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Abstract

In an intertemporal model, we analyze the timing of irreversible and
lumpy monopoly investment under certainty. There are two reasons
for investing, i.e. wear and tear leading to replacement investment
and demand growth leading to expansion investment. Both in a single
investment setting and in a repeated investment setting, we �nd that
a �rm maximizing discounted social welfare invests earlier than an
identical �rm maximizing discounted pro�ts. The investment date of
an identical �rm maximizing a discounted convex combination of social
welfare and pro�ts lies between these polar cases. All results apply
both to replacement investment and to expansion investment.
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1 Introduction

In spite of the liberalization process which has taken place in many in-
frastructure sectors since the early 1980s, e.g. energy, telecommunications,
and transportation, there are many examples of networks which are still
monopolized. For instance, electricity and gas transmission networks, elec-
tricity and gas distribution networks, road networks, and infrastructure net-
works in the rail sector involving tracks, bridges, tunnels, train stations and
terminals are, in general, still monopolies.

From a practical perspective, the timing of monopoly investment is de�-
nitely relevant to current economic policy issues. If a monopoly �rm invests
earlier than it should, society as a whole incurs opportunity costs due to
resources allocated suboptimally. In case that the �rm invests later than
it should, this may have detrimental consequences due to foregone bene-
�ts. The debate on the deteriorating quality of energy networks, e.g. in the
United States, is a case in point.

From a theoretical perspective, the timing of monopoly investment is
also crucial. Using conventional static analysis, it can be shown that a
monopolist maximizing pro�ts chooses ine¢ciently high prices compared to
a monopolist maximizing social welfare, as is well-known to any reader of
textbooks explaining the fundamentals of economics (see, e.g., Samuelson
and Nordhaus, 2010). Thus, the question arises, if there is an intertemporal
counterpart of this static result. In other words, it is to be found out,
whether an intertemporal model can show that a monopoly maximizing
discounted pro�ts invests ine¢ciently late or ine¢ciently early compared to
a monopoly maximizing discounted social welfare, or not.

In this paper, we add to the literature by examining the timing of
monopoly investment under wear and tear and under demand growth in
a single framework. In an intertemporal model, we analyze the behavior of
a monopoly �rm in di¤erent situations. We address the cases of a �rm max-
imizing discounted social welfare, a �rm maximizing discounted pro�ts, and
a �rm maximizing a discounted convex combination of social welfare and
pro�ts. In our model, there are two reasons for investing. The �rst reason
is wear and tear leading to replacement investment. The second reason is
demand growth leading to expansion investment. Investment is both lumpy
and completely irreversible in the sense that there is no alternative use for
the assets after investing. We assume certainty.

In our basic scenario, a monopoly �rm aims to invest in productive as-
sets only once. Investing necessitates an initial outlay, at a single point in
time. Both for wear and tear and for demand growth, we �nd that a �rm
maximizing discounted social welfare invests earlier than an identical �rm
maximizing discounted pro�ts. The investment date of an identical �rm
maximizing a discounted convex combination of social welfare and pro�ts
lies between these polar cases.
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In order to address the case of repeated investment, we generalize our ba-
sic scenario. Starting from an initial optimal investment date we derive the
next optimal investment date. As this procedure can be applied in�nitely,
we are thus able to describe the case of in�nitely repeated investment. We
�nd that the time interval between two successive investments of a monopoly
�rm maximizing discounted social welfare is shorter than the corresponding
time interval of an identical �rm maximizing discounted pro�ts. Analogous
to our basic scenario, the corresponding time interval between two successive
investments of an identical �rm maximizing a discounted convex combina-
tion of social welfare and pro�ts lies between these two polar cases.

Strictly speaking, we analyze the e¤ects of the objective function of a
monopoly �rm on the timing of investment. However, our results can also
be understood in a broader sense. First, one can interpret a monopoly �rm
which maximizes discounted social welfare as a (perfect) publicly-owned
monopolist and a monopoly �rm which maximizes discounted pro�ts as an
(unregulated) privately-owned monopolist. Correspondingly, one can inter-
pret a monopoly �rm which maximizes a discounted convex combination of
social welfare and pro�ts as a monopolist with mixed ownership, with the
weighting factor of the convex combination re�ecting the ownership shares.
Mixed ownership can often be found in network industries, for instance in
the telecommunications sector in Austria and in the energy sector in Ger-
many. To the best of our knowledge, a suitable framework for the analysis
of the e¤ects of mixed ownership on investment timing does not exist up
to now. All in all, this is an interpretation of our model in terms of own-
ership. Second, as is well-known from the literature on optimal regulation,
there are surplus subsidy schemes designed for privately-owned monopolists
assumed to maximize (discounted or undiscounted) total pro�ts, i.e. the
(discounted or undiscounted) sum of their operating pro�ts and some sort
of subsidy. These schemes serve the purpose of molding privately motivated
actions into socially desirable outcomes. In particular, Loeb and Magat�s
(1979) mechanism deserves to be mentioned, which results in the �rst-best
outcome by maximizing total surplus in a partial equilibrium model. Their
static mechanism can also be used to achieve intertemporal objectives. This
is an interpretation of our model in terms of regulation. Third, private sector
monopoly �rms can, by di¤erentiating prices, lower the di¤erence between
pro�ts and total surplus. This is an interpretation of our model in terms of
price discrimination.

The paper is organized as follows. In Section 2, we give a brief overview
of the related literature. Afterwards, we introduce our basic scenario model
with a �rm aiming to invest only once in Section 3. In Section 4, we analyze
replacement investment, and in Section 5, we analyze expansion investment.
We extend our analysis to repeated investment in Section 6. In Section 7,
we conclude.
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2 Related literature

An early treatment of the problem of investment timing is Marglin (1963),
who suggests that, under certain conditions, an investment with a negative
net present value can be transformed into one with a positive net present
value by means of delay.

Another early contribution is Terborgh (1949), who develops an approx-
imate decision rule for the optimal replacement of assets which deteriorate
taking into account technological progress. He assumes that technological
progress is embodied in new equipment and examines when it is optimal to
replace the oldest capital with the most recent vintages. Smith (1961) elab-
orates on Terborgh�s (1949) analysis. Malcomson (1975) also analyzes the
optimal replacement policy of a �rm. In particular, he asks if the optimal
machine life is given uniquely by cost conditions, whether it is indepen-
dent of output and product market conditions or not, and if it is constant
over time, as is asserted by Terborgh (1949) and Smith (1961). Malcom-
son�s (1975) results are extended by van Hilten (1991). Whereas Malcomson
(1975) provides numerical evidence that the optimal machine life is constant
under certain conditions, van Hilten (1991) makes these conditions more ex-
plicit and gives an analytical proof of the constancy of the optimal machine
life. Tarola and Trento (2010) analyze the plant-size problem by allowing
�rms to combine their investment policy with a pricing policy. Assuming
that a �rm�s equipment is a¤ected by physical deterioration which reduces
production capacity over time and embedding technological advancements
in their model, Tarola and Trento (2010) derive several general properties of
the optimal pricing policy and the ensuing optimal sequence of investments
of the �rm over time.

