDM

process increases the degrees of freedom and therewith the possibilities to adjust the

model so that it can eventually generate a good fit.

4.3 General input substitutability in production with starting values

For the third application of OFDM, we build a portfolio of 250 different parameter

specifications for σKL, σKLE and σKLEM on the basis of the estimates and standard

deviations provided by KS. That is we use their estimates as initial values and iterate

the parameters around these starting points assuming a normal distribution with the

standard deviation presented also in their study.6 Again we apply the constraints for

parameter values smaller than zero and higher than ten and, as before, repeat the draw

in such a case. As this paper uses of a different aggregation than KS, we aggregate their

estimates and standard deviations on the basis of the following equations:

σAggregate =
∑

i

(αiσi) (8)

and

V AR (σAggregate) =
∑

i

(
α2
i V AR (σi)

)
, (9)

where αi is the relative sector size in the aggregate and the later assumes that the

elasticities between sectors are not correlated. Note that although KS reject variations

across regions and over time for the substitution elasticities they estimate, here changes

in the sector share may lead to elasticities that vary across regions and over time. The

estimates we eventually use as starting values and the related standard deviations are

given in Table 3 and correspond to the aggregated 2004 values for Europe. Note also

that here we iterate σKL, σKLE and σKLEM again simultaneously for the generation of

the different parameter setups.

6KS do not provide a substitution elasticity between capital and labour for the Coke Refined

Petroleum and Nuclear Fuel (CPN) sector, here we assume that this elasticity is equal to the corre-

sponding elasticity for the chemical and chemical products sector (0.24). For estimates that equal +Inf

we take an elasticity value of 10. Furthermore, for elasticities were no standard deviation is provided or

were it is bigger than 10 we assume that it is equal to 2.5.
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Table 3: Results of OFDM for σKL, σKLE and σKLEM when applied to Basic WIOD

CGE Model using estimated starting values from KS, standard deviations are given in

parentheses

ROW EUR

EG IND SER EG IND SER

σKL 3.59 0.38 1.24 5.13 0.35 1.21

σKLE 3.83 0.44 0.25 3.37 0.39 0.26

σKLEM 0.52 0.61 1.60 0.52 0.71 1.37

σKS
KL 3.44 (0.61) 0.35 (0.02) 0.82 (0.09) 5.75 (0.93) 0.34 (0.02) 1.17 (0.12)

σKS
KLE 2.85 (1.34) 0.43 (0.03) 0.29 (0.04) 3.30 (0.59) 0.40 (0.02) 0.27 (0.03)

σKS
KLEM 0.41 (0.01) 0.59 (0.19) 1.95 (0.55) 0.53 (0.01) 0.58 (0.14) 1.47 (0.27)

As described before, the graphical interpretation of the results of the OFDM process

applied here is only of limited value. Therefore we move directly to the presentation

of the parameter setup featuring the best model fit. The corresponding values are

given in Table 3 together with the starting values and standard deviations from KS.

Compared to KS in particular the values for EG and SER in ROW seem to be higher.

The other parameters are rather stable with only few minor adjustments. But it must be

noted that of course the standard deviation attached to the original estimate critically

influence the potential for updating the parameter values. This is also the reason why

the OFDM process with starting values results in an overall less good fit relative to a

OFDM process without starting values. Again this is due to the fact that if the tested

parameter values are not restrained because of low standard deviations, the likelihood

that a fitting parameter setup is included in the investigated portfolio is higher and thus

the overall model fit is potentially better.

Ultimately, the availability of a set of suitable elasticity values from the literature

raises the question why a OFDM process should be applied in the first place. There are

two reasons for this. For one thing, to be able to use parameter values from the literature

these should ideally have been estimated specifically for the use in the underlying model

or at least build on the same theoretical structure. Otherwise this can result in a

misspecification of the model (Browning et al., 1999). Unfortunately, although this is

the case for the estimates from KS which have been estimate using the same dataset and

functional form as the Basic WIOD CGE Model, this favourable situation is unlikely

to apply for most models and parameters. What is more, estimates must always be

associated with some degree of uncertainty. Directly applying estimates in a model

neglects that they are basically also a - admittedly well informed and elaborated - ’best

guess’. Modelers should be aware of these issues and if possible take measures that

account for the limitations of estimates form the literature. Applying OFDM allows

this.
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5 Summary and conclusion

This paper is devoted to the enhancement of CGE modelling and presents OFDM as

an alternative method to the specification of parameter values in CGE models. We first

provide some background information on OFDM and outline how it has been used in

climate science to detect distortions in the climate system and to specify climate models.

