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Too Proud to Stop: Regret in

Dynamic Decisions∗

Paul Viefers† Philipp Strack‡

Abstract

Many economic situations involve the timing of irreversible decisions. E.g. Peo-

ple decide when to sell a stock or stop searching for a better price. We analyze

the behavior of a decision maker who evaluates his choice relative to the ex-post

optimal choice in an optimal stopping task. We derive the optimal strategy under

such regret preferences, and show how it is different from that of an expected util-

ity maximizer. We also show that if the decision maker never commits mistakes

the behavior resulting from this strategy is observationally equivalent to that of

an expected utility maximizer.

We then test our theoretical predictions in the laboratory. The results from a

structural discrete choice model we fit to our data provide strong evidence that

many people’s stopping behavior is largely determined by the anticipation of and

aversion to regret.
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1. Introduction

”My father invested some money in the stock market when the index was

190. A few months later the index jumped to 240, and then, after some time,

fell to 200. Knowing my father I urged him to sell his position, telling him

that the market was too risky at the moment. My father replied: To sell

now, after I lost 40 points? No way!”

– from Gneezy (2005), p. 420

This paper is concerned with theory and behavior in stopping problems. Hence, consider

the following setting: An agent observes a sequence of offers, X = (X1, X2, . . .), which

are the realizations of some stationary stochastic process. After observing the t-th offer,

the agent has to decide whether to continue and thus forego the current offer or to stop

and seize it. In the former case, she observes the next offer and faces the same decision

again. In the latter case, the agent’s decision to stop is irreversible and she receives a

net payoff Xt−K, where K > 0 is known and fixed. In considering which stopping rule

is optimal, the agent has to weigh the immediate gains from stopping at Xt, against the

loss of the option to stop at higher values in the future.

We address two fundamental questions in this setting. First, what do theories of

dynamic behavior predict people to do in stopping problems? Toward that end, we

generalize some existing results about optimal stopping under expected utility, but also

provide new results under different alternative behavioral theories. Second, how well

do the predicted stopping rules describe actual behavior? To answer this, we ran a

laboratory experiment based on the design by Oprea et al. (2009) and tested several key

properties of our predictions.

Testing stopping theory is important, because many different decision-making con-

texts in finance, economics and statistics are modelled as stopping problems. Most

prominently in economics, optimal stopping theory has been applied to model job search

frictions in macroeconomics (see inter alia Stigler, 1962; McCall, 1970; Rogerson et al.,

2005), but also to model irreversible investment-, option pricing- and market entry deci-

sions (McDonald and Siegel, 1986; Jacka, 1991; Dixit and Pindyck, 1994) or the optimal

sample size for sequential hypothesis testing (Wald, 1945). While stopping theory is

widely applied, the vast majority of the theoretical literature, let alone the experimental

literature, almost exclusively considers agents with expected utility (EU) preferences, or

even more narrowly: risk neutral agents.

Under EU, the optimal stopping rule turns out to be simple: stop as soon as the
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payoff process hits a certain reservation level. Otherwise wait. This strategy, which we

call a cut-off strategy, comprises two important properties. First, it is a reservation-level

strategy. That is, the agent has a unique payoff reservation level that makes it optimal

for her to seize the option which is independent of the path of Xt that lead there. Second,

the agent behaves time-consistently, i.e. the process is stopped the first time it reaches

this reservation level.

Our first contribution is to show that this prediction holds under a more general notion

of EU than previously documented. The way we generalize the notion of EU relative

to the literature, is by relaxing a standard monotonicity assumption to a single-crossing

assumption on the Bernoulli utility function of an agent. While our single-crossing

assumption holds for any strictly increasing and concave utility, the monotonicity as-

sumption does, e.g., not necessarily hold under constant absolute risk aversion.

Second, under the single-crossing assumption we show that cut-off strategies are not

only optimal for a larger class of utility functions, but also if one considers off-equilibrium

optimal strategies, i.e. subgame perfect strategies. That is, cut-off strategies are not

only optimal under a wider class of utility functions, but are also robust to erroneous

deviations. Even if an agent reaches a point she never planned to reach ex ante, she will

not reconsider her subsequent plan.

However, the gain from weakening this assumption is even more substantial. Since

the single-crossing assumption does not require utility to be concave or differentiable,

we are able to extend our results to value functions or gain-loss utility (Kahneman and

Tversky, 1979), where utility is defined over gains and losses relative to a fixed reference

point and agents are potentially risk-averse over gains and risk-seeking over losses.1

When it comes to actual behavior in the lab and in the field, there is much anecdotal

and empirical evidence, however, that playing cut-off strategies is not what people ac-

tually do. Instead, it is usually found that individuals’ decisions are influenced by the

history of events. For example, it is a well-established fact in the behavioral finance lit-

erature that individual investors have a disposition to sell winning stocks and ride losing

stocks (Shefrin and Statman, 1985; Lakonishok and Smidt, 1986; Weber and Camerer,

1998; Grinblatt and Keloharju, 2000). Hence, investors’ willingness to stop and sell an

asset at a given price depends on prior gains and losses relative to, e.g., the purchasing

price of the asset. In a similar vein, Post et al. (2008) find that subjects’ choice behavior

1Even though, the terms value function and gain-loss utility are often used interchangably to describe
an agent whose utility is defined over final wealth relative to a fixed and known reference point, we
will henceforth use the term gain-loss utility to avoid confusion with the term value function found
in the dynamic programming literature.
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in a large-payoff TV game show is significantly less risk-averse after a series of unfavor-

able events, than after a series of favorable events. Gneezy and Potters (1997); Gneezy

et al. (2003); Haigh and List (2005) obtain similar results in the laboratory.

Motivated by these findings, several theoretical papers have sought to rationalize the

observed deviations from EU. The majority of papers argues that a version of Kahne-

man and Tversky’s prospect theory preferences, adapted to a dynamic context, is able

to better explain observed behavior in stopping problems (Barberis and Xiong, 2009;

Henderson, 2012). Nonetheless, adaption of prospect theory preferences to dynamic

contexts like ours remains a delicate issue and, especially in combination with probabil-

ity weighting, is found to easily run into conceptual and theoretical problems (see e.g.

Hens and Vlcek, 2011; Ebert and Strack, 2012).

There are several alternative forces conceivable that are likely to play in explaining the

observed deviations from expected utility. For example, Shefrin and Statman discuss,

via intuition and example, how a combination of prospect theory, regret aversion, mental

accounting and self-control problems may rationalize the disposition effect. Our third

contribution is to derive the optimal stopping rule for an agent who exhibits regret

aversion. That is, we derive the optimal strategy of an agent whose utility is defined

over final wealth relative to what would have been ex post optimal (Loomes and Sugden,

1982).2 In our setting this implies a dynamic reference point at the past maximum of

Xt. Even though this renders regret preferences time-inconsistent, we prove that the

optimal strategy of such an agent is a cut-off strategy, i.e. time-consistent.

This does not necessarily imply that EU, gain-loss preferences and regret preferences

are behaviorally equivalent. While this is true in terms of the ex ante or minimal

optimal strategy, we show it does not hold if one considers also off-equilibrium behavior.

Loosely speaking, if we admit the possibility that agents do not implement their ex ante

strategy, their ex post behavior is predicted to be different. Specifically, agents with EU

and gain-loss preferences will behave time-consistently and not reconsider their behavior

ex post. We show that a regret agent, however, will reconsider her plan and likely raise

the ex-post cut-off to be equal to the past maximum of the payoff process.3

2Also Harry Markowitz admitted in an often-cited quote in the January issue of the magazine Money
in 1998 that his actual portfolio choice is largely dictated by anticipated regret: ”I should have
computed the historical covariance of the asset classes and drawn an efficient frontier. Instead I
visualized my grief if the stock market went way up and I wasnt in it or if it went way down and I
was completely in it. My intention was to minimize my future regret, so I split my [pension scheme]
contributions 50/50 between bonds [risk-free assets] and equities [risky assets].”

3This provides a formal proof for the conjecture made by Gneezy (2005) about the behavior of an
agent with reference point at the historical peak of the payoff process.
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In our experiment, we adopt the design by Oprea et al. (2009) and give subjects the

option to stop a geometric random walk. This is arguably the most standard stopping

setting found in economic applications and used widely to describe, e.g., investment

settings (Dixit and Pindyck, 1994). We find that subjects’ stopping decisions vary

substantially across 65 repetitions of the same stopping task and that the majority of

decisions are not time-consistent. There seems to be a strong stochastic component in

subjects’ behavior. In order to account for this, we then use our closed-form expressions

for the incentive to stop or continue to fit a dynamic discrete choice model to the

data. Such an structural model is not only interesting because it is able to capture

the stochastic component in our data, but also because it renders the regret model

testable. At this point, the distinction between ex-ante and the subgame-perfect optimal

strategy proves to be more than a purely academic subtlety, but in fact crucial to explain

observed behavior in the lab. Given the stopping decisions of subjects, we are able to

use the likelihood principle to assess whether subjects systematically base their stopping

decisions on the past maximum of the process. That is, whether if subjects reach a point

above the ex-ante optimal cut-off, but below the running maximum of the process, they

will not want to stop, but wait for the process to return to its previous maximum. In

fact, this is a choice pattern we observe to be abundant in our data and consequently a

regret model performs significantly better in explaining subjects’ decisions.

