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Abstract 

 

  Optimal capacity allocation for investments in electricity generation assets can be determin‐

istically derived by comparing technology specific long‐term and short‐term marginal costs. In an un‐

certain market environment, Mean‐Variance Portfolio (MVP) theory provides a consistent framework 

to valuate financial risks in power generation portfolios that allows to derive the efficient fuel mix of 

a system portfolio with different generation technologies from a welfare maximization perspective. 

  Because existing  literature on MVP applications  in electricity generation markets uses pre‐

dominantly numerical methods to characterize portfolio risks, this article presents a novel analytical 

approach  combining  conceptual  elements of peak‐load pricing  and MVP  theory  to derive optimal 

portfolios consisting of an arbitrary number of plant technologies given uncertain fuel prices. For this 

purpose, we provide a  static optimization model which allows  to  fully capture  fuel price  risks  in a 

mean  variance portfolio  framework. The  analytically derived optimality  conditions  contribute  to  a 

much better understanding of the optimal investment policy and its risk characteristics compared to 

existing numerical methods. Furthermore, we demonstrate an application of  the proposed  frame‐

work and results to the German electricity market which has not yet been treated in MVP literature 

on electricity markets. 
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1. Introduction

In the next decades, the European power industry will face an immense need for investments to renew

and extend its power plant fleet.2 In parallel, EU and several national states have implemented different

development schemes which politically influence investment decisions and thereby the fuel mix of the re-

spective country.3 For an economic assessment of power plant investments and for quantifying the effect

of subsidies on the long-term optimal system fuel mix from a welfare perspective, it is not only crucial to

valuate expected total life-cycle costs, but also the economic risks conveyed with investment and operation of

the plant fleet. With fuel prices fluctuating considerably, cost volatility becomes a severe risk that influences

the advantageousness of an investment and therewith the system optimal fuel mix.

Mean-Variance Portfolio (MVP) theory has become a clear, elegant and proven framework to capture

the two aspects of risk and return in a single decision support model since the work of Markowitz (1952,

1959) has set the stage for MVP theory in financial markets. Markowitz’ theory builds on the premise that

a compound portfolio of assets shows reduced variance characteristics in case each pair of assets shows only

imperfect correlation. Similarly, portfolio cost risks can be reduced in a portfolio of well-chosen generation

technology options as a result of less than perfect correlations between their cost characteristics. This

approach can also be applied to derive efficient electricity generation portfolios from a risk-cost perspective.

Standard models use numerical simulation techniques to derive efficient power generation portfolios. This

methodology makes it possible to solve even very complex optimization problems with numerous plants

and technologies, but it naturally complicates the understanding for the exact interplay of the different

input parameters. This article provides an easily interpretable analytical optimality condition for efficient

generation portfolios that can contribute to a better understanding of MVP in electricity applications. The

proposed model is then applied to the German electricity market.

This paper is structured as follows: We begin by reviewing relevant literature and briefly discussing

the selection of adequate risk and return measures in Section 2. Section 3 contains the formulation and

proposes a general solution approach of the portfolio optimization problem. For a simplified case with two

technologies, optimality conditions are analytically derived and discussed. The insights from the theoretical

model are demonstrated and interpreted in a case study on the German generation portfolio in Section

4. Moreover in contrast to standard MVP models, the merit order of the different power plants and the

resulting differences in operation hours are taken into account, using the framework of the peak-load pricing

model going back to Boiteux (1960). The article concludes in Section 5 with a summary of key results and

an outlook of related interesting areas for future research.

2The IEA (2008) estimates gross generation capacity additions in European OECD countries of 221GW between 2007 and

2015 and another 465GW between 2016 and 2030.
3An example for such a subsidy is the the Renewable Energy Law enacted by the German parliament in 2000.
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2. Portfolio diversification

2.1. Literature review

Existing work on portfolio and investment risk management in electricity generation markets can be

grouped into two main categories: One stream of research quantitatively approaches the problem by adopting

Mean-Variance Portfolio (MVP) theory from finance, whereas the other is based on the concept of diversity

which was first explored in natural science applications.