Next we illustrate how the process of OFDM can be applied within a CGE framework and

apply it to a stylised CGE model with the aim of demonstrating OFDM and exploring

its potential in a CGE context. We show that OFDM is capable of identifying the ’true’

parameter values for substitution elasticities as well as growth rates of endowments

respectively factor productivity. Furthermore, our results suggest that the process can

be applied using a range of different types of shocks such as changes in endowments or

taxes. Finally we apply the OFDM approach to a full scale CGE model and derive a set

of substitution elasticities for the Basic WIOD CGE Model.

Overall, using OFDM to specify parameters in CGE models allows to secure three

main benefits: 1) OFDM employs a structured optimisation procedure and does not

require modelers to update the model specification on the basis of their intuition as

is the case for most other validation exercises or sensitivity analyses. 2) It enables

modelers to account the uncertainty that is associated with parameter estimates from

the literature. 3) OFDM is versatile and can be used to identify adequate parameter

specifications for a range of different parameters such as elasticities or growth rates.

There remain some limitations however. In its process, OFDM involves model valida-

tion and because of the difficulty to account for all changes that take place over a certain

period of time, the results might be somewhat distorted. The issue might however be

alleviated by using datasets such as WIOD which provide comprehensive and consistent

information on changes throughout economies. In addition, OFDM requires informa-

tion on the relationship between model output in the form of a covariance matrix, this

information might also prove hard to provide, in particular when many of the model

output variables are to be used in the OFDM process. Furthermore, the choice of which

parameter values are to be included in OFDM process and the question within which

range these should be tested confronts modelers with a tradeoff. On the one hand,

exploring a wide range of parameters and values increases the likelihood of achieving

better results in the validation exercise and potentially provides values which are highly

suitable according to the goodness-of-fit criteria of OFDM. Using additional information

on parameter values from estimates found in the literature on the other hand, decreases

the parameter space and may result in a less good model model fit. This implies that

the process provides parameter values that are less adequate according to the OFDM

criteria, but allows to include information from previous studies in the analysis.

With regard to future research, one obvious next step would be to apply the OFDM

approach to a full scale CGE model and to use the resulting parameter specification

in a CGE analysis. This would help overcome some of the critique CGE models are

frequently confronted with and eventually will make CGE simulations more reliable.
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Europäische Wirtschaftsforschung (ZEW), Mannheim, Germany.

Koesler, S. and Schymura, M. (forthcoming), Substitution elasticities in a constant elasticity of

substitution framework - Empirical estimates using nonlinear least squares, Economic Systems

Research .

Liu, J., Arndt, C. and Hertel, T. (2004), Parameter estimation and measures of fit in a global,

general equilibrium model, Journal of Economic Integration 19(3), 626–649.

McKitrick, R. R. (1998), The econometric critique of computable general equilibrium modeling:

The role of functional forms, Economic Modelling 15(4), 543–573.

Rosenthal, R. E. (2010), GAMS - A user’s guide, GAMS Development Corporation, Washington,

USA.

Rutherford, T. F. (1999), Applied general equilibrium modeling with MPSGE as a GAMS sub-

system: An overview of the modeling framework and syntax, Computational Economics 14(1-

2), 1–46.

Rutherford, T. F. (2005), GTAP6inGAMS: The dataset and static model, Conference Proceed-

ings, Workshop: Applied General Equilibrium Modeling for Trade Policy Analysis in Russia

and the CIS, Moscow, Russia.

Timmer, M. P., Erumban, A. A., Reitze, G., Los, B., Temurshoev, U., de Vries, G. J., Arto, I.,

Andreoni, V., Genty, A., Neuwahl, F., Rueda-Cantuche, J. M. and Villanueva, A. (2012), The

World Input-Output Database (WIOD): Contents, sources and methods, Technical Report,

University of Groningen, Groningen, The Netherlands.

24



A Appendix

A.1 The Basic WIOD CGE model - Short description

The Basic WIOD CGE model is a static, multi-region, multi-sector computable general

equilibrium (CGE) model. It has been developed within the project ’WIODWorld Input-

Output Database: Construction and Applications’ funded by the European Commission,

Research Directorate General as part of the 7th Framework Programme and has been

designed deliberately as flexible as possible in order to allow researchers to use the

World Input-Output Database (WIOD) in the framework of a CGE model in various

applications. While a comprehensive description of the Basic WIOD CGE Model and the

data it uses is provided by Koesler and Pothen (2013), the following provides a concise

description of the model.