Another long-standing issue in the investment literature is the plant-size
problem, i.e. the question of how to add facilities to meet rising demand in
industries characterized by economies of scale in investment costs, which is
addressed by Chenery (1952), Manne (1961, 1967) and Srinivasan (1967).
Manne (1967) assumes an exogenous demand growing linearly over time
and �nds that the cost-minimal investment policy is characterized by the
so-called constant-cycle property, which means that successive investments
are all of the same size and undertaken at equally spaced points in time.
Srinivasan (1967) shows that the constant-cycle property also holds for a
situation where demand grows geometrically over time. Several re�nements
and many applications to public services are developed later (see, e.g., Luss,
1982; Li and Tirupati, 1992; Nam and Logendran, 1992). In addition, a
considerable amount of research focuses on the problems of lead times and
uncertain demand (see, e.g., Nickell, 1977; Freidenfelds, 1981, Bean et al.,
1992, Chaouch and Buzacott, 1994; Ryan, 2004). Demichelis and Tarola
(2006) extend the framework for the study of the plant-size problem by
allowing the monopoly �rm to combine its investment policy with a pricing
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policy adjusting demand upwards or downwards over time. They derive
several properties of the optimal investment and pricing policies under the
assumptions that the �rm maximizes discounted pro�ts and that it, while
controlling the size of the investments to be undertaken, does not control
the investment dates which are assumed to be equally spaced on the time
axis. Alternatively, one can assume that the monopoly �rm may decide on
the dates, but not on the investment sizes. Tarola (2006) shows that, in
this case, the optimal pricing policy leads the �rm to manipulate the price
pattern in order to ensure that the dates at which the �xed investments have
to be undertaken are equally spaced over time.

Timing decisions are also examined in the literature on innovation and
patent races. Important contributions are, for instance, Dasgupta and
Stiglitz (1980), Reinganum (1981), Katz and Shapiro (1987), and Fuden-
berg and Tirole (1987). An excellent survey is given by Reinganum (1989).
A similar kind of analysis is used by Szymanski (1991) to explore the timing
of infrastructure investment.

Finally, the timing of monopoly investment is also analyzed under the
assumption that the �rm is regulated. One branch of the literature going in
this direction is Dobbs (2004) and, following up on that, Nagel and Ram-
merstorfer (2009), where investment takes place under uncertainty. Their
models rely on the literature on real options. Another branch follows from
a debate on the concept of access holidays (see, in particular, Gans and
Williams, 1999; Gans and King, 2004).

Our paper is related both to the literature on the optimal replacement
policy and to the literature on the plant-size problem. However, unlike both
branches of the traditional literature, we address the two main drivers for
investment in a single framework, i.e. wear and tear on the one hand, and
demand growth on the other hand. Furthermore, we analyze the interaction
between a monopoly �rm�s objectives, its pricing policy, and its investment
policy. Like Tarola (2006), we assume that the �rm may make decisions on
the investment dates but not on the investment sizes. However, unlike her,
we distinguish explicitly between wear and tear and demand growth, whereas
she focuses on demand growth. Furthermore, she con�nes her analysis to a
monopolist maximizing discounted pro�ts, while we compare the e¤ects of
di¤erent objectives of the �rm on investment timing. Our analysis is also
related to Tarola and Trento (2010), who analyze the replacement prob-
lem by deriving several general properties of the optimal pricing policy and
the ensuing optimal sequence of investments of a �rm over time. While, in
their model, physical deterioration reduces production capacity over time,
we analyze the replacement problem by assuming that marginal cost rises
over time. Furthermore, unlike Tarola and Trento (2010), we derive explicit
solutions for the optimal timing problem, both for the case of a single invest-
ment and for the case of repeated investment. Our intertemporal model also
builds on the innovation literature, in particular Katz and Shapiro (1987), as
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well as on Szymanski (1991), on Gans and Williams (1999), and, in particu-
lar, on Brunekreeft and Newbery (2006). However, we also analyze repeated
investment, whereas the latter three focus on a single investment project.
Unlike large parts of the regulation literature, we do not take into account
uncertainty. We do this on purpose in order to be able to isolate possible
e¤ects of di¤erent objectives of the monopoly �rm on investment timing.
Thus, we are able to identify the intertemporal counterpart of static market
failure for a monopoly �rm.

3 Basic scenario model

For simplicity, we consider a single-product monopolist. In our view, this
assumption is satisfactory for our purposes, i.e. to adequately examine the
interaction between the objective of the �rm, its pricing policy over time
and its investment policy over time. However, our results can be easily
generalized to a multi-product monopolist.

In our basic scenario model, which we develop in this section and apply
in the following two sections, the monopoly �rm aims to invest in produc-
tive assets merely once. This assumption can be justi�ed by the fact that
investment assets in monopolized industries are typically characterized by
high investment outlays and long lives. For instance, electricity distribu-
tion networks can be assumed to operate for 40 years. Nevertheless, this
is merely the �rst step of our analysis. In the second step, we extend our
analysis to the case of repeated investment in Section 6.

To keep the model as simple as possible, we assume that investing ne-
cessitates merely an initial outlay, I, with I 2 R+, at a single point in time.

Furthermore, we assume the initial investment outlay, I, to be �xed. It is
no decision variable of the �rm. This assumption is a simple way to capture
the feature that investment in monopolized infrastructure sectors is typically
lumpy. If I were perfectly divisible, there would be nothing special about
monopoly investment. The solution to the problem of investment timing
would be trivial. It is the assumption of lumpy investment which drives our
results.

In our model, investment is assumed to be completely irreversible in the
sense that there is no alternative use for the assets after investing.

We assume that the discount rate, denoted by r, with r 2 R+, is inde-
pendent of the objective functions of decision makers. This implies that the
discount rate which is relevant to private investors is identical to the social
discount rate which is relevant to a social planner. The independence of
the discount rate is an assumption, which is neither self-evident nor uncon-
troversial. We choose this assumption to make the results of our analysis
comparable.

The objective function of the �rm is either discounted social welfare, or
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discounted pro�ts, or a discounted convex combination of social welfare and
pro�ts. We de�ne social welfare as total surplus, i.e. as the sum of consumer
surplus and pro�ts. This ensures that marginal cost prices maximize social
welfare, under rather general conditions, in a partial equilibrium model.
We are aware of the fact that there are situations where this social welfare
measure does not seem appropriate, in particular, when income e¤ects are
relevant (see, e.g., Tirole, 1988; Armstrong et al., 1994). However, given that
the social welfare measure of total surplus is useful due to its simplicity and
that the conditions under which it is inadequate can be precisely described
(see, in particular, Willig, 1976), we prefer it over alternatives.

For the ease of exposition, we assume that the participation constraints
are always met. The investment allows the �rm to attain strictly positive
discounted social welfare, strictly positive discounted pro�ts, or a strictly
positive discounted convex combination of social welfare and pro�ts, respec-
tively.

In our basic scenario model, the �rm has to make several decisions simul-
taneously. It has to decide which outputs to set before investment, which
outputs to set after investment, when to invest in the assets and how long
to use them, i.e. how long to produce. In our intertemporal model, there
are two reasons for investing. The �rst reason is wear and tear leading to
replacement investment. The second reason is demand growth leading to
expansion investment.

3.1 Wear and tear

Production costs, C (�; �; �), not taking into account I, are a function of the
outputs, Q1, before investment, of the outputs, Q2, after investment, and of
time, t. We assume that, at any point in time, marginal costs are constant.
The age of the existing assets at t = 0 is denoted by T . Over time, either
marginal costs do not change, i.e. � = 0, or marginal costs increase at a
constant rate, 0 < � < 1, due to wear and tear, as the assets of the �rm get
older. Without loss of generality, we neglect any �xed costs of the assets
prior to investment. The investment of I at the investment date, TI , brings
marginal cost back to its original level:

C (Q1; Q2; t) =

(

ce�(t+T)Q1; t < TI
ce�(t�TI)Q2; TI � t;

(1)

where c 2 R+ and Q1; Q2; T ; TI ; t 2 R+0 . By de�ning costs in this way, we
ensure that there are economies of scale due to investment at any point in
time. Furthermore, we assume r > � to ensure stability.
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3.2 Demand growth

Inverse demand, P (�; �), is a function of the quantity demanded, Q, and of
time, t. For simplicity, we assume that, at any point in time, demand is
linear.

At �rst sight, a possible alternative assumption could be that demand is
constant elasticity. Technically, this would have the advantage that, with ris-
ing price levels, the quantity demanded would never drop to zero. However,
due to the cost function we choose, the assumption of a constant demand
elasticity would not �t our model. It would imply that there is no pro�t-
maximizing price. Furthermore, a strictly concave demand function is no
convincing alternative, either. With a strictly concave demand function, we
would also run into unnecessary problems as a consequence of our de�nition
of demand growth, which we will explain in turn.