The paper is organized as follows. In section 2, we give an overview over the related

literature. In section 3, we describe the choice setting we consider. In section 4, we

present our model of expected utility and regret and derive the optimal strategy under

both preferences and discuss testable predictions. In section 5, we describe how we

implemented our setting in the laboratory. Section 6 presents our empirical results.

Section 7 finally concludes.

2. Related Literature

The theoretical literature on optimal stopping is vast and too large to give an exhaustive

overview. Peskir and Shiryaev (2006) provide an overview over the mathematical liter-

ature on optimal stopping and free-boundary problems in discrete and continuous time,

whereas Dixit and Pindyck (1994) provide an overview of applications in finance and

economics. Most prominently, stopping models have been applied to model job search

on labor markets (see inter alia Stigler, 1962; McCall, 1970; Rogerson et al., 2005),

but also to settings where firms face an irreversible investment or market-entry decision
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(McDonald and Siegel, 1986; Dixit and Pindyck, 1994).

More recently, there has been growing interest in the implications of non-standard

preferences for optimal stopping rules or more generally dynamic behavior. For example,

Epstein and Schneider (2003); Nishimura and Ozaki (2007, 2004); Riedel (2009); Cheng

and Riedel (2013) consider optimal stopping rules of agents who are ambiguity-verse.

Hens and Vlcek (2011); Henderson (2012); Ebert and Strack (2012) consider settings

where agents have gain-loss utility or prospect theory preferences à la Kahneman and

Tversky (1979).

While much attention has been devoted to the impact of regret on decision making

in the psychology (Gilovich et al., 1998; Zeelenberg et al., 1998, 2000; Gilbert et al.,

2004) and neuroscience literature (Camille et al., 2004; Coricelli et al., 2005, 2007), the

choice theoretic literature that investigates the theoretical predicition under regret –

especially in a dynamic context – is still fairly infant.4 To the best of our knowledge

the only papers that take regret theory to a dynamic setting are due to Krähmer and

Stone (2012) and Hayashi (2009, 2011). While Krähmer and Stone (2012) treat the case

of a finite-horizon choice problem under regret à la Loomes and Sugden, Hayashi (2009,

2011) is concerned with committment and consistency issues in a finite-horizon stopping

problem where the agent has minimax-regret preferences in the sense of Wald-Savage.

Compared to the theoretical literature, the experimental literature on optimal stop-

ping is relatively small. The first experimental papers due to Rapoport and Tversky and

others, contrast the theoretical predictions from sequential search models with individ-

ual behavior in the laboratory (see inter alia Rapoport and Tversky, 1966; Kahan et al.,

1967; Rapoport and Tversky, 1970; Seale and Rapoport, 1997, and references therein).

These experiments test theoretical predictions made by models of sequential search. In

a similar vein, there is a strand of experimental literature putting a focus on testing

implication for the particular class of job search models in the laboratory along various

dimensions, e.g. Schotter and Braunstein (1981); Cox and Oaxaca (1989, 1992, 2000)

and Brown et al. (2011).

Oprea et al. (2009) choose an experimental design, aimed at replicating the invest-

ment setting motivated in Dixit and Pindyck (1994). In their paper, subjects observe a

geometric binomial random walk and have the option to earn the current value of the

4Nonetheless, there is a growing literature that considers the impact of emotions and counterfactual
thinking on choice behavior. For example, see Rabin (2004); Battigalli and Dufwenberg (2007, 2009)
or Bordalo et al. (2012). Examples for applications of minimax-regret preferences to economics are
Bergemann and Schlag (2011) who consider monopoly pricing, Filiz-Ozbay and Ozbay (2007) who
consider auctions and Linhart and Radner (1989) who consider bargaining under minimax-regret.
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random walk less some fixed cost, or forego it in favor of future values. We replicate

their setup in this paper. They find that subjects approximate the risk-neutral optimal

strategy suprisingly well. While in three out of four treatments with different param-

eters for the evolution of the random walk, subjects stop too early, stopping decisions

are nearly optimal in one treatment. Moreover, Oprea et al. show that subjects adjust

their reservation levels in response to forgone earnings, i.e. regret associated with their

stopping decision in the current round, leads them to reconsider their strategy in the

coming rounds.

3. The Setting

Time is discrete and indexed by t ∈ {0, 1, . . .}. The agent observes a sequence X0, X1, . . .

of realizations of a multiplicative binomial random walk. For a given starting value

X0 > 0, future values of Xt are drawn according to the transition rule

Xt+1 =

hXt with probability p

1
h
Xt with probability 1− p

.

We call h > 1 the step size and p ∈ [0, 1] the uptick probability. We denote by X =

{hkX0 : k ∈ Z} the set off possible states of the process Xt. At the end of any period

t there is a fixed exogenous probability 1− δ ∈ [0, 1] that the game ends and the agent

receives a payoff of zero. We denote by T ≥ 0 the random time the game ends. At any

time t < T before the game ended the agent observes the realization of the random walk

Xt and decides whether to ‘continue’ or to ‘stop’.

If the agent chooses to stop in period t, she receives the value of the random walk Xt

minus a constant transaction cost K > 0, such that her material pay-off equals Xt−K.

Without loss of generality we assume that K ≤ X0.
5 After an agent decided to stop,

she continues to observe the realization of the process until the process jumps to zero in

period T .

If the agent chooses to continue, the game ends with probability 1− δ and the agent

gets a payoff of zero. With probability δ, the game does not end in period t, but period

t+ 1 starts and the agent observes the next realization of the random walk Xt+1.

5Otherwise it is always optimal for the agent to at least wait until he reaches K or the game ends.
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The expected gain from stopping in period t+ 1 instead of period t equals

δ (E [Xt+1 |Xt = x]−K)− (Xt −K) = x
(
δ
(
ph+ (1− p)h−1

)
− 1
)

+ (1− δ)K .

If δ(ph + (1 − p)h−1) ≥ 1 this gain in expected payoff positive for all x ∈ X and an

expected value maximizing agent never stops. This strategy however leads to a payoff

of zero and thus no optimal strategy exists. The following assumption ensures that the

expected value maximizing strategy is always well defined.

Assumption A1. To make sure the problem is well-posed for the risk-neutral agent, we

assume that δ(ph+ (1− p)h−1) < 1 .

4. Theories of Dynamic Behavior

In this section, we derive our theoretical predictions under different theories of dynamic

behavior. The two broad classes of preferences we consider are (i) expected utility and

(ii) minimax regret preferences.

For each class, we describe the underlying model assumptions and derive key properties

about predicted behavior. It turns out that both theories predict that agents will use

cut-off strategies. A cut-off strategy, is a strategy which satisfies the following definition

Definition 1 (Cut-off Strategy). The cut-off strategy τ(b) prescribes that the agent stops

at time t if the value of the process Xt exceeds the cut-off b and continues otherwise. That

is

τ(b) = min{t ≥ 0 : Xt ≥ b} . (4.1)

It is worth to stress that a cut-off strategy comprises two important features. First,

it is a reservation level strategy, i.e. it says that there exists a unique level at which

it is optimal to stop for the agent. Second, it postulates that the process is stopped

the first time the process reaches this level. This second property essentially is a time-

consistency property. A strategy that satisfies both, the reservation-level property and

the time-consistency property is what we call a cut-off strategy. A violation of the second

property, i.e. stopping at a point Xt with Xt < maxs≤tXs, indicates time-inconsistent

behavior and cannot be rationalized by expected utility. What is surprising, however,

is that it is also not rationizable by certain classes of path-dependent preferences. We

demonstrate this for the case of regret preferences below.
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4.1. Expected Utility

An expected utility agent evaluates outcomes according to the strictly increasing (and

not necessarily concave) utility function u : [−K,∞)→ R. Denote by 1A the indicator

function that takes the value one on the event A and zero otherwise. The EU agent then

chooses the stopping time τ that maximizes

E
[
1{τ<T}u(Xτ −K) + 1{τ≥T}u(0) |X0 = x

]
. (4.2)

Because preferences over stopping times are invariant under additive translations of the

utility u, we can without loss of generality assume u(0) = 0. To shorten notation we

denote conditional expectations by

Et,x [·] = E [· |Xt = x, T > t]

Ex[·] = E0,x[·] and conditional probabilities by Pt,x [·] = P [· |Xt = x, T > t] and Px[·] =

P0,x[·]. Moreover, we introduce V (τ, x) as the expected utility of the agent when she

uses the strategy τ and the initial value of the process is x

V (τ, x) = Et,x
[
1{τ<T}u(Xτ −K)

]
.

Let us denote by V ? : X → R the value of the agent when he uses the optimal strategy

V ?(x) = sup
τ
V (τ, x) .

The following lemma proven in the Appendix establishes a probability theoretic result

that will be useful to derive the optimal strategy.

Lemma 1 (Probability to Stop before the Deadline). When using the cut-off strategy

τ(b) as a continuation strategy at a given level Xt = x, the probability of stopping before

the game ends, τ(b) < T , is given by

Pt,x [τ(b) < T ] =


(
x
b

)α
for all b ≥ x

1 else
,

where α is given by α = 1
log(h)

log
(

1
2pδ

+
√

1
4p2δ2

− 1−p
p

)
> 1 .