Based on the work of Markowitz (1952, 1959), Bar-Lev and Katz (1976) adopted the MVP approach to

long-term portfolio optimization in electricity markets. Their article focuses on the fuel-cost optimization

of fossil plants in the U.S. electric utility industry. The authors introduce a “cost-risk” framework instead

of the return-risk applied in MVP.

With the emergence of simulation techniques in economic research and the progressing liberalization of

electricity markets in different countries, the topic reappeared on the academic agenda after the millennium:

Awerbuch and Berger (2003) use MVP theory to evaluate existing and projected generation mixes in the

European Union in a total generation cost framework. The authors compare existing risk-return combina-

tions to a set of efficient portfolios that minimize generation costs at a given level of market risk. In general,

the results indicate that the existing and projected EU generating mixes are sub-optimal from a risk-return

perspective. The analyses further suggest that portfolios with lower cost and risk can be developed by

including larger amounts of renewables (which typically have high fixed but very low variable costs).

Several applications of MVP theory in electricity markets published hereafter are all based on the same

key modeling characteristics with some adjustments tailored to the specific focus of analysis:

• Empirical applications focus on different regional or national markets such as Ireland (Awerbuch, 2004),

the European Union at large (Awerbuch, 2006; Jansen et al., 2006), Mexico, the U.S. (Awerbuch, 2006)

and California (White et al., 2007).

• Jansen et al. (2006) adopt a number of adjustments and additions with respect to the above-mentioned

MVP frameworks. The authors use energy based instead of generation capacity based portfolios weights

for the respective fuel. Moreover, incremental technology deployment analysis is applied.

• Besides fuel price risk, the MVP framework can be extended to incorporate other kinds of cost risks,

such as operation and maintenance risk and construction time risks (Jansen et al., 2006; Awerbuch

and Berger, 2003) or components cost risks.

• To derive feasible transition paths from an existing fuel mix to an optimized state, some optimization

models differentiate between new and existing generation capacity (Awerbuch and Berger, 2003).
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Intended to enable policy makers and electricity supply system analysts to investigate the mix of power

generation technologies, the above-mentioned applications of MVP analyses reflect a welfare perspective.

According to standard microeconomic theory such a system optimum should coincide with the optimal

investment decisions of individuals if the characteristics of perfect competition are fulfilled.4 Dedicated to an

investor’s perspective on electricity markets, Roques et al. (2006a,b, 2008) propose a model framework which

aims at deriving efficient generation portfolios from the perspective of a single power producer. Therefore,

the authors introduce electricity prices as another risk factor and use profit as the meaningful return measure.

The derivation of the efficient frontier for the assumed generation portfolio is accomplished in a two-step

model. In the first simulation step, the distribution parameters for the net present value of each generation

technology are determined. The second step simulates the multivariate distribution characteristics of the

different fuel types.

Since mean and variance of the different fuel prices represent exogenous key inputs for the portfolio

optimization models, improved econometric estimation techniques are a further focal point in research. In

contrast to most MVP studies following Awerbuch and Berger (2003), which rely on ordinary least square

(OLS) regressions for econometric estimation of the covariance matrix, Humphreys and McClain (1998)

introduce a time-varying covariance matrix for different fuel types derived from a GARCH (generalized

autoregressive conditional heteroskedasticity) model to derive an efficient portfolio frontier of the energy

mix consumed in the United States. Another refined estimation approach is suggested by Krey and Zweifel

(2006) to take into account the correlation of shocks in fuel prices. The authors apply the seemingly unrelated

regression estimation (SURE) method for filtering out time-invariant covariance matrices as input to find

efficient generation mixes for Switzerland and the United States.

Whereas MVP theory focuses on risk, multi-criteria portfolio diversity analysis has gained some attention

as a second important concept for portfolio selection. This broad framework – originally applied in biology –

is also applicable in an environment of uncertainty and ignorance5: Referring to the work of Stirling (1994)

which represents the first application of diversity to electricity markets, Awerbuch et al. (2006) have recently

proposed an integrative approach which combines the concepts of MVP and portfolio diversity.

