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Abstract 

 

  In  this article we discuss welfare‐optimal capacity allocation of different electricity genera‐

tion technologies available for serving system demand. While the classical peak  load pricing theory 

derives the efficient portfolio structure from a deterministic marginal production cost curve ("merit 

order"),  we  investigate  in  particular  the  implications  of  possible  reversals  in  the  merit  order—

sometimes also referred to as fuel switch risksinduced by uncertain operating costs. 

  We propose a static, non‐convex optimization model combining the classic peak load pricing 

model with elements of mean‐variance portfolio (MVP) theory and analytically discuss possible solu‐

tion cases and important optimality properties. We examine the approach in a case study on the effi‐

cient structure of generation portfolios consisting of CCGT and hard coal  technologies  in Germany. 

With special emphasis, we study the emergence of overcapacities (exceeding maximal demand) in ef‐

ficient portfolios and show that diversification is not beneficial per‐se. The results show that the effi‐

cient technology mix may be significantly  impacted by a risk for reversals  in the merit order. There‐

fore, our findings support the importance of considering this risk factor especially with long‐term in‐

vestment horizons. 

  The  model  is  applicable  to  various  investment  problems  related  to  production  of  non‐

storable goods under price uncertainty of input factors. Similar problems can e.g. be found in trans‐

portation systems or in the process industry. 
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1. Introduction

In the next decades, the European power industry will face an immense need for investments to renew

and extend its power plant fleet. The challenge is massively increased by the required transformation to

reach emission reduction targets and reduce the carbon-intensity of the power system: For a 25% reduction

in greenhouse-gas emissions by 2020 compared with 1990, the IEA (2010) estimates required generation

capacity additions in European OECD countries of 337GW between 2010 and 2020 and another 498GW

between 2021 and 2035. The more ambitious reduction target of 80% by 2050 (respectively 40% by 2020)

as agreed by the European representants during the G8 meeting in L’Aquila in July 2009 would require

consequently a much more drastic change of the generation system. To reach the reduction targets, the EU

and national states have implemented several measures and development schemes which aim to politically

influence investment decisions in new generation capacities directly or through monetary incentives.

For quantifying the costs and effects of these measures and subsidies on the long-term optimal system

fuel mix from a welfare perspective, it is not only crucial to valuate expected total life-cycle costs, but also

the economic risks conveyed with investment and operation of the plant fleet. With fuel prices fluctuating

considerably, cost volatility becomes a severe risk that influences the investment economics and therewith the

optimal fuel mix within the system. Thereby, short-term fuel price shocks as well as by longer-term structural

changes in the commodity markets can even lead to changes in the merit order of the generation technologies.

Under these circumstances, it is not possible to derive an unambiguous merit order as assumed in the classic

peak-load pricing problem. In the analytical literature on generation investments, the effect of reversals in

the merit order through fuel price fluctuations is commonly neglected and restricted assumptions are made

to ensure an unambiguous merit order based on marginal costs of production. Although simulation-based

investment optimization approaches (as e.g. discussed in Weber, 2005; Fleten et al., 2007) may capture

this type of uncertainty, analytical solutions of peak-load pricing based frameworks limit fuel price risk—if

captured at all—to the extent that unambiguity of the merit order is still satisfied (cf. Sunderkötter and

Weber, 2009). However, long-term investment decisions such as for power plants with lifetimes of several

decades may be heavily impacted by possible reversals in the order marginal costs.

The optimization problem and the solutions proposed in this paper can be easily transferred to investment

decisions in several other industries besides power generation where similar problem characteristics can

be found. Thereby, three main properties characterize the considered type of investment problems: (a)

Availability of alternative production technologies, (b) non-storability of produced good, and (c) price

uncertainty of input factors. Potential areas of application in other industries are

• Transportation systems: Vehicle fleet operators as e.g. taxi companies or logistics providers face

a trade-off between investment costs and operating costs of different engine types when deciding

on new investments. Thereby, the investment decision is typically subject to an expected or pre-
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scheduled annual transportation performance. While retail prices for diesel fuels were traditionally

lower compared to gasoline in past decades, the picture changed in many European countries in 2008

due to changes in demand and refinery capacities (Eurostat, 2009). In the U.S., the order of retail

diesel and gasoline fuel prices changed several times between 2007 and 2009 (EIA, 2009). Moreover,

the expected further emergence of hybrid and electric technologies may lead to significant changes in

the order of operating costs among all vehicle technologies.

• Process industry: Many industrial production processes, e.g. in chemical industry, show similar

trade-offs between investment costs and uncertain costs of required input factors. Replacement of a

certain chemical in case of price shocks is usually only a mid-term option, since process changes usually

cause investment costs.2

This paper is structured as follows: After a brief recall of the deterministic peak load pricing concept

in Section 2.1, the risk-extended optimization problem is proposed in Section 2.2. The analytical solution

and its properties are discussed starting in Section 2.3 for the simplified case without reversal risk, before

the general portfolio problem is treated. Thereby, the two special cases of purely cost-efficient and purely

risk-efficient portfolios are elucidated in Sections 2.4 and 2.5, before the combined problem is discussed in

Section 2.6. Section 3 treats the determination of the probability for reversals in the merit order. This issue

is first discussed for the reversal risk within one period, before the considerations are augmented for the

reversal risk over a plant’s lifetime. In Section 4, we examine the model in a case study on the cost-risk

efficient structure of generation portfolios consisting of CCGT and hard coal technologies in Germany. The

paper concludes in Section 5 with a summary and critical acclaim of our key findings.

2. Modelling optimal investment policies in electricity markets given uncertainty in the merit

order

2.1. Deterministic peak-load pricing problem

Our investment model for the electricity system is based on a two-stage decision problem following the

classic peak load pricing literature (see e.g. Crew et al., 1995): On the first stage, the decision to invest in a

portfolio of different available plant technologies u ∈ {1, . . . , n} with capacity Ku is made. At this point in

time, investors are assumed to have full information about investment costs Cinv,u of each technology and

2Recently, severe delivery shortages of a chemical mass product caught particular attention (cf. e.g. Bonilla, 2010): Ace-

tonitrile, a by-product of acrylnitrile which is widely used in the plastics and textile industry, is a frequently used solvent

in laboratories and industrial processes. Due to the world-wide demand drop of plastic products combined with temporarily

decommissioned production capacities, the price of acetonitrile exploded in 2008/2009 from few euro per liter up to a hundred.

The “Great Acetonitrile Shortage”, as it has come to be known in the industry, forces chemists to reduce the required solvent

consumption or switch to other solvents. However, these alternatives are usually conveyed with additional investment costs.
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about the distribution of the uncertain fuel prices c̃u. However, actual fuel price realizations are not revealed

until the second stage. Then, the optimal deployment decision of each plant within the portfolio selected on

the first stage is made for the total planning period [0;T ] (e.g. a year), which we assume to be broken down

into time steps of equal length t ∈ [0;T ] (e.g. hours). Price inelastic system demand is deterministically

given by the demand function D : [0;T ]→ R+, t 7→ D(t), which is assumed to be continuous and (at least)

two-times differentiable.

The objective is to minimize the total system cost of electricity production, C, consisting of total operat-

ing costs, Cop,u, plus annualized capacity investment costs, Cinv,u, summed over the available technologies

u. In fact, operating costs at time t are a function Cop,u(yu,t) = yu,t · cu,t of the instantaneous output

level yu,t (MW) times the specific operating costs cu,t (e/MWh). Furthermore, total investment costs are

determined by the installed capacity Ku and the specific investment costs cinv,u (e/MWel) and can be

expressed by Cinv,u(Ku) = Ku · cinv,u. Therefore, the plant capacities Ku and the corresponding output

levels yu,t are the decision variables to be optimized. Taking into account that demand must never exceed

available capacities, the deterministic optimization problem may be written as

C∗ = min
yu,t,Ku

C(yu,t,Ku) (1)

s.t. C =

∫ T

0

∑
u

yu,t · cu,tdt+
∑
u

Ku · cinv,u (2)

yu,t −Ku ≤ 0 ∀ t, u (3)∑
u

yu,t ≥ D(t) ∀ t (4)

In the following paragraph, we well extend this problem to reflect not only the expected costs but also

cost risks in the optimization.

2.2. The risk-adjusted portfolio problem

In classic portfolio theory, investors are assumed to select efficient portfolios solely based on the expected

return and risk (in the form of variance of return) of the available assets. We adopt this decision principle

also for the cost based investment decision of generation assets in the system portfolio. Following Jansen

et al. (2006) and Gotham et al. (2009), we thus use total system costs instead of “return” and variance of

total costs as the relevant risk measure.

As frequently used in investment literature, we assume that society’s preferences are represented by a

function of the form

L = E[C] +
1

2
A · V ar[C], (5)

where A denotes the investors’ risk attitude (see e.g. Trautmann, 2006; Sunderkötter and Weber, 2009).

For normally distributed payoffs, this preference function is induced by exponential utilities with constant
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absolute risk aversion and shows in maximization problems consistency with the rationale of expected utility

maximization.

To allow for a better traceability of the solution, we confine in the following to the case with only two

technologies, i.e. n = 2.3 Given uncertain fuel prices which lead to fluctuating operating costs c̃1 and c̃2,

two possible scenarios are to be distinguished on the second stage for the merit order. These states of the

merit order are indicated by the state variable s̃ with realizations si, i ∈ {1; 2} defined as

s̃ :=

 s0, for c1 ≤ c2 (“default order”)

s1, for c1 > c2 (“reverse order”)
(6)

Let periodic operating costs c̃u, u ∈ {1; 2} be represented by bivariate jointly distributed random variables

with joint probability density function ϕ1,2(c1, c2, ρ) and mean c̄u.4 For each technology u, c̃u is a (univari-

ately) distributed random variable on the probability space (Ω,A(R),P) with c̃u : Ω → R with marginal

probability density function ϕu(cu) and marginal cumulative distribution Φu(cu) and corresponding mean

c̄u, variance σ2
u, and correlation ρ. Then, s̃(c̃1, c̃2) is itself a (discrete) random variable generated by c̃1, c̃2

on the probability space (Ω′,B(R2),P′), with s̃ : Ω′ → {s0; s1},Ω′ = Ω1 × Ω2.

The likelihood for a reversal in the merit order is denoted by P(s̃ = s1) := P(c1 > c2). By definition,

P(s̃ = s0) := P(c1 ≤ c2) = 1 − P(s̃ = s1) is thus the probability that no reversals of annual operating

costs in the merit order occur. Intuitively, the reversal risk depends on the assumed time series model for

the operating costs c1 and c2. We will come back to the computation of the reversal risk in Section 3.

Taking into account unambiguity of the plant merit order, the classic peak load pricing framework to model

total system costs has to be extended. Considering two generation technologies with the resulting possible

fuel price orders according to definition (6), the following states of the plant output variable yt have to be

distinguished:

ỹ1,t =



D(t), for s̃ = s0 ∧ D(t) < K1

K1, for s̃ = s0 ∧ D(t) ≥ K1

0, for s̃ = s1 ∧ D(t) < K2

D(t)−K2, for s̃ = s1 ∧ D(t) ≥ K2

ỹ2,t =



0, for s̃ = s0 ∧ D(t) < K1

D(t)−K1, for s̃ = s0 ∧ D(t) ≥ K1

D(t), for s̃ = s1 ∧ D(t) < K2

K2, for s̃ = s1 ∧ D(t) ≥ K2

(7)

3The solution to the extended portfolio problem with n technologies given the case of a deterministic merit order is discussed

in Sunderkötter and Weber (2009).
4Throughout this article, random variables are indicated by a “˜”, whereas their realizations are written as plain letters.
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We assume without limitation of generality D(t) to represent demand in a decreasing order and thus to

be strictly monotone decreasing in t with D(0) = Dmax. This allows to simplify problem (1)-(4) by using

the minimum5 operating duration Ou as decision variables instead of yu,t.

Given the strict monotony of the load duration curve, there is a unique mapping between capacities and

operating times for each merit order state. Obviously, the upper bound of the optimal operating time of

technology 1 equals T in case of the default order where technology 1 represents the base load technology.

By defining R(K) as the inverse of the demand function D(t), the minimum operating duration of the base

technology 1 in the default merit order is determined by O1 = t1 = R(K1). Equivalently, t1 determines the

upper bound of the operating time of the respective peak technology. For the latter, the minimum operating

duration equals zero. The minimum operating duration of technology one is reduced to a value O1 = 0

in the reverse case in favor of technology 2, which then becomes the new base load technology running at

least during O2 = tu. With possible reversals in the merit order the lower bound of the ex-ante optimal

operation time of technology 1 reduces with increasing probability for reversals. Therefore, both t∗1 (lower

bound of the optimal operating time of technology 1 given the default order) and t∗2 (lower bound of the

optimal operating time of technology 2 given the reverse order) have to be determined endogenously in the

optimization problem. Recapitulating the optimal plant dispatch, the minimum operating times O1, O2 of

technology 1 and 2 over the two considered merit order states can be formulated as:

O1 =

t1 for s̃ = s0

0 for s̃ = s1

O2 =

0 for s̃ = s0

t2 for s̃ = s1

(8)

Note that through the invertible function D(t), we can use tu and Ku interchangeably as decision variables.

Finally, we introduce for the operating costs of technology u the conditional expectation E[c̃u|s̃] ≡ c̄u|s̃ and

the conditional variance V ar[c̃u|s̃] ≡ σ2
u|s̃. The computation of these conditional parameters from a bivariate

density ϕ1,2(c1, c2) is derived in Appendix B.1.