Over time, either the relationship between the quantity demanded and
price does not change, i.e. g = 0, or the quantity demanded at a given price
grows at a constant rate, g, with 0 < g < 1:

P (Q; t) = a� be�gtQ; (2)

where a; b 2 R+ and Q; t 2 R+0 .
This is a particular pattern of demand growth. The demand curve ro-

tates around the point where it intersects the vertical axis. A potential
alternative is, obviously, to assume parallel shifts of the demand curve over
time. That assumption is, for instance, common in the investment literature
on the plant-size problem. We prefer to use our speci�cation because of the
following reason. Parallel shifts of linear demand curves due to a change
in a non-price variable (e.g., income) are not compatible with the assump-
tion of a constant elasticity with respect to that variable (e.g., a constant
income elasticity). If the elasticity with respect to some non-price variable
shall be constant, then a demand curve which is linear must rotate when
the non-price variable changes (see, for instance, Graves and Sexton, 2006).
To ensure stability, we assume r > g.

3.3 Methodology

In order to separate the e¤ects of wear and tear and the e¤ects of demand
growth, we consider two di¤erent versions of our basic scenario model. In
the �rst version, marginal costs increase at a constant rate, 0 < � < 1, and
the relationship between the quantity demanded and price does not change
over time, i.e. g = 0. Thus, in the �rst version, there is only a reason for
replacement investment, and no reason for expansion investment. In the
second version, marginal costs do not change over time, i.e. � = 0, and
the quantity demanded at a given price grows at a constant rate, g, with
0 < g < 1. This implies that, in the second version, there is only a reason
for expansion investment, and no reason for replacement investment.
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4 Wear and tear without demand growth: replace-

ment investment

4.1 A monopoly �rm maximizing discounted social welfare

Assertions of the optimality of marginal cost prices have a long history in
economics (e.g., Spulber, 1989). For instance, in a partial equilibrium frame-
work, marginal cost prices are, under appropriate conditions, optimal in the
sense that they maximize the social welfare measure we choose, i.e. total
surplus (or, in other words, the sum of aggregate consumer surplus and prof-
its), on a particular market. Therefore, one might argue that marginal cost
prices should be the aim of a social planner from an e¢ciency perspective,
at least if there are no distortions elsewhere in the economy, or if the partic-
ular sector in question is su¢ciently separated from the rest of the economy
(e.g., Waterson, 1988).

However, there are also some drawbacks of the concept of marginal cost
prices like measurement problems, ine¢ciencies, and conceptual di¢culties.
In particular, if there are cost economies of scale, as is the case with our
cost function, government subsidies need to be available in order to allow
the �rm to break even, at least in the absence of price discrimination. This
raises the di¢cult question of the shadow cost of public funds (e.g., La¤ont
and Tirole, 1993).

Nevertheless, given that the rationale behind marginal prices can easily
be understood and that marginal cost prices are �rmly based on cost, it
is not by coincidence that they are the traditional benchmark for public
utility pricing (e.g., Mitchell and Vogelsang, 1991). For instance, one might
think of a publicly-owned monopoly that is subsidized and acts in the best
interest of society. Alternatively, one might have in mind a privately-owned
monopoly under Loeb and Magat�s (1979) surplus subsidy scheme, or a
privately-owned monopoly using primary price discrimination (also called
perfect price discrimination). In this section, we follow the tradition of
total surplus and add an intertemporal component, thus aiming to maximize
discounted total surplus.

Aggregate consumer surplus, CS (�; �), at any point in time is a function
of the quantity demanded, Q, and of time, t. With (2) and g = 0, it can be
written as:

CS (Q; t) =
b

2
Q2; (3)

where b 2 R+ and Q; t 2 R+0 .
Pro�ts, �(�; �; �), at any point in time, not taking into account I, are

a function of the outputs, Q1, before investment, of the outputs, Q2, after
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investment, and of time, t. With (1) and (2), as well as g = 0, we obtain:

�(Q1; Q2; t) =

(

�bQ21 +
�

a� ce�(t+T)
�

Q1; t < TI

�bQ22 +
�

a� ce�(t�TI)
�

Q2; TI � t;
(4)

where a; b; c 2 R+ and Q1; Q2; T ; TI ; t 2 R+0 .
Total surplus, TS (�; �; �), at any point in time, not taking into account

I, is the sum of (3) and (4):

TS (Q1; Q2; t) =

(

� b
2Q

2
1 +

�

a� ce�(t+T)
�

Q1; t < TI

� b
2Q

2
2 +

�

a� ce�(t�TI)
�

Q2; TI � t;
(5)

where a; b; c 2 R+ and Q1; Q2; T ; TI ; t 2 R+0 .
A monopolist aiming to maximize discounted total surplus will not use

his assets in�nitely, since marginal cost rises over time, whereas inverse
demand does not change. When a becomes smaller than marginal cost,
ce�(t�TI), after investment, the �rm will no longer produce. It is straight-

forward to show that it will stop production at TI +
ln(ac )
�
.

Building on (5), discounted total surplus, DTS (�; �; �), over time, taking
into account the initial investment outlay, I, can be written as a function
of the outputs, Q1, before investment, of the outputs, Q2, after investment,
and of the investment date, TI :

DTS (Q1; Q2; TI) =

TI
Z

0

�

� b
2Q

2
1 +

�

a� ce�(t+T)
�

Q1

�

e�rtdt

+

TI+
ln(ac )
�

Z

TI

�

� b
2Q

2
2 +

�

a� ce�(t�TI)
�

Q2
�

e�rtdt

�Ie�rTI ;

(6)

where a; b; c; r 2 R+ and Q1; Q2; T ; TI ; t 2 R+0 .

4.2 A monopoly �rm maximizing discounted pro�ts

Now, we describe a monopoly �rm which maximizes discounted pro�ts. Its
pro�t function is given by (4). Just like a �rm which maximizes discounted
social welfare, a monopoly �rm maximizing discounted pro�ts will not use

its assets in�nitely. It will also stop production at TI +
ln(ac )
�
.

Building on (4), discounted total pro�ts, D�(�; �; �), over time, taking
into account the initial investment outlay, I, can be written as a function
of the outputs, Q1, before investment, of the outputs, Q2, after investment,

10



and of the investment date, TI :

D�(Q1; Q2; TI) =

TI
Z

0

�

�bQ21 +
�

a� ce�(t+T)
�

Q1

�

e�rtdt

+

TI+
ln(ac )
�

Z

TI

�

�bQ22 +
�

a� ce�(t�TI)
�

Q2
�

e�rtdt

�Ie�rTI ,

(7)

where a; b; c; r 2 R+ and Q1; Q2; T ; TI ; t 2 R+0 .

4.3 A monopoly �rm maximizing a discounted convex com-

bination of social welfare and pro�ts

In the following, we generalize the approaches of Section 4.1 and Section
4.2 by addressing a monopoly �rm which maximizes a discounted convex
combination of social welfare and pro�ts. Total surplus is weighted by 
,
and pro�ts are weighted by (1� 
); 0 � 
 � 1. The special case of a �rm
maximizing discounted total surplus is given by 
 = 1, the special case of
a �rm maximizing discounted pro�ts is given by 
 = 0, and all the cases in
between are characterized by 0 < 
 < 1:

A possible interpretation of the case where 0 < 
 < 1 is that of a
mixed monopoly, which is a monopoly that is partly publicly-owned and
partly privately-owned and that acts in the best interest of both categories
of shareholders. In this interpretation of the model, the weighting factors, 

and (1� 
), of the convex combination, re�ect the shares of the public and
the private owners, respectively. As already mentioned, mixed ownership
can often be found in network industries, for instance, if former public �rms
have been partially privatized.