The cost-related studies following the work of Awerbuch and Berger (2003) however share the major

common drawback that unit costs (total generation cost per MWh) are treated as constant exogenous input

parameters. Yet this would only be valid if full load hours of all considered technologies were not influenced

4This proposition, also known as the first theorem of welfare economics, is described in many standard textbooks on

economics and goes back to the Adam Smith’s postulations of the “invisible hand”. Among others, Pigou (1932), chapter II,

contributed fundamentally to a precise formulation of this theorem and its preconditions. One of the first mathematical proofs

was published by Lange (1942).
5Economy textbooks usually distinguish between risk (if sufficient information on the probability distribution for a range

of possible outcomes exists), uncertainty (if there is no basis for the assignment of probabilities), and ignorance (if there is no

knowledge about possible outcomes at all). See also Stirling (1994); Awerbuch et al. (2006).
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by the portfolio composition. If however MVP theory is applied market wide, the optimal technology mix

can clearly affect the effective operating hours and consequently influencing the shape of the price duration

curve and unit costs. Therefore, the assumption of stable distributions for unit costs, as done more or less

implicitly in the above-mentioned studies, would require a stable merit order operation pattern which is –

especially in the long-run – not only a heroic assumption but also a severe inconsistency.

As critical as stable unit costs is the use of a stable electricity price distribution derived from historical

data as done by Roques et al. (2008). This consequently implies a net present value (NPV) distribution that

neglects the fact that portfolio choices will also influence electricity prices in the long run. To compass the

problem of modeling technology-specific adjustments of full load hours and implications on the electricity

price distribution, the authors explicitly restrict their profit-oriented model framework to base-load portfolios

in which all technologies are assumed to operate at the same full load hours. Although this assumption and

the limitation to base load portfolios avoids inconsistencies in the modeling results, it however prevents to

derive conclusions about the long-term market equilibrium.

For conclusions on the optimal generation technology mix for an electricity market as a whole, a solid

long-term modeling framework should therefore better be based on the integrated modeling of the long-term

market optimum taking into account operating and investment costs instead of unit costs: Based on this

modeling principle, Gotham et al. (2009) proposed more recently a static cost-based model for optimal

capacity allocation in a mean-variance framework with different load segments to be served. In addition,

the model presented by Delarue et al. (2009) captures ramp-up costs as well as uncertain availability of

renewable technologies such as wind.

It is remarkable that the studies on MVP optimization in electricity markets published so far utilize

predominantly simulation techniques or numerical solvers to derive the optimal generation fuel mix in the

respective problem formulation. It was thus very tempting to analytically study optimality conditions for

mean-variance portfolios in electricity generation systems derived from a model applicable to continuous

load functions.

2.2. Measuring risk and return

The question of the most appropriate risk measure is closely interlinked with the respective measure of

return and is assumably as old as the question of the risk-minimal portfolio itself.

As proposed by Markowitz (1952, 1959), most classic MVP applications to financial markets use expected

holding period return (HPR) as expected portfolio return measure. Markowitz originally used variance of

returns as the corresponding measure of dispersion and showed that variance-related measures such as

standard deviation or coefficient of variation lead to the same set of efficient portfolios.

In competitive electricity markets with deterministic and price inelastic demand, maximization of ex-

pected welfare is equivalent with minimization of expected total generation cost, which is well-known as the
5



peak-load pricing problem.6 To adapt the MVP theory from financial markets to electricity portfolios from

an economic-wide perspective, Bar-Lev and Katz (1976); Humphreys and McClain (1998); Awerbuch and

Berger (2003) and White et al. (2007) propose to maximize the inverse of the weighted average portfolio

costs (in MWh per monetary unit) as “return” measure based on this rationale. In analogy to the HPR

concept for financial portfolios the authors present risk as a percentage rate defined as the (annualized)

standard deviation of intra-period cost changes. This allows to keep many aspects of Markowitz’ MVP

framework such as the efficient frontier depiction, but involves at the same time avoidable inconsistencies:

As pointed out by Jansen et al. (2006), maximizing the inverse of costs and minimizing costs do in general

not lead to the same results. By deploying simple costs and the corresponding variance in their proposed

framework, e.g. Jansen et al. (2006) and Gotham et al. (2009) avoid inconsistencies in the risk and return

measure without compromising the clarity of the classical MVP theory.