Based on these pre-considerations, the extended portfolio optimization problem with uncertain merit

order can now be rewritten taking into account that the total variance is the sum of inter-scenario and

5Analogously, the problem could be formulated using maximum operating durations as decision variables.
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Dmax

D(t)

T0

Dmax

K1

K2
Q1|s0

Q2|s0

K2

K1

D(t)

T

Q2|s1

Q1|s1

0 t2t1

Figure 1: Reversals in the merit order influence the produced energy of technologies 1 and 2 in the default (left) and reverse

case (right). Note that total installed capacity may exceed the maximal demand for λ = 0.

intra-scenario variance as shown in Appendix B.2:6

L∗ = min
K1,K2

L (9)

s.t. L =

2∑
u=1

(
Kucinv,u + E

[
Qu|s̃E

[
c̃u
∣∣s̃]+

A

2
Q2
u|s̃

(
Var

[
c̃u
∣∣s̃]+ E

[
c̃u
∣∣s̃]2)]− A

2
E
[
Qu|s̃E

[
c̃u
∣∣s̃]]2)

+AE
[
Q1|s̃Q2|s̃

(
Cov[c̃1, c̃2|s̃] + E

[
c̃1
∣∣s̃] ·E [c̃2∣∣s̃])]−AE[Q1|s̃E

[
c̃1
∣∣s̃]] ·E[Q2|s̃E

[
c̃2
∣∣s̃]] (10)

D(0)−K1 −K2 ≤ 0 (11)

K1,K2 ≥ 0. (12)

As visualized in Figure 1, Qu|si denotes the energy produced by plant technology u over the planning period

[0, T ] given the fuel price state si with

Q1|s0 =

∫ K1

0

R(κ)dκ Q2|s0 =

∫ D(0)

K1

R(κ)dκ = QE −Q1|s0 (13)

Q2|s1 =

∫ K2

0

R(κ)dκ Q1|s1 =

∫ D(0)

K2

R(κ)dκ = QE −Q2|s1 . (14)

Here, QE :=
∫ T
0
D(t)dt =

∫D(0)

0
R(κ)dκ denotes the total energy demand in [0, T ].

6Notably, the objective function is different from the plain expected value of the preference function over the two fuel price

order scenarios which would be E
[
E[C|s̃] + 1

2
A ·Var[C|s̃]

]
6= L.
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2.3. Standard solutions to the portfolio problem in the two-technology case with a deterministic merit order

Before approaching the unrestricted problem, we will first discuss possible solution cases assuming a

deterministic merit order without reversal risk, i.e. P(s̃ = s1) = 0. Then, problem (9)-(12) reduces to

L∗0 = min
K1,K2

L0 (15)

s.t. L0 =

2∑
u=1

cinv,uKu + cuQu +
A

2

(
2∑

u=1

2∑
v=1

σuvQuQv

)
(16)

D(0)−K1 −K2 ≤ 0 (17)

K1,K2 ≥ 0 (18)

As shown in Sunderkötter and Weber (2009), the central optimality condition can be obtained from the

KKT-conditions as

A
(
(σ2

1 − σ12)QE − (σ2
1 + σ2

2 − 2σ12)Q2

)
=
cinv,2 − cinv,1

t1
− c̄1 + c̄2, (19)

with

Q2 =

∫ t1

0

D(t)−D(t1)dt, QE =

∫ T

0

D(t)dt = Q1 +Q2.

In Eqn. (19), the risk term and the cost term are separated, each to one side of the equation. Although an

explicit formulation of the optimal operating time (and therewith capacities) is not possible for a generic

load duration function D(t), the optimality condition allows to draw conclusions on the structure of efficient

portfolios. For that, the risk term on the left side and the cost term on the right side of Eqn. (19),

respectively, are denoted by

l0(t1) := A
(
(σ2

1 − σ12)QE − (σ2
1 + σ2

2 − 2σ12)Q2

)
, (20)

r0(t1) :=
cinv,2 − cinv,1

t1
− c̄1 + c̄2. (21)

Thereby, the intersection of l0(t1) and r0(t1) characterizes a stationary point to1 which is necessary for the

solution of the cost-variance efficient portfolio. Analysis of l0(t1) and r0(t1) shows that three characteristic

portfolio structures can be distinguished for the purely cost-efficient and the variance efficient portfolio with

either technology 1, technology 2, or both technologies being part of the efficient portfolio. For the cost

efficient portfolio with A = 0, three different solution cases can be derived from the condition r0(t1) = 0:

Property 2.1. The purely cost efficient portfolio with A = 0 consists of

Only technology 1 for cinv,1 − cinv,2 ≤ 0, (22)

Technology 1 and 2 for 0 <
cinv,1 − cinv,2

c̄2 − c̄1
< T, (23)

Only technology 2 for
cinv,1 − cinv,2

c̄2 − c̄1
≥ T. (24)
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Similarly, three solution cases can be stated for the variance minimal portfolio with A→∞:

Property 2.2. The purely variance efficient portfolio with A→∞ consists of

Only technology 1 for σ2
1 ≤ σ12, (25)

Technology 1 and 2 for (σ2
1 > σ12) ∧ (σ2

2 > σ12), (26)

Only technology 2 for σ2
2 ≤ σ12. (27)

As a consequence of Properties 2.1 and 2.2, stationary points in nine different cases can be distinguished

to determine the general set of solutions for combined cost-variance efficient portfolios as shown in Figure

2. Since the optimization problem is only convex in the case with both technologies being part of the

cost-minimal and the variance-minimal portfolios (case (V), Figure 2) as shown in Sunderkötter and Weber

(2009), first derivatives can be used as sufficient test for a local minimum in the other cases: Thereby,

according to the mean value theorem, a stationary point to1 is a minimum to L0 only if there exists a

r ∈ R+ such that for all t1 ∈ (to1 − r, to1] it is ∂L0

∂K1
= l0(t1) − r0(t1) ≤ 0, and for every t1 ∈ [to1, t

o
1 + r) it is

∂L0

∂K1
= l0(t1)− r0(t1) ≥ 0.

The identified stationary points allow to formulate the following properties for the structure of cost-

variance efficient portfolios given a deterministic merit order (P(s1) = 0):

Property 2.3. If both technologies 1 and 2 are included in the purely cost-efficient portfolio (i.e. A = 0)

and in the purely variance-efficient portfolio (i.e. A→ +∞), then they are also included in all cost-variance

efficient portfolios with A > 0.

Property 2.4. If technology u is neither included in the purely cost-efficient portfolio nor in the purely

variance-efficient portfolio, then u is not included in any cost-variance efficient portfolio with A > 0.

Property 2.5. If the purely cost-efficient (purely variance-efficient) portfolio consists only of technology

u ∈ {1, 2} and the purely variance-efficient (purely cost-efficient) portfolio consists of both technologies, then

there exists an A0 such that technology u is included in all efficient portfolios for A > A0 (A < A0) and

excluded in all efficient portfolios for A < A0 (A > A0).

2.4. Standard solutions to the purely cost efficient portfolio with uncertainty of the merit order

As an extreme case of the general optimization problem, we will at first consider the purely cost-efficient

portfolio with an unstable merit order, i.e. the case A = 0. Under this premise, the Lagrangian simplifies to

Lc =

2∑
u=1

(
Kucinv,u + E

[
Qu|s̃E [c̃u|s̃]

] )
+ λ · (D(0)−K1 −K2) (28)
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Cost‐variance efficient
portfolio consisting of 
only technology 1 

Cost‐variance efficient
portfolio consisting of 
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1) only technology 2 for
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of both technologies 
for
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 te
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 1

l0(T ) ≤ r0(T )

l0(T ) > r0(T )

0 T 0 T 0 T(1)

(2)

Cost‐variance efficient
portfolio consisting of 
a unique combination 
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10



With z denoting the difference in operating costs of technology 1 and 2, i.e. z := c2 − c1, the corresponding

KKT-conditions can be derived as shown in Appendix B.3 as

∂Lc
∂K1

= cinv,1 − λ− t1P(s0) ·E[z̃|s0] ≥ 0 ⊥ K1 ≥ 0 (29)

∂Lc
∂K2

= cinv,2 − λ+ t2P(s1) ·E[z̃|s1] ≥ 0 ⊥ K2 ≥ 0 (30)

∂Lc
∂λ

= D(0)−K1 −K2 ≤ 0 ⊥ λ ≥ 0 (31)

Two cases can be distinguished: For λ > 0, KKT condition (31) is binding. Hence, total capacity will

meet but not exceed the demand maximum in the optimum, i.e. K1 +K2 = D(0). For λ = 0, total installed

capacity may exceed the maximal demand, i.e. K1 + K2 ≥ D(0). The potential “overcapacities” in this

case will be economically favorable, if the probability weighted savings from operating costs in the reversed

merit order case exceed the additional investment costs for the capacity surplus. The excess capacity thus

increases the fleet’s operating flexibility. Nevertheless, the optimal energy produced in any scenario cannot

exceed total energy demand, thus it still holds

QE =

∫ T

0

D(t)dt = Q1|s0 +Q2|s0 = Q1|s1 +Q2|s1 .

It is intuitively clear that in the considered model framework with ideal and deterministic plant availabilities

excess capacities may only be economical if the technologies’ investment costs are relatively small compared

to the expected difference in operating costs. This becomes evident in view of KKT conditions (29) and

(30): The shadow price λ is linearly decreasing in t1 and t2, respectively, with

λ = cinv,1 − t1P(s0)E[z̃|s0] = cinv,2 + t2P(s1)E[z̃|s1] (32)

Clearly, λ is positive for t1 = 0, t2 = 0 and reaches its minimum at t1 = T or t2 = T . Since the solution for

the cost efficient portfolio with excess capacities requires λ = 0, it can be concluded that this case may only

exist if expected operating costs and investment costs satisfy the necessary condition

(cinv,1 − TP(s0)E[z̃|s0] < 0) ∧ (cinv,2 + TP(s1)E[z̃|s1] < 0) (33)

Notably, condition (33) will rarely be satisfied for applications related to power generation portfolios with

the cost characteristics of conventional plant technologies as shown in Section 4.

Similar to the special case with a deterministic merit order (cf. Section 2.3), three solution cases can be

distinguished for purely cost efficient portfolios with uncertainty of the merit order Appendix B.3:

Proposition 2.1. With z := c2 − c1 denoting the difference in operating costs of technologies 1 and 2, the

purely cost-minimal portfolio with a risk of reversal in the merit order P(s1) consists of technology 2 if and

only if

cinv,1 − cinv,2 ≥ TP(s0)E[z̃|s0]. (34)
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In contrast, the portfolio consists of technology 1 if and only if

cinv,1 − cinv,2 ≤ TP(s1)E[z̃|s1]. (35)

With other words, the purely cost efficient portfolio consists of both technologies if and only if

TP(s1) ·E[z̃|s1] < cinv,1 − cinv,2 < TP(s0) ·E[z̃|s0]. (36)

2.5. Standard solutions to the purely variance efficient portfolio with uncertainty of the merit order

The variance efficient portfolio represents another extreme case of the general portfolio problem obtained

as A→∞. The Lagrangian may be written as

Lv = λ ·
(
D(0)−K1 −K2

)
+

1

2

2∑
u=1

(
E

[
Q2
u|s̃ ·

(
Var

[
c̃u
∣∣s̃]+ E

[
c̃u
∣∣s̃]2)]−E

[
Qu|s̃E

[
c̃u
∣∣s̃]]2)

+E
[
Q1|s̃Q2|s̃ ·

(
Cov[c̃1, c̃2|s̃] + E

[
c̃1
∣∣s̃] ·E [c̃2∣∣s̃])]−E

[
Q1|s̃E

[
c̃1
∣∣s̃]] ·E[Q2|s̃E

[
c̃2
∣∣s̃]] (37)

The corresponding KKT-conditions can be derived as:

∂Lv
∂K1

= −λ−P(s0)t1 ·
2∑

u=1

(−1)uQu|s0

(
σ2
u|s0 − σ12|s0+

+ P(s1) ·
(
c̄2u|s0 − c̄2|s0 c̄1|s0 − c̄u|s0

2∑
v=1

c̄v|s1
Qv|s1
Qu|s0

))
≥ 0, ⊥ K1 ≥ 0 (38)

∂Lv
∂K2

= −λ+ P(s1)t2 ·
2∑

u=1

(−1)uQu|s1

(
σ2
u|s1 − σ12|s1+

+ P(s0) ·
(
c̄2u|s1 − c̄2|s1 c̄1|s1 − c̄u|s1

2∑
v=1

c̄v|s0
Qv|s0
Qu|s1

))
≥ 0, ⊥ K2 ≥ 0 (39)

∂Lv
∂λ

= D(0)−K1 −K2 ≤ 0, ⊥ λ ≥ 0 (40)

Since investment costs are neglected in the purely variance optimal investment decision, it can be con-

cluded from the existence of a variance-efficient portfolio without overcapacities that an increase in the

capacity of any technology is also efficient. With other words: If additional capacity has zero cost, increas-

ing the capacity of an efficient portfolio cannot negatively influence its optimality as long as the expected

technology deployment on the second stage of the optimization problem is not changed compared to the

situation without overcapacities.7 Therefore, we will restrict in the following the variance minimization

problem to the more interesting case in which total installed generation capacity matches system demand.

Then, the hitherto constraint inequality (11) is replaced by the equality

D(0)−K1 −K2 = 0 (41)

7Notably, for a purely variance efficient solution the actual plant deployment on the second stage is irrelevant and could

theoretically be realized arbitrarily. Only the expected plant deployment is relevant for the variance minimal investment decision

on the first stage of the problem.
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Under this assumption it is not clear any longer whether the efficient portfolio consists of a single technology

or a mix of both technologies. With (41), t2 can be expressed as a function of the t1 with t2(t1) =

R(D(0) −D(t1)). The latter expression may be used to reformulate the production volumes as defined in

Eqs. (13), (14) in order to express the problem solely dependent on t1.

For an interior solution with K∗1 ,K
∗
2 > 0, the KKT conditions (38) and (39) have to be satisfied with

equality as necessary optimality condition. Eliminating λ through subtraction of these conditions yields the

central optimality condition ∂LR
∂K1
− ∂LR

∂K2
= 0 which allows us to derive the following proposition:

Proposition 2.2. Under the restriction that total installed generation capacity must match total demand,

i.e. λ 6= 0, the purely variance minimal portfolio with a risk of reversal in the merit order P(s1) > 0

corresponding to optimization problem (9)-(12) consists of both technologies 1 and 2 if(
−
σ12|s0 − σ2

1|s0
E[z̃|s0]P(s1)

> c̄1|s1 − c̄1|s0

)
∧

(
c̄1|s1 − c̄1|s0 <

σ2
1|s1 − σ12|s1
E[z̃|s1]P(s0)

)
(42)

The proof and supplementary discussions on other solution cases for the variance minimal portfolio are

provided in Appendix B.4

2.6. Standard solutions to the combined portfolio problem with uncertainty of the merit order

We start solving the general non-convex problem (9)-(12) by using a standard Lagrange approach for the

relaxed assumption of P(s̃ = s1) ≥ 0 to identify stationary points as necessary conditions in the optimum.