Building on (4) and (5), the mixed monopoly objective, MM (�; �; �), at
any point in time (not taking into account I) is a function of the outputs,
Q1, before investment, of the outputs, Q2, after investment, and of time, t:

MM (Q1; Q2; t) = 
TS (Q1; Q2; t) + (1� 
)� (Q1; Q2; t) , (8)

where Q1; Q2; t 2 R+0 . This is equivalent to:

MM (Q1; Q2; t) =

(

�



2 � 1

�

bQ21 +
�

a� ce�(t+T)
�

Q1; t < TI
�



2 � 1

�

bQ22 +
�

a� ce�(t�TI)
�

Q2; TI � t,
(9)

where a; b; c 2 R+ and Q1; Q2; T ; TI ; t 2 R+0 .
A �rm which maximizes a discounted convex combination of social wel-

fare and pro�ts will also stop production at TI +
ln(ac )
�
.
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Building on (9), the discounted mixed monopoly objective, DMM (�; �; �),
over time, taking into account the initial investment outlay, I, can be written
as a function of the outputs, Q1, before investment, of the outputs, Q2, after
investment, and of the investment date, TI :

DMM (Q1; Q2; TI) =

TI
Z

0

�

�



2 � 1

�

bQ21 +
�

a� ce�(t+T)
�

Q1

�

e�rtdt

+

TI+
ln(ac )
�

Z

TI

��



2 � 1

�

bQ22 +
�

a� ce�(t�TI)
�

Q2
�

e�rtdt

�Ie�rTI ,
(10)

where a; b; c; r 2 R+ and Q1; Q2; T ; TI ; t 2 R+0 .

4.4 A comparison of the investment dates

With (10) we can analyze the behavior of a �rm which maximizes a dis-
counted convex combination of total surplus and pro�ts.

Proposition 1 The time paths of outputs, QDMM
1 and QDMM

2 , which max-
imize a discounted convex combination of total surplus and pro�ts for a
given weighting factor, 
, result from the corresponding convex combination
of marginal cost prices and pro�t-maximizing prices at any point in time.

Proof. See Appendix.

Proposition 2 The investment date, TDMM
I , which maximizes a discounted

convex combination of total surplus and pro�ts for a given weighting factor,

, is given by:

TDMM
I =

1

�
ln

0

B

B

@

a� 2

r

a2 + 2acr
��r

� c2r
2��r � �22a2

(r2�3�r+2�2)(ac )
r
�
� (4� 2
) brI

ce�T

1

C

C

A

:

(11)

Proof. See Appendix.

Using 
 = 1 to describe the investment date, TDTSI ; of a �rm maximizing
discounted total surplus, and 
 = 0 to describe the investment date, TD�I ,
of an identical �rm maximizing discounted pro�ts, it is easy to derive the
following fundamental result.
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Corollary 3 In terms of wear and tear and other things being equal, the
investment date, TDTSI , which maximizes discounted total surplus is earlier
than the investment date, TDMM

I , which maximizes a discounted convex
combination of total surplus and pro�ts for a given weighting factor, 
, with
0 < 
 < 1, and is earlier than the investment date, TD�I , which maximizes
discounted pro�ts.

5 Demand growth without wear and tear: expan-

sion investment

Now, we turn to demand growth as a driver of expansion investment. In
this scenario, wear and tear is absent, whereas the quantity demanded at a
given price grows at a constant rate.

At the point of departure, there is an old capacity limit, K1, before
expansion investment takes place. We assume that the old capacity limit,
K1, is exogenously given. We choose this assumption to simplify matters,
as we do not want to focus on optimal capacity choice. The assumption
of an exogenously given capacity limit also re�ects our view that monopoly
investment is typically lumpy. The old capacity limit, K1, is assumed to
have just become binding. Therefore, the �rm will invest in order to expand
capacity to a new capacity limit,K2. Analogous to the old capacity limit,K1,
the new capacity limit,K2, is also exogenously given. At the investment date,
TI , the new capacity limit, K2 is assumed to be greater than the quantity
demanded. However, due to growing demand, the new capacity limit, K2, is
assumed to become binding later on. It is obvious that the monopoly �rm
will use its assets in�nitely, since marginal cost does not rise over time.

5.1 A monopoly �rm maximizing discounted total surplus

We denote the points in time, when the capacity limits, K1 and K2, be-
come binding constraints by T bind;DTS1 and T bind;DTS2 . With (2) and � = 0,
aggregate consumer surplus, CS (�; �), at any point in time (not taking into
account the initial investment outlay, I) can easily be determined. It is a
function of the outputs, Q2, immediately after investment, and of time, t.
We obtain:

CS (Q2; t) =

8

>

<

>

:

b
2e
�gtK2

1 ; T
bind;DTS
1 � t < TI

b
2e
�gtQ22; TI � t < T bind;DTS2

b
2e
�gtK2

2 ; T
bind;DTS
2 � t,

(12)

where a; b; c 2 R+ and K1;K2; Q2; T bind;DTS1 ; T
bind;DTS
2 ; TI ; t 2 R+0 .

Pro�ts, �(�; �), at any point in time (not taking into account I) can also
be written as a function of the outputs, Q2, immediately after investment,
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and of time, t. With (1) and (2) as well as � = 0, we get:

�(Q2; t) =

8

>

<

>

:

�be�gtK2
1 + (a� c)K1; T

bind;DTS
1 � t < TI

�be�gtQ22 + (a� c)Q2; TI � t < T bind;DTS2

�be�gtK2
2 + (a� c)K2; T

bind;DTS
2 � t,

(13)

where a; b; c 2 R+ and K1;K2; Q2; T bind;DTS1 ; T
bind;DTS
2 ; TI ; t 2 R+0 .

Total surplus, TS (�; �), at any point in time (not taking into account I)
is the sum of (12) and (13):

TS (Q2; t) =

8

>

<

>

:

� b
2e
�gtK2

1 + (a� c)K1; T
bind;DTS
1 � t < TI

� b
2e
�gtQ22 + (a� c)Q2; TI � t < T bind;DTS2

� b
2e
�gtK2

2 + (a� c)K2; T
bind;DTS
2 � t,

(14)

where a; b; c 2 R+ and K1;K2; Q2; T bind;DTS1 ; T
bind;DTS
2 ; TI ; t 2 R+0 .

Building on (14), discounted total surplus, DTS (�; �), over time, taking
into account the initial investment outlay, I, can be written as a function of
the outputs, Q2, after investment, and of the investment date, TI :

DTS (Q2; TI) =

TI
Z

T
bind;DTS
1

�

� b
2e
�gtK2

1 + (a� c)K1
�

e�rtdt

+

T
bind;DTS
2
Z

TI

�

� b
2e
�gtQ22 + (a� c)Q2

�

e�rtdt

+

1
Z

T
bind;DTS
2

�

� b
2e
�gtK2

2 + (a� c)K2
�

e�rtdt

�Ie�rTI ;

(15)

where a; b; c; r 2 R+ and K1;K2; Q2; T bind;DTS1 ; T
bind;DTS
2 ; TI ; t 2 R+0 .

5.2 A monopoly �rm maximizing discounted pro�ts

In the following, we analyze the behavior of a monopoly �rm which maxi-
mizes discounted pro�ts. We denote the points in time, when the capacity
limits, K1 and K2, become binding constraints by T

bind;D�
1 and T bind;D�2 .