In contrast, Krey and Zweifel (2006) propose a MVP framework where the objective is to minimize

(negative) “return” which the authors define as the rate of increase per unit of electricity-generating cost.

Risk is defined as the corresponding standard deviation. Not surprising, this risk-return measure leads to

biased and counter-intuitive results: According to Krey and Zweifel (2006), solar would be the only selected

technology in a risk neutral economy in which the sole interest were to maximize expected welfare (i.e. to

minimize the expected increase of electricity-generation costs).7

Aware of the described weaknesses of both variance or standard deviation of return and HPR risk as

risk measures Lemming and Meibom (2003), Kleindorfer and Li (2005), and Balagopal and Gilliland (2005)

propose frameworks to adopt MVP theory to the concept of value-at-risk. However, it has to be remarked

that both variance and VaR are non-coherent risk measures and therefore comprise disadvantages.

The biggest benefit of applying variance for risk quantification is the clarity of the classical MVP frame-

work. This is the reason why we decided to stick to this approach in this paper. A comparison of variance

with different downside risk measures (e.g. lower partial moments, conditional value-at-risk) in electricity

portfolio applications could be an interesting and yet missing building block in this area of research.

6The peak-load pricing theory goes back to the work of Boiteux (1960). A general description of the peak load pricing

problem in the deterministic case as well as more comprehensive extensions for stochastic fuel prices and demand fluctuations

can be found e.g. in Crew and Kleindorfer (1986), Oren (2000), Fischer and Serra (2003), Weber and Swider (2004), Weber

(2005).
7Krey and Zweifel (2006) describe only vaguely the motives of their peculiar return definition: “In the case of both Switzer-

land and the United States, who are net importers, power constitutes a liability rather than an asset since payments must

be made to foreign suppliers. The (negative) rate of return on the power portfolio then becomes the rate of increase of the

energy bill - which now is to be minimized rather than maximized.” In analogy, this would however mean that a consumer

does not select the cheapest retailer to optimize his electricity bill, but that one with the least price increase (in past years).

This selection can however be far away from the cost-minimal solution.
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3. Modeling optimal investment policies with portfolio risks in electricity markets

3.1. Deterministic peak-load pricing problem

The general peak-load pricing problem which leads to a long-term cost-efficient generation system can

be formulated as a static optimization problem (cf. e.g. Crew and Kleindorfer, 1986) as shown in Eqs.

(1) to (4): We consider an electricity system with u ∈ {1, . . . , n} plant technologies available. From a

societal perspective, the objective is to minimize the sum of total operating costs, Cop,u, plus annualized

capacity investment costs, Cinv,u, summed over the available technologies u and over the total planning

period [0;T ] (e.g. a year). Let the latter be broken down into time steps of equal length t ∈ [0;T ] (e.g.

hours). Eqn. (4) represents the demand constraint with D : [0;T ]→ R+, t 7→ D(t) denoting the total system

demand function. The demand to be supplied is assumed to be price inelastic which can be considered as a

simplifying but within a wide range of operating costs fairly realistic assumption.8 The capacity constraint

which assures that the output of each plant, yu,t, is less than or equal its capacity, Ku, is given in Eqn. (3):

C∗ = min
yu,t,Ku

C(yu,t,Ku) (1)

s.t. C =
∫ T

0

∑
u

Cop,udt+
∑
u

Cinv,u =
∫ T

0

∑
u

yu,t · cop,u,tdt+
∑
u

Ku · cinv,u (2)

yu,t −Ku ≤ 0 ∀ t, u (3)∑
u

yu,t ≥ D(t) ∀ t (4)