For ease of computation, again t1, t2 are used as equivalent decision variables. Having obtained optimal

values for t∗1, t
∗
2, we can subsequently derive K∗1 ,K

∗
2 from Eqn. (8) to complete the solution. Then, the

Lagrangian L writes

L = L+ λ ·
(
D(0)−K1 −K2

)
, (43)

and the corresponding KKT-conditions may be written as:

∂L
∂K1

= cinv,1 − λ−P(s0)t1 ·
2∑

u=1

(−1)u ·

(
c̄u|s0 +AQu|s0 ·

(
σ2
u|s0 − σ12|s0

+ P(s1) ·
(
c̄2u|s0 − c̄2|s0 c̄1|s0 − c̄u|s0

2∑
v=1

c̄v|s1
Qv|s1
Qu|s0

)))
≥ 0, ⊥ K1 ≥ 0 (44)

∂L
∂K2

= cinv,2 − λ+ P(s1)t2 ·
2∑

u=1

(−1)u ·

(
c̄u|s1 +AQu|s1 ·

(
σ2
u|s1 − σ12|s1

+ P(s0) ·
(
c̄2u|s1 − c̄2|s1 c̄1|s1 − c̄u|s1

2∑
v=1

c̄v|s0
Qv|s0
Qu|s1

)))
≥ 0, ⊥ K2 ≥ 0 (45)

∂L
∂λ

= D(0)−K1 −K2 ≤ 0, ⊥ λ ≥ 0 (46)

The optimal portfolio mix (K∗1 ,K
∗
2 ) to problem (9)-(12) is either obtained as a boundary solution with

K∗1 = 0 or K∗2 = 0 or as an interior solution with K∗1 , K
∗
2 > 0. The necessary condition for an interior
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solution is determined by the non-convex equation system with Eqs. (44), ∂L
∂K1

= 0, and (45), ∂L
∂K2

= 0.

Both equations represent functions of K1 and K2, respectively t1 and t2.

As for the purely cost-minimal portfolio, two cases for λ have to be distinguished: For λ = 0, total

installed capacity can exceed the maximal demand, i.e. K1 +K2 ≥ D(0), while for λ > 0 total capacity will

meet but not exceed the demand maximum, i.e. K1 +K2 = D(0).

First, we consider the case λ > 0. Here, λ can be eliminated in Eqs. (44) and (45) by subtracting

∂L
∂K1
− ∂L

∂K2
=: υ. The resulting optimality condition can then be written as υ = 0 with

υ(t1) =AP(s0)P(s1)

1∑
i=0

ti+1

(
Qi+1|siE[z̃|si]2 −QE(c̄2|s0 − c̄2|s1)E[z̃|si](−1)i −E[z̃|s1]E[z̃|s0]Qi+1|si

)
+ cinv,1 − cinv,2 −E

[
(t|s̃) ·E[z̃|s̃]

]
+AE

[
(t|s̃) ·Q1|s̃Var[z̃|s̃]−QE(σ2

2|s̃ − σ12|s̃)
]

(47)

Remark that υ(t1) is solely dependent on the decision variable t1, respectively K1, if we use the relation

t2(t1) = R(D(0)−D(t1)). The combined cost-risk efficient portfolio structure given uncertainty in the merit

order with reversal risk P(s1) ≥ 0 can be characterized by the following property as shown in Appendix

B.5:

Proposition 2.3 (Existence and uniqueness of an interior solution for the case λ 6= 0). Let be cinv,1 > cinv,2

and total installed capacity matching maximum demand, i.e. λ 6= 0 in constraint (12). If both technologies

1 and 2 are included in the purely cost-efficient portfolio (i.e. A = 0) and in the purely variance-efficient

portfolio (i.e. A → +∞) satisfying condition (42), then all cost-variance efficient portfolios with A > 0

corresponding to problem (9)-(12) consist of a unique combination of both technologies.

Based on the discussion in Section 2.4, the economic benefit of excess capacities in purely cost-efficient

portfolios is limited to investment settings with relatively small investment cost compared to a large difference

in operating costs and a severe risk of merit order reversals (see condition (33)). In a risk-cost investment

setting, excess capacities are beneficial from an economic point of view if the difference in risk-adjusted

expected operating costs is relatively large compared to the investment costs of the generation technologies.

Thus, the economic benefit of overcapacities increases with the level of social risk aversion A.

Although thus rare in electricity investment applications, we continue to characterize this solution case

with λ = 0 in the following propositions (proofs are provided in Appendix B.5):

Proposition 2.4 (Implicit functions). For the implicit function ∂L
∂K1

(ť1, ť2) = 0 with ∂L
∂K1

(t1, t2) : [0, T ] ×

[0, T ] → Z1 ⊆ R+, there exists a unique function ζ1(t2) : (0, T ] → Z1 ⊆ R+ . Similarly, for the implicit

function ∂L
∂K2

(ť1, ť2) = 0 with ∂L
∂K2

(t1, t2) : [0, T ] × [0, T ] → Z2 ⊆ R+, there exists a unique function ζ2(t1) :

(0, T ]→ Z2 ⊆ R+ .
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Figure 3: Optimality condition for the portfolio problem as implicit functions of t1, t2. In the left diagram, the intersection

of ζ1(t2) and ζ2(t1) represents the solution to the optimization problem for a symmetric, exemplary parameter configuration.

For the asymmetric parameter configuration in the right diagram, the problem exhibits a corner solution.

Proposition 2.5 (Monotony). For given expected fuel prices c̄1|s0 ≤ c̄2|s0 and c̄2|s1 ≤ c̄1|s1 and ζ1(t2) and

ζ2(t1) being functions represented by the implicit functions ∂L
∂K1

(t1, t2) = 0 from Eqn. (44), and ∂L
∂K2

(t1, t2) =

0 from Eqn. (45), respectively, ζ1(t2) and ζ2(t1) are both monotone increasing in t2 and t1, respectively. For

c̄1|s0 < c̄2|s0 and c̄2|s1 < c̄1|s1 , it follows strict monotony of ζ1(t2) and ζ2(t1).

With t1 = ζ1(t2), t2 = ζ2(t1) being the functions represented by the implicit function ∂L
∂K1

(t1, t2) = 0,

and ∂L
∂K2

(t1, t2) = 0, respectively, the existence of at least one stationary tuple (to1, t
o
2) ∈ (0;T ) × (0;T )

with ζ1(to2) = to1 and ζ2(to1) = to2 is necessary prerequisite for an interior solution. This tuple represents

graphically the intersection point of ζ2(t2) and ζ1(t2) as shown in cf. Figure 3 for a typical parameter set.

An explicit, analytical solution formulation is however infeasible for the case of a general demand function as

both equations contain the objective variables as integration limits in Qu|s̃. Thereby, the following solution

cases may occur in the case λ = 0:

I) Corner solution with the efficient portfolio consisting of

i) only one technology, i.e. K∗1 = D(0),K∗2 = 0, or K∗2 = D(0),K∗1 = 0, respectively,8

ii) both technologies, i.e. K∗1 = K∗2 = D(0),

8Overcapacities may only be economical if they increase the operating flexibility of the generation portfolio. However, with

a boundary solution with only one technology in the portfolio, there is no increase in flexibility and therefore a boundary

solution excludes excess capacities
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II) Interior solution with the efficient portfolio consisting of both technologies, i.e. 0 < K∗1 ,K
∗
2 ≤ D(0).

Proposition 2.6 (Existence and uniqueness of an interior solution for the case λ = 0). If the technology

parameters satisfy

cinv,1
TP(s0)

−E[z̃|s0]−AQE
(
σ2
2|s0 − σ12|s0 + P(s1)E[z̃|s0](c̄2|s0 − c̄1|s1)

)
< 0 (48)

and
cinv,2
TP(s1)

+ E[z̃|s1]−AQE
(
σ2
1|s1 − σ12|s1 + P(s0)E[z̃|s1](c̄2|s0 − c̄1|s1)

)
< 0, (49)

then the cost-variance efficient portfolios with A > 0 corresponding to problem (9)-(12) consist of a unique

combination of both technologies. The total installed generation capacity of the cost-risk efficient portfolio

may exceed total demand, implying λ = 0 in constraint (12).

Notably, if there exists a local minimum of L in (K∗1 ,K
∗
2 , λ
∗) with λ∗ = 0 according to Proposition 2.6,

the installed capacity in the cost-variance efficient portfolio does not necessarily exceed maximum demand.

In addition, there may also exist a local minimum of L in another point (K∗∗1 ,K∗∗2 , λ∗∗) with λ∗∗ > 0.

Finally, the corner points as discussed above have to be checked for optimality due to the non-convexity of

the problem.

3. Likelihood of reversals in the merit order due to fuel price risks

The probability of a reversal in the merit order depends on the joint distribution of operating costs c̃1, c̃2,

or more precisely on the distribution of the difference in operating costs z̃ = c̃2 − c̃1. Before we propose a

general computation method for the reversal risk over the plant’s lifetime, we will briefly discuss the basic

calculation technique for the periodical risk in the next section.

3.1. Front year reversal risk

Given the distribution of fuel prices in the following period, the risk P(c1 > c2) for a reversal in the

merit order in this period can be computed from the two-dimensional density ϕ1,2 as

P(c1 > c2) = 1−
∫ ∞
−∞

∫ c2

−∞
ϕ1,2(c1, c2)dc1dc2 = 1−

∫ ∞
−∞

∫ ∞
c1

ϕ1,2(c1, c2)dc2dc1 (50)

Instead of computing the reversal likelihood directly from Eqn. (50), we can use the more convenient

transformation9 z̃ = c̃2− c̃1 with E[z̃] = c̄2− c̄1 and Var[z̃] = σ2
1 +σ2

2−2σ12. In knowledge of the cumulative

distribution function of Φ(z) the likelihood for reversals can be calculated as

P(c1 > c2) = P(z < 0) = Φ(0), (51)

9It is well-known that the sum of n jointly normal distributed random variables Xi, with Xi ∼ N (µi, σ
2
i ) is also normal

distributed with mean and variance

µ =

n∑
i=1

µi, σ2 =

n∑
i=1

n∑
j=1

σij =

n∑
i=1

n∑
j=1

σiσjρ, with ρ =
σij

σiσj
.

For a proof see e.g. Elishakoff (1999).
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3.2. Reversal risk over the plant’s lifetime

Up to now, we have calculated the probability P(c2 < c1) for a single realization of fuel prices such

that operating costs of technology 2 exceed those of technology 1. In fact, this calculation captures only

the risk of a reversal in a period τ + 1 given all information at τ , or more precisely Pτ (c2,τ+1 < c1,τ+1) :=

P(c2,τ+1 < c1,τ+1|Fτ ). Beyond that, the investment decision requires to take into account the reversal risk in

all subsequent periods of the plants’ lifetime. Valuing the optimal fuel mix over all periods of the considered

plant portfolio would in general require a relatively complex multi-period model, but since the investment is

limited to one point in time, the problem can be reduced to a single-period model by calculating the average

reversal risk over all periods of the plants’ lifetime.

It is intuitively clear that the likelihood for a reversal in the merit order multiple periods ahead depends

on the type of the assumed underlying stochastic fuel price process and as a consequence on the type of the

resulting process of differences in operating costs. To study the impact on the reversal risk over the plant’s

lifetime, we will discuss in the following two fundamental stochastic processes which are typically applied in

financial energy-related applications:

First, let differences in periodic operating costs z̃τ = c̃τ,2− c̃τ,1 be represented by a random walk defined

on the probability space (Ω,Fτ ,P) of the form

∆zτ = σετ
√

∆τ , (52)

where ε denotes the standardized white noise with ετ
i.i.d.∼ N (0, 1), τ ∈ N. Since the distribution of

zτ+k given all information at time t is non-stationary with constant mean but linearly increasing vari-

ance V art[zτ+k] = k · σ2, the likelihood for a reversal in the merit order k periods ahead will also increase

with k as shown in Figure 4. Typical solution approaches for these kinds of problems apply multi-period

optimization frameworks. To keep the simplicity of the annualized valuation framework proposed in Section

2, we use instead the compound periodical likelihood of reversals, calculated as the weighted average of the

single-period reversal probabilities during the lifetime τ ∈ [1, . . . , τ̂ ] of the considered plants. Thereby, the

discount factor is used as weighting factor, i.e.

P(s̃ = s1) ≡ P(z[1,τ̂ ] < 0) =
qτ̂ · i
qτ̂ − 1

·
τ̂∑
k=1

P(zk < 0) · q−k, (53)

with q = 1 + i and i denoting the discount rate.

While the random walk model excludes any predictability of the difference in operating costs of the two

technologies, application of a mean-reversion model follows the idea that there is a long-term equilibrium for

both technologies. This rationale can be motivated with the long-term substituting effects of commodities

in many industries and is supported by various studies on cointegration of commodity prices (cf. e.g.

Schwartz, 1997; Alexander, 1999; Pindyck, 1999; Schwartz and Smith, 2000; Pindyck, 2001; Geman, 2007;
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Figure 4: Comparison of variance V ar0[zt] (left) and corresponding periodical reversal risk for P0(z̃t < 0) (right) for a random

walk and a mean-reversion process (θ = 0.8). The expected mean difference is E[z] = 3 and the standard deviation σ = 1 for

both processes.

Mohammadi, 2009). In fact, mean-reverting behavior of the differences of two stochastic processes does

even imply cointegration, i.e. stationarity of a linear combination of two stochastic processes. In addition

to short-term deviations of operating costs caused by fluctuations in supply and demand of the underlying

fuel types, variations in the long-run equilibrium may occur caused e.g. by technological progress impacting

investment costs of generation technologies. Hence, the distribution of price differences in operating costs

of two technologies is usually time-dependent and not constant over time.