Analogous to (13), pro�ts, �(�; �), at any point in time (not taking into
account I) can be written as a function of the outputs, Q2, immediately after
investment, and of time, t. Building on (1) and (2), taking into account that

� = 0, and inserting T bind;D�1 and T bind;D�2 , we get:

�(Q2; t) =

8

>

<

>

:

�be�gtK2
1 + (a� c)K1; T

bind;D�
1 � t < TI

�be�gtQ22 + (a� c)Q2; TI � t < T bind;D�2

�be�gtK2
2 + (a� c)K2; T

bind;D�
2 � t;

(16)
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where a; b; c 2 R+ and K1;K2; Q2; T bind;D�1 ; T
bind;D�
2 ; TI ; t 2 R+0 :

Building on (16), discounted total pro�ts, D�(�; �), over time, taking
into account the initial investment outlay, I, can be written as a function of
the outputs, Q2, after investment, and of the investment date, TI :

D�(Q2; TI) =

TI
Z

T
bind;D�
1

�

�be�gtK2
1 + (a� c)K1

�

e�rtdt

+

T
bind;D�
2
Z

TI

�

�be�gtQ22 + (a� c)Q2
�

e�rtdt

+

1
Z

T
bind;D�
2

�

�be�gtK2
2 + (a� c)K2

�

e�rtdt

�Ie�rTI ,

(17)

where a; b; c; r 2 R+ and K1;K2; Q2; T bind;D�1 ; T
bind;D�
2 ; TI ; t 2 R+0 .

5.3 A monopoly �rm maximizing a discounted convex com-

bination of social welfare and pro�ts

Now, we address a monopoly �rm which maximizes a discounted convex
combination of social welfare and pro�ts. Total surplus is weighted by 
,
and pro�ts are weighted by (1� 
); 0 � 
 � 1. We denote the points in
time, when the (exogenously given) capacity limits, K1 and K2, become

binding constraints by T bind;DMM
1 and T bind;DMM

2 .
The mixed monopoly objective,MM (�; �), at any point in time (not tak-

ing into account I) is a function of the of the outputs, Q2, after investment,
and of time, t:

MM (Q2; t) = 
TS (Q2; t) + (1� 
)� (Q2; t) ; (18)

where Q2; t 2 R+0 . This is equivalent to:

MM (Q2; t) =

8

>

<

>

:

�



2 � 1

�

be�gtK2
1 + (a� c)K1; T

bind;DMM
1 � t < TI

�



2 � 1

�

be�gtQ22 + (a� c)Q2; TI � t < T bind;DMM
2

�



2 � 1

�

be�gtK2
2 + (a� c)K2; T

bind;DMM
2 � t,

(19)

where a; b; c 2 R+ and K1;K2; Q2; T bind;DMM
1 ; T

bind;DMM
2 ; TI ; t 2 R+0 .

Building on (19), the discounted mixed monopoly objective, DMM (�; �),
over time, taking into account the initial investment outlay, I, can be written
as a function of the outputs, Q2, after investment, and of the investment
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date, TI :

DMM (Q2; TI) =

TI
Z

T
bind;DMM
1

��



2 � 1

�

be�gtK2
1 + (a� c)K1

�

e�rtdt

+

T
bind;DMM
2
Z

TI

��



2 � 1

�

be�gtQ22 + (a� c)Q2
�

e�rtdt

+

1
Z

T
bind;DMM
2

��



2 � 1

�

be�gtK2
2 + (a� c)K2

�

e�rtdt

�Ie�rTI ,
(20)

where a; b; c; r 2 R+ and K1;K2; Q2; T bind;DMM
1 ; T

bind;DMM
2 ; TI ; t 2 R+0 .

5.4 A comparison of the investment dates

Referring to (20) we can analyze the behavior of a �rm which maximizes a
discounted convex combination of total surplus and pro�ts.

Proposition 4 The time path of outputs, QDMM
2 , immediately after invest-

ment which maximize a discounted convex combination of total surplus and
pro�ts for a given weighting factor, 
, results from the corresponding con-
vex combination of marginal cost prices and pro�t-maximizing prices at any
point in time.

Proof. See Appendix.

Proposition 5 The investment date, TDMM
I , which maximizes a discounted

convex combination of total surplus and pro�ts for a given weighting factor,

, is given by:

TDMM
I =

ln

�

(2� 
) b rI+(a�c)K1+
2
p
(rI+(a�c)K1)

2
�(a�c)2K2

1

(a�c)2

�

g
: (21)

Proof. See Appendix.

Using 
 = 1 to describe the investment date, TDTSI ; of a �rm maximizing
discounted total surplus, and 
 = 0 to describe the investment date, TD�I ,
of an identical �rm maximizing discounted pro�ts, it is easy to derive the
following fundamental result.
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Corollary 6 In terms of demand growth and other things being equal, the
investment date, TDTSI , which maximizes discounted total surplus is earlier
than the investment date, TDMM

I , which maximizes a discounted convex
combination of total surplus and pro�ts for a given weighting factor, 
, with
0 < 
 < 1, and is earlier than the investment date, TD�I , which maximizes
discounted pro�ts.

Corollary 6 is analogous to Corollary 3, which covers the case of wear
and tear.

6 Repeated investment model

In this section, we will generalize our basic scenario model to repeated in-
vestment. Starting from an initial optimal investment date we derive the
next optimal investment date. As this procedure can be applied in�nitely,
we are thus able to describe the case of in�nitely repeated investment.

Now, we assume that every investment necessitates an outlay, I, with
I 2 R

+, at a single point in time. Again, this investment outlay, I, is
assumed to be �xed. Furthermore, we assume that I does not change over
time, which means that this amount is invested at each investment date.

In our repeated investment model, the �rm has to make several decisions
simultaneously. It has to decide which outputs to set after investment, and
when to invest in the assets. Contrary to the basic scenario model, the �rm
does not need to decide how long to use the assets, since the time interval
between two investments is always shorter than the production period.

6.1 Wear and tear

Let Tn be an investment date, which is the starting point of our analysis.
Then, denote the future investment dates by Tn+1, Tn+2, Tn+3, etc. At each
investment date, the �xed amount to be invested is I, the investment outlay.
Let Qn+1 be the output produced between Tn and Tn+1, let Qn+2 be the
output produced between Tn+1 and Tn+2, let Qn+3 be the output produced
between Tn+2 and Tn+3, etc. All other variables are de�ned just like in the
basic scenario model.

Then, analogous to (10), discounted total surplus can be characterized

17



as:

DMM (Qn+1; Qn+2; Qn+3; : : : ; Tn; Tn+1; Tn+2; Tn+3; : : :)

=

Tn+1
Z

Tn

��



2 � 1

�

bQ2n+1 +
�

a� ce�(t�Tn)
�

Qn+1
�

e�rtdt� Ie�rTn+1

+

Tn+2
Z

Tn+1

��



2 � 1

�

bQ2n+2 +
�

a� ce�(t�Tn+1)
�

Qn+2
�

e�rtdt� Ie�rTn+2

+

Tn+3
Z

Tn+2

��



2 � 1

�

bQ2n+3 +
�

a� ce�(t�Tn+2)
�

Qn+3
�

e�rtdt� Ie�rTn+3

...

, (22)

where 0 < � < 1 and 0 � 
 � 1 and a; b; c; r 2 R+ and Qn+1; Qn+2; Qn+3;
: : : ; Tn; Tn+1; Tn+2; Tn+3; : : : ; t 2 R+0 .

We are looking for the optimal investment dates, i.e. for those invest-
ment dates, Tn+1; Tn+2; Tn+3; : : :, which maximize discounted total surplus.
Obviously, the �rst-order conditions can be described as:

@DMM

@Tn+1
=
@DMM

@Tn+2
=
@DMM

@Tn+3
= : : : = 0. (23)

However, to simplify matters, we con�ne ourselves to the analysis of Tn+1
assuming that Tn is an optimal investment date, i.e. an investment date,
TDMM
n , maximizing a discounted convex combination of total surplus and
pro�ts for a given weighting factor, 
. In other words, assuming Tn = T

DMM
n

we aim to characterize the next optimal investment date, i.e. TDMM
n+1 .

This characterization makes it possible to compare identical monopoly
�rms with di¤erent objectives.

Proposition 7 In terms of wear and tear and other things being equal, the
time interval between two successive investments is smaller for a monopolist
maximizing discounted total surplus than for an identical monopolist max-
imizing a discounted convex combination of total surplus and pro�ts for a
given weighting factor, 
, with 0 < 
 < 1, for whom it is smaller than for
an identical monopolist maximizing discounted pro�ts.

Proof. See Appendix.