Operating costs at time t are a function Cop,u(cop,u,t, yu,t) of specific operating costs cop,u,t (e/MWh) and

the instantaneous output level yu,t (MW). In addition, we will write the investment costs in the following

sections as Cinv,u(Ku, cinv,u), indicating the dependency on the installed capacity Ku and the specific

investment costs cinv,u (e/MWel). Therefore, the plant capacities Ku and the corresponding output levels

yu,t are the decision variables to be optimized.

To allow a better understanding of the results, we assume in this model formulation full capital flexibility

which can realistically only be assumed over a very long planning horizon.9 Furthermore, we neglect plant

indivisibilities and other technology-specific constraints not reflected in the average operating costs such

as ramp-up costs and times.10 However, these assumptions can easily be implemented in any numerical

large-scale model setup and are not in focus of this analysis.

8An extension of the deterministic peak-load pricing problem considering the effect of price elastic demand can e.g. be

found in Oren (2000)
9In a differentiated modeling of the peak-load pricing problem regarding new and historic investments as e.g. done by

Gotham et al. (2009), historic (sunk) investment costs are neglected. This enables the model to capture the optimal transition

from an existing plan fleet the future long-term optimum, which is however not the main purpose of our analysis.
10See e.g. Fischer and Serra (2003) for an extended peak-load pricing model with plant indivisibilities.
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3.2. Risk-adjusted investment optimum with uncertain fuel prices

To derive efficient frontiers of asset combinations, classical MVP theory assumes that investors’ portfolio

preferences depend solely on mean and variance of the expected return. The portfolio with the smaller

variance of return at the same level of expected return or the portfolio with the higher expected return at

the same level of return variance will be preferred.

The (µ, σ2) decision principle to be consistent with maximization of expected utility in rational decision

making under uncertainty11 requires either investors to act based on quadratic utility functions or returns

to be normally distributed and investors to behave risk aversely.12

Frequently used in optimization literature are preference functions of the form Ψ(a) := E[X(a)] −
A
2 Var[X(a)], where a denotes a decision alternative and X the corresponding random payoff. Schneeweiss

(1965) has shown that for normally distributed payoffs, exponential utilities with constant absolute risk

aversion are necessary and sufficient for consistency of the preference Ψ(µ, σ2, a) with the rational principle

of expected utility maximization.

Transferring this approach to the generation portfolio risks induced by fuel price uncertainty, we can

use the proposed preference function to extend the objective function of the standard peak-load pricing

model by a variance term that captures the risk from uncertain operating costs due to fluctuations in

primary energy prices. Assuming societal preferences being described by the preferences of a representative

consumer with an exponential utility function of the form U(x) = − exp(−Ax), the expected dis-utility can

then be approximated by the following (µ, σ2) preference as a function of the expected generation costs and

the corresponding variance:13

L = E[C] +
1
2
A ·Var[C], (5)

The parameter A denotes the society’s risk attitude and reflects for A = 0 risk neutrality, A > 0 risk aversion

and A < 0 risk proclivity.

The proposed model focuses on input price risks of electricity generation. Most important, fuel price

fluctuations can financially affect generation costs – in principle both in the long-term and in the short-term.

Unlike short-term risks, which can be hedged on energy forward markets, long-term fuel price uncertainties

remain as a major risk factor. Therefore, we conceive the optimal generation portfolio selection problem

as a two-stage problem. At the first stage, investment is carried out, i. e. capacities are selected based

on known investment cost and uncertain fuel cost. The second stage covers the power plant operation

over a representative period, i. e. a typical year. At this stage, the actual fuel prices are revealed. Fuel

price fluctuations within the operating period are disregarded in this article, assuming that those may be