We consider a mean-reversion process (corresponding to an AR(1) time series model) on the probability

space (Ω,Ft,P) of the form

∆zτ = θ(µ− zτ )∆τ + σετ
√

∆τ , (54)

where ετ is again assumed to be the standardized white noise. For |θ| < 1 and ∆τ → ∞, the process

is (weakly) stationary with bounded variance V ar[zτ ] =
σ2
ε

2θ and constant expectation E[zτ ] = µ. As a

consequence, the periodical likelihood for a reversal in the merit order given mean-reverting difference in

operating costs is also limited to the reversal risk implied by the variance supremum (see Figure 4). If the

mean reversion parameter θ is sufficiently small, this upper bound may also be used as a fair approximation

for the periodical reversal likelihood, i.e.

P(s̃ = s1) ≡ P(z[1,τ̂ ] < 0) ≈ Φzτ̂ (0), (55)

where Φzτ̂ is the unconditional cumulated normal probability distribution of zτ̂ with z̃τ̂ ∼ N (µ,
σ2
ε

2θ ).
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4. Application: Optimal generation portfolios of coal and CCGT technologies for the German

electricity market

To illustrate the results, the proposed model is calibrated on the German electricity market using his-

torical market data. For that, typical new CCGT and hard coal technologies are considered for serving

demand. Note that the purpose of the calibration is to allow us to derive practically relevant results. The

numbers thereby serve primarily as an illustration whereas this paper does not claim to derive a complete

picture on the efficient power generation fuel mix.

4.1. Estimation of model parameters

Economic and technical key parameters of the coal and CCGT plant technologies based on Konstantin

(2009) are depicted in Table 1. Total operating costs are calculated based on fuel, CO2 emission, and variable

O&M costs. To account for fuel price risks, total operating costs c̃u are modeled as normally distributed

random variables calculated as the sum of the respective fuel prices plus the emission factor weighted price

of CO2 emission rights divided by the technology specific efficiency rate, i.e. cu = (pf,u + eupco2)/ηu. A

two-step approach is used to determine the likelihood for reversals in the merit order and the conditional

distribution parameters as described in further detail in the following paragraphs:

• In the first step, the compound periodical likelihood for reversals in the merit order is determined

based on the historical difference time series in operating costs of coal and CCGT technologies.

• In the second step, conditional distribution parameters for the individual time series of operating costs

of coal and CCGT are computed based on the corresponding unconditional distribution parameters

and the likelihood for reversals in the merit order.

Table 1: 2007 based key parameters for new conventional coal and CCGT technologies (source: Konstantin, 2009, own analysis).

Parameter Unit Hard coal CCGT

Total net investment costs e/KW 1419 608

Technical lifetime a 45 30

Fixed O&M, overhead e/KW a 36.06 13.97

Annualized investment costs cinv e/KW 179.905 78.442

Variable O&M, transport e/KWhe 2.9 5.5

Thermal efficiency MWhe/MWht 0.46 0.56

Carbon emission rate tCO2/MWht 0.34 0.20
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Figure 5: Differences in total operating costs of new CCGT and hard coal plants in Germany 1970–2010 (source: BAFA (2010);

StaBu (2010); EEX (2011); own analysis).

4.1.1. Estimation of the risk of reversals in the merit order

Time series of monthly coal and natural gas import prices 1970–2010 are used based on the price indices

provided by the German Federal Statistical Office (StaBu, 2010) and absolute data of the German Federal

Office of Economics and Export Control (BAFA, 2010). The price data reflects the average cross-border

price converted to e/MWht for all contracted deliveries in the respective month. Starting with the beginning

of the European Union Emission Trading System in 2005, total fuel prices are computed including the costs

of CO2 emission allowances (EUA) based on front year price data from EEX (2011). EUAs are modeled to

be purchased at market conditions (full auctioning) as it has been announced by the EU for ETS Phase III

starting in 2013. Levels of differences in variable generation costs of new CCGT and hard coal technologies

are computed from the nominal time series, i.e. zτ = cτ,ccgt − cτ,coal, as shown in Figure 5.10

The difference time series is then analyzed with respect to random walk and mean reversion properties:

Table 2 provides “regular” and augmented Dickey-Fuller (ADF) test statistics on unit roots of the difference

time series zτ . While the DF test statistic does not allow to reject the null hypothesis of unit roots, the

ADF test allows a rejection at a weak 10% level indicating trend-stationary time series characteristics.

Following from both tests results, non-stationarity for the differences time series in operating costs cannot

be excluded. However, this hypothesis is conflicting with the principles of a long-term market equilibrium:

Since the gap in operating costs will in the long-run influence new built decisions of power plant investors

10Instead of using nominal data, we also considered deflating the data into real terms. This methodology, however, may

yield biasing results since selection of an appropriate deflator is an ambiguous process. Having tested wholesale price indices

for deflation, the time series properties of the difference s in operating costs did not much change.
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Table 2: Regular and augmented Dickey-Fuller tests on unit roots and estimated parameters for the difference time series of

variable generation costs zτ = cτ,ccgt− cτ,coal, 1970–2010. The reversal likelihoods are based on the long-term mean difference

in operating costs 1970–2010 for Pl(s̃ = s1) and on the short-term period 2007–2009 for Ps(s̃ = s1), respectively.

Time series zτ Test statistic Parameter estimates (t-statistics) Reversal risk

DF ADF θ µ σε Pl(s1) Ps(s1)

Mean reversion

-1.772 -3.171*

0.013* (1.772) 5.667 (1.268) 1.088 0.202 0.038

Random walk - 3.988 (0.583) 6.840 0.401 0.240

Note: * significant at the 10% level, ** significant at the 5% level

as well as substituting effects in other industries, a mean-reverting behavior in the differences in operating

costs would to be expected in the long-term market equilibrium.

To compare the impact of a mean-reverting process versus a random walk assumption for the difference

time series in operating costs with regard to the efficient capacity allocation, the subsequent analysis is

carried out applying both types of time series.11 Parameter estimates and t-statistics are also depicted

in Table 2 for annual levels of gas and coal import prices 1970–2009. Correspondingly, the table provides

the computed lifetime annuities for a merit order reversal of the coal and CCGT technologies calculated

according to Eqs. (53) and (55). Thereby, Pl(s̃ = s1) denotes the likelihood for reversals under the long-term

mean difference in operating costs, z̄, over the full estimation period 1970–2009. In contrast, Ps(s̃ = s1) is

based on the mean difference in operating costs z̄ estimated from the short-term period 2007–2009. Using

the short-term period for estimating mean operating costs is most suitable in our view since it ensures

appropriate long-term estimates for variance and covariance while it takes into account recent shifts in the

means of operating costs. The long-term estimate for expected operating costs would yield in contrast severe

inconsistencies with respect to the other key technology parameters which refer to new built power plants

based on recent data. Thus, we use Ps(s̃ = s1) to accomplish the further analysis. As expected, the limiting

periodical reversal likelihood given mean-reverting differences in operating costs is with 3.8% much lower

compared to compound periodic reversal risk of 24.0% under the random walk hypothesis.

4.1.2. Unconditional and conditional distribution of operating costs

Having determined the compound reversal likelihood during the plant’s lifetime from the difference time

series of operating costs, the corresponding unconditional mean and variance are determined for each time

series of operating cost both under the mean reversion and random walk hypothesis. Next, conditional

means and variances are computed for each technology as shown in Appendix B.1 (cf. Table 3).

11Further research remains necessary to provide empirical evidence on the question of random walk versus mean-reverting

time series behavior of difference of operating costs. Since the main objective of this section is to provide an illustrative

application of the analytical discussion, we kindly refer the reader to existing literature on this topic as mentioned above.
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Table 3: Distribution parameters for operating costs of coal and CCGT technologies. Unconditionally expected operating

costs represent historical mean costs 2007–2009. Conditional distribution parameters were calculated based on the reversal

likelihoods given a random walk and a mean reversion process.

Empirical estimate Random walk Mean reversion

E[c̃coal] 45.912 45.912 45.912

E[c̃ccgt] 57.975 57.975 57.957

Ps(s̃ = s1) - 0.238 0.0383

Var[c̃coal] 84.447 513.422 83.305

Var[c̃ccgt] 195.574 1189.223 192.957

Cov[c̃coal, c̃ccgt] 116.561 188.858 115.779

E[c̃coal|s0] - 50.606 46.315

E[c̃coal|s1] - 30.871 35.795

E[c̃ccgt|s0] - 69.505 58.958

E[c̃ccgt|s1] - 20.952 33.067

Var[c̃coal|s0] - 452.673 79.818

Var[c̃coal|s1] - 411.257 64.404

Var[c̃ccgt|s0] - 821.499 171.853

Var[c̃ccgt|s1] - 570.799 78.548

Cov[c̃coal, c̃ccgt|s0] - 559.261 106.415

Cov[c̃coal, c̃ccgt|s1] - 457.363 68.49

4.1.3. Specification of the load duration curve

The estimation of a load duration function is performed as described in Sunderkötter and Weber (2009):

Historical load data for Germany provided in an hourly resolution by ENTSO-E (2009) for the years 2006–

2008 provide the basis for the fitting procedure. For comparability reasons, we adjust the data sets for

the general increase in energy consumption by 1.02% in 2007 and 0.4% in 2008, respectively. A historical

reference load duration curve is then generated from the hourly means of the historic data. To accomplish

the further analysis in Matlab with a continuous inverted load duration function R̂(K) = D̂−1(t), we use

OLS regression to fit a polynomial function of the form

R̃(K) ≈


∑q
j=0Aj ·Kj , for K ≥ D(T )

T, for K < D(T ).
(56)

with T = 8760 hours and for a load ranging from D(T ) = 35031 MW to D(0) = 78332 MW. Parameter

estimates for a polynomial function of degree q = 7 are provided in Fig. 6.

4.2. Results I: The cost and variance efficient portfolio fuel mix

We start interpreting the results by first investigating the efficient technology mix under the two extreme

cases with A = 0 and A→∞.
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Figure 6: Historical and fitted load duration curve and parameter specification of the polynomially fitted inverse load duration

function R(K) = D−1(t) (ENTSO-E, 2009, own analysis).

In a first approximation, the risk for reversals in the merit order may be neglected to assess the solution

case for the efficient portfolio structure as discussed in Section 2.3. Assuming risk-neutrality (i.e. A = 0)

given the estimated technology parameterization (cf. Tab. 3), the cost efficient portfolio includes both

generation technologies according to Property 2.1, since it holds (cinv,1− cinv,2)(c̄2− c̄1) = 8411 ∈ (0; 8760).

The purely cost efficient portfolio (i.e. A = 0) consists of a balanced mix of both technologies with about

48% CCGT and 52% hard coal capacity (Fig. 7). It can be seen that the cost efficient technology mix both

under the random walk and the mean-reversion assumption is fairly well approximated by the calculation

with neglected risk of reversals in the merit order. The absolute discrepancy between the calculations with

and without reversal risk is marginal.

From a pure risk perspective, a comparison of the unconditional variance of operating costs shows the

superiority of coal compared to the CCGT technology. Neglecting the risk for reversals in the merit order and

applying Property 2.2, it can bee seen that the variance efficient portfolio will only contain coal technologies

since σ2
1−σ12 = 84.447−116.561 < 0. The picture does not change by taking into account the risk for reversals

in the merit order: Under the random walk assumption, the conditional variance of the CCGT technology

exceeds the conditional variance of the coal technology in both merit order states. Put differently, the coal

technology dominates the CCGT technology with respect to the scenario variance. Hence, diversification

is not efficient. As expected, the sufficient condition (42) for variance efficient portfolios including both

technologies as formulated in Property 2.2 is not satisfied.
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Figure 7: Capacity structure of purely cost and variance efficient generation portfolios consisting of new CCGT and hard

coal technologies under the random walk and mean reversion hypothesis and for the approximating calculation with neglected

reversal risk.

4.3. Results II: Cost-risk efficient fuel mix under the random walk and the mean reversion hypothesis

To assess the technology structure of cost-risk efficient portfolios, we compute efficient capacities and total

system costs of hard coal and CCGT technologies for levels of risk aversion in a range of A = [0, . . . , 10−9]

under the two alternative assumption that differences in operating costs follow a random walk or a mean

reversion process.

Figure 8 presents the efficient capacity mix of CCGT and hard coal technologies under the assumption

that differences in operating costs follow a random walk. Correspondingly, Figure 9 depicts the efficient

portfolio structure under the mean-reversion assumption. For reference purposes, the hypothetical efficient

portfolio structure without reversal risk is indicated by a dashed line.

Despite the relatively high risk for reversals in the merit order under the random walk assumption, the

share of CCGT generation in the efficient portfolio is decreasing with increasing levels of risk aversion. This

is due to the specific risks of coal and CCGT technologies: The higher the risk aversion factor A, the stronger

is the impact of the variance in the objective function. With the risk contribution of CCGT technologies

being higher than that of coal technologies, the higher overall risk in the case with reversal risk implies that

the efficient portfolios contain higher shares of coal generation compared to the calculations without reversal

risk.

Under the random walk hypothesis, the share of coal generation in efficient generation portfolios is much

higher than under a mean-reverting difference time series of operating costs. This is due to the fact that the

higher probability of reversals in the merit order results also in a higher absolute portfolio risk (measured

both by conditional and unconditional variances) than under the mean-reversion assumption. Due to the

relatively small reversal risk in the latter case, the efficient portfolio structure under the mean-reversion

assumption is fairly well approximated by a model formulation with neglected reversal risks.

Remarkably, neither the efficient portfolios under the random walk nor under the mean reversion hy-

pothesis exhibit any overcapacities in the numerical example. This phenomenon will be analyzed in detail
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Figure 8: Capacity structure of efficient generation portfolios consisting of new CCGT and hard coal technologies for varying

risk aversion parameter, A, given that differences in operating costs follow a random walk. The hypothetical efficient portfolio

structure without reversal risk is shown by the dashed line.
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risk aversion parameter, A, given that differences in operating costs follow a mean-reversion process. The hypothetical efficient

portfolio structure without reversal risk is shown by the dashed line.
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in the following paragraph.

4.4. Results III: Overcapacities in efficient portfolios

In a world with deterministic peak demand and full information about plant availabilities, there is no

need to install more generation capacity than maximum demand as long as uncertainty of generation costs

does not lead to changes in the merit order.

