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Log versus level in VAR forecasting: 42 Million empirical answers

- expect the unexpected
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Abstract

The use of log-transformed data has become standard in macroeconomic forecasting with VARmodels.

However, its appropriateness in the context of out-of-sample forecasts has not yet been exposed to a

thorough empirical investigation. With the aim of filling this void, a broad sample of VAR models is

employed in a multi-country set up and approximately 42 million pseudo-out-of-sample forecasts of GDP

are evaluated. The results show that, on average, the knee-jerk transformation of the data is at best

harmless.

JEL classifications: C52, C53
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1 Introduction

In the field of forecasting macroeconomic time series with vector autorregressive (VAR) models, the use of

log-transformed data has become standard or at least good practice. Variables are transformed in order

to obtain a more homogenous variance or so that the resulting series become more similar to a normal

distribution. Though very easily implemented, taking logarithms is just one out of a wide range of possible

transformations that can be represented in the setting provided by Box-Cox. Thus, a forecaster has to decide,

a priori, if to transform the original series and which of the many transformations is best. Unfortunately,

most of these issues concerning data transformations for forecasting purposes are only addressed in the

univariate context and are of limited use. This paper helps to fill this void focusing on the importance of

transformation, shedding light on the chances that taking logs leads to an improvement and on the risks

that this leads to a deterioration of forecast accuracy.

To choose between the use of data in levels1 and transformed data, several in-sample statistical tests

based on the Box-Cox-transformation have been developed and applied (see for example Shin and Kang
1Note that data in levels in this context means non-logarithmic data.
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[2001]). However, macroeconomic forecasters are typically interested in the out-of-sample forecast accuracy

of a model. Proietti and Lütkepohl [2013] present a distribution free, nonparametric method for estimating

the Box-Cox transformation parameter for autoregressive integrated moving average (ARIMA) models. They

perform a large scale out-of-sample forecast comparison based on 530 monthly, seasonal time series related

to industrial production and retail turnover of a large number of countries. They show that in about three-

quarters of the series analyzed, their method provides a reliable ex-ante guidance. Unfortunately, they do

not report the percentage of times, the method leads to a statistically significant deterioration.

Proietti and Lütkepohl [2013] also give an indication how to transform the data, and quantify potential

gains of transformation. They demonstrate that in most cases simply taking logs is the best choice if a

transformation is needed. In at least 20 percent of their series, forecast accuracy can significantly be improved

using transformed data when one-step-ahead horizons are considered. For longer horizons, the improvements

are markedly smaller. However, Proietti and Lütkepohl [2013] do not indicate how often taking logarithms

or any of the transformations they report leads to a deterioration of the forecasts. Lütkepohl and Xu

[2012] conduct pseudo-out-of sample experiments predicting stock indices, and GDP and consumption of

mayor economies employing univariate models. They find that taking logarithms improves forecasts if the

log transformation makes the variance more homogeneous throughout the sample. However, taking logs can

lead to forecast deterioration if this does not stabilize variances. Lütkepohl and Xu [2011] consider univariate

predictions of annual inflation rates for a number of European countries and the USA using monthly seasonal

consumer price indices. Models based on logs are outperformed by models in levels most of the time. If

log-models are more accurate, the gains are very small.

When it comes to VAR forecasting, the secondary, but nonetheless important, issue of how to re-transform

forecasts back to levels is intensely discussed in the literature. Theoretically, taking the exponent of forecasts

made in logs (naïve approach) is a biased predictor for the data in levels. Building on the findings of Granger

and Newbold [1976], Ariño and Franses [2000] derive optimal forecasts and demonstrate their superiority

in an forecast experiment involving a bi-variate VAR of US gross national product and real gross domestic

investment. As a byproduct, they demonstrate that biased and unbiased log-transformed forecasts outper-

form level forecasts. However, Bårdsen and Lütkepohl [2011] show, in a simulation study and an empirical

experiment based on the up-dated data set used by Ariño and Franses [2000], that theoretically optimal
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predictors are inferior to forecasts based on the exponential transformation if estimation and specification

uncertainty is properly taken into account.