6.2 Demand growth

Let Tn be the initial investment date, which is the starting point of our
analysis. As a consequence of this initial investment, the �rm expands some

18



exogenously given initial capacity limit, Kn, to the exogenously given sec-
ond capacity limit, Kn+1. At the outset, Kn+1 is greater than the quantities
demanded. However, as demand grows, the second capacity limit, Kn+1,
becomes binding at some point in time. Therefore, the monopoly �rm later
expands capacity at a speci�c point in time, i.e. at the second investment
date, Tn+1, to the exogenously given third capacity limit, Kn+2. This ca-
pacity limit is assumed to be greater than the quantities demanded in the
beginning. However, as demand grows, the third capacity limit becomes
binding at some point in time. Therefore, the monopoly �rm later expands
capacity at a speci�c point in time, i.e. at the third investment date, Tn+2,
to the exogenously given fourth capacity limit, Kn+3, etc. For simplicity,
we assume that Kn+1 �Kn = Kn+2 �Kn+1 = Kn+3 �Kn+2 = : : : = �K.
At each investment date, the �xed amount to be invested is I, the invest-
ment outlay. Furthermore, we denote the quantities demanded between the
initial investment date, Tn, and the second investment date, Tn+1, by Qn,
the quantities demanded between Tn+1 and Tn+2 by Qn+1, the quantities
demanded between Tn+2 and Tn+3 by Qn+2, etc. Obviously, Qn = Kn+1,
after the second capacity limit, Kn+1, has become binding, Qn+1 = Kn+2,
after the third capacity limit, Kn+2, has become binding, Qn+2 = Kn+3,
after the fourth capacity limit, Kn+3, has become binding, etc. We de-
note the points in time, when the exogenously given capacity limits, Kn+1,
Kn+2, Kn+3, etc. become binding constraints by T

bind;DMM
n , T bind;DMM

n+1 ,

T
bind;DMM
n+2 , etc., respectively. All other variables are de�ned just like in the
basic scenario model.

Then, analogous to (20), a discounted convex combination of total sur-
plus and pro�ts for a given weighting factor, 
, can be characterized as:

DMM (Qn; Qn+1; Qn+2; Qn+3; : : : ; Tn; Tn+1; Tn+2; Tn+3; : : :)

=

T
bind;DMM
n
Z

Tn

��



2 � 1

�

be�gtQ2n + (a� c)Qn
�

e�rtdt

+

Tn+1
Z

T
bind;DMM
n

��



2 � 1

�

be�gtK2
n+1 + (a� c)Kn+1

�

e�rtdt� Ie�rTn+1

+

T
bind;DMM
n+1
Z

Tn+1

��



2 � 1

�

be�gtQ2n+1 + (a� c)Qn+1
�

e�rtdt

+

Tn+2
Z

T
bind;DMM
n+1

��



2 � 1

�

be�gtK2
n+2 + (a� c)Kn+2

�

e�rtdt� Ie�rTn+2

...

, (24)
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where a, b, c, r 2 R
+ and Kn+1, Kn+2; : : : ; Qn, Qn+1; : : : ; T

bind;DMM
n ,

T
bind;DMM
n+1 ; : : : ; Tn; Tn+1; Tn+2; : : : ; t 2 R+0 .
We are looking for the optimal investment dates, i.e. for those invest-

ment dates, Tn+1; Tn+2; Tn+3; : : :, which maximize (24). Again, we con�ne
ourselves, however, to the analysis of Tn+1 assuming that Tn is an optimal
investment date, TDMM

n . In other words, assuming Tn = T
DMM
n we aim to

describe the next optimal investment date, i.e. TDMM
n+1 .

This characterization makes it possible to compare identical monopoly
�rms with di¤erent objectives. It is, however, possible that the time interval
between two successive investments for a monopoly �rm maximizing a dis-
counted convex combination of social welfare and pro�ts for a given weight-
ing factor, 
, is not constant over time. De�ne xDMM

n+1;n = T
DMM
n+1 � TDMM

n .

Then, potentially, xDMM
n+1;n 6= xDMM

n+2;n+1 6= xDMM
n+3;n+2::: Therefore, a meaningful

comparison of identical monopoly �rms with di¤erent objectives may only
be possible for time intervals between corresponding successive investments,
i.e. only for time intervals with identical subscripts. Let the time interval be-
tween two successive investments for an identical monopoly �rm maximizing
discounted total surplus corresponding to xDMM

n+1;n be x
DTS
n+1;n = T

DTS
n+1 �TDTSn ,

and let the corresponding time interval between two successive investments
for an identical monopoly �rm maximizing discounted pro�ts be xD�n+1;n =

TD�n+1 � TD�n . Then, we can compare xDTSn+1;n to x
DMM
n+1;n and to x

D�
n+1;n.

Proposition 8 In terms of demand growth and other things being equal, the
time interval between two corresponding successive investments is smaller
for a monopolist maximizing discounted total surplus than for an identical
monopolist maximizing a discounted convex combination of total surplus and
pro�ts for a given weighting factor, 
, with 0 < 
 < 1, for whom it is smaller
than for an identical monopolist maximizing discounted pro�ts.

Proof. See Appendix.

7 Conclusion

The debate on the deteriorating quality of monopolized infrastructure net-
works, e.g. in the energy sector and in the rail sector in many countries
throughout the world, demonstrates that the timing of monopoly invest-
ment is de�nitely relevant to current economic policy issues.

In practice, there are many factors in�uencing the timing of monopoly
investment. For instance, for publicly-owned monopolies, it may be relevant,
whether the government runs a budget de�cit or a surplus. Furthermore, the
objectives of the legislature may be ordered or di¤use. For privately-owned
monopolists, it may be important, whether they are subject to investment
obligations or not.
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However, with few exceptions, the timing of monopoly investment has
not been one of the major topics on the research agenda of public utility
economics until recently. In particular, there are only very few articles on
the interaction between monopoly pricing and investment timing. Given
the importance of infrastructure investment for the welfare of society as a
whole, our aim has been to �ll the gap.

In this paper, we have addressed typical properties of monopoly invest-
ment, i.e. lumpiness and irreversibility. Furthermore, di¤erentiating be-
tween wear and tear on the one hand and demand growth on the other hand,
we have focused on replacement investment and on expansion investment.
The paper delivers an analysis of both types of investment within a uni�ed
framework. Moreover, we have addressed the case of a single investment
and the case of in�nitely repeated investment.

Our results can be summarized as follows. For a single investment, we
have been able to show that a monopolist maximizing discounted social
welfare invests earlier than an identical monopolist maximizing discounted
pro�ts. The investment date of an identical �rm maximizing a discounted
convex combination of social welfare and pro�ts lies between these polar
cases. This applies both to wear and tear leading to replacement investment,
and to demand growth leading to expansion investment. For in�nitely re-
peated investment, we have been able to show that the time interval between
two corresponding successive investments is smaller in the case of a monop-
olist maximizing discounted total surplus than in the case of an identical
monopolist maximizing discounted pro�ts. The corresponding time interval
between two successive investments of an identical �rm maximizing a dis-
counted convex combination of social welfare and pro�ts lies between these
two polar cases. Once again, this applies both to replacement investment
and to expansion investment.

How can these results be interpreted from a theoretical point of view?
We have been able to identify an intertemporal counterpart of static mar-
ket failure for a monopoly �rm. Whereas, in a static setting, a monopolist
maximizing pro�ts chooses ine¢ciently high prices compared to a monop-
olist maximizing social welfare, in an intertemporal setting, a monopolist
maximizing discounted pro�ts invests ine¢ciently late compared to a mo-
nopolist maximizing discounted social welfare. The reasons underlying the
monopoly behavior are similar. In a static setting, a monopoly maximizing
pro�ts does, in the absence of price discrimination, not take into account
consumer surplus when deciding on prices. In an intertemporal setting, a
monopoly maximizing discounted pro�ts does not take into account dis-
counted consumer surplus when deciding on investment dates.