The model distinguishes between two groups of commodities in region r: energy

commodities Y(eg,r) and non-energy commodities Y(eg,r). The production of these goods

is characterised by production functions with constant elasticities of substitution (CES)

and constant returns to scale. Nested CES functions with three levels are employed

to specify the substitution possibilities between capital K(r), labour L(r), energy inputs

A(eg,r) and non-energy intermediate inputs A(neg,r) of sectoral production. A KLEM

production structure is applied for all sectors i, thus capital and labour enter the pro-

duction function on the lowest level, on the second level value added is combined with

energy and finally on the top level of the CES function the energy-value-added compos-

ite is combined with a non-energy material aggregate. An overview of the production

structure is given in Figure 5 and the corresponding zero-profit condition is given in

Equation A.1. Thereby and for all following CES functions, π denotes profits and CES

stands for a constant elasticity of substitution function. The arguments of the CES

function is given in parentheses and the corresponding elasticity of substitution in the

upper index. Small p’s are prices of commodities and factors.

πY
(r,i) ≤CES0

(r,i)

[
CES0

(r,i)(pem(em,ETSGroup)), CES
σklem
(r,i,t)

(r,i)

[
CES

σms
(r,i,t)

(r,i)
(pa(neg,r,i)),

CES
σkle
(r,i,t)

(r,i)

[
CES

σe
(r,i,t)

(r,i) (pe em(eg,r,i)),

CES
σkl
(r,i,t)

(r,i) (pl(r), pk(r))
]]]

(A.1)

Sectoral output can be used for intermediate use and/or final consumption domesti-

cally and/or exported to other regions. Perfect competition is assumed in all markets.

Interregional trade is fully flexible and need not be balanced as long as the agent’s overall

budget is balanced.

As is the case for many other models, the choice among imports and domestically

produced commodities is based on Armington’s idea of regional product differentiation

(Armington, 1969), i.e. domestic and foreign goods are not necessarily perfect substitutes

and in combination form an Armington aggregate. However, in the Basic WIOD CGE
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Figure A.1: Structure of Armington aggregate

U(r,fd)

ρU(r,fd) = 0

A(eg,r) A(neg,r)

Figure A.2: Structure of utility of representative agents

Model, Armington goods are not only region specific to account for regional differences

in preference for domestic and foreign goods, but also sector specific in order to allow

intermediates to be traced from their origin to their destination. Figure A.1 gives an

overview of the underlying Armington structure and Equations A.2 and A.3 present

the zero-profit and market clearance conditions for international commodity markets.

Y(r,i) is domestic production, Y(rr,i) is production by foreign regions, small p’s are prices

and M(i,rr,mkt) are imports of commodity i of market mkt (final demand and sectors)

in region rr. While the Armington elasticity σes a
(r,i) governs the substitutability between

domestic and foreign goods, σes mm
(r,i) controls the substitution between the same good

from different regions. Apart from this, the basic model abstracts from other potential

trade distortions.

πA
(i,r,mkt) ≤CES

σes a
(r,i)

(i,r,mkt)

[
py(r,i), CES

σes mm
(r,i)

(i,r,mkt)(py(rr,i))

]
with rr 6= r (A.2)

M(i,r,mkt) ≥
∑

rr;rr 6=r

(
∂πA

(i,r,mkt)

∂py(rr,i)
A(i,r,mkt)

)
(A.3)

Each region may be represented by up to five aggregated representative agent who

embraces all final demand types available in WIOD. The representative agents max-

imise their utility by purchasing bundles of consumption goods subject to their budget

constraint. Utility of representative agents U(fd, r) is given as a Leontief composite of

energy A(eg,r) and a non-energy commodities A(neg,r). The structure of the utility func-

tions is given in Figure A.2 and the related zero-profit condition is given in Equation

A.4.

πU
(r,fd) ≤CES0

[
CES0(pa(neg,r)), CES0(pa(eg,r))

]
(A.4)
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As described exemplarily for households and a government agent in Equation A.5 and

A.6, the budget is determined by factor and tax income along with (intertemporal and

interregional) borrowing or saving. In the basic version, agents supply a fix amount

of capital and labour. Factors are mobile across sectors within regions but not across

regions and therefore the model in its basic version abstracts from interregional factor

mobility and investment.