Given the scarce evidence of success or failure of log transformations of data in VAR forecasting, we try

to shed some light on the issue focusing on the central variable for economic forecasting, the GDP. A broad

sample of models is employed over different estimation periods and forecast horizons. It is thereby assumed

that the researcher is interested in the forecasts of the levels of a time series. In order to re-transform the

forecasts of the estimations in log-transformed data back to levels the adjusted re-transformation approach

following the lines of Ariño and Franses [2000] as well as the “naïve” approach, i.e. simply using the

exponential of the logarithmic forecast values, are considered and evaluated. In order to put the results

of our study on a firm empirical footing, the analysis is implemented on a G42 data set. All reasonable

combinations of the variable of interest, the real GDP, and an extended set of additional macroeconomic

variables are estimated employing VAR models. Using a recursive window approach, for each model the 1 to

8 step ahead pseudo out-of-sample forecasts based on an estimation in log-transformed data and on levels of

the time series are compared. The results show that according to the forecast performance the standard use

of log-transformed data at least has to be questioned. This finding is independent of the use of the optimal

or the “naïve” re-transformation approach. Our paper is structured as follows. Section 2 presents the data,

Section 3 outlines the procedure of the analysis, Section 4 presents the results, and Section 5 concludes.

2 The data

The data entering the VAR-models are standard macroeconomic time-series most commonly used for fore-

casting purposes. They have been obtained from the International Monetary Fund (IMF), Eurostat and/or

national statistic agencies. Additionally to the standard macroeconomic VAR setup linking GDP, the policy

interest rate and a measure for the consumer prices, several other aggregates and indicators that correlate

with real GDP are included. The real effective exchange rate, the imports and exports series as well as

the commodity prices cover the external influences. The major stock-price indices, the unemployment rate,

industrial production, consumption, investment, hours worked and several early indicators such as industrial
2The G4-countries comprise Germany, Great Britain, Japan, and the United States of America
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orders, consumer and producer sentiments complete the set. The data, especially in the case of the early

indicators, differ between the countries. A complete list of the variables included, as well as some basic de-

scriptive statistics for the USA, Japan, Germany, and the UK are given in Tables 1, 2, 3, and 4 respectively.

The sample sizes are given in Table 5. The number of observations ranges from 93 quarters in the case of

Germany to 177 in the case of the United States (see Table 2). The relatively small number of observations

for Germany is due to the structural break stemming from German reunification in 1990. Given the variable

of interest being GDP, the analysis is restricted to quarterly data.

3 Procedure of the Analysis

The models are formed using all possible combinations of the regressors including k = 1, ..., 5 additional

variables and GDP. The maximum of k is set to 5 in view of the limited number of observations in the time

dimension. Given that the total number of exogenous regressors is N = 16, the number of models formed is

M = 6884. These models are recursively estimated in a pseudo-out-of-sample forecast experiment:

1. We employ an expanding window approach making use of all the data up to the forecast origin. In the

first recursion, the minimum number of observations is tmin = 40.

2. The VAR models of the form:

D(yi(t)) = B0 +

p∑
r=1

BrD(yi(t− r)) + ε(t), (1)

are estimated for level data, i = level, and log-transformed data, i = log. In order to address non-

stationarity, the estimations are performed in first differences. D() is the difference operator, D(yi(t)) =

(D(y1(t)), ..., D(yk(t))) is a k−dimensional VAR process of order p and ε(t) ∼ N(0,Σε) is Gaussian

white noise.

3. The lag-length p is selected using the Akaike information criterion.

4. 1 to 8 quarters level forecasts are made

(a) based on the estimated models in levels, i = level (level forecast)
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(b) based on the estimated models employing log-transformed data, i = log taking exponents of the

forecasts (naïve logarithmic forecast)

(c) based on the estimated models employing log-transformed data, i = log, taking exponents and

adjusting for the forecast error variance (optimal forecast) as proposed by Ariño and Franses

[2000].3

5. The differencing is undone.

6. In the next recursion, one more observation is added.4

For the last recursion the number of observations is tmax = T−8, where T is the total number of observations.