As a consequence of Lemma 1 the expected utility from using the cut-off strategy τ(b)
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as a continuation strategy from x ≤ b, equals

V (τ(b), x) = Et,x
[
1{τ(b)<T}u(Xτ(b) −K)

]
= Pt,x [τ(b) < T ]u(b−K)

=
(x
b

)α
u(b−K) .

At any point x > b, the cut-off strategy τ(b) stops immediately and therefore

V (τ(b), x) =


(
x
b

)α
u(b−K) for x ≤ b

u(x−K) for x > b
. (4.3)

If the agent decides to stop at a point x his payoff equals u(x − K) if she decides to

continue until either the process reached xh or the game ended he gets an expected

payoff of

v(τ(hb), x) = h−αu(xh−K) .

Definition 2. We denote by Γ : X → R the expected gain from waiting until the process

reached xh instead of stopping at x

Γ(x) = h−αu(xh−K)− u(x−K) .

Γ describes the expected gain from waiting until the process makes on uptick. The

following lemma shows that the gain from any other cut-off strategy can be expressed

in terms of Γ.

Lemma 2 (Expected Payoff of a Cut-off Strategy). The expected gain from using the

cut-off strategy τ(xhn) instead of stopping at x is given by

V (τ(xhn), x) = u(x−K) +
n∑
j=1

h−(j−1)αΓ(xhj) .

Proof. We show the result inductively using the fact that once the agent reaches xhn−1

the continuation value is given by the expected value of waiting for one uptick

V (τ(xhn), x) = Ex
[
1{τ(xhn)<T}u(xhn −K)

]
= Ex

[
1{τ(xhn−1)<T}V (τ(xhn, xhn−1))

]
= Ex

[
1{τ(xhn−1)<T}

(
Γ(xhn−1) + u(xhn−1 −K)

)]
= V (τ(xhn−1), x) + Px

[
τ(xhn−1) < T

]
Γ(xhn−1)

= V (τ(xhn−1), x) + h−(n−1)αΓ(xhn−1) .
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The result follows inductively in combination with the fact that V (τ(x), x) = u(x −
K).

Define the point bu ∈ X as the smallest point such that it is not profitable to wait

until the process reaches buh, i.e.

bu = min{x ∈ X : Γ(x) ≤ 0} .

By Definition of bu it is never optimal to stop below bu. If Γ(bu) = 0 the agent is

indifferent between stopping at bu and waiting for one more uptick. Then, τ(bu) can not

be the unique optimal strategy.6

Definition 3 (Expected Change). For every function w : X → R, we denote by Lw :

X → R the expected change in w from period t to period t+ 1, conditional on being at x

Lw(x) = Et,x
[
1{t+1<T}w(Xt+1 −K)− w(Xt −K)

]
= δ

(
pw(xh−K) + (1− p)w(uh−1 −K)

)
− w(x−K) .

The following assumption ensure that the optimal strategy always stops above bu.

Assumption A2 (Single Crossing). The expected change in utility Lu(x−K) is negative

for all x > bu.

Assumption A2 ensures that stopping immediately is better than continuing and stop-

ping in the next period for all x > bu. The next Lemma shows Assumption A2 is a

necessary condition for optimal strategies to be cut-off strategies

Lemma 3. If Assumption A2 is violated and u is concave no optimal strategy is a cut-off

strategy.

It can be shown that if u is not concave and Assumption A2 is violated at least one

optimal strategy is not a cut-off strategy. We say that an agent has constant absolute

risk-aversion if u(x) = 1− θ
exp

(−θ) for some θ ≥ 0 and has constant relative risk-aversion

if u(x) = 1
θ
((x+K)θ −Kθ) for some θ ∈ (0, α).7 The following Lemma is proven in the

Appendix.

6As this case is non-generic under random small perturbations of u we assume throughout the paper
that Γ(bu) 6= 0.

7To ensure the utility of negative outcomes is well defined we look at constant relative risk-aversion
relative to the wealth level (x+K).
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Lemma 4. Assumption A2 is satisfied if u exhibits constant absolute or relative risk-

aversion.

As the next Proposition shows Assumption A2 is sufficient to ensure that stopping is

better than any continuation strategy for all x ≥ bu.

Proposition 1 (The Optimal Strategy). The unique subgame perfect optimal strategy

continues for all values x < bu and stops for all values x ≥ bu.

Proof. τ(bu) is an optimal strategy:

In the first step we prove that stopping above bu is optimal. To ease notation let us

denote by W : X → R the continuation value from using the cut-off strategy τ(b) derived

in (4.3)

W (x) = V (τ(bu), x) =


(
x
bu

)α
u(bu −K) for x ≤ bu

u(x−K) for x > bu
.

By the dynamic programming principle (cf. Peskir and Shiryaev, 2006, Theorem 1.11),

τ(bu) is an optimal strategy if and only if the function W (x) satisfies the dynamic

programming equation for all x ∈ X

max{LW (x), u(x−K)−W (x)} = 0 . (4.4)

We have that W (x) = u(x − K) for all x ≥ bu. Hence, LW (x) = Lu(x − K) < 0 for

all x > bu and (4.4) is satisfied for all x > bu. Let n = log(bu/x)
log(h)

. By Lemma 2 and the

definition of bu we have that for all x < bu

u(x−K)−W (x) = −
n∑
j=1

h−(j−1)αΓ(xhj) < 0 .

For all x < bu it holds that Et,x[1{t+1<T}W (Xt+1] = W (x), thus LW (x) = 0 for all

x < bu, and hence (4.4) is satisfied for all x < bu. It remains to verify that (4.4) is

satisfied for x = bu. By definition W (bu) = u(bu−K) and thus, it remains to prove that
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LW (bu) ≤ 0

LW (bu) = Et,bu
[
1{T>t+1}W (Xt+1)−W (Xt)

]
= δ

[
pW (buh) + (1− p)W (buh−1)

]
− u(bu −K)

= δ
[
p u(buh−K) + (1− p)

(buh−1
bu

)α
u(bu −K)

]
− u(bu −K)

= u(bu −K)
[
δ
(
p
u(buh−K)

u(bu −K)
+ (1− p)h−α

)
− 1
]
.

By definition of bu and as Γ(bu) 6= 0 we have u(buh −K)/u(bu −K) < hα. As h is the

larger solution to the equation δ(phα + (1− p)h−α) = 1 the expected change of W at b?

is negative

LW (bu) < u(bu −K)
(
δ
[
p hα + (1− p)h−α

]
− 1
)

= 0 .

τ(bu) is the unique optimal strategy:

By Definition of bu it is never optimal to stop at x < bu. We have also shown that

V ? = W and LW (x) = Lu(x − K) < 0 for all x > bu and thus it is never optimal to

continue for any x > bu. Finally, we also have that LW (bu) < 0 and hence it is not

optimal to continue at bu.

Note that Proposition 1 does not require the utility function u to be differentiable or

concave as long as Assumption A2 is satisfied. It therefore covers cases where u has a

kink at a reference point r. Where this reference point lies is immaterial to our results,

as long as r is determined a priori and constant.

As no concavity of u is required Proposition 1 furthermore covers cases of S-shaped

utility as in Kahneman and Tversky (1979), i.e. risk-seeking behaviour below and risk-

averse behaviour above the reference point.8

When the reference point is the a priori expected utility of the agent from stopping the

process, then this may be viewed as a model of disappointment à la Loomes and Sugden

(1986). It then follows from Proposition 1 that a model of elation or disappointment does

not predict path-dependent behavior in our setting. Interestingly, experimental evidence

seems to support this prediction. For example, Summers and Duxbury (2007) find that in

an experiment where subjects do not actively trade fictitious assets, the disposition effect

does not appear, while it does so when subjects had to actively choose their portfolio.

8For a detailed discussion of the stopping behaviour of prospect theory agent with probability distortion
and naivite (Ebert and Strack, 2012), with probability distortion and commitment (Xu and Zhou,
2013) or without probability distortion see Henderson (2012).
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They conclude that regret and self-blame as opposed to disappointment, which lacks the

self-blame component, is a key building block in explaining the disposition effect. Our

theoretical model provides a rigorous argument for this finding.

4.2. Regret Preferences

In this section we examine the model predictions if the agent experiences regret. For a

regret agent, the utility associated with the consequences of her action, is not solely a

function of final wealth, but the difference between final wealth and the ex post optimal

outcome. If the action chosen by the agent is ex post suboptimal, the agent feels regret.

This makes choice context dependent, because the expected utility associated with a

given act, depends on what are the counterfactual outcomes of the remaining acts avail-

able to the agent. In our setting, it is always ex-post optimal for the agent to stop when

the process was at its maximum. Therefore regret preferences are preferences where the

historical peak of the process is the reference point. The objective of the agent is then

to minimize the expected regret.

To model regret aversion in our setting, we assume that the intensity with which the

agent feels regret is linear in the utility difference between his strategy and the strategy

that turns out to be ex-post optimal. In our setting there are generally two possibilities:

regret relative to past and future decisions or regret relative only to past decisions.

4.2.1. Regret over Past and Future Decisions

Several authors argue that the anticipation of future regret affects choices in the present

(see i.e. Loomes and Sugden, 1982). More precisely, because the agent does observe the

process even after she stopped, she might also anticipate to feel regret relative to the

maximum attained not only prior to stopping, but over the whole time horizon until T .