The picture may change drastically given uncertainty in the merit order as already discussed earlier in this

paper: If there is a substantial risk that the CCGT plant may run as the base-load plant in certain periods,

then it may be economical to install a higher share of CCGT generation capacity compared to the situation

where CCGT is only expected to run as peak plant. Thereby, the question whether to build more generation

capacity than maximum demand depends highly on the relation of capacity investment costs compared to

the difference of operating costs: The lower plant-specific investment costs, the more economical it becomes

to build overcapacities. Considering the extreme case with zero capacity investment costs, the cost-minimal

generation portfolio would include generation capacities of each technology at maximum demand, i.e. the

total installed capacity would be twice the maximum demand.

For the case with risk-neutrality (i.e. A = 0), a necessary parameter condition for plant overcapacities has

been formulated in Eqn. (33). For this case, the interdependency between total excess capacity (measured

by the system capacity ratio which equals total installed capacity divided by maximal demand) and specific

investment costs is shown in Figure 10 (left): While the efficient portfolio does not include any overcapacity

for the empirically estimated plant investment costs (indicated by the red stack), the system capacity

ratio increases up to 200% for decreasing investment costs. Figure 10 (right) indicates at which parameter

combination the necessary condition for overcapacities, Eqn. (33), is satisfied.

For the risk-extended portfolio problem, one could expect that the system capacity ratio would increase

the higher the levels of risk aversion. However, the opposite can be observed as shown in Figure 11 assuming

that operating costs follow a random walk: With increasing societal risk aversionA, the installed overcapacity

in efficient portfolios decreases. This is at first sight contra-intuitive as one would expect that with increasing

risk aversion, the limiting impact of investment costs on the portfolio diversification decreases in favor of

a more flexible plant portfolio. However, the reason is again the specific risk of the coal and the CCGT

technologies: The risk contribution of the CCGT technology is higher compared to the coal technology.

Thus, the higher the risk aversion factor A, the greater is the impact of the variance in the objective

function (5) and hence the less attractive is diversification into the CCGT technology.

4.5. Results IV: Impact of increased risk of the coal technology

Based on the historically estimated operating costs parameters (cf. Tab. 3), the coal technology is

superior compared to the CCGT technology from a pure risk perspective (measured by variance of operating
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Figure 10: System capacity ratio
(
K∗coal +K∗CCGT

)
/D(0) for varying specific investment costs of coal and CCGT technologies

for the purely cost efficient portfolio, i.e. A = 0 (left). The red stack represents the efficient capacity for the empirically

derived annual investment costs. The graph on the right indicates, for which parameter combinations the necessary condition

for overcapacities discussed in Eqn. (33) is satisfied.
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Figure 11: System capacity ratio
(
K∗coal +K∗CCGT

)
/D(0) for varying specific investment costs of coal and CCGT technologies

at risk aversion levels A = 5.0 · 10−11 (left), and A = 1.0 · 10−10 (right). Differences of operating costs are assumed to follow a

random walk. The red stack represents the efficient capacity for the empirically derived annual investment costs.

costs). Yet, the variance of operating costs of the considered technologies is driven by changes of the fuel and

CO2 price levels and an increase of CO2 and coal price volatility seems possible in the near to mid future.

One reason are the ambitious EU emission reduction targets and another is the increasing correlation of

world market prices for coal with highly volatile oil prices. This could improve the relative riskiness of

the CCGT technology compared to coal. To assess the impact of such a scenario, we assume the standard

deviation of the coal operating costs to be increased by 50%. As the mean operating costs are assumed

to remain constant, the variance increase implies also changed conditional distribution parameters for both

technologies. Furthermore, the (unconditional) variance of the difference time series decreases, resulting in
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Figure 12: Capacity structure (as a percentage of maximum demand D(0)) of purely cost and variance efficient generation

portfolios consisting of new CCGT and hard coal technologies under the random walk and mean reversion hypothesis and for

the approximating calculation with neglected reversal risk. The standard deviation of the coal technology is increased by 50%

compared to the empirically estimated values from Tab. 3.

a slightly reduced likelihood for reversals in the merit order of 21.4%.

The resulting impact on the structure of the purely cost and the purely variance efficient portfolio is

depicted in Fig. 12: While the cost efficient portfolio structure remains widely unchanged, the variance

efficient portfolio includes now both technologies with a capacity share of about one third coal and two

third gas technology. Notably, there is again a significant discrepancy in the efficient fuel mix based on the

calculation with neglected risk of reversals in the merit order and the calculation with a reversal risk under

the random walk hypothesis. The calculation with the mean reversion hypothesis again yields results close

the case with neglected reversal risk.

We start by assuming again risk-neutrality (i.e. A = 0) to assess the benefit of overcapacities (cf. Fig. 13,

upper left): As in the previous section, building overcapacities becomes only efficient for decreased levels of

investment costs. Thereby, the required reduction of CCGT investment costs is even higher compared to the

previous section with the lower coal variance. This is plausible keeping in mind the necessary condition for

overcapacities discussed in Eqn. (33): Since the higher coal variance implies a reduced risk for reversals in

the merit order, P(s1), the CCGT investment costs must even be smaller to satisfy the left part of condition

(33).

With both technologies being included in the cost and in the variance efficient portfolio, it could intu-

itively be expected that with increasing risk aversion building overcapacities becomes more efficient. How-

ever, it can still be observed that with increasing societal risk aversion overcapacities become less attractive

(cf. Fig. 13). This at first sight surprising result is due to the fact that the variance term in the objec-

tive function is not only driven by the specific variance but also by the expected energy produced by each

technology which is subject to the second stage of the optimization problem. To determine the expected

value of the produced energy, we consider—as in the classic peak load pricing theory—at the second stage

of the optimization a technology dispatch based on the merit order of generation costs: The technology
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Figure 13: System capacity ratio
(
K∗coal +K∗CCGT

)
/D(0) for varying specific investment costs of coal and CCGT technologies

at risk aversion levels A = 0 (upper left), A = 5.0 · 10−11 (upper right), A = 1.0 · 10−10 (lower left), and A = 1.0 · 10−9 (lower

right). Differences of operating costs are assumed to follow a random walk. The red stack represents the efficient capacity for

the empirically derived annual investment costs. The standard deviation of the coal technology is increased by 50% compared

to the empirically estimated values from Tab. 3.

with the lowest operating costs is used as base load technology, the other to serve peak load demand. This

cost-based—and not variance-based—dispatch order influences the expected energy production for each

technology. Installing overcapacities in a plant portfolio can hence increase operating flexibility, but may

lead to the situation in which the expected mix of energy produced deviates from the variance optimum.

Put differently: The most flexible technology mix which would include overcapacities, does typically not

minimize the variance of operating costs.

5. Concluding remarks

This article analyzes efficient capacity allocation in electricity systems under uncertainty. Special empha-

sis is put on the impact of reversals in the merit order due to long-term shifts in fuel prices. In particular,
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technologies with operating costs characterized by little difference in mean, high variance and imperfect

correlation are affected by these changes in the merit order. The model approach and the obtained insights

are also relevant for investment decisions in other industries where different technologies are to be selected

to supply an (expected) demand pattern, such as e.g. in transportation applications.

Our results show that risk in (variable) operating cost—measured by its variance—can heavily affect

efficient capacity allocation among different technologies. Thereby, two levers of impact can be distinguished:

• Firstly, the cost risk affects the optimal capacity mix given a stable merit order of variable production

costs and a firm order of dispatch. However, the efficient technology mix deviates from the purely

mean-based optimum only under risk-averse social preferences.

• Secondly, fuel price fluctuations may result in reversals in the merit order which may significantly

influence the efficient technology mix. This risk is of particular importance if the considered technolo-

gies are characterized by only small differences in their mean costs and exhibit high, uncorrelated cost

variances.

In a model application with CCGT and hard coal technologies in the German market environment, we

find that a cost efficient portfolio includes a balanced mix oh both technologies. In contrast, only coal is the

risk efficient technology given the variance of operating costs based on historical long-term estimates.

Thereby, the characteristic of the underlying difference time series in operating costs in the considered

technologies remains a crucial assumption of the model. Assuming random walk versus mean reverting

properties of the difference time series may result in significantly different likelihoods for reversals in the

merit order and therewith impacts massively the efficient technology mix. Further research may be necessary

to provide empirical evidence on the question of the adequate time series model.

With an increasing risk of reversals in the merit order, overcapacities exceeding maximum demand may

become economically favorable if investment costs are sufficiently low compared to the expected difference

in operating costs. Hence, under risk-neutral preferences with the sole objective to minimize expected

generation costs, an increasing risk of reversals in the merit order increases the degree of diversification in

efficient technology portfolios. However, our example shows that at current investment costs and historically

estimated cost variances, overcapacities are inefficient for CCGT and coal technology portfolios.

The benefits of diversification may change in a risk-averse investment environment where the total

variance of operating costs is sought to be reduced: They are reduced if one technology dominates the

other(s) with respect to the specific cost risk induced by this technology. Then increasing levels of risk

aversion can even lead to efficient technology portfolios which are fully non-diversified and consist of only

one technology. In this case, there is also no economic benefit from installing overcapacities—even if these are

without additional costs. Hence, diversification of the generation portfolio is—even under risk aversion—not

beneficial per-se.
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Appendix A. Symbols and model notation

Indices

u Plant technology

si Merit order state

t hours Intra-period time step during analysis period [0;T ]

τ years Period time step during considered plant lifetime [0; τ̂ ]

Operators

Var[ · ] Variance operator

Var[ · |si] Conditional variance operator given scenario si

E[ · ] Expectation operator

E[ · |si] Conditional expectation operator given scenario si

P( · ) Probability measure
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Parameters and variables

A 1/e Social risk attitude

Dt MW Total system demand at time t

tu hours Minimal operating duration of u when

representing the base technology

Ou hours Minimal operating duration of technology u

pu,t e/MWhth Fuel price of technology u in period t

ηu MWhe/MWhth thermal efficiency of plant technology u

hu MWhth/MWhe heat rate of plant technology u

eu tCO2/MWhth emission rate of plant technology u

Ku MW Installed capacity of plant technology u

Qu MWh Energy produced of plant technology u in period [0;T ]

QE MWh Total energy produced in the system in period [0;T ]

yu,t MW Output level of plant u at time t

Cinv,u e Annuity of overnight costs (total investment costs) of plant u

cinv,u e/MWe Annuity of specific overnight costs of plant u per capacity Ku

Cu,t e Operating costs of plant u in period t

cu,t e/MWhe Specific operating costs of plant u in period t per output yu,t

c̄u e/MWhe Mean operating costs of plant u

σu e/MWhe Standard deviation of operating costs of plant u

σuv e2/MWh2
e Covariance of operating costs of plant u and v

c̄u|si e/MWhe Conditional mean operating costs o given scenario si

σu|si e/MWhe Conditional standard deviation of op. costs given scenario si

σuv|si e2/MWh2
e Conditional covariance of op. costs given scenario si

ρ - Coefficient of correlation
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Appendix B. Mathematical Appendix

Appendix B.1. Calculation of conditional expectations and variances

To calculate the conditional expectations and variances used in the optimization problem from Eqs.

(9)-(12), we start with the conditional joint distribution of c̃1, c̃2 given c̃1 ≤ c̃2 which can be obtained as the

truncated distribution (see Figure B.14) with density

f1,2(c1, c2|s̃ = s0) = f1,2(c1, c2|c1 < c2) =
ϕ1,2(c1, c2, ρ)

P(s̃ = s0)
, for −∞ < c1 ≤ c2 <∞, (B.1)

where P(s̃ = s0) denotes the fuel-switch likelihood which can be computed from the distribution of differences

in operating costs z̃ = c̃2 − c̃1 as discussed in Eqn. (51). Next, the conditional densities of c̃1, c̃2 under the

condition c̃1 ≤ c̃2 (see Figure B.15) and given a fixed value of c2, c1, respectively, are determined as:

f1(c1|c1 ≤ c2) =
f1,2(c1, c2|c1 ≤ c2)

ϕ2(c2)
=
ϕ1,2(c1, c2, ρ)

Φ(0)ϕ2(c2)
(B.2)

f2(c2|c1 ≤ c2) =
f1,2(c1, c2|c1 ≤ c2)

ϕ1(c1)
=
ϕ1,2(c1, c2, ρ)

Φ(0)ϕ1(c1)
(B.3)

From these, we can straightforwardly derive the (single) conditional expectations as

E[c̃1|c2 ∧ (c1 ≤ c2)] =

∫ c2

−∞
c1f1(c1|c1 ≤ c2)dc1 =

∫ c2

−∞
c1
ϕ1,2(c1, c2, ρ)

Φ(0)ϕ2(c2)
dc1 (B.4)

E[c̃1|c2 ∧ (c1 > c2)] =

∫ ∞
c2

c1f1(c1|c1 > c2)dc1 =

∫ ∞
c2

c1
ϕ1,2(c1, c2, ρ)

(1− Φ(0))ϕ2(c2)
dc1 (B.5)

E[c̃2|c1 ∧ (c1 ≤ c2)] =

∫ ∞
c1

c2f2(c2|c1 ≤ c2)dc2 =

∫ ∞
c1

c2
ϕ1,2(c1, c2, ρ)

Φ(0)ϕ1(c1)
dc2 (B.6)

E[c̃2|c1 ∧ (c1 > c2)] =

∫ c1

−∞
c2f2(c2|c1 > c2)dc2 =

∫ c1

−∞
c2

ϕ1,2(c1, c2, ρ)

(1− Φ(0))ϕ1(c1)
dc2 (B.7)

Here, conditional expectations E
[
c̃1
∣∣c2 ∧ (c1 Q c2

)]
= g(c2) and E

[
c̃2
∣∣c1 ∧ (c1 Q c2

)]
= g(c1) represent

functions which are solely dependent on c1 and c2, respectively. Hence it makes sense to define the conditional

expectation c̄u|s0 ≡ E[c̃u|s̃ = s0] given the default fuel cost order scenario s0 as the double expectation

E
[
E[c̃1|c2 ∧ (c1 ≤ c2)]

]
. Straightforwardly, we obtain

E[c̃1|s̃ = s0] := E
[
E[c̃1|c2 ∧ (c1 ≤ c2)]

]
=

∫ ∞
−∞

∫ c2

−∞
c1
ϕ1,2(c1, c2, ρ)

Φ(0)ϕ2(c2)
dc1dc2 (B.8)

E[c̃1|s̃ = s1] := E
[
E[c̃1|c2 ∧ (c1 > c2)]

]
=

∫ ∞
−∞

∫ ∞
c2

c1
ϕ1,2(c1, c2, ρ)

(1− Φ(0))ϕ2(c2)
dc1dc2 (B.9)

E[c̃2|s̃ = s0] := E
[
E[c̃2|c1 ∧ (c1 ≤ c2)]

]
=

∫ ∞
−∞

∫ ∞
c1

c2
ϕ1,2(c1, c2, ρ)

Φ(0)ϕ1(c1)
dc2dc1 (B.10)

E[c̃2|s̃ = s1] := E
[
E[c̃2|c1 ∧ (c1 > c2)]

]
=

∫ ∞
−∞

∫ c1

−∞
c2

ϕ1,2(c1, c2, ρ)

(1− Φ(0))ϕ1(c1)
dc2dc1 (B.11)

Finally, it is worthwhile to note that E
[
E[c̃u|s̃]

]
= E[cu]. Thus, the probability-weighted sum of the condi-

tional expectations of operating costs E[c̃u|s̃ = si] given both fuel cost scenarios, equals the unconditional
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expectation of c̃u, i.e.