The number of recursions is Nrec = tmax − tmin + 1. The full sample, the first iteration, and the number of

recursions for each country is given in Table 5 in the Appendix.

After all recursions are run the level, naïve, and optimal forecast errors are compared using the HNL-

statistic proposed by Harvey et al. [1997].5

3In order to highlight the difference between a biased and an unbiased forecast when taking logarithms are concerned, we
consider the case of forecasting a univariate time series xt following Granger and Newbold [1976]. The series yt corresponds
to the natural logarithmic transformation of xt, so that yt = log(xt). The log-transformed time series yt can be written as
yt = mt + εt with mt being the conditional expectation of yt, given the information set at time t, and with εt being a standard
white noise process. The exponential of the forecast of yt+k is referred to as the “naïve” forecast of xt+k:

x̂∗t+k = exp(m̂t+k) (2)
As shown by Granger and Newbold [1976], this “naïve” forecast does not equal the expected value of the time series xt+k in

levels at time t. It is biased since the expected value of the exponential of the forecast error ηt+k unequals one. The unbiased
forecast x̂t+k of the variable xt+k in levels can be written as:

x̂t+k = Et[exp(mt+k + ηt+k)] = x̂∗t+kEt[exp(ηt+k)] (3)
where Et is the expectation operator at timet. Granger and Newbold [1976] showed that the required correction factor

Et[exp(ηt+k)] equals exp(σ2
k/2) where σ2

k is the variance of the k-step ahead forecast error of variable y.
4In total this gives about 42 million forecasts (number of forecasts for each country=number of models×number of

iterations×number of horizons×of transformations)
5To test whether or not two forecasts generated by different models are significantly different in one direction, i.e. whether

one of them is significantly superior to the other several procedures have been developed. Diebold and Mariano [2002] proposed
a test (DM test) of the null hypothesis of no difference in the accuracy of two competing forecasts that is widely applicable.
Their test allows for a wide class of measures of forecast accuracy and is not restricted to a single loss function. The test
considers the null hypothesis H0 :E[δt] = 0. and is based on the observed sample mean

d̄ =
1

T ∗

T∑
t=T0

dt (4)

with T = T−T0 + 1. The sequence of the forecast errors follows a moving average process of order q = (k−1). If the
autocorrelations of order k and higher are zero, the variance of the loss differential can be heteroscedastic and autocorrelation
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4 Results

Tables 6, 7, 8, and 9 present the results for the USA, Japan, Germany, and the United Kingdom respectively.

They compare the performance of level to naïve forecasts (column 1 and 2), level to optimal forecasts (column

3 and 4), and naïve to optimal forecasts (column 5 and 6). The percentages presented show how many times

one type had a smaller forecast error, that is, outperforming the alternative, and how many times the

respective forecast was outperformed. An outperformance is indicated by the HNL-test.

Log-transforming data or not makes a difference, though the effect is mostly small when looking at the

percent of times one type of transformation dominates the other and it is not completely one-directional.

With the aim of concentrating on the more important results, in the following, we ignore numbers below 5

percent. For all countries the results for optimally retransformed data and naïve log-transformed are virtually

identical. For US data, level forecasts outperform log-transformed forecasts at a forecast horizon of one and

two quarters at 5.6 and 6 percent of the times, respectively. Still, for one and two quarter horizons, log-

transformed forecasts outperform their level counterparts at 12.8 and 6.5 percent of times. For Japan, level

data outperform log-transformed data for longer forecast horizons above or about 8 percent for 3 to 8 month

horizons, having a maximum of 10.7 percent for the one-year horizon. For one and two quarter horizons,

log-transformed data dominate in 13.7 and 6.5 percent of times, while they are outperformed only in 5.3

percent of times by forecasts based on level data. In contrast, in the case of Germany, level data dominate

for the one quarter horizon giving a value of 5.4. All other percentages are below 3 for all horizons and

consistently (HAC) estimated as

V̄ =
1

T ∗
(γ̂0 + 2

k−1∑
j=1

γ̂j) (5)

where γ̂j is the estimated j − th autocovariance of the loss differential t. Under the null hypothesis of equal forecast accuracy
the DM test statistic can be computed as:

DM =
d̄
√
V
∼ N(0, 1) (6)

To test if a model i is not dominated by a model j in terms of forecast accuracy, a one-sided DM test has to be conducted.
The modified null hypothesis is than given by H0 = E[δt]. If the null is rejected one thus concludes that model j dominates
model i. In order to reduce size distortions that might be significant in small samples Harvey et al. [1997] suggest a corrected
DM statistic:

HLN = DM

(
T ∗ + 1− 2k + k(k − 1)/T ∗

T ∗

)0.5

(7)

The modified statistic is compared to a Student’s t-distribution with T − 1 degrees of freedom.
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directions of comparison. For the UK level data outperform log-transformed data for one quarter horizons

in 21 percent of the comparisons and is outperformed by log-transformed only 5.8 percent of times. For the

two quarter horizon level data still outperform log-transformed data in 8.5 percent of times.

5 Conclusion

VAR models are an essential tool for practitioners when it comes to forecasting macroeconomic time series.

Log-transforming the data is common practice. The rationale behind this is that the log-transformation helps

to overcome the detrimental effects of heteroscedasticity and skewness in the level data on estimation and

testing. Our goal is to empirically evaluate the appropriateness of this approach in the context of forecasting

with VAR models. In a recursive scheme, VAR models using data of the G4 countries are estimated in

logarithms as well as in levels and used to forecast 1 to 8 quarters ahead. The resulting logarithmic forecasts

are transformed to levels and the forecast errors are compared to the ones of the respective level models.

The re-transformation of the logarithmic forecasts to levels simply taking the exponential leads to biased

forecasts. Therefore, additionally, the optimal re-transformation proposed by Ariño and Franses [2000] is

applied, as well. However, the two approaches basically yield the same results. One-sided HNL tests show,

differences are more relevant at shorter forecast horizons. For one quarter horizon forecasts, models based

on level data are more successfull than the ones based on log-transformed data for the USA and Japan. For

Germany and the UK, it is the other way round.

Potential gains and risks of selecting the right transformation reach relevant levels only in one case.

The maximum of percentage outperformance is given for one quarter forecasts of UK GDP level forecasts

dominating log-transformed forecast in 21 percent of the cases.6 Overall, our analysis based on broad

empirical evidence demonstrates that the automatic transformation of the data is at best harmless.
6The second highest outperformance is 13.65 percent in the case of one quarter horizon forecasts for Japan. Here log-

transformed data outperform level data.
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Appendix

Table 1: Descriptive Statistics, United States

Variable mean median standard minimum maximum seasonal constant

deviation adjustment prices

Business confidence 54.65 55.10 9.00 25.70 77.10 x

Exports 1378.75 1103.14 1105.24 97.45 4037.54 x x

Government bond rates, long-term 7.14 6.86 2.61 2.37 14.50

Government spending 2193.58 2242.10 552.47 1406.40 3113.00 x x

Gross domestic product 9823.75 9113.20 3562.88 4702.80 15942.30 x x

Hourly earnings 34.70 34.40 1.03 33.10 37.30 x

Hours worked 11.15 10.67 4.99 3.33 20.45 x

Imports 2043.84 1269.28 1775.34 97.21 5747.38 x x

Industrial production 68.72 62.72 20.64 36.69 102.23 x

Investments 1255.65 989.90 797.93 166.30 2631.80 x x

Manufacturing orders 939.73 924.10 579.88 205.60 2714.60 x

Money 54.80 55.80 7.65 27.30 71.90

Policy rate 5.70 5.41 3.81 0.07 17.78

Private consumption 6404.72 5817.40 2520.83 2882.40 10859.20 x x

Real effective exchange rate 120.98 116.16 19.11 92.92 185.97

Stock index 5357.15 3235.47 4680.25 607.87 16576.66

Unemployment rate 6.41 6.00 1.56 3.90 10.70 x
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Table 2: Descriptive Statistics, Japan