11In economic textbooks frequently referred to as “Bernoulli’s principle”.
12See e.g. Tobin (1958).
13Further assumptions are normally distributed fuel prices, additively separable utilities between electricity and other goods

and no hedging possibilities of electricity fuel price risk outside the electricity sector. .
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eliminated through hedging. Non market risks, e.g. operational or technical risk factors such as availability or

construction cost risks, are also not considered in the model. To capture the long-term fuel price fluctuations,

specific operating costs of each technology u are modeled as random variables14 with obtained realizations

being taken as constant throughout the operating period [0;T ].15 Expected operating costs are denoted

by c̄op,u := E[c̃op,u]. The covariance in specific operation costs of plants u and v is denoted by the matrix

σuv, i.e. c̃op,u are u-variate jointly distributed. For a shorter notation, we denote Qu the energy produced

by technology u in the period [0;T ], i.e. Qu :=
∑
t yu,t. Then, as shown in appendix B.1, the expected

dis-utility capturing expected total generation costs and (fuel) cost risk can be specified as

L =
∑
u

Quc̄op,u +
∑
u

Cinv,u +
A

2

∑
u

σ2
uQ

2
u +

∑
u

∑
v,v 6=u

σuvQuQv

 . (6)

Without loss of generality, demand is assumed to be given in a decreasing order (i.e. rearranged in form

of the load duration curve) by the function D : [0;T ] → R+, t 7→ D(t) which we assume to be strictly

monotone with D(0) = Dmax. Furthermore, we order n technologies by increasing operating costs, i.e.

∀u, v ∈ {1, . . . , n}, (c̄op,u < c̄op,v). We exclude the possibility of reversals in the merit order such that no

realization of operating costs with cop,u ≥ cop,v can occur.16 Then the second-stage problem of optimal

operation is solved as in the conventional peak-load-pricing problem based on the merit order. For the

technology with the lowest operating costs, i. e. technology 1, the upper bound of operating duration is

always t0 = T . The lower bound is given through D(t1) = K1, since technology one will run at full capacity

as soon as demand exceeds capacity K1. Similarly for technology two, the upper bound for operation

hours is given by D(t1) = K1, and the lower by D(t2) = K1 + K2 and so forth (see Figure 1). Finally,

it can be seen that the lower bound of the operating time of the n-th technology is zero, i.e. tn = 0. By

introducing the cumulative capacity Kc
u =

∑u
j=1Kj , and defining R(K) as the inverse of the monotonously

decreasing function D(t), we may write tu = R(Kc
u). Now, solving the first-stage portfolio selection problem

is equivalent to determining the cumulative capacities Kc
u. We additionally define the integral to the inverse

demand function

QI(Kc
u) =

∫ Kc
u

0

R(κ)dκ (7)

The optimization problem may now be reformulated, using only Kc
u as decision variables. In time-

continuous notation, this yields

14Throughout this article, random variables are indicated by a “˜”, whereas their realizations are written as plain letters.
15Because operating costs are constant within the planning period, we write cop,u instead of cop,u,t.
16This simplification can be justified because the empirically estimated year-to-year risk for reversals in the merit order is

less than 1% for all considered technologies and hence extremely low (cf. Section 4).
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t∗1

T

Tt∗2

Q1

Q2

Q3

C

Kc∗
1

Kc∗
2

Kc∗
3

D(t)

c3

c2
c1

ci = cinv,i + t · cop,i

Figure 1: Graphical solution of the deterministic peak-load pricing problem from load duration curve and full-cost curves

L∗ = min
Kc

u

L (8)

s.t. L =
n∑
u=1

cinv,u
(
Kc
u −Kc

u−1

)
+ c̄op,uQu +

A

2

(
n∑
u=1

n∑
v=1

σuvQuQv

)
(9)

Kc
u −Kc

u−1 ≥ 0 (1 ≤ u ≤ n) (10)

QE ≤ QI(Kc
n) (11)

with

Qu = QI(Kc
u)−QI(Kc

u−1).

and QE denoting total energy demand over the considered period,

QE =
∫ T

0

D(t)dt.