Let us denote by St = maxr≤tXr the maximal value of the process prior to time t.

Clearly, the ex-post optimal decision for the agent is to stop when the process reaches its

maximal value ST , which would have given her a utility of maxt u(Xt−K) = u(ST−K).9

The regret experienced by the agent is linear in her loss of utility due to taking a

suboptimal decision

u(Sτ −K)− 1{τ<T}u(Xτ −K) .

Note, that the agent enjoys the benefits of stopping u(Xτ −K) only if she stops before

9Note, that we assumed that the process starts above K and thus stopping at the maximal value
ST ≥ K is always better than not stopping at all.
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the deadline τ < T , while she suffers the regret also if she does not stop before T . Thus,

when being at a point (x, s) in period t, the regret value associated with the stopping

strategy τ ≥ t equals

V (τ, x, s) = (1− κ)Et,x,s
[
1{τ<T}u(Xτ −K)

]
− κEt,x,s

[
u(ST −K)− 1{τ<T}u(Xτ −K)

]
= Et,x,s

[
1{τ<T}u(Xτ −K)

]
− κEt,x,s [u(ST −K)] , (4.5)

where κ ∈ [0, 1) denotes the intensity of regret. Regret preferences contain expected

utility preferences for κ = 0.

However, the case where the agent feels regret relative to past and future decisions

does not yield behaviorally different predictions from expected utility. To see this, note

that the expected regret E [u(ST −K)] is independent from the agent’s stopping strategy

τ and thus an agent who exhibits regret over past and future decisions behaves exactly

as the corresponding EU agent.

Proposition 2. The cut-off strategy τ(bu) is the unique optimal continuation strategy

for the agent experiencing regret over past and future decisions. That is, τ(bu) maximizes

the regret functional defined in Equation (4.5) after every history.

Thus, there is no way to distinguish regret over past and future decisions from EU.

We therefore consider only regret over past decisions below.

4.2.2. Regret Only over Past Decisions

If the agent feels regret only relative to past decisions, the ex-post optimal decision for

the agent is to stop at the time t before τ when the process reached its maximal value.

This strategy would have given her a utility of maxt≤τ u(Xt −K) = u(Sτ −K). Thus,

the regret functional equals

V r(τ) = E
[
1{τ<T}u(Xτ −K)

]
− κE [u(Sτ −K)] . (4.6)

As in the expected utility case we denote the value from using the continuation strategy

τ at the point Xt = x and the past maximum equals St = s by V r(τ, x, s).

An important feature of regret preferences over past decisions is their history-dependence.

At first glance such preferences seem to have the potential to rationalize behavior that

under EU would have been classified as time-inconsistent. In an asset-selling setting the

incentive to sell the asset, is higher the lower the historical peak relative to the current

price. Given that the reference or aspiration level of an agent changes with the history of
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the process, one might believe that, because the agent is reluctant to realize a loss, she

adopts a path-dependent strategy. The results below, however, show that if the agent

always behaves optimally this is not the case.

We begin by establishing that the regret agent never stops after the agent maximizing

expected utility.

Lemma 5. It is optimal for the regret agent to stop at all points x ≥ bu.

Proof. We first show that the regret agent always stops above the expected utility cut-off

bu. Note, that by definition of bu any strategy that continues at a point x ≥ bu yields a

change in utility which is negative in expectation

sup
τ>t

Et,x
[
1{τ<T}u(Xτ −K)

]
< u(x−K) .

Furthermore, the maximum St can only increase over time and because u is increasing,

regret can only increase, i.e. Et,x,s [u(Sτ −K)] > u(s−K) for all stopping times τ > t.

Hence, it is optimal to stop for all values x ≥ bu

sup
τ>t

Et,x,s
[
1{τ<T}u(Xτ −K)− κu(Sτ −K)

]
< u(x−K)− κu(s−K) .

Intuitively, regret can only make it less attractive to continue, as continuing always

entails the risk of increased regret. As continuing above bu is not optimal without regret

it can never be optimal with regret. In the next step we show that below the expected

utility cut-off is never optimal for the regret agent to stop below the past maximum.

Lemma 6. It is never optimal for the regret agent to stop when Xt < St ≤ bu.

Proof. Let Xt = x < s = St ≤ bu. By Lemma 2 the expected change in utility from the

cut-off strategy τ(s) that only stops once the past maximum is reached is positive

Et,x
[
1{τ(s)<T}u(Xτ(s) −K)

]
> u(x−K) .

As the strategy τ(s) never stops above the past maximum s it follows that the regret

never increases u(Sτ(s) − K) = u(s − K). Thus, it is always better to wait until the

process is back at its past maximum s than stopping at a value x < s

Et,x,s
[
1{τ(s)<T}u(Xτ(s) −K)− κu(Sτ(s) −K)

]
> u(x−K)− κu(s−K) .
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Intuitively as regret is sunk and does not change until the process reaches its past

maximum again it can never be optimal to stop the process below its past maximum.

Note, that as a consequence of Lemma 6 the agent effectively never experiences regret

when stopping below bu.

We define Γr : X → R as the expected change in value from waiting until the process

reaches xh instead of stopping at x = Xt = St:

Γr(x) =
(
Px [τ(xh) < T ] (1− κ)u(xh−K)− Px [τ(xh) ≥ T ] κu(x−K)

)
− (1− κ)u(x−K)

= h−α(1− κ)u(xh−K)− κ(1− h−α)u(x−K)− (1− κ)u(x−K)

= h−α(1− κ)u(xh−K)− (1− κh−α)u(x−K) .

Define the cut-off br by

br = min{x ∈ X : Γr(x) ≤ 0} . (4.7)

As in the expected utility case we assume that Γr(br) 6= 0. Furthermore, we assume that

the expected gain in payoff from waiting for an up-tick Γr changes its sign once.

Assumption A3. We assume that Γr(x) < 0 for all x ≥ br.

This is a weak assumption and the next Lemma establishes that it is satisfied for all

risk-averse agents.

Lemma 7. If u is concave than Assumption A3 is satisfied.

Proof. First, we establish existence of br. For that we need to show that Γr crosses zero

at least once. The change of Γr in x equals

Γr(xh)− Γr(x) =
(
h−α(1− κ)u(xh2 −K)− (1− κh−α)u(xh−K)

)
−
(
h−α(1− κ)u(xh−K)− (1− κh−α)u(x−K)

)
= (1− κ) h−α

(
u(xh2 −K)− u(xh−K)

)
− (1− κh−α) (u(xh−K)− u(x−K)) (4.8)

As u is concave, we know that

u(xh−K)− u(x−K)

x(h− 1)
≥ u(xh2 −K)− u(xh−K)

xh(h− 1)
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Multiplying by both sides x(h− 1) and as α > 1 it follows

u(xh−K)− u(x−K) ≥ h−1
(
u(xh2 −K)− u(xh−K)

)
> h−α

(
u(xh2 −K)− u(xh−K)

)
,

As 1 − κ < 1 − κh−α Equation (4.8) is negative. Consequently, Equation Γ is strictly

decreasing and changes sign at most once.

The next proposition shows that it is optimal to stop if and only if the past maximum

of the process St is at least br and the process is at its maximal value Xt = St or the

process xt is above the expected utility cut-off bu.

Proposition 3. The optimal strategy stops if and only if Xt ≥ br and Xt ≥ min{bu, St}.

Proof. We already established that it is optimal to stop Xt ≥ bu and optimal to continue

for Xt < St ≤ bu. By definition of br it is optimal to wait for an up-tick at Xt = St < br.

It remains to show that it is optimal to stop for Xt = St ≥ br.

We prove this result by induction. As show it is strictly optimal to stop at Xt = St =

bu. Let Xt ≥ br and suppose it is strictly optimal to stop once the process reaches Xth.

Than, the change in payoff from waiting for this uptick is given by

V r(x)− (1− κ)u(x−K) = Γr(x) ,

which is negative by definition of br. Hence, it is strictly optimal to stop at Xt.

We have plotted the subgame perfect optimal stopping strategy of the regret agent in

Figure 1. For s < br, the agent’s optimal continuation strategy is the cut-off strategy

τ(br), especially it is independent of s. The optimal continuation strategy changes if the

agent misses to fulfill her initial plan, i.e. to stop at br finds herself in a history where s

exceeds br. The optimal continuation strategy now prescribes the agent to wait for the

process to return to s.

Consider a path where the process reaches br a second time, i.e. Xt = br and s > br.

Under EU, the situation has not changed relative to the first visit, because the running

maximum s is immaterial to the EU agent. For the regret agent, this is different:

Compared to the situation where s = x = br, the regret associated increased. The higher

regret also enters the continuation value, but to lesser extent, because continuation

includes the prospect of making up for the current regret. The prospect of making up
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Figure 1: This shows the subgame perfect cut-off of an agent without regret on the left and
with regret on the right. Empty dots mark the points where the agent continues and filled
large dots show where it is optimal for the agent to stop.

for the current regret motivates the agent to continue until the process reach s again.10

Note, that while the optimal strategy for the EU and the regret agent both lead to the

same observed behavior. As the regret agent always stops at br the realized (observed)

stopping time will be equal to the realized stopping time resulting from the cut-off

strategy τ(br).