Variable mean median standard minimum maximum seasonal constant

deviation adjustment prices

Business confidence 100.04 100.01 1.36 97.19 102.99 x

Exports 49842.44 46466.30 21869.22 19328.00 92048.00 x x

Government bond rates, long-term 3.62 2.60 2.60 0.59 9.29

Government spending 74377.70 75541.40 18631.93 41526.60 102619.40 x x

Gross domestic product 436594.20 464400.40 78533.64 263584.00 536122.30 x x

Hourly earnings 19.35 21.77 8.87 5.32 36.38 x

Hours worked 107.00 104.60 6.38 97.60 117.90 x

Housing index 1257.95 1215.51 256.16 719.41 1792.39

Imports 10719.41 9021.57 4363.59 4766.30 22238.06 x x

Industrial production 96.50 99.50 11.63 70.80 116.80 x

Investments 106958.24 111628.50 17593.77 71463.10 132062.90 x x

Money 546955.35 560591.70 189959.39 191775.30 863827.50

Policy rate 2.13 0.75 2.33 0.10 9.00

Private consumption 253331.58 268812.10 45701.13 159124.60 322336.60 x x

Real effective exchange rate 102.87 103.90 15.90 74.90 148.80

Stock index 15352.52 13852.50 6648.18 6502.80 38915.87

Unemployment rate 3.53 3.37 1.09 1.90 5.43 x

Table 3: Descriptive Statistics, United Kingdom

Variable mean median standard minimum maximum seasonal constant

deviation adjustment prices

Commodity price index 64.80 71.75 28.46 11.30 108.80 x

Exports 63539.09 50948.00 32665.90 21079.00 125831.00 x x

Government bond rates, long-term 8.37 8.59 3.67 2.68 16.54

Government spending 62652.69 58893.50 12910.77 42721.00 86554.00 x x

Gross domestic product 258310.17 235942.50 83004.62 142919.00 392786.00 x x

Hourly earnings 7.85 5.76 5.52 0.62 32.25 x

Hours worked 879.94 880.95 39.57 791.10 976.80 x

Imports 65471.70 51179.50 37694.21 20917.00 137342.00 x x

Industrial production 97.47 98.40 9.14 78.10 111.00 x

Investments 39951.38 36769.50 14695.17 21439.00 70435.00 x x

Money 719190.00 519200.00 682189.21 28484.00 2214507.00

Policy rate 7.56 6.63 4.26 0.50 17.00

Private consumption 158955.45 145788.00 59641.87 78471.00 251953.00 x x

Real effective exchange rate 108.89 108.05 12.36 83.44 140.27

Retail sales 66.58 61.90 22.13 38.10 105.30 x x

Stock index 1516.62 1314.88 1118.23 66.90 3609.63

Unemployment rate 5.39 4.45 2.68 1.60 10.60 x
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Table 4: Descriptive Statistics, Germany

Variable mean median standard minimum maximum seasonal constant

deviation adjustment prices

Business confidence 101.23 101.10 6.82 85.10 114.50 x

Exports 169.82 162.55 66.36 78.88 279.12 x x

Government bond rates, long-term 4.64 4.34 1.83 1.41 8.55

Government spending 103.49 103.91 8.87 83.51 118.16 x x

Gross domestic product 545.02 548.87 49.12 466.33 630.63 x x

Hourly earnings 86.55 87.26 12.59 61.24 109.93 x

Hours worked 98.61 83.70 29.73 61.90 154.80 x

Imports 180.37 170.23 62.35 93.70 292.68 x x

Industrial production 92.78 90.80 9.28 78.70 110.20 x

Investments 100.32 98.37 6.33 89.42 112.51 x x

Manufacturing orders 1485.38 1440.20 451.35 743.60 2334.30 x

Money 85.30 84.20 16.19 60.00 117.90

Policy rate 3.16 2.50 2.01 0.25 8.25

Private consumption 319.36 325.17 20.53 273.69 354.20 x x

Real effective exchange rate 104.49 104.76 5.14 94.94 117.53

Stock index 4663.03 4905.44 2114.86 1398.23 9552.16

Unemployment rate 9.13 9.30 1.70 5.40 12.60 x

Table 5: Sample size and number of iterations by country

Country sample first iteration number of iterations
USA 1970:1-2014:1 1980:1 128
Japan 1980:1-2014:1 1990:1 88
Germany 1991:1-2014:1 2001:1 44
United Kingdom 1971:2-2014:2 1980:2 123
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Table 6: Comparison of level forecasts and forecasts of naïve and unbiased log-transformed models, USA