E
[
E[c̃u|s̃ = si]

]
=

2∑
i=1

(P(s̃ = si)E[c̃u|s̃ = si]) = E[c̃u]. (B.12)

Recall that the conditional variance of a random variable x̃ given ỹ is defined as

Var[x̃|ỹ] := E
[(
x̃−E[x̃|ỹ]

)2∣∣y]. (B.13)

In analogy to the conditional expectation, we denote the conditional variance given the fuel price scenario

s0

σ2
u|s0 ≡ Var[c̃u|s̃ = s0] := E

[
Var[c̃u|c2 ∧ (c1 ≤ c2)]

]
= E

[
E[c̃2u|c2 ∧ (c1 ≤ c2)]

]
−E[c̃u|s0]2 (B.14)

σ2
u|s1 ≡ Var[c̃u|s̃ = s1] := E

[
Var[c̃u|c2 ∧ (c1 > c2)]

]
= E

[
E[c̃2u|c2 ∧ (c1 > c2)]

]
−E[c̃u|s1]2 (B.15)

It can be obtained by incremental computation from the square expectations12 with

Var[c̃1|s̃ = s0] =

∫ ∞
−∞

∫ c2

−∞
c21
ϕ1,2(c1, c2, ρ)

Φ(0)ϕ2(c2)
dc1dc2 −

(
E[c1|s̃ = s0]

)2
(B.16)

Var[c̃1|s̃ = s1] =

∫ ∞
−∞

∫ ∞
c2

c21
ϕ1,2(c1, c2, ρ)

(1− Φ(0))ϕ2(c2)
dc1dc2 −

(
E[c1|s̃ = s1]

)2
(B.17)

Var[c̃2|s̃ = s0] =

∫ ∞
−∞

∫ ∞
c1

c22
ϕ1,2(c1, c2, ρ)

Φ(0)ϕ1(c1)
dc2dc1 −

(
E[c2|s̃ = s0]

)2
(B.18)

Var[c̃2|s̃ = s1] =

∫ ∞
−∞

∫ c1

−∞
c22

ϕ1,2(c1, c2, ρ)

(1− Φ(0))ϕ1(c1)
dc2dc1 −

(
E[c2|s̃ = s1]

)2
(B.19)

In a straightforward manner we obtain for the conditional covariance σ12|si ≡ Cov[c̃1, c̃2|s̃ = s0]

Cov[c̃1, c̃2|s̃ = s0] = E[c̃1c̃2|s̃ = s0]−E[c̃1|s̃ = s0] ·E[c̃2|s̃ = s0] (B.20)

=

∫ ∞
−∞

∫ c2

−∞
c1c2

ϕ1,2(c1, c2, ρ)

Φ(0)ϕ2(c2)
dc1dc2 −E[c̃1|s̃ = s0]E[c̃2|s̃ = s0]

Cov[c̃1, c̃2|s̃ = s1] = E[c̃1c̃2|s̃ = s1]−E[c̃1|s̃ = s1] ·E[c̃2|s̃ = s1] (B.21)

=

∫ ∞
−∞

∫ ∞
c2

c1c2
ϕ1,2(c1, c2, ρ)

(1− Φ(0))ϕ2(c2)
dc1dc2 −E[c̃1|s̃ = s1]E[c̃2|s̃ = s1]

12Alternatively, the expected conditional variance could be derived from the law of total variance, i.e. Var[x̃] = Var[x̃|ỹ] +

Var
[
E[x̃|ỹ]

]
. Based on the latter, the expected conditional variance can be written as

E
[
Var[x̃|ỹ]

]
= Var[x̃]−E

[
Var
[
E[x̃|ỹ]

]]
.
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Figure B.14: Unconditional bivariate density function ϕ1,2(c1, c2, ρ) (left) and conditional (truncated) bivariate density function

f1,2(c1, c2|c1 < c2) (right).

Figure B.15: Marginal densities f1(c1, c2|c1 < c2) (left) and f2(c1, c2|c1 < c2) (right).
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Appendix B.2. The risk-adjusted portfolio problem with risk of reversals in the merit order

Proof of Eqn. (10). Total expected generation costs can be calculated as

E[Cop] = E
[
E[Cop|s̃]

]
= E

[
E
[∑

u

(
Qu|s̃c̃u

) ∣∣∣s̃]] = E

[∑
u

E
[ (
Qu|s̃c̃u

) ∣∣∣s̃]]

= E

[∑
u

Qu|s̃E
[
c̃u
∣∣s̃]] =

∑
u

E
[
Qu|s̃E

[
c̃u
∣∣s̃]] =

∑
u

∑
i

(
P(s̃ = si)Qu|siE[c̃u|s̃ = si]

)
(B.22)

Similarly, conditional variance is used to calculate total variance of generation costs. Thereby, the total

variance consists of intra-scenario variance and inter-scenario variance. For the variance of generation costs

of technology u we obtain by inserting the conditional expectation as calculated above followed by rewriting

Var[Cu] = E
[
E
[(
Qu|s̃

)2
c̃2u
∣∣s̃]]− (E[E[Qu|s̃c̃u∣∣s̃]])2

= E
[
E
[(
Qu|s̃

)2
c̃2u
∣∣s̃]]−E

[(
E
[
Qu|s̃c̃u

∣∣s̃])2]+ E
[(
Qu|s̃E

[
c̃u
∣∣s̃])2]− (E[Qu|s̃E[c̃u∣∣s̃]])2

= E
[
E
[(
Qu|s̃

)2
c̃2u
∣∣s̃]− (E[Qu|s̃c̃u∣∣s̃])2]+ E

[(
Qu|s̃E

[
c̃u
∣∣s̃])2]− (E[Qu|s̃E[c̃u∣∣s̃]])2

= E
[
Var
[
Qu|s̃c̃u

∣∣s̃]]+ Var
[
Qu|s̃E

[
c̃u
∣∣s̃]]

= E
[(
Qu|s̃

)2 ·Var
[
c̃u
∣∣s̃]]+ E

[(
Qu|s̃E

[
c̃u
∣∣s̃])2]− (E[Qu|s̃E[c̃u∣∣s̃]])2

= E
[(
Qu|s̃

)2 · (Var
[
c̃u
∣∣s̃]+

(
E
[
c̃u
∣∣s̃])2)]− (E[Qu|s̃E[c̃u∣∣s̃]])2 (B.23)

Similarly, the covariance of operating costs of technologies u, v can be derived as

Cov[Cu, Cv] = E
[
E
[(
Qu|s̃

)
c̃u
∣∣s̃] ·E[(Qv|s̃)c̃v∣∣s̃]]−E

[
E
[
Qu|s̃c̃u

∣∣s̃]] ·E[E[Qv|s̃c̃v∣∣s̃]]
= E

[
Qu|s̃Qv|s̃Cov

[
c̃u, c̃v

∣∣s̃]]+ E
[
Qu|s̃E

[
c̃u
∣∣s̃]Qv|s̃E[c̃v∣∣s̃]]

−E
[
Qu|s̃E

[
c̃u
∣∣s̃]]E[Qv|s̃E[c̃v∣∣s̃]]

= E
[
Qu|s̃Qv|s̃

(
Cov

[
c̃u, c̃v

∣∣s̃]+ E
[
c̃u
∣∣s̃]E[c̃v∣∣s̃])]

−E
[
Qu|s̃E

[
c̃u
∣∣s̃]]E[Qv|s̃E[c̃v∣∣s̃]] (B.24)

Hence, the total variance of operating costs for the set of all technologies u = {1, . . . , n} can be calculated

as:

Var[Cop] = Var

[∑
u

Cu

]
=
∑
u

Var[Cu] +
∑
u

∑
v,v 6=u

Cov[Cu, Cv]. (B.25)

By inserting E[Cop] and Var[Cop] as derived above into Eqn. (5), we obtain as objective function of the
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optimization problem as formulated in Eqs. (9)-(12):

L =
∑
u

(
Kucinv,u + E

[
Qu|s̃E

[
c̃u
∣∣s̃]])

+
A

2

∑
u

∑
v

(
E
[
Qu|s̃Qv|s̃

(
Cov[c̃u, c̃v |s̃] + E[c̃u|s̃] ·E[c̃v |s̃]

)]
−E

[
Qu|s̃E

[
c̃u
∣∣s̃]] ·E[Qv|s̃E[c̃v∣∣s̃]]

)

=
∑
u

(
Kucinv,u + E

[
Qu|s̃E

[
c̃u
∣∣s̃]]+

1

2
A

(
E
[(
Qu|s̃

)2(
Var[c̃u|s̃] + (E[c̃u|s̃])2

)]
−
(
E
[
Qu|s̃E

[
c̃u
∣∣s̃]])2

+
∑
v,v 6=u

(
E
[
Qu|s̃Qv|s̃

(
Cov[c̃u, c̃v |s̃] + E[c̃u|s̃] ·E[c̃v |s̃]

)]
−E

[
Qu|s̃E

[
c̃u
∣∣s̃]] ·E[Qv|s̃E[c̃v∣∣s̃]]

)))

=
∑
u

(
Kucinv,u + E

[
Qu|s̃E

[
c̃u
∣∣s̃]]+

1

2
A

(
E
[(
Qu|s̃

)2(
Var[c̃u|s̃] + (E[c̃u|s̃])2

)]
−
(
E
[
Qu|s̃E

[
c̃u
∣∣s̃]])2))

+A

(
E
[
Q1|s̃Q2|s̃

(
Cov[c̃1, c̃2|s̃] + E[c̃1|s̃] ·E[c̃2|s̃]

)]
−E

[
Q1|s̃E

[
c̃1
∣∣s̃]] ·E[Q2|s̃E

[
c̃2
∣∣s̃]])

=
∑
u

(
Kucinv,u +

1∑
i=0

P(s̃ = si)

(
Qu|siE

[
c̃u
∣∣si]+

1

2
A
∑
v

Qu|siQv|si
(
Cov[c̃u, c̃v |si] + E[c̃u|si]E[c̃v |si]

))

+AQ1|s̃Q2|s̃
(
Cov[c̃1, c̃2|s̃] + E[c̃1|s̃] ·E[c̃2|s̃]

)))

−
A

2

1∑
i=0

P(s̃ = si)

(∑
u

Qu|s̃E
[
c̃u
∣∣s̃])2

+
A

2

(
1∑
i=0

P(s̃ = si)Qu|s̃E
[
c̃u
∣∣s̃])2

(B.26)

Appendix B.3. Standard solutions to the purely cost efficient portfolio with uncertainty in the merit order

Proof of Eqs. (29) and (30). In an extensive form, the Lagrangian (28) can be written as

Lc =

2∑
u=1

Kucinv,u +Q1|s0P(s0)c̄1|s0 +Q1|s1P(s1)c̄1|s1

+Q2|s0P(s0)c̄2|s0 +Q2|s1P(s1)c̄2|s1 + λ(D(0)−K1 −K2)

(B.27)

Denoting z := c2 − c1, the KKT-conditions (29) and (30) can be derived from Lc as follows:

∂Lc
∂K1

= cinv,1 − λ+
∂Q1|s0
∂K1

·P(s0)c̄1|s0 +
∂Q2|s0
∂K1

·P(s0)c̄2|s0

= cinv,1 − λ+ t1P(s0)c̄1|s0 − t1P(s0)c̄2|s0 = t1P(s0) ·E[z̃|s0] (B.28)

∂Lc
∂K2

= cinv,2 − λ+
∂Q1|s1
∂K2

·P(s1)c̄1|s1 +
∂Q2|s1
∂K2

·P(s1)c̄2|s1

= cinv,1 − λ− t2P(s1)c̄1|s1 + t2P(s1)c̄2|s1 = t2P(s1) ·E[z̃|s1] (B.29)

Proposition 2.1. With z := c2 − c1 denoting the difference in operating costs of technologies 1 and 2, the

purely cost-minimal portfolio with a risk of reversal in the merit order P(s1) consists of technology 2 if and

only if

cinv,1 − cinv,2 ≥ TP(s0)E[z̃|s0]. (34)
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In contrast, the portfolio consists of technology 1 if and only if

cinv,1 − cinv,2 ≤ TP(s1)E[z̃|s1]. (35)

Proof of Proposition 2.1. We will first prove the equivalenceK∗2 = 0 ⇔ cinv,1−cinv,2 ≤ TP(s1)
(
c̄2|s1 − c̄1|s1

)
by showing the validity of the two implications:

Given K∗2 = 0, it can be concluded in the case λ > 0 (i.e. no overcapacities in the optimum) t∗1 = 0

since K1 = D(0) = D(t∗1) according to Eqn. (31). Since for the lower bound of the operating time of the

respective base load technology it holds D(t∗u) = K∗u, it must furthermore be t∗2 = T . Since Eqn. (29) holds

with equality, λ can be be eliminated by subtraction of Eqs. ((29) and ((30) yielding

cinv,1 − cinv,2 ≤ TP(s1)
(
c̄2|s1 − c̄1|s1

)
The case λ = 0 (i.e. there may be overcapacities in the optimum) can be rejected with the initial assumption:

Since K∗2 = 0 implies t∗1 = 0, KKT condition (30) yields the contradiction cinv,1 = 0.13

To prove the converse implication, we assume for cinv,1−cinv,2 ≤ TP(s1)
(
c̄2|s1 − c̄1|s1

)
without limitation

of the generality K∗2 > 0. This implies 0 ≤ t∗2 < T , 0 < t∗1 ≤ T . Hence KKT condition (30) has to be

fulfilled with equality. Eliminating λ through subtraction of KKT conditions (29) and (30) yields

cinv,1 − cinv,2 ≥ t∗1P(s0)(c̄2|s0 − c̄1|s0) + t∗2P(s1)(c̄2|s1 − c̄1|s1)

However, the latter inequality is contradictory to the initial assumption for all feasible 0 ≤ t∗2 < T , 0 <

t∗1 ≤ T since (c̄2|s0 − c̄1|s0) > 0 and (c̄2|s1 − c̄1|s1) < 0. Thus it follows K∗2 = 0 from cinv,1 − cinv,2 ≤

TP(s1)
(
c̄2|s1 − c̄1|s1

)
.