Proposition 4. Let τ r be the strategy which is optimal for the regret agent. We have

that τ r = τ(br) almost surely.

Hence, regret is observationally equivalent to expected utility. Note, that this equiv-

alence relies on the premise that the agent makes no mistakes. If the agent makes

mistakes, behavioral differences arise and regret and expected utility can be told apart

from observed decisions. We will use laboratory data in combination with this identifi-

cation strategy in the following section to identify regret preferences.

5. A laboratory experiment

In order to investigate individuals’ behavior and to test our predictions about behavior,

we implemented exactly the theoretical setting described in the previous section in the

10This behavior resembles the gambling for resurrection described in the finance literature. While
gambling for resurrection in this literature occurs, because the agent is insured against losses, in the
regret model the agent continues because further losses do not translate into higher regret.
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Figure 2: The main experimental screen (in German).

Table 1: Parameters for the binomial random walk in the experiment.

Cost K Stepsize h Uptick prob. p Exp. prob. 1− δ

40 1.06 52 % 0.7 %

laboratory. Testing individual behavior in a controlled laboratory setting has several

advantages over using field data. First, we can ensure that the environment in which

subjects make their decisions is truly stationary, i.e. the probability law driving the

process is known and time-homogeneous. Second, we also have full discretion over the

payoff-relevant state variables of a subject. With field data, we can never be entirely

sure to observe all relevant state variables an individual integrates into her decision-

making process. In the laboratory, we have full discretion over all payoff-relevant state

variables. Especially for testing the time-consistency property, both points are crucial.

The experiment was conducted as a computer-based experiment at the laboratory of

the Technical University Berlin (TU) and the WZB Berlin. The experimental software

was programmed using Java and Python and ran in a browser. We ran two sessions,

each session with 22 students that were randomly recruited from the ORSEE pool of the

TU and WZB.11 Each of the 44 subjects in our sample, played 65 rounds for pay. For

each round played by subjects, we either observe a stopping decision or that the process

jumped to zero before a subjects decided to stop. The latter is true for about 56%, i.e.

1581 out of the total 2860, in our sample.

11See: https://experimente.wzb.eu/
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Before the actual experiment, subjects received a four-page instruction explaining the

upcoming experiment. In the instructions, we framed the optimal stopping task as an

asset-selling problem. Subjects were explained that they own a fictitious stock and that

they have the opportunity, but not the obligation, to sell it. The instructions then

explained in detail the setting discussed in section 3 and the meaning of the relevant

parameters, e.g. the uptick probability p and the step size h. The actual values for the

parameters were given to subjects and are listed in table 1. Subjects were hence fully

informed about how processes were generated.12

After subjects finished reading the instructions, they were prompted to login and begin

the actual experiment. The experiment consisted of 65 rounds in which subjects had the

option to sell their stock. In each round, subjects observed the path of the market price

in a diagram (see Figure 2). At the beginning of each round, the computer loaded the

screen with an empty diagram. At the bottom of the screen there were three buttons

available. Upon pressing the left-hand button, labeled ’Start round’, subjects started

a given round.13 That triggered the market price to be displayed as a jagged blue line

until the jump to zero in period T . Each second there were two ticks of the price process.

Additionally, subjects were displayed several other details about a round in a panel to

the right of the diagram. As soon as a round was started, the middle button, labeled

’Sell’, became active. Pressing this button, a subject sold the stock at the current value

of the price process. Future values of the process were then displayed in green as to

visualize that selling had ocurred. The right-hand button, which was inactive until the

jump to zero, gave subjects the opportunity to move to the next round.14 The paths of

the 65 random walks were generated prior to the experiment and were the same for all

subjects. However, based on an individual login printed on the instructions, the order

in which the set of 65 paths was shown to subjects was shuffled randomly.

At the end of the experiment one round was randomly selected with equal probability

to determine a subject’s payoff. Subjects were informed about which round was drawn

on a final screen that listed their performance in each round played together with their

final payoff. Subjects earned 0.15 times the number of points they had obtained in

12We convinced ourselves that subjects had indeed understood (i) how payoffs are computed, (ii) that
the increments of the process are iid and (iii) what is the risk that a round ends before the next
period, through a questionnaire with control questions that subjects had to answer prior to the
experiment (see appendix). 95% of the time subjects answered our control questions correctly.

13The remaining two buttons were disabled before the round was started.
14We could have given subjects the option to skip to the next round immediately after the stopping

decision. This, however, may provide incentives to impatient subjects to stop early and reduce lab
time.
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the round that was drawn by the computer plus 10 Euros show-up fee.15 The average

duration of the overall experiment was 80 minutes, and the mean earnings for subjects

was 12.30 Euros (median=10 Euros), where the minimum and the maximum payment

were 10.00 Euros and 19.00 Euros respectively.

6. Experimental results

Following the literature, we call the value Xτ at which the agent decided to stop her

reservation level. As shown in Proposition 1 and 3 an agent maximizing expected utility

or minimizing regret should not vary her reservation level between rounds. We thus first

inspect to which extent subjects do have a constant reservation level across different

rounds. We then inspect in how far their reservation level is constant or time-consistent

within rounds.

6.1. Do People have a constant reservation level?

The histogram of reservation levels in the top chart in Figure 3 shows that there is

a large variation in reservation levels across rounds, ranging from slightly above the

starting value of X0 = 40 to the optimal risk-neutral level 128.3. The boxplots in

the bottom chart of Figure 3 decompose this further into between- and within-subject

variation of reservation levels. The within-subject variation accounts for 33.2% of the

total variation and there is no subject for which the distance between the minimal and

maximal reservation level is less than 50.41. Thus, dispersion of reservation levels is not

solely due to individual differences between subjects and quite substantial in absolute

terms. This shows that subjects do not play unique reservation level strategies.

It is still possible, however, that within-subject variation is due to the gradual con-

vergence of reservation levels: subjects could successively adapt their reservation level

towards a unique level after several rounds of experimentation. If that were the case,

we would expect the variation in reservation levels to decrease in the number of rounds

played and to settle at some constant level. Figure 8 in the appendix shows the ob-

served reservation levels for each subjects over all rounds played in our experiment and

from Oprea et al. (2009). In both experiments, the observed variation does not de-

crease in the number of rounds for the vast majority of subjects. In Table 2 we report

the average variance of reservation levels across subjects for different blocks or rounds.

15We rounded to the nearest Euro.
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Figure 3: Line in the upper chart shows how the expected payoff from using different cut-offs
changes as a percentage of the payoff under the optimal strategy (left scale), grey bars show
a histogram of actual reservation levels (right scale). Boxplots in bottom chart illustrate the
variation in reservation levels at the subject level. The vertical line indicates the optimal
cut-off for a risk neutral agent.

Variances do not decrease on average over the course of the experiment, but fluctuate

unsystematically.

Finding 1. Subjects vary their reservation levels substantially over different rounds of

the same stopping task and do not appear to converge to a unique level.

Finding that subjects’ reservation levels do not settle to a constant level does not

necessarily mean that their variation is entirely unsystematic. Following Oprea et al.

(2009), we therefore estimated a model on the pooled data, where subjects use a cut-

off strategy τ(bj) in every round j and adapt their reservation level bj in response to

forgone earnings in the previous round. More specifically, Oprea et al. assume that the

reservation level bj in round j follows a simple linear model, which makes the difference
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Table 2: Average variance of reservation levels across subjects over blocks of 10
rounds.

Rounds 1-10 11-20 21-30 31-40 41-50 51-60 60-65

Variance 366.94 503.81 232.03 311.84 481.02 335.05 123.78

Table 3: Estimated effects of losses on subse-
quent stopping choices.

Parameter Oprea et al. This study

δE × 1, 000 0.5486*** 1.3873**
δL × 1, 000 -0.9185*** -1.1227

Notes: Median estimates and p-value for the
Wilcoxon signed-rank test that the distribution is
centered around zero: *** p ≤ 0.01, ** p ≤ 0.05
and * p ≤ 0.1.

in reservation levels between round j and j − 1 a linear function of previous losses

bj = bj−1 +K
[
δE1{τ j−1<T} + δL1{τ j−1≥T}

] (
Sj−1
τ j−1 − bj−1

)
. (6.1)

The parameters δE and δL measure an individual’s sensitivity to a loss that stems from

stopping below Sj and from not having stopped before the deadline, respectively.16 In

Table 3 we follow Oprea et al. and report the median of the by-subject median of δE

and δL. Our estimates are qualitatively similar to that of Oprea et al.. The estimate for

δE implies that subjects increase their reservation level, if in the previous round they

observed that after stopping they could have stopped at higher values. The estimate for

δL implies that subjects reduce their reservation level, if in the previous round the process

jumped to zero before they stopped and they missed the opportunity to get a positive

payoff. In our sample the adjustment to the latter is not statistically significant.17

To inspect how much variation between rounds can be explained by this model, we

took the first observed reservation level for each subject and forecasted their reservation

levels for all remaining rounds. We have plotted the results in Figure 9 in the appendix.