B(r,FC HH) =pk(r)
∑

i

(
K(r,i)

)
+ pl(r)

∑

i

(
L(r,i)

)

− Saving(r,FC HH) +Borrowing(r,FC HH)

(A.5)

B(r,GOV ) =Tax(r)− Saving(r,GOV ) +Borrowing(r,GOV ) (A.6)

Besides standard economic activity, the model makes provisions for the accounting

of CO2 and other air emissions (N2O, CH4, NOX, SOX, NH3, NMVOC, CO) caused by

economic activity. For CO2, the model distinguishes between energy related emissions

and process emissions from sectoral production as well as consumption. Because the

WIOD dataset does currently not allow to tie any of the other air emissions to particular

inputs, these emissions are considered only as process emissions from production and

consumption. From a modelling perspective, when emissions are related to energy, they

occur during the production process parallel to the use of energy. That is they are

associated with the second nest of the production structure outlined in Figure 5 and the

first branch of Figure A.2 depicting the structure of utility. Process emission in turn are

understood as a byproduct of production and consumption and are thus tied to sectoral

output and final demand. If required, an emission trading system or a taxing scheme

can be applied to all types of emissions.

Following Rutherford (2005) and Böhringer et al. (2003), the equilibrium in our

model is characterised through three types of equilibrium conditions, namely market

clearance conditions for all commodities and factors (supply = demand), income bal-

ances (net income = net expenditure) and zero profit conditions (cost of inputs = value

of output). The variables defining the equilibrium are activity levels for the constant-

returns-to-scale production, commodity and factor prices, and the price of final con-

sumption. The market clearance condition related to the production of commodities is

illustrated in Equation A.7.

Y(r,i) ≥
∑

ii

(
∂πY

(r,ii)

∂py(r,i)
Y(r,ii)

)
+
∑

fd

(
∂πU

(r,fd)

∂py(r,i)
U(r,fd)

)

+
∑

rr;r 6=rr

∑

mkt

(
∂πA

(i,rr,mkt)

∂py(r,i)
A(i,rr,mkt)

) (A.7)

The market clearance condition for final demand is given in Equation A.8.

B(r,fd) ≥U(r,fd) (A.8)
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For factor markets the following market clearance conditions must hold.

K(r,i) ≥
∑

ii

(
∂πY

(r,ii)

∂pk(r)
Y(r,ii)

)
(A.9)

and

L(r,i) ≥
∑

ii

(
∂πY

(r,ii)

∂pl(r)
Y(r,ii)

)
(A.10)

Numerically, the model is formulated as a mixed complementarity problem (MCP)

in the mathematical optimization program GAMS, a program that is frequently used

to develop and run CGE models. It is written in GAMS using the MPSGE syntax (c.f.

Rosenthal, 2010; Rutherford, 1999). The model is solved using the PATH algorithm (c.f.

Dirkse and Ferris, 1993).

Regarding the basic economic structure and information on emissions, the model

builds on data from the World Input-Output Database (WIOD) (Timmer et al., 2012;

Dietzenbacher et al., 2013) and can be calibrated to any year WIOD covers. The required

Armington elasticities are taken from GTAP7 (Badri and Walmsley, 2008; Hertel et al.,

2007, 2008) and are mapped to WIOD sectors prior to the implementation into the

model. For substitution elasticities determining the flexibility of production with regard

to inputs, estimates from Koesler and Schymura (forthcoming) are applied.

A.2 Additional tables

Table A.1: List of regions

Short Regions Associated WIOD Regions

EUR Europe AUT, BEL, BGR, CYP, CZE, DNK, ESP, EST, FIN,

FRA, GBR, GER, GRC, HUN, IRL, ITA, LTU, LUX,

LVA, MLT, NLD, POL, PRT, ROM, SVK, SVN, SWE

ROW Rest of the World AUS, BRA, CAN, CHN, IDN, IND, JPN, KOR, MEX,

ROW, RUS, TUR, TWN, USA

Table A.2: List of sectors

Short Sector Associated WIOD Sector

EG energy goods C, 23, E

IND industry AtB, 15t16, 17t18, 19, 20, 21t22, 24, 25, 26, 27t28,

29, 30t33, 34t35, 36t37, F, 60, 61, 62

SER services 50, 51, 52, H, 63, 64, J, 70, 71t74, L, M, N, O, P
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