The corresponding Lagrangian writes:

Ln =
n∑
u=1

cinv,u
(
Kc
u −Kc

u−1

)
+ c̄op,uQu

+
A

2

(
n∑
u=1

n∑
v=1

σuvQuQv

)
+

n∑
u=1

µu
(
Kc
u−1 −Kc

u

)
+ λ

(
QE −QI(Kc

n)
) (12)

10



Before exploring this general optimization problem in more detail, two specific configurations are inves-

tigated, contained as extremes in the general portfolio problem.

3.3. Standard solution for pure cost efficient portfolios with n technologies

One limiting case obviously embedded in the general formulation is the deterministic peak-load pricing

problem, corresponding to A = 0. The other case to be looked at is the pure variance-minimizing problem,

to which the general problem converges as A → +∞. As shown in Crew and Kleindorfer (1986), the

deterministic peak-load pricing problem with A = 0 and n technologies may also be solved graphically using

the load duration curve and the full-cost curves of the respective technologies (see Figure 1). Formally, the

Karush-Kuhn-Tucker (KKT) conditions corresponding to the Lagrangian (6) are here:

∂Ln
∂Kc

u

= cinv,u − cinv,u+1 + (c̄op,u − c̄op,u+1) tu − µu + µu+1 ≥ 0, ⊥ Kc
u ≥ 0 with (1 ≤ u ≤ n− 1) (13)

∂Ln
∂Kc

n

= cinv,n + c̄op,utn − µn − λtn ≥ 0, ⊥ Kc
n ≥ 0 (14)

∂Ln
∂µu

=Kc
u−1 −Kc

u ≤ 0, ⊥ µu ≥ 0 with (1 ≤ u ≤ n) (15)

∂Ln
∂λ

=QE −QI(Kc
n) ≤ 0, ⊥ λ ≥ 0 (16)

Thereby Kc
0 = 0 is used as additional convention. Obviously the last set of conditions pushes Kc

n to be

at least equal to D(0), so that all energy is provided by the total capacity installed and consequently even

the peak-load demand is covered. Simultaneously, (14) then implies that

λ = c̄op,u +
cinv,n − µn

tn
(17)

Given that tn = R(Kc
n) = 0 follows from Kc

n = D(0), the last equation implies λ → +∞. This at first

sight awkward result reflects the well-known property that in the peak-load-pricing model the shadow price

in the (here infinitesimal) peak-load moment covers the full investment costs of the peak technology. From

(13) optimal lower bounds of operating hours may be written

tu =
cinv,u − cinv,u+1 − µu + µu+1

cop,u+1 − cop,u
, (1 ≤ u < n), (18)

If Ku > 0 is assumed throughout, (15) implies that all µu are equal to zero. Consequently (18) may be

directly used to compute capacities

tou =
cinv,u − cinv,u+1

cop,u+1 − cop,u
, (1 ≤ u < n), (19)

Kc∗
u = D(tou),K∗u = Kc∗

u −Kc∗
u−1, (1 ≤ u ≤ n). (20)

In fact the tou may be used generally to check the validity of the assumption Ku > 0. As shown in Appendix

B.2, K∗u > 0 only if tou < tou−1. Stated in other words, technology u is not part of the cost-efficient portfolio

if tou ≥ tou−1. A graphical interpretation and further implications of this finding are discussed in Appendix

B.2.
11



3.4. Standard solution for pure variance efficient portfolios with n technologies

For the second limiting case with A→ +∞, the Lagrangian (6) may be rewritten as:

Ln =
n∑
u=1

n∑
v=1

σuvQuQv −
n∑
u=1

µQuQu + λQ

(
QE −

n∑
u=1

Qu

)
(21)

Thereby the Qu are directly used as decision variables, since this allows a more convenient treatment.