Furthermore, it is important to note that the magnitudes of the dif-
ferences in investment dates between a monopolist maximizing discounted
social welfare and an identical monopolist maximizing discounted pro�ts de-
pend on the size of the investment outlay. If the investment outlay is small,
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the same principles may hold as in a situation where the investment outlay
is high. However, for a small size of the investment outlay, we would not
consider investment timing to be an exciting issue. Essentially, it is the
lumpiness of investment which creates an interesting problem.

From an economic policy perspective, the trade-o¤s in an intertemporal
setting are reminiscent of those in a static setting. Whereas a publicly-owned
�rm which acts in the best interest of society can, theoretically, set marginal
cost prices which maximize social welfare in a partial equilibrium model and
can, in principle, invest at investment dates maximizing discounted social
welfare, it has to be subsidized to be able to do so. Thus, the problem of the
shadow cost of public funds comes into play, if there are cost economies of
scale. Furthermore, publicly-owned monopolists cannot necessarily be ex-
pected to achieve productive e¢ciency. A privately-owned monopolist does
not require government subsidies and can be expected to produce at lower
cost than a public sector monopolist. However, if unregulated, prices are in-
e¢ciently high and investment dates are ine¢ciently late. Mixed ownership
strikes the balance between these two types of monopolists.

Thus, in the absence of price discrimination which allows the monopolist
to capture (at least part of) the consumer surplus the question of price
regulation arises. Frequently, it is argued that static welfare losses induced
by monopoly under cost economies of scale due to ine¢cient pricing can, at
least in principle, be lowered by price regulation, if information problems
are not too severe. Thus, the question occurs whether price regulation can
also be an adequate answer to the intertemporal problem of ine¢ciently
late investment. We conclude by stating that an important area for future
research will be the analysis of the relationship between monopoly price
regulation and investment timing, and we would like to add that a �rst step
into this direction is our recently completed companion paper (Brunekreeft
and Borrmann, 2011).
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A Appendix

A.0.1 Proof of Proposition 1

Proof. The �rst-order conditions for a maximum of (10) with respect to
Q1 and Q2 are:

TI
Z

0

�

(
 � 2) bQDMM
1 + a� ce�(t+T)

�

e�rtdt = 0,

TI+
ln(ac )
�

Z

TI

�

(
 � 2) bQDMM
2 + a� ce�(t�TI)

�

e�rtdt = 0.

(25)

Thus, the time paths of outputs, QDMM
1 and QDMM

2 , which maximize a dis-
counted convex combination of total surplus and pro�ts for a given weighting
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factor, 
, before and after investment can be determined:

QDMM
1 =

a� ce�(t+T)
(2� 
) b , QDMM

2 =
a� ce�(t�TI)
(2� 
) b . (26)

The second-order conditions for a maximum of (10) with respect to Q1
and Q2 are ful�lled at Q

DMM
1 and QDMM

2 . Inserting QDMM
1 and QDMM

2

into (2) and taking into account that g = 0, it becomes obvious that
these outputs result from the corresponding convex combinations of mar-
ginal cost prices and pro�t-maximizing prices at any point in time, i.e.

P
�

QDMM
1 ; t

�

= 

2�
 ce

�(t+T) +
�

1� 

2�


�

a+ce�(t+T)

2 and P
�

QDMM
2 ; t

�

=



2�
 ce

�(t�TI) +
�

1� 

2�


�

a+ce�(t�TI)

2 .

A.0.2 Proof of Proposition 2

Proof. Inserting QDMM
1 and QDMM

2 from (26) into (10) yields:

DMM (TI) =

TI
Z

0

�

a�ce�(t+T)
�2

(4�2
)b e�rtdt

+

TI+
ln(ac )
�

Z

TI

�

a�ce�(t�TI)
�2

(4�2
)b e�rtdt

�Ie�rTI .

(27)

(27) can be written as:

DMM (TI) = � a2

(4�2
)br

�

e�rTI � 1
�

� ace�T

(2�
)b(��r)

�

e(��r)TI � 1
�

+ c2e2�T

(4�2
)b(2��r)

�

e(2��r)TI � 1
�

� a2

(4�2
)br

�

e�r
ln(ac )
� � 1

�

e�rTI

� ac
(2�
)b(��r)

�

e(��r)
ln(ac )
� � 1

�

e�rTI

+ c2

(4�2
)b(2��r)

�

e(2��r)
ln(ac )
� � 1

�

e�rTI

�Ie�rTI .

(28)
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The �rst-order condition for a maximum of (28) with respect to TI is:

dDMM
dTI

= a2

(4�2
)be
�rTDMM

I

� ace�T

(2�
)be
(��r)TDMM

I

+ c2e2�T

(4�2
)be
(2��r)TDMM

I

+ a2

(4�2
)b

�

e�r
ln(ac )
� � 1

�

e�rT
DMM
I

+ acr
(2�
)b(��r)

�

e(��r)
ln(ac )
� � 1

�

e�rT
DMM
I

� c2r
(4�2
)b(2��r)

�

e(2��r)
ln(ac )
� � 1

�

e�rT
DMM
I

+rIe�rT
DMM
I = 0:

(29)

This implies:

�

a� ce�T e�TDMM
I

�2
= a2

�

1� e�r
ln(ac )
�

�

+2acr
��r

�

1� e(��r)
ln(ac )
�

�

� c2r
2��r

�

1� e(2��r)
ln(ac )
�

�

� (4� 2
) brI.

(30)

Using e�
ln(ac )
� = a

c
and e2�

ln(ac )
� = a2

c2
we get:

�

a� ce�T e�TDMM
I

�2

= a2 + 2acr
��r

� c2r
2��r � �22a2

(r2�3�r+2�2)(ac )
r
�
� (4� 2
) brI: (31)

Solving this quadratic equation for TDMM
I leads to two potential candi-

dates for an investment date maximizing a discounted convex combination
of social welfare and pro�ts for a given weighting factor, 
. However, only
the one described by (11) is in the relevant range. It can be seen that the
second-order condition for a maximum value of (28) at TDMM

I is ful�lled.

d2DMM

d
�

TDMM
I

�2 = �r
dDMM

dTDMM
I

+e�rT
DMM
I

1

b
c�e�T

e�T
DMM
I


 � 2
�

a� ce�T e�TDMM
I

�

;

(32)

and d2DMM

d(TDMM
I )

2 < 0, since
dDMM
dTDMM

I

= 0, and a� ce�T e�TDMM
I > 0 because of

(11).
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A.0.3 Proof of Proposition 4

Proof. The �rst-order condition for a maximum of (20) with respect to Q2
is:

T
bind;DMM
2
Z

TI

�

(
 � 2) be�gtQDMM
2 + a� c

�

e�rtdt = 0. (33)

Thus, the time path of outputs, QDMM
2 , immediately after investment which

maximize a discounted convex combination of total surplus and pro�ts can
be determined:

QDMM
2 =

(a� c) egt
(2� 
) b . (34)

The second-order condition for a maximum of (20) with respect to Q2 is
ful�lled at QDMM

2 . Inserting QDMM
2 into (2) and taking into account that

� = 0, it becomes obvious that these outputs result from the corresponding
convex combinations of marginal cost prices and pro�t-maximizing prices at

any point in time, i.e. P
�

QDMM
2 ; t

�

= 

2�
 c+

�

1� 

2�


�

a+c
2 .