16We use the same estimation method as Oprea et al. (2009). That is, we obtain an estimate of δE for
each two consecutive rounds a subject stopped by setting bj = Xj

τj and solving for δE in (6.1). For
each block of consecutive rounds without observing a subjects stopping decision, we may use the
two adjacent reservation levels to estimate δL from the losses suffered due to not stopping.

17This is actually a common finding of most of the literature on regret and counterfactual thinking,
i.e. that people experience more regret over outcomes that stem from action than from equally
miserable outcomes that stem from inaction (see e.g. Kahneman and Tversky, 1982; Gilovich and
Medvec, 1994; Gilovich et al., 1998; Coricelli et al., 2005; Summers and Duxbury, 2007).
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Table 4: Contingency table for observed decisions.

Xτ = Sτ Xτ < Sτ No. of obs.

stopped first time 326 (25%) 0 (0%) 326 (25%)
not stopped first time 205 (16%) 748 (58%) 953 (75%)

No. of obs. 531 (42%) 748 (58%) 1279 (100%)

Notes: Decisions in the upper left cell are time-consistent. Other cells
represent number of deviations from the time-consistency property in terms
of the maximum of the process and the multiplicity of the stopping value
in the history of the process. Xt denotes the value of the process and
St = maxs≤tXs. Percentage of total observations in parantheses.

The plot shows that the model has limited explanatory power in our sample. In the first

20 rounds, the adaption model tracks the development of reservation levels reasonably

well, but it clearly overshoots thereafter. This shows that the entire variation captured

in the estimated adjustment coefficients stems from behavior in the first 20 rounds.

Finding 2. Subjects calibrate their reservation levels during the first 20 rounds in re-

sponse to forgone earnings and then stop to systematically adjust and stick with this level

for all later rounds.

6.2. Do People use Time-Consistent Strategies?

In the previous section we found that subjects’ behavior is not constant across different

rounds. But do subjects play constant reservation levels within rounds? We first measure

deviations from this time-consistency property along two dimensions: (i) we count the

number of ticks the stopping value is below the current running maximum and (ii) we

count the deviation in terms of multiplicity, i.e. we count the number of times a subject

had seen her stopping value before stopping eventually.

Table 4 shows the results in a simple contingency table. The columns of table 4

contain observations that correspond to stopping at the running maximum (left column)

and below the running maximum (right column). Hence, 42% of observations stop at

the maximum of the process. The remaining 58% do not. The rows of tab. 4 contain

observations that correspond to stopping decisions that stopped the first time the process

reached this value (top row) and decisions that stopped afterwards (bottom row). We

observe only 326 out of 1279, i.e. roughly 25%, decisons that are perfect cut-off decisions.

The remaining 75% are not.

Finding 3. Subjects stopping decisions are not time-consistent 75% of the time.

24



0

100

200

300

0 10 20 30
Multiplicity

N
o.

 o
f s

ub
je

ct
s

0

200

400

0 5 10 15
No. of ticks the process was stopped below the maximum

N
o.

 o
f s

ub
je

ct
s

Figure 4: The empirical distribution of the multiplicity of stopped values for all subjects
(left) and the number of ticks subjects stopped below the previous maximum (right).

It is worth to stress that the above finding is a strong result in our setting. In fact,

this renders 75% of all observed stopping decisions are irreconcilable with any of the

choice models we presented earlier.

To shed more light on the magnitude of time-inconsistency, we have plotted a his-

togram of the multiplicity of subjects’ stopping decisions in Figure 4. The average

multiplicity of subjects’ stopping decisions is roughly 3, i.e. subjects on average stop at

a point they have seen three times before. The maximum multiplicity is equal to 29.

About 35% of the observed stopping decisions have a multiplicty greater two.

In light of these findings, subjects clearly do not play cut-off strategies. Instead they

vary their reservation levels over different rounds of the same stopping task, do not

behave time-consistently 75% of the time and visit the same level of the process on

average three times before they eventually stop at it.

An interesting feature of the observed behavior is that stopping seldom occurs appre-

ciably below the past maximum. That is, while 59% of the observed stopping decisions

are such that stopping occurs below the past maximum. The histogram on the right of

figure 4 shows that the difference between the stopped value and the past maximum is

seldom more than two or three ticks.

Finding 4. Subjects show a disposition to stop near the past maximum of the process

and not to stop appreciably below.

Given that in the experiment there are two ticks every second, it seems possible on the
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one hand that subjects attempt to stop at the maximum the first time, but their limited

reaction time often leads to miss the exact maximum and fall slightly below. On the

other hand, more systematic forces such as an aversion to realize a loss relative to the

past maximum could lead subjects to delibaretly waive any smaller values. In the next

section, we put forward a structual econometric model that is capable of disentangling

the two possible explanations in a likelihood sense.

6.3. Dynamic stochastic choice

The observed deviations from cut-off behavior can be explained by introducing a stochas-

tic component alongside a structural or deterministic models of choice. Not only does

such a model open up a way to accomodate for randomness in our data, it also provides

a way to test an expected utility model against a model with regret.

In our dynamic discrete choice (DDC) model the process that leads the agent to stop

or continue in period t is influenced by the level of the process Xt and – in the case of

regret – by the running maximum St. As in the deterministic case, the choice between

stopping and continuation at a point (x, s) is determined by the difference between

the stopping and contionuation value. The stopping value sv(x, s) is the utility from

stopping at a given point (x, s), i.e.

sv(x, s) = u(x−K)− κu(s−K) , (6.2)

and cv(x, s) is the expected utility from rejecting the current value in favor of future

values. With probability 1 − δ the process jumps to zero in the coming period and

continuation yields a payoff of u(0) − κu(s −K). With probability δ the process does

not jump to zero, but increases or decreases by one tick. Hence, the agent will continue

from hx with probability p, and from h−1 x with probability (1 − p). Thus, using

Equation (4.3)

cv(x, s) =

δ [pV ?(xh, s) + (1− p)V ?(xh−1, s)]− (1− δ)κu(s−K) if x < s ,

δ [pV ?(xh, sh) + (1− p)V ?(xh−1, s)]− (1− δ)κu(s−K) if x = s .

In contrast to the deterministic case, there are now two additional factors that affect

choice. First, there is an unobserved factor εt that is an additive random shock to the

current utility difference between stopping and continuation. We assume that εt is i.i.d.

N (0, σ2). An agent’s choice in period t is then viewed conditional on the realization of
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εt and is given by the choice function

ψ(x, s, ε) =

stop if sv(x, s)− cv(x, s) + ε ≥ 0

continue if sv(x, s)− cv(x, s) + ε < 0 ,

Note that in order to calculate the expected utility from continuation with the optimal

strategy V ?, we need to evaluate the expected utility from continuation for the regret

agent Et,x,s
[
1{τ<T}u(Xτ −K)

]
− κEt,x,s

[
u(Smin{τ,T} −K)

]
. In particular, this requires

an expression for the anticipated regret, which is given in the following lemma proven

in the appendix

Lemma 8 (Anticipated Regret). The anticipated regret ρ(x, s, b) associated with the

cut-off strategy τ(b) when being at point (x, s) equals

ρ(x, s, b) = Et,x,s
[
u(Smin{τ(b),T} −K)

]
= κ

m−1∑
i=0

( x

xhi

)α (
1− h−α

)
max{u(s−K), u(xhi −K)}

+ κ
(x
b

)α
max{u(s−K), u(b−K)} .

where m = log(b/x)
log(h)

.

However, simultaneous estimation of the error variance σ2 and the curvature of the

utility θ generally is a delicate issue in models of stochastic discrete choice (see e.g.

Wilcox, 2011, for a discussion of such issues in static models). A very much related issue

in our case is that a large variation in reservation levels across rounds leads to a relatively

large error variance. A high error variance, however, translates into a low probability to

reach higher levels of Xt a posteriori. In order to reconcile that we do observe subjects

stopping at high and low values of Xt, the model needs to make subjects less risk averse

because that increases their likelihood to reach higher values of Xt. Hence, there is a

purely mechanical relationship between σ and θ which somewhat blurs the interpretation

of θ as a measure of risk aversion in the sense of Pratt (1964).

We therefore incorporate a second terms that affects choice: effort, capacity or atten-

tion (Kahneman, 1973). Each tick, when viewed as a separate stimulus, first has to pass

an ’attention filter’ before a subject acts based on it and makes a (potentially noisy)

decision. We see at least two reasons why such a pre-filter stage should be present:

attentional overload and meaningfulness of each individual tick. For example, both the
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bottleneck and the capacity theory of attention in psychology suggest that for stimuli

that arrive in rapid succession, humans easily face an attetional overload. For example,

it has been documented in the psychology literature that response times increase in the

latency of the stimulus (Craik, 1947, 1948; Smith, 1969). That is, for signals that arrive

in rapid succession, the human brain demands a refractory period that delays response

to stimuli due to the mental capacity that is occupied by processing and responding

to past stimuli. Since processes in our experiment evolved at a high rate (2 ticks per

second), it seems plausible that such a refractory period lead subjects to response at a

lower rate. The second reason relates to the fact that each individual tick did not change

material payoffs dramatically. For that reason subjects could have diverted attention

from the task, because the individual tick was not meaningful enough to warrant perfect

attention in the eyes of the subject.