level<naïve level>naïve level<optimal level>optimal
h=1 5.58 12.81 5.58 12.80
h=2 5.97 6.45 5.97 6.45
h=3 2.91 2.41 2.91 2.40
h=4 3.40 0.81 3.40 0.81
h=5 3.07 0.38 3.07 0.38
h=6 1.84 0.32 1.84 0.32
h=7 0.86 0.29 0.86 0.29
h=8 0.26 0.22 0.26 0.22

Note: The table compares level forecasts, forecasts of models employing logarithms that have been re-
transformed taking the exponential (naïve), forecasts of models employing logarithms that have been re-
transformed in the theoretically optimal way (optimal). The numbers represent the percentages one model
significantly outperformed the alternative according to the HNL test. “<” (“>” ) indicates significantly
smaller (bigger) forecast errors.

Table 7: Comparison of level forecasts and forecasts of naïve and unbiased log-transformed models, Japan

level<naïve level>naïve level<optimal level>optimal
h=1 2.25 13.65 2.25 13.65
h=2 5.29 6.46 5.30 6.46
h=3 8.80 2.63 8.82 2.61
h=4 10.72 1.26 10.74 1.26
h=5 8.90 0.55 8.90 0.55
h=6 7.95 0.65 7.96 0.65
h=7 8.29 0.54 8.31 0.54
h=8 8.61 0.71 8.61 0.71

Note: The table compares level forecasts, forecasts of models employing logarithms that have been re-
transformed taking the exponential (naïve), forecasts of models employing logarithms that have been re-
transformed in the theoretically optimal way (optimal). The numbers represent the percentages one model
significantly outperformed the alternative according to the HNL test. “<” (“>” ) indicates significantly
smaller (bigger) forecast errors.
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Table 8: Comparison of level forecasts and forecasts of naïve and unbiased log-transformed models, Germany

level<naïve level>naïve level<optimal level>optimal
h=1 5.43 2.12 5.43 2.12
h=2 2.54 1.67 2.54 1.67
h=3 1.51 1.32 1.51 1.32
h=4 1.45 2.34 1.45 2.34
h=5 1.50 1.60 1.50 1.60
h=6 1.45 1.80 1.45 1.80
h=7 1.45 1.98 1.45 1.98
h=8 1.61 2.27 1.61 2.27

Note: The table compares level forecasts, forecasts of models employing logarithms that have been re-
transformed taking the exponential (naïve), forecasts of models employing logarithms that have been re-
transformed in the theoretically optimal way (optimal). The numbers represent the percentages one model
significantly outperformed the alternative according to the HNL test. “<” (“>” ) indicates significantly
smaller (bigger) forecast errors.

Table 9: Comparison of level forecasts and forecasts of naïve and unbiased log-transformed models, UK

level<naïve level>naïve level<optimal level>optimal
h=1 20.99 5.78 20.99 5.78
h=2 8.47 1.64 8.47 1.64
h=3 2.34 1.64 2.34 1.64
h=4 0.86 4.29 0.86 4.29
h=5 0.36 7.58 0.36 7.58
h=6 0.04 8.53 0.04 8.53
h=7 0.01 6.91 0.01 6.91
h=8 0.01 6.74 0.01 6.74

Note: The table compares level forecasts, forecasts of models employing logarithms that have been re-
transformed taking the exponential (naïve), forecasts of models employing logarithms that have been re-
transformed in the theoretically optimal way (optimal). The numbers represent the percentages one model
significantly outperformed the alternative according to the HNL test. “<” (“>” ) indicates significantly
smaller (bigger) forecast errors.

14


	Introduction
	The data
	Procedure of the Analysis
	Results 
	Conclusion
	References