A.0.4 Proof of Proposition 5

Proof. Using (2) as well as the relationship � = 0, and bearing in mind that
a convex combination of marginal cost prices and pro�t-maximizing prices
at any point in time is optimal, T bind;DMM

1 and T bind;DMM
2 can be found:

T
bind;DMM
1 =

ln
�

(2�
)bK1

a�c

�

g
, T bind;DMM

2 =
ln
�

(2�
)bK2

a�c

�

g
. (35)

Inserting QDMM
2 and the values of T bind;DMM

1 and T bind;DMM
2 into (20)

yields:

DMM (TI) =

TI
Z

ln

�

(2�
)bK1
a�c

�

g

�

�1
2 (2� 
) be�gtK2

1 + (a� c)K1
�

e�rtdt

+

ln

�

(2�
)bK2
a�c

�

g
Z

TI

(a�c)2

2(2�
)be
gte�rtdt

+

1
Z

ln

�

(2�
)bK2
a�c

�

g

�

�1
2 (2� 
) be�gtK2

2 + (a� c)K2
�

e�rtdt

�Ie�rTI .
(36)
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The �rst-order condition for a maximum of (36) with respect to TI is:

dDMM
dTI

= �1
2 (2� 
) bK2

1e
�(g+r)TDMM

I + (a� c)K1e�rT
DMM
I

� (a�c)2e(g�r)T
DMM
I

2(2�
)b + rIe�rT
DMM
I = 0:

(37)

Solving this quadratic equation for TDMM
I leads to two potential candidates

for an investment date maximizing a discounted convex combination of social
welfare and pro�ts for a given weighting factor, 
. However, only the one
described by (21) is in the relevant range. It can be seen that the second-
order condition for a maximum value of (36) at TDMM

I is ful�lled:

d2DMM

d(TDMM
I )

2 = � (g + r) (�1
2) (2� 
) bK2

1e
�(g+r)TDMM

I

�r (a� c)K1e�rT
DMM
I � (g � r) (a�c)

2e(g�r)T
DMM
I

2(2�
)b

�r2Ie�rTDMM
I

= � (g + r) dDMM
dTDMM

I

+g (a� c)K1e�rT
DMM
I � g (a�c)

2e(g�r)T
DMM
I

(2�
)b + grIe�rT
DMM
I :

(38)
Since dDMM

dTDMM
I

= 0, a su¢cient condition for a maximum value of (36) at

TDMM
I is:

g (a� c)K1e�rT
DMM
I � g (a� c)

2 e(g�r)T
DMM
I

(2� 
) b + grIe�rT
DMM
I < 0: (39)

Rearranging (39) yields:

TDMM
I >

1

g
ln

�

(2� 
) bK1 (a� c) + rI
(a� c)2

�

: (40)

A comparison of (40) with (21) completes the proof.

A.0.5 Proof of Proposition 7

Proof. First, we focus on a monopoly �rm maximizing a discounted convex
combination of social welfare and pro�ts for a given weighting factor, 
.
Analogous to the derivation of QDMM

2 in the Proof of Proposition 1, it can
easily be seen that:

QDMM
n+i =

a� ce�(t�Tn+i�1)
(2� 
) b , (41)
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where i 2 Nn f0g. Inserting QDMM
n+i into (22) leads to:

DMM (Tn; Tn+1; Tn+2; Tn+3; : : :)

=

Tn+1
Z

Tn

(a�ce�(t�Tn))
2

(4�2
)b e�rtdt� Ie�rTn+1

+

Tn+2
Z

Tn+1

�

a�ce�(t�Tn+1)
�2

(4�2
)b e�rtdt� Ie�rTn+2

+

Tn+3
Z

Tn+2

�

a�ce�(t�Tn+2)
�2

(4�2
)b e�rtdt� Ie�rTn+3

...

. (42)

The �rst-order condition for a maximum value of (42) with respect to Tn+1
can be described as:

@DMM
@Tn+1

=

�

a�ce
�(TDMM

n+1 �TDMM
n )

�2

e
�rTDMM

n+1

(4�2
)b + rIe�rT
DMM
n+1 � (a�c)2

(4�2
)be
�rTDMM

n+1

+ �
��r

ac
(2�
)be

��TDMM
n+1

�

e(��r)T
DMM
n+2 � e(��r)TDMM

n+1

�

� �
2��r

c2e
�2�TDMM

n+1

(2�
)b

�

e(2��r)T
DMM
n+2 � e(2��r)TDMM

n+1

�

= 0:

(43)
(43) is equivalent to:

�

a� ce�(TDMM
n+1 �TDMM

n )
�2
+ 2 (2� 
) brI � (a� c)2

+
�

�� r2ace
(��r)(TDMM

n+2 �TDMM
n+1 ) � �

�� r2ac

� �

2�� r2c
2e(2��r)(T

DMM
n+2 �TDMM

n+1 ) +
�

2�� r2c
2 = 0:

(44)

This is an in�nite replacement problem, where replacement conditions do
not change over time. Therefore, the interval, xDMM , between any two
successive investment dates, TDMM

n+i and TDMM
n+i�1 , maximizing a discounted

convex combination of social welfare and pro�ts for a given weighting factor,

, is constant:

xDMM = TDMM
n+i � TDMM

n+i�1 , (45)

where i 2 Nn f0g.
Using (45) we obtain:

rI = 1
(4�2
)b [� (a� ce�xDMM )2 + (a� c)2 � �

��r
2ace(��r)xDMM

+ �
��r

2ac+ �
2��r2c

2e(2��r)xDMM � �
2��r2c

2
i

.
(46)
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Denoting the term in squared brackets f (�), which is a function of xDMM ,
yields:

rI =
1

(4� 2
) bf (xDMM ) . (47)

Since f (0) = 0, it is obvious that 1
(4�2
)bf (0) < rI. Furthermore,

df(xDMM )
dxDMM

>

0 for xDMM <
ln(ac )
�
. Thus, we can infer that there is exactly one solution

for (47) in the relevant range, if an equilibrium exists.
Now, we need to distinguish between three cases. Either 
 = 0, or

0 < 
 < 1, or 
 = 1. Insertion into (47) and comparison of the three cases
conclude the proof.

A.0.6 Proof of Proposition 8

Proof. Initially, we focus on a monopoly �rm maximizing a discounted
convex combination of social welfare and pro�ts for a given weighting factor,

. Analogous to the derivation of QDMM

2 in the Proof of Proposition 4, it
can easily be seen that:

QDMM
n+i =

(a� c) egt
(2� 
) b , (48)

where i 2 N.
Furthermore, it is obvious that:

T
bind;DMM
n+i =

ln
�

(2�
)bKn+i+1

a�c

�

g
, (49)

where i 2 N.
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Inserting QDMM
n+i and the values of T bind;DMM

n+i into (24) yields:
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...

.

(50)
The �rst-order condition for a maximum of (50) with respect to Tn+1

can be described as:

@DMM
@Tn+1

=
�



2 � 1

�

bK2
n+1e

�(g+r)TDMM
n+1 + (a� c)Kn+1e�rT

DMM
n+1

+rIe�rT
DMM
n+1 � (a�c)2

(4�2
)be
(g�r)TDMM

n+1 = 0:
(51)

Solving this equation for TDMM
n+1 leads to two potential candidates for an

investment date maximizing a discounted convex combination of social wel-
fare and pro�ts for a given weighting factor, 
. However, only the following
one is in the relevant range:

TDMM
n+1 = 1

g
ln
h

(2�
)b

(a�c)2
((a� c)Kn+1 + rI

+
q

((a� c)Kn+1 + rI)2 �K2
n+1 (a� c)2

��

.
(52)

Now, it becomes obvious that the time interval between two successive
investments for a monopoly �rm maximizing a discounted convex combina-
tion of social welfare and pro�ts for a given weighting factor, 
, is not con-
stant over time, i.e. xDMM

n+1;n 6= xDMM
n+2;n+1 6= xDMM

n+3;n+2::: Therefore, a meaning-
ful comparison of identical monopoly �rms with di¤erent objectives is only
possible for time intervals between corresponding successive investments,
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i.e. only for those with identical subscripts. We can only compare xDTSn+1;n to

xDMM
n+1;n and to x

D�
n+1;n.

To do this, we need to distinguish between three cases. Either 
 = 0,
or 0 < 
 < 1, or 
 = 1. Insertion into (52) and comparison of the time
intervals between corresponding successive investments for the three cases
conclude the proof.
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