We thus assume that in every period t there is a constant probability w that the agent

does not pay attention and continues with probability one. We further assume that

w is constant across all rounds. Since we do not observe w, we estimate it from the

data. Note that under this assumption w has a more intuitive interpretation in terms

of the average delay between two decisions. Because with constant w the time between

two periods the agent actively decides is exponentially distributed, we may interpret

0.5(1 − w)−1 as the average number of seconds between two decisions. From a purely

mechanical point of view, w provides a way to explain the variation in reservation levels

without an unduly upsurge in σ and θ.18

For estimation, denote by ψ̂t = 1 and ψ̂t = 0 the observation that the agent decided

to stop or continue in period t respectively and let γ = [θ, κ, σ, w] be the vector of

parameters to estimate. The probability that an agent chooses to continue at a given

point (x, s) then equals

P [continue at (x, s) | γ] = (1− w)Φσ (cv(x, s | θ, κ)− sv(x, s | θ, κ)) + w

where Φσ denotes the normal cdf with mean zero and variance σ2. To shorten notation

we will henceforth denote the conditioning on the parameters by Pγ. Note that our

model entails that mistakes are more likely to occur, if it is less costly for the agent, i.e.

when the difference between stopping and continuation value is small. For estimation,

18We have fitted a model without an inattention parameter w and our results confirm that θ and σ
both inflate drastically. The implied reservation levels lie above 99% of the observed decisions and
thus the model has to attribute almost all observed stopping decisions to the error term.
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Figure 5: Illustrates how a regret model can be disinguished from an EU model over rounds
of the experiment.

we assume that agents’ utility is of the power-utility form

u(x−K) =


K
θ

[(
x
K

)θ − 1
]

for θ 6= 0 ,

K ln
(
x
K

)
for θ = 0 .

(6.3)

If we let Y (i,j) =
{
X

(i,j)
t = x, S

(i,j)
t = s, ψ̂

(i,j)
t

}T
t=1

denote the available data for agent i

in round j, the likelihood to observe that the agent stops in period τ equals19

p(Y (i,j) | γ) = 1{τ<T}(1− Pγ
[
continue at (X(i,j)

τ , S(i,j)
τ )

]
×

min{τ−1,T}∏
t=1

Pγ
[
continue at (X

(i,j)
t , S

(i,j)
t )

] (6.4)

As we mentioned before, the DDC model provides us a way to judge whether the fact

that subjects tend stop near the past maximum of the process is significantly related to

regret or not. To see how this works, consider behavior over two consecutive rounds.

Suppose the agent observes the two processes depicted in Figure 5 and stops at B in the

first round. The agent thus missed to stop at point A, i.e. the first time the level b(1) was

reached. Under EU, the most likely explanation for this decision in isolation is that the

19We are free to assume any value for ψ̂t after stopping occured, because these periods do not enter the
likelihood function and are payoff-irrelevant. Note that the way we specifiy the likelihood already
takes into any effects of censoring and thus already corrects for any bias that stems from rounds
that subjects did not stop before T .
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agent committed just a single error at point A. Hence, fix θ such that b(1) is the ex ante

optimal cut-off bu = b(1). Similarly, fix the parameters (θ, κ) for a corresponding regret

agent such that br = b(1).20 In the next round, suppose that the agent stopped at point

E, i.e. at a higher value than in the previous round b(2) > b(1). For given parameters, the

EU model can only reconcile this with the decision in the previous round by assuming

that for all points on the segment between C and E the subject erroneously continued

to play. As long as b(2) ≤ br, the regret agent only errs at the points on the segment

from C to D. For all points on the line segment from D to E, the agent does not want

to stop by Lemma 6. The regret agent’s continuation value is thus larger than the

stopping value. In terms of the likelihood given in equation (6.4), the latter fact implies

a higher second-round likelihood for the regret model. Intuitively, the regret model is

able to attribute more variation in behavior to the structural part of the model and

less to noise. Thus, if the described pattern is abundant in the data, the regret model

finds more support in terms of any likelihood criterion. If the fact that subjects stop

close to the past peak is merely because they missed to stop at exactly the maximum

due to some attentional lapse, the likelihood of the regret model will only be marginally

higher. Then any criterion that sufficiently penalizes the regret model for its additional

degree of freedom would prefer the more parsimonious EU model. Additionally, the

parameter w provides a way for the model to attribute any such unsystematic variation

to inattention. Hence, any regret aversion that we find in our model, may be regarded

as being net of inattention or reaction time.

We use Bayesian inference to estimate the model. Given a prior distribution p(γ, σ)

and the joint posterior density is proportional to prior times likelihood

p(γ | Y ) ∝ p(Y | γ)p(γ) . (6.5)

In the prior distribution we assume that θ, κ, w and σ are a priori independent

p(γ) = p(θ)p(κ)p(w)p(σ) . (6.6)

For κ and w we set the prior equal to the uniform distribution over the interval [0, 1],

for θ we set a normal prior that was calibrated to match the empirical findigs of Holt

20According to Proposition 4, there always exists such a tuple.
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Table 5: Summary statistics for posterior modes across subjects.

Expected utility (κ = 0) Regret

Rel. Risk Noise Inattention Rel. Risk Regret Noise Inattention
Aversion Level Period Aversion Aversion Level Period

1− θ σ 1
2(1−w) −

1
2

1− θ κ σ 1
2(1−w) −

1
2

Min. 0.82 1.96 0.00 s. 0.63 0.00 1.16 0.00 s.
1st Qu. 0.30 3.90 1.50 s. 0.22 0.00 3.33 1.58 s.
Mean 0.15 4.91 1.42 s. 0.06 0.10 4.32 1.50 s.
3rd Qu. -0.03 5.70 5.75 s. -0.11 0.18 5.35 7.83 s.
Max. -0.29 8.63 16.17 s. -0.46 0.36 7.40 49.50 s.

and Laury (2002) and for σ we set the prior equal to 1/σ

p(γ) = N (0.7, 0.3)× Uniform(0, 1)× Uniform(0, 1)× 1

σ
. (6.7)

The joint posterior density is not of any known form and thus there is no direct way

to sample from it. We therefore first find the posterior modes of (6.5) with a standard

hill-climbing algorithm (BFGS) and take these as starting values for a Markov Chain

Monte Carlo algorithm (Metropolis-Hastings) that simulates the joint posterior of all

unknowns (Metropolis et al., 1953). We have deferred further details on the model and

estimation to a web appendix.

Table 5 and Figure 6 show summary statistics and histograms of the posterior modes.

We find that the average subject is mildy risk-averse under the EU model and virtually

risk-neutral under the regret model. This implies that with regret the observed behavior

is characterized by regret aversion, whereas risk-aversion seems to play a negligible role.

The probability w is found to be relatively high in our sample. In terms of attentional

lapse, the numbers imply that the average subject in our sample makes decisions every

1.42 seconds in the EU model and every 1.5 seconds in the regret model. This seems

to be a plausible amount of inattention in our experiment, where the process evolves

relatively fast. We have also plotted the posterior means and credible intervals for

each subjects separately in Figure 6. Again, posterior means for θ fluctuate around the

risk-neutral level indicated by the horizontal line. The inattention intervals and their

posterior intervals around the posterior mean are found to be somewhat extreme for

several subjects in our sample. For the large majority, however, the posterior means and

credible intervals of the inattention periods are well below ten seconds.

We also find that the bulk of posterior mass for κ is tilted away from zero in most
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Figure 6: Posterior means of the parameters and 68% credible intervals.

cases and that the respective 68% credible intervals do not encompass zero. Does the

regret model therefore fit the data better than the EU model? To have a fair comparison

between the two models, we have to take into account that the regret model has one

additional degree of freedom. We have therefore computed the Deviance information

criterion from the Metropolis output (Gelman et al., 2004). The smaller the DIC, the

better the fit of a model. Because the DIC rises in the complexity of the model, i.e.

in the number of parameters, more parsimonious models are preferred. The points in

Figure 7 depict the differences between DIC of the EU and the regret models for each

subjects. To illustrate how the model comparison is related to the intensity of regret,

the size of the points increases with the value of the posterior mean of κ. According to

the DIC, the regret model is preferred for 22 of our subjects, i.e. 50%. As expected, the

regret model tends to be preferred the higher the posterior mean of κ.

Finding 5. There is strong empirical evidence that subjects vary their reservation levels

in relation to the past maximum of the payoff process Xt. Subjects are reluctant to

realize losses relative to the past peak and wait for the payoff process to return to it

before stopping.
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Figure 7: Shows the difference between the DIC of the EU and the regret model.

7. Conclusion

In this paper we sought to answer two questions: What do theories of dynamic behavior

predict people to do in stopping problems and how well do these predictions fare when

it comes to describing actual behavior? A classical theoretical from the literature is that

the optimal strategy of an agent maximizing expected utility is to wait for the payoff

process to reach a given reservation level and then stop immediately. That is, (i) agents

are predicted to have a unique reservation level and (ii) they should never stop at a

point where they chose to continue before, i.e. behave time-consistently.

We have shown that this holds more widely than previously known and thus forms a

very robust prediction about behavior. It is not restricted to preferences of the EU type,

but also extends to gain-loss preferences and regret preferences. If and to which extent

this prediction is satisfied by subjects in the laboratory has been largely unexplored

and not recorded in the data in the extant literature. And it seems that a substantial

deviation from what theory predicts has therefore gone undetected. Our data confirms

that subjects violate the time-consistency property in roughly 75% of all cases and thus

the majority of the decisions is irreconcilable with any of the considered theories.