The proof of the analogue equivalence K∗1 = 0 ⇔ cinv,1 − cinv,2 ≥ −TP(s0)
(
c̄2|s0 − c̄1|s0

)
can be

obtained in a straightforward manner analogue to this proof.

Appendix B.4. Standard solutions to the purely variance efficient portfolio with uncertainty in the merit

order

Proposition 2.2. Under the restriction that total installed generation capacity must match total demand,

i.e. λ 6= 0, the purely variance minimal portfolio with a risk of reversal in the merit order P(s1) > 0

corresponding to optimization problem (9)-(12) consists of both technologies 1 and 2 if(
−
σ12|s0 − σ2

1|s0
E[z̃|s0]P(s1)

> c̄1|s1 − c̄1|s0

)
∧

(
c̄1|s1 − c̄1|s0 <

σ2
1|s1 − σ12|s1
E[z̃|s1]P(s0)

)
(42)

13The rejection of the case λ = 0 is intuitively plausible from an economical perspective, since it does not make sense to

build overcapacities in the optimum if only one technology is selected.
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Proof of Proposition 2.2. Given the initial assumption λ 6= 0, t2 can be expressed as a function of t1 through-

out this proof with t2(t1) = R(D(0) − D(t1)). Hence, t1 can be used as the only decision variable in the

problem since K1,K2, t2 are all functions of t1. Theoretically, locating the root dLv(t1,t2(t1))
dt1

= 0 would allow

to further discuss the considered solution case.14 Since an analytical discussion of the latter derivative seems

practically impossible, we use an alternative approach in the proof:

For an interior solution with 0 < t∗1 < T (and hence K∗1 ,K
∗
2 > 0), KKT conditions (38) and (39) have

to be satisfied with equality as necessary optimality condition. Eliminating λ through subtraction of these

conditions yields ∂Lv
∂K1
− ∂Lv

∂K2
= 0. For t1 > 0, the latter condition may be equivalently transformed by

division through t1. Substitution of Q2|si by utilizing the relation Q2|si = QE − Q1|si , i ∈ {1, 2}, finally

yields the equivalent optimality condition l(t1) = r(t1) with

l(t1) := P(s0)
((
Q1|s0

(
Var[z̃|s0] + P(s1)E[z̃|s0]2

)
−P(s1)Q1|s1E[z̃|s1]E[z̃|s0]

)
−

−QE
(
σ2
2|s0 − σ12|s0 + P(s1)(c̄2|s0 − c̄2|s1)E[z̃|s0]

))
(B.30)

r(t1) := P(s1)
t2
t1

(
P(s0)E[z̃|s0]Q1|s0E[z̃|s1]−

(
Var[z̃|s1] + P(s0)E[z̃|s1]2

)
Q1|s1+

+QE

(
σ2
2|s1 − σ12|s1 + P(s0)(c̄2|s1 − c̄2|s0)E[z̃|s1]

))
(B.31)

Thereby, the corresponding boundaries for l(t1) can straightforwardly be obtained as

l(0) = P(s0)QE

(
P(s1)E[z̃|s0](c̄1|s1 − c̄1|s0) + σ2

1|s0 − σ12|s0
)
, (B.32)

l(T ) = −P(s0)QE

(
P(s1)E[z̃|s0](c̄2|s0 − c̄2|s1) + σ2

2|s0 − σ12|s0
)
. (B.33)

By applying the derivatives

dt2(t1)

dt1
=

d

dt1

(
R(D(0)−D(t1))

)
= −R′(D(0)−D(t1)) ·D′(t1) < 0 ∀ t1 ∈ [0, T ], (B.34)

dQ1|s0(t1)

dt1
=

d

dt1

(∫ D(t1)

0

R(κ)dκ

)
= D′(t1) · t1 < 0 ∀ t1 ∈ [0, T ], (B.35)

dQ1|s1(t1)

dt1
=

d

dt1

(∫ D(0)

D(0)−D(t1)

R(κ)dκ

)
= −R′(D(0)−D(t1)) ·D′(t1) < 0 ∀ t1 ∈ [0, T ], (B.36)

it becomes obvious that l(t1) is monotone decreasing on its domain, i.e. dl(t1)
dt1

< 0 ∀t1 ∈ [0;T ]. Function

r(t1) can be considered as being of the form r(t1) = f(t1)/t1, where f(t1) is defined as the function

f(t1) := r(t1) · t1. We obtain for f(0) and the boundaries of r(t1)

f(0) = P(s1)TQE

(
E[z̃|s1]P(s0)(c̄1|s1 − c̄1|s0)− σ2

1|s1 + σ12|s1

)
, (B.37)

14Note that the derivative
dLv(t1,t2(t1))

dt1
equals the directional derivative∇~tLv(K1,K2) =

∂Lv(K1,K2)
∂K1

·t1+
∂Lv(K1,K2)

∂K2
·t2(t1)

with the directional vector ~t = (t1, t2(t1))T of unit length, i.e. |~t| = 1.
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r(T ) = 0, lim
t1↘0

r(t1) =


+∞ for f(0) > 0

0 for f(0) = 0

−∞ for f(0) < 0

(B.38)

Furthermore, it can be concluded that r(t1) is monotone increasing (and decreasing, respectively) in an

interval (0; ξ) for arbitrary means and variances, before it may start to decrease if f(0) < 0 (and increase if

f(0) > 0, respectively). Thereby, non-monotony of r(t1) can only occur if

g := σ2
2|s1 − σ12|s1 + P(s0)(c̄2|s1 − c̄2|s0)E[z̃|s1]

> 0 for f(0) < 0

< 0 for f(0) > 0

where g refers to the last summand of f(t1).

Since an explicit formulation of the stationary points is not possible and the problem is non-convex

in variable t1, we use the first derivatives to test whether one of the possibly multiple stationary points

is a local minimum or a local maximum: If there exists a r ∈ R+ such that for every t1 ∈ (to1 − r, to1] it

holds ∂Lv
∂K2

(t1) − ∂Lv
∂K1

(t1) ≤ 0, and for every t1 ∈ [to1, t
o
1 + r) it is ∂Lv

∂K2
(t1) − ∂Lv

∂K1
(t1) ≥ 0, then Lv has a

local minimum at to1 according to the mean value theorem. Consequently, a local minimum in to1 implies

that r(t1) − l(t1) ≤ 0, ∀t1 ∈ (to1 − r, to1] and r(t1) − l(t1) ≥ 0, ∀t1 ∈ [to1, t
o
1 + r). The obtained stationary

points to1 ∈ (0;T ) with l(to1) = r(to1) and therewith ∂Lv
∂K1

(to1) = ∂Lv
∂K2

(to1) = 0 can be characterized as follows

corresponding to Figure B.16:

I) For l(0) ≥ 0 ∧ f(0) ≤ 0, there may exist up to two stationary points to1:

– For two stationary points to exist, it is required g > 0. Then Lv(to1) takes a minimum if r(t1)−

l(t1) ≤ 0, ∀t1 ∈ (to1 − r, to1] and r(t1) − l(t1) ≥ 0, ∀t1 ∈ [to1, t
o
1 + r). Hence, the efficient portfolio

consists of both technologies.

– For g ≤ 0 ∧ l(T ) ≤ 0 there exists a unique local minimum at to1 and the variance efficient portfolio

consists of a combination of both technologies.

– Otherwise, if a feasible stationary point to1 does not exist, the variance efficient portfolio consists

only of technology 2.15

II) For l(0) < 0 ∧ f(0) ≤ 0 (equivalent to condition (42)), there exists a unique local minimum at to1.

Hence, the variance efficient portfolio consists of both technologies.

15Since l(T ) ≥ 0 requires the variance of technology 1 to be much greater than the variance of technology 2, it can be

concluded that the variance efficient portfolio will only consist of technology 2, not of technology 1.
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Figure B.16: Stationarity conditions for the purely variance-minimal portfolio in the case λ > 0. The intersection of l(t1)

(green line) and r(t1) (blue line) represents the optimal operating time.

III) For l(T ) ≥ 0 ∧ f(0) > 0, there exists a unique local maximum at to1, since it is r(t1)− l(t1) ≥ 0, ∀t1 ∈

(to1−r, to1] and r(t1)− l(t1) ≤ 0, ∀t1 ∈ [to1, t
o
1 +r). Hence, it can be concluded that the variance efficient

portfolio consists only of technology 2.

IV) For l(T ) < 0 ∧ l(0) > 0 ∧ (f(0) > 0), there may exist up two feasible stationary points to1:

– In case of two stationary points , Lv(to1) takes the minimum if r(t1)− l(t1) ≤ 0, ∀t1 ∈ (to1 − r, to1]

and r(t1)− l(t1) ≥ 0, ∀t1 ∈ [to1, t
o
1 + r). Hence, the efficient portfolio consists of both technologies.

– Otherwise, if a feasible stationary point to1 does not exist, the variance efficient portfolio consists

only of technology 1.

V) For l(0) ≤ 0 ∧ f(0) > 0, there may exist up two feasible stationary points to1:

– For two stationary points to exist, it is required g < 0. Then, Lv(to1) takes the minimum if

r(t1)− l(t1) ≤ 0, ∀t1 ∈ (to1− r, to1] and r(t1)− l(t1) ≥ 0, ∀t1 ∈ [to1, t
o
1 + r). In this case, the efficient

portfolio consists of both technologies.

– Otherwise, if a feasible stationary point to1 does not exist (for which g > 0 is sufficient), the

variance efficient portfolio consists only of technology 1.16

16Since this case requires the variance of technology 2 to be much greater than the variance of technology 1, the efficient

portfolio consists of technology 1 and not of technology 2.
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Appendix B.5. Standard solutions to the combined portfolio problem with uncertainty in the merit order

Proof of Eqs. (44) and (45). For the case with two technologies, the KKT conditions (44) and (45) can be

derived from the Lagrangian (43) as follows:

∂L
∂K1

= cinv,1 − λ−P(s0)t1

(
2∑

u=1

(−1)u

(
E[c̃u|s0] +AQu|s0

(
Var[c̃u|s0]− Cov[c̃1, c̃2|s0]

+ P(s1)

(
E[c̃u|s0]2 −E[c̃2|s0]E[c̃1|s0]−E[c̃u|s0]

2∑
v=1

E[c̃v|s1]
Qv|s1
Qu|s0

))))

= t1P(s0)A

(
Q1|s0

(
Var[z̃|s0] + P(s1)E[z̃|s0]2

)
−QE

(
σ2
2|s0 − σ12|s0 + P(s1)(c̄2|s0 − c̄2|s1)E[z̃|s0]

))
− t1P(s0)E[z̃|s0]

(
P(s1)Q1|s1E[z̃|s1] + 1

)
+ cinv,1 − λ (B.39)

∂L
∂K2

= cinv,2 − λ+ P(s1)t2

(
2∑

u=1

(−1)u

(
E[c̃u|s1] +AQu|s1

(
Var[c̃u|s1]− Cov[c̃1, c̃2|s1]

+ E[c̃u|s1]

2∑
v=1

E[c̃v|s0]
Qv|s0
Qu|s1

))))
= t2P(s1)E[z̃|s1]

(
AP(s0)Q1|s0E[z̃|s0] + 1

)
− t2P(s1)A

(
Q1|s1

(
Var[z̃|s1] + P(s0)E[z̃|s1]2

)
−QE

(
σ2
2|s1 − σ12|s1 + P(s0)(c̄2|s1 − c̄2|s0)E[z̃|s1]

))
+ cinv,2 − λ (B.40)

Proposition 2.3 (Existence and uniqueness of an interior solution for the case λ 6= 0). Let be cinv,1 > cinv,2

and total installed capacity matching maximum demand, i.e. λ 6= 0 in constraint (12). If both technologies

1 and 2 are included in the purely cost-efficient portfolio (i.e. A = 0) and in the purely variance-efficient

portfolio (i.e. A → +∞) satisfying condition (42), then all cost-variance efficient portfolios with A > 0

corresponding to problem (9)-(12) consist of a unique combination of both technologies.

Proof of Proposition 2.3. According to the assumption λ 6= 0, t2 can be expressed as a function of the t1

throughout this proof with t2(t1) = R(D(0) − D(t1)). Herewith, the solution condition υ(t1) = 0 in Eqn.