We have also demonstrated that only if one admits unanticipated deviations from the

optimal stopping rule, regret preferences become behaviorally different to EU or gain-

loss utility. For a regret agent the subgame perfect optimal strategy is as follows: Stop

the process if it hits the ex ante reservation level. If you miss to stop at your ex ante

level, stop the process if it is at least as large as the past maximum or the ex ante cut-off
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of the EU agent. A regret agent will thus have a disposition not to exercise her wait

option below the historical maximum of the process. We find this to be a prevalent

pattern in our data. Subjects in our experiment seldom stopped at a value the first time

they reached it, but also almost never stopped appreciably below the running maximum

of the process. Estimating a structural econometric model confirms that a regret model

explains the data better, even after penalizing for its additional degrees of freedom.

There are several possible avenues for future research on this topic. We plan for

example to investigate whether we can find more direct evidence for the impact of regret

by manipulating the channel through which it is supposed to be conveyed. For example,

not showing subjects the past of the payoff process, but only its current value makes it

less salient to compare the current value with the past maximum. We would then expect

that subjects tend to stop at higher values than with the full feedback, since regret is

a substitute for risk aversion. In a similar vein, one could redesign the experiment to

elicit the willingness to pay for observing the past maximum of the process.
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A. Mathematical Appendix

Proof of Lemma 1. Define the running maximum St = maxs≤tXs. Note that

P [τ(b) < T |X0 = x] = P [ST ≥ b |X0 = x] .

For all x < b the probability of reaching the level b is equal to the probability of the deadline

not arriving δ times the expected probability of reaching b from period 1 perspective

P [ST ≥ b |X0 = x] =P[τ > 1] E [P [ST ≥ b |X1, τ > 1] |X0 = x]

=δ
(
pP [ST ≥ b |X1 = xh, τ > 1]

+ (1− p)P
[
ST ≥ b |X1 = xh−1, τ > 1

] )
=δ
(
pP [ST ≥ b |X0 = xh] + (1− p)P

[
ST ≥ b |X0 = xh−1

])
.

To simplify notation define ψb(x) = P [ST ≥ b |X0 = x] = ψb(x). By definition ψb is a solution

to the difference equation

ψb(x) =

1 for all x ≥ b

δ
(
pψb(xh) + (1− p)ψb(xh−1)

)
for all x < b

, (A.1)

taking values in [0, 1]. If we have two solutions ψb, ψ̂b of Equation A.1 it holds that

|ψb(x)− ψ̂b(x)| = 1{x<b}δ
∣∣∣ p(ψb(xh)− ψ̂b(xh)) + (1− p)(ψb(xh−1)− ψ̂b(xh−1))

∣∣∣
≤ δ sup

z<b
|ψb(z)− ψ̂b(z)| .

As ψb(x), ψ̂b(x) lie between zero and one, the supremum of the differences supz |ψb(z)− ψ̂b(z)|
exists and is bounded by one. As δ < 1 it follows that

sup
z
|ψb(z)− ψ̂b(z)| ≤ δ sup

z
|ψb(z)− ψ̂b(z)| = 0

and thus Equation A.1 can have at most one solution taking values in [0, 1]. Guessing the

solution of (A.1) to be of the form ψb(x) = 1{x<b}(
x
b )α+1{x≥b} gives 1 = δ (phα + (1− p)h−α) .

Substituting z = hα yields the quadratic equation

0 = δ
(
pz + (1− p)z−1

)
− 1 = z2 − z

δp
+

1− p
p

⇒ z =
1

2δp
±
√

1

4δ2p2
− 1− p

p
.

By symmetry this equation has two solution of the form z, z−1. Lets denote z > 1 the solution

larger than one. For the smaller solution 1
z one it follows that α =

log( 1
z
)

log(h) < 0. Hence the
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resulting function ψ(x) = 1{x<b}(
x
b )α+1{x≥b} is decreasing and thus takes values outside [0, 1].

Note that the function z 7→ δ
(
pz + (1− p)z−1

)
is increasing for all z ≥ 1. By Assumption A1,

δ
(
ph+ (1− p)h−1

)
< δ

(
pz + (1− p)z−1

)
= 1 and thus 1 ≤ h < z = hα and α > 1.

Proof of Lemma 3. By Lemma 2 the expected value of any cut-off strategy with cut-off b =

x0h
n is given by

V (τ(x0h
n), x0) = u(x0 −K) +

n∑
j=1

h−(j−1)αΓ(x0h
j) .

If u is concave Γ is monotone decreasing (as it follows by setting κ = 0 in the proof of Lemma

7). As Γ(bu) < 0 it follows from the monotonicity of Γ that τ(bu) is the optimal cut-off strategy.

Denote by x > bu the point where Lu(x −K) > 0. Clearly, as it not optimal to stop at x if

the optimal strategy is a cut-off strategy the optimal cut-off b must be greater x. As x > bu

this is a contradiction.

Proof of Lemma 4. As shown in the proof of Proposition 1 Lu(bu − K) < 0. Thus, if Lu
changes its sign at most once this implies Assumption A2. In the final step we show for

constant absolute or relative risk-aversion Lu changes its sign at most once.

Constant Absolute Risk Aversion: Suppose the agent accepts such a gamble at the wealth level

x. Let u(x) = −1
θ exp(−θx), i.e. assume the agent has constant absolute risk-aversion of θ.

The expected change in utility from waiting one more round at x equals

Lu(x−K) = δ(pu(xh−K) + (1− p)u(xh−1 −K)) + (1− δ)u(0)− u(x−K)

= δu(x−K)

[(
p
u(xh−K)

u(x−K)
+ (1− p)u(xh−1 −K)

u(x−K)

)
+ (1− δ) u(0)

u(x−K)
− 1

]
= −e

−θ(x−K)

θ

[
δ
(
pe−θx(h−1) + (1− p)e−θx(h−1−1))+ (1− δ)eθ(x−K) − 1

]
We will show that the second part is monotone increasing in x. Taking derivatives of the term

in square brackets gives

δ
(
− θ(h− 1)pe−θx(h−1) + θ(1− h−1)(1− p)eθx(1−h−1)

)
+ (1− δ)θeθ(x−K)

As e−θx(h−1) < 1 and eθx(1−h
−1), eθ(x−K) > 1 a lower is given by

≥ θ
[
δ
(
− (h− 1)p+ (1− h−1)(1− p)

)
+ (1− δ)

]
= θ

[
−δ
(
hp+ h−1(1− p)

)
+ 1
]
> 0 ,

Where the last step follows as hp + h−1(1 − p) < 1 by Assumption A1. Consequently Lu
changes its sign at most once.
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Constant Relative Risk Aversion: Let u(x) = (x+K)θ−Kθ

θ . The expected change in utility from

waiting one more round at x equals

Lu(x−K) =
δ

θ
(p(xh)θ −Kθ + (1− p)(xh−1)θ −Kθ)− 1

θ
(xθ −Kθ)

=
1

θ

{
δ
[
p(xh)θ + (1− p)(xh−1)θ

]
− xθ + (1− δ)Kθ

}
=

1

θ
xθ
(
δ
[
phθ + (1− p)h−θ

]
− 1
)

+
1

θ
(1− δ)Kθ .

As p > 1/2 for all θ ≥ 0

∂

∂θ

(
phθ + (1− p)h−θ

)
= p log(h)hθ − (1− p) log(h)h−θ ≥ p log(h)(hθ − h−θ) ≥ 0 .

Thus, phθ + (1 − p)h−θ < phα + (1 − p)h−α = 1
δ for all θ < α, by definition of α. As 1

θx
θ is

increasing in x this completes the proof.

Proof of Lemma 8. First, we derive the probability that the maximum of the process is at least

y ∈ X

P [ST ≥ y | Xt = x, St = s] =

1 if s ≥ y

P [τ(y) < T | Xt = x] if s < y

Hence, we have that the probability that the maximum of the process is exactly y ∈ X for all

s < y equals

P [ST = y | Xt = x, St = s] = P [ST ≥ y | Xt = x, St = s]− P [ST ≥ y h | Xt = x, St = s]

=

(
x

y

)α
−
(
x

y h

)α
=

(
x

y

)α (
1− h−α

)
Let b = xhm. Given the regret functional derived in equation 4.6 the expected value of using

the cut-off strategy τ(b) equals

V (τ(b), x, s) = E
[
1{τ(b)<T}u(Xτ(b) −K)− κu(Sτ(b) −K) | Xt = x, St = s

]
= P [τ(b) < T | Xt = x]u(b−K)

− κ
m∑
i=0

P
[
ST = xhi | Xt = x, St = s

]
u(xhi −K)

=
(x
b

)α
u(b−K)− κ

m−1∑
i=0

( x

xhi

)α (
1− h−α

)
max{u(s−K), u(xhi −K)}

− κ
(x
b

)α
max{u(s−K), u(b−K)} .
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Figure 8: Shows the observed reservation levels for over rounds as played by subjects. Each
panel in a given block of panels is the sequence of reservation levsls for one subject.
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Figure 9: Shows simulation results from adaptive learning model versus actual choices.
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