(47) can be derived as follows: For an interior solution with K∗1 ,K
∗
2 > 0, KKT conditions (44) and (45)

have to be satisfied with equality as necessary optimality condition. Eliminating λ through subtraction of

these conditions yields ∂L
∂K1
− ∂L

∂K2
= 0. For t1 > 0, the latter condition may equivalently be written as
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l3(t1) = r3(t1) defined by

l3(t1) := P(s0)A
(
Q1|s0

(
Var[z̃|s0] + P(s1)E[z̃|s0]2

)
−
(
P(s1)Q1|s1E[z̃|s1] + 1/A

)
E[z̃|s0]

)
+
cinv,1 − cinv,2

t1

r3(t1) := P(s0)AQE

(
σ2
2|s0 − σ12|s0 + P(s1)(c̄2|s0 − c̄2|s1)E[z̃|s0]

)
+ P(s1)A

t2
t1

(
QE

(
σ2
2|s1 − σ12|s1 + P(s0)(c̄2|s1 − c̄2|s0)E[z̃|s1]

)
(B.41)

−
(
Var[z̃|s1] + P(s0)E[z̃|s1]2

)
Q1|s1 +

(
P(s0)E[z̃|s0]Q1|s0 + 1/A

)
E[z̃|s1]

)
(B.42)

By taking into account the sign of the derivatives as shown in Eqn. (B.34)-(B.36) in the previous proof, the

behavior of l3(t1), r3(t1) can be characterized at the boundaries as follows:

lim
t1↘0

l3(t1) =


+∞ for cinv,1 > cinv,2

0 for cinv,1 = cinv,2

−∞ for cinv,1 < cinv,2

, (B.43)

l3(T ) =
cinv,1 − cinv,2

T
−P(s0)E[z̃|s0], (B.44)

lim
t1↘0

r3(t1) =


+∞ for f1(0) > 0

0 for f1(0) = 0

−∞ for f1(0) < 0

, (B.45)

r3(T ) = P(s0)AQE

(
σ2
2|s0 − σ12|s0 + P(s1)(c̄2|s0 − c̄2|s1)E [z̃|s0]

)
(B.46)

with the definition f1(0) := E[z̃|s1]P(s0)(c̄1|s1 − c̄1|s0) + E[z̃|s1]
QEA

− σ2
1|s1 + σ12|s1 .

In case cinv,1 > cinv,2, it can be concluded that dl3(t1)
dt1

< 0 and hence l3(t1) is monotone decreasing as

shown in Figure B.17. From our initial assumption that the purely cost-minimal portfolio consists of both

technologies, we can further conclude l3(T ) < 0 according to Proposition 2.1. Thus, a unique intersection

point of l3(t1) and r3(t1) and therewith a unique interior solution with 0 < t∗1, t
∗
2 < T is obtained if and

only if r3(T ) > l3(T ). Given that the variance-minimal portfolio consists of both technologies satisfying

condition (42), it can be concluded f(0) ≤ 0. This implies also f1(0) ≤ and therewith limt1↘0 r3(t1) ≤ 0.

Furthermore, it follows r3(T ) > 0 because the purely variance efficient portfolio consists of technology 2 if

and only if r3(T ) ≤ 0 according to Proposition 2.2.

Assuming cinv,1 < cinv,2 yields again l3(T ) < 0 and with the purely variance-minimal portfolio consisting

of both technologies r3(T ) > 0. Hence a unique intersection point of l3(t1) and r3(t1) (cf. Figure B.17) and
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Figure B.17: Stationarity conditions for the cost-variance efficient portfolio in the cases cinv,1 > cinv,2 (left) and cinv,1 < cinv,2

(right). The intersection of l3(t1) (green line) and r3(t1) (blue line) represents the optimal operating time.

therewith a unique interior solution with 0 < t∗1, t
∗
2 < T is obtained if and only if

lim
t1↘0

r3(t1)− l3(t1) ≤ 0

⇔ f1(0)− cinv,1 + cinv,2 ≤ 0

⇔ f(0) +
E[z̃|s1]

QEA
− cinv,1 + cinv,2 ≤ 0

Notably, the latter inequality is however only satisfied if A is greater than a defined threshold A0. This is why

for cinv,1 > cinv,2, the cost-variance efficient portfolio does not necessarily consist of both technologies.

Proposition 2.4 (Implicit functions). For the implicit function ∂L
∂K1

(ť1, ť2) = 0 with ∂L
∂K1

(t1, t2) : [0, T ] ×

[0, T ] → Z1 ⊆ R+, there exists a unique function ζ1(t2) : (0, T ] → Z1 ⊆ R+ . Similarly, for the implicit

function ∂L
∂K2

(ť1, ť2) = 0 with ∂L
∂K2

(t1, t2) : [0, T ] × [0, T ] → Z2 ⊆ R+, there exists a unique function ζ2(t1) :

(0, T ]→ Z2 ⊆ R+ .

Proof of Proposition 2.4. According to our initial assumptions D(t) is strictly monotone decreasing, the

likelihood for a fuel switch is non-negative (i.e. P(s0) ≥ 0) and all individuals act strictly risk averse (i.e.

A > 0). By partial differentiation of Eqs. (44), (45) we obtain

∂

∂ti

∂L
∂Ki

(t1, t2) = At1t2P(s1)P(s0) · (c1|s0 − c2|s0)(c1|s1 − c2|s1)
dD(ti)

dti
6= 0 ∀ti > 0, (i = 1, 2)

According to the well-known implicit function theorem, the existence of the functions t1 = ζ1(t2) and

t2 = ζ2(t1) is hence given for t2 > 0 and t1 > 0, respectively.
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Proposition 2.5 (Monotony). For given expected fuel prices c̄1|s0 ≤ c̄2|s0 and c̄2|s1 ≤ c̄1|s1 and ζ1(t2) and

ζ2(t1) being functions represented by the implicit functions ∂L
∂K1

(t1, t2) = 0 from Eqn. (44), and ∂L
∂K2

(t1, t2) =

0 from Eqn. (45), respectively, ζ1(t2) and ζ2(t1) are both monotone increasing in t2 and t1, respectively. For

c̄1|s0 < c̄2|s0 and c̄2|s1 < c̄1|s1 , it follows strict monotony of ζ1(t2) and ζ2(t1).

Proof of Proposition 2.5. The necessary condition for an interior solution is given by the nonlinear equation

system with Eqs. (44), ∂L
∂K1

= 0, and (45), ∂L
∂K2

= 0 with both equations representing functions of K1,K2,

and t1, t2, respectively. By rewriting and applying Q1|si = QE − Q2|si , (i = 0, 1), we can bring optimality

condition from Eqs. (44), (45) in a form where t1, t2 are separated to the two sides of the equation, i.e.

∂L
∂K1

(t1, t2) = 0⇔ l1(t1) = r1(t2) and
∂L
∂K2

(t1, t2) = 0⇔ l2(t2) = r2(t1)

Then, we obtain

l1(t1) :=
cinv,1
t1P(s0)

+AQ1|s0
(
Var[z̃|s0] + P(s1)E[z̃|s0]2

)
−AQE

(
σ2
2|s0 − σ12|s0 + P(s1)(c̄2|s0 − c̄2|s1)E[z̃|s0]

)
(B.47)

r1(t2) := E[z̃|s0]
(
AP(s1)Q1|s1E[z̃|s1] + 1

)
(B.48)

l2(t2) :=
cinv,2
t2P(s1)

−AQ1|s1
(
Var[z̃|s1] + P(s0)E[z̃|s1]2

)
+AQE

(
σ2
2|s1 − σ12|s1 + P(s0)(c̄2|s1 − c̄2|s0)E[z̃|s1]

)
(B.49)

r2(t1) := −E[z̃|s1]
(
AP(s0)Q1|s0E[z̃|s0] + 1

)
(B.50)

The first derivatives of l1(t1), r1(t2), l2(t2), r2(t1) can be derived as follows:

dl1(t1)

dt1
=
−cinv,1
t21P(s0)

+At1 ·
(
Var[z̃|s0] + P(s1)E[z̃|s0]2

)(dD(t1)

dt1

)
≤ 0 ∀ t1 > 0 (B.51)

dr1(t2)

dt2
= −At2P(s1) ·E[z̃|s1]E[z̃|s0]

(
dD(t2)

dt2

)
≤ 0 ∀ t2 > 0 (B.52)

dl2(t2)

dt2
=
−cinv,2
t22P(s1)

+At2 ·
(
Var[z̃|s1] + P(s0)E[z̃|s1]2

)(dD(t2)

dt2

)
≤ 0 ∀ t2 > 0 (B.53)

dr2(t1)

dt1
= −At1P(s0) ·E[z̃|s0]E[z̃|s1]

(
dD(t1)

dt1

)
≤ 0 ∀ t1 > 0 (B.54)

Since it holds for all feasible parameter sets dl1
dt1
≤ 0 and dr1

dt2
≤ 0, it follows for the equation l1(t1)−r1(t2) = 0

that t1 must (strictly) monotone increase (decrease) for (strictly) monotone increasing (decreasing) variable

t2. Consequently, the corresponding (explicit) function ζ1(t2) is (strictly) monotone increasing in t2. In the

same way, it can be concluded from dl2
dt1
≤ 0 and dr2

dt2
≤ 0 that ζ2(t1) is strictly monotone increasing in t1.

Proposition 2.6 (Existence and uniqueness of an interior solution for the case λ = 0). If the technology
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parameters satisfy

cinv,1
TP(s0)

−E[z̃|s0]−AQE
(
σ2
2|s0 − σ12|s0 + P(s1)E[z̃|s0](c̄2|s0 − c̄1|s1)

)
< 0 (48)

and
cinv,2
TP(s1)

+ E[z̃|s1]−AQE
(
σ2
1|s1 − σ12|s1 + P(s0)E[z̃|s1](c̄2|s0 − c̄1|s1)

)
< 0, (49)

then the cost-variance efficient portfolios with A > 0 corresponding to problem (9)-(12) consist of a unique

combination of both technologies. The total installed generation capacity of the cost-risk efficient portfolio

may exceed total demand, implying λ = 0 in constraint (12).

Proof of Proposition 2.6. Necessary prerequisite for an interior solution is the existence of at least one sta-

tionary tuple (to1, t
o
2) ∈ (0;T ) × (0;T ) with ζ1(to2) = to1 and ζ2(to1) = to2. This tuple represents graphically

the intersection point of ζ2(t2) and ζ1(t2). The existence of a unique stationary point (to1, t
o
2) can be shown

in two steps: (a) At first, it can be proved that it holds ζ1(t2 = 0) > 0 and ζ2(t1 = 0) > 0. (b) Secondly,

it can be shown that it is ζ1(t2 = T ) < T and ζ2(t1 = T ) < T for a defined set of parameters. Taking

into account the monotony of ζ1(t2), ζ2(t1) (cf. Proposition 2.5), this consequently implies the existence of

a unique intersection point. Therefore, we next consider the limits of the local functions ζ1(t2), ζ2(t1):

a) First, ζ2(t1 = 0) > 0 can be concluded from

lim
t2→0

l2(t2) =∞ and lim
t1→ξ

r2(t1) <∞ ∀ ξ ∈ [0, T ]

Similarly, ζ1(t2 = 0) > 0 can be concluded since it holds

lim
t1→0

l1(t1) =∞ and lim
t2→ξ

r1(t2) <∞ ∀ ξ ∈ [0, T ].

b) Next, we will derive a condition which is sufficient for ζ1(t2 = T ) < T and ζ2(t1 = T ) < T : Note that

t1 = T implies Q1|s0 = 0, Q2|s0 = QE , and similar t2 = T implies Q2|s1 = 0, Q1|s1 = QE . Since l1(t1)

is monotone decreasing, it can then be concluded that ζ1(t2 = T ) < T if and only if

l1(t1 = T )− r1(t2 = T ) < 0

⇔ cinv,1
TP(s0)

−E[z̃|s0]−AQE
(
σ2
2|s0 − σ12|s0 + P(s1)E[z̃|s0](c̄2|s0 − c̄1|s1)

)
< 0. (B.55)

Similarly, it follows due to the monotony of r2(t1) that ζ2(t1 = T ) < T if and only if

l2(t2 = T )− r2(t1 = T ) < 0

⇔ cinv,2
TP(s1)

+ E[z̃|s1]−AQE
(
σ2
1|s1 − σ12|s1 + P(s0)E[z̃|s1](c̄2|s0 − c̄1|s1)

)
< 0. (B.56)

Therewith, it must exist a stationary point (to1, t
o
2) ∈ (0;T )× (0;T ) with ζ1(to2) = to1 and ζ2(to1) = to2. Finally,

it can be verified that the identified stationary point (to1, t
o
2) ∈ (0;T ) × (0;T ) satisfying (B.55) and (B.56)
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represents a local minimum of the optimization problem. Utilizing the mean value theorem, Lv has a local

minimum at to1 it there exists a r ∈ R+ such that for every tuple (to1, t
o
2) ∈ (to1 − r, to1] × (to2 − r, to2] it is

∂L
∂K1
≤ 0, ∂L∂K2

≤ 0, and for every (to1, t
o
2) ∈ [to1, t

o
1 + r) × [to2, t

o
2 + r) it is ∂L

∂K1
≥ 0, ∂L∂K2

≥ 0. By inserting, it

can be verified

∂L
∂K1

(D(0),K2) = cinv,1 > 0

∂L
∂K1

(0,K2) = cinv,1 −P(s0)TE[z̃|s0]−

−P(s0)TA
(
E[z̃|s0]P(s1)

(
Q1|s1E[z̃|s1] +QE(c̄2|s0 − c̄2|s1)

)
+QE

(
σ2
2|s0 − σ12|s0

))
< cinv,1 −P(s0)T

(
E[z̃|s0] +AQE

(
σ2
2|s0 − σ12|s0 + E[z̃|s0]P(s1)(c̄2|s0 − c̄1|s1)

))
< 0

∂L
∂K2

(K1,D(0)) = cinv,2 > 0

∂L
∂K2

(K1, 0) = cinv,2 + P(s1)TE[z̃|s1]−

−P(s1)TA
(
E[z̃|s1]P(s0)

(
QE(c̄2|s0 − c̄1|s1)−Q1|s0E[z̃|s0]

)
+QE

(
σ2
1|s1 − σ12|s1

))
< cinv,2 + P(s1)T

(
E[z̃|s1]−AQE

(
σ2
1|s1 − σ12|s1 + E[z̃|s1]P(s0)(c̄2|s0 − c̄1|s1)

))
< 0

Consequently, condition (B.55)-(B.56) is sufficient for an interior local optimum with λ = 0. Due to the

convexity of the Lagrangian L in λ, the obtained local minimum is also a global minimum.
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