Yet through Qu = QI(Kc
u)−QI(Kc

u−1) a unique mapping between the Qu ’s and Kc
u ’s is established, which

may be later used to transform results. The KKT-conditions are here:

∂Ln
∂Qu

=
n∑
v=1

σuvQv − µQu − λQ ≥ 0, ⊥ Qu ≥ 0 with (1 ≤ u ≤ n) (22)

∂Ln
∂µQu

= −Qu ≤ 0, ⊥ µQu ≥ 0 with (1 ≤ u ≤ n) (23)

∂Ln
∂λQ

= QE −
n∑
u=1

Qu ≤ 0 ⊥ λQ ≥ 0 (24)

A matrix notation is advantageous for the further treatment, hence the key conditions are rewritten with

iT = (1, . . . , 1)T denoting the n-dimensional one vector:

ΣQ− µQ − λQi = 0 (25)

QE − iTQ = 0 (26)

In fact the case Qu = 0 does not immediately lead to a determinate value for µQu since each µQu only

appears in one inequality (22). Therefore we assume without loss of generality the left part of (22) to be

fulfilled with equality. For the left part of the last condition also an equality assumption is save, since the

opposite would imply that in a cost minimization framework excess quantities were available for free.

Obviously two cases have to be distinguished for the determination of the variance-minimal portfolio:

(1) The assets in the portfolio are linearly independent. (2) The assets are linearly dependent. In the latter

case, at least the stochastic variation of one asset may be replicated by a combination of the others. Then

obviously the variance minimizing portfolio may also be not unique and without further restrictions also

a non-trivial risk free portfolio may be constructed. This case is therefore not further considered here. In

the first case by contrast the covariance matrix will be not only positive semi-definite17 but strictly positive

definite. Consequently it is also invertible and the two equations (22) and (24) may then be combined to

yield unique solutions for λQ and Q as a function of µQ (cf. Appendix B.3):

λQ =
1

iTΣ−1i

(
QE − iTΣ−1µQ

)
(27)

Q = Σ−1
(
λQi + µQ

)
=

QE
iTΣ−1i

Σ−1i +
(

Σ−1 − 1
iTΣ−1i

Σ−1iiTΣ−1

)
µQ (28)

17This is the case for any covariance matrix, cf. Horn and Johnson (1985), p. 392.
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In this case the optimization problem is strictly convex and again a straight-forward procedure may

be used to check whether all technologies u are included in the risk-minimal portfolio. One has merely to

compute the vector Qo:

Qo =
QE

iTΣ−1i
Σ−1i (29)

It holds Qu > 0 for all 1 ≤ u < n if and only if Qou > 0 for all 1 ≤ u < n, as shown in appendix

B.3. Consequently, in this case the variance-minimal solution is given by Qr∗ = Qo, where the element Qou

corresponds to:

Qou =
QE

iTΣ−1i

n∑
v=1

{
Σ−1

}
uv

In other words, only if the row-sums of the inverse covariance matrix Σ−1 are all positive, all available

technologies will be part of the variance-minimal portfolio. Then, the optimal amount of energy produced

by technology u is obtained as weighted share of the total energy produced, where the u-th row sum of the

inverted covariance matrix Σ−1 is used as weighting factor. Remark that for instance Σ−1 being strictly

diagonally dominant with positive diagonal entries can thus guarantee that all technologies are part of the

risk-minimal portfolio.18 Furthermore it can be shown that the variance minimization problem has a unique

solution if Σ is positive definite (cf. appendix B.3).

3.5. Standard solutions to the combined portfolio problem with n technologies

The optimal portfolio in the general case of combined cost-risk optimization may in principle be derived

using a combination of the two previously shown approaches. This is however complicated by differences

in notation and differences in solution logics between the two cases. The risk-minimization case requires

matrix-inversion, therefore introducing matrix-notation is also necessary for the cost-minimization part.

This can be achieved by introducing the lag-operator in matrix form L through:

L =



0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


Then the Lagrangian may be written

Ln =cinv
T (I− L) Kc + c̄Top(I− L)QI (Kc) +

A

2
(
(I− L)QI(Kc)

)T
Σ(I− L)QI(Kc)+

+ µT (I− L) Kc + λ
(
QE −QI(Kc

n)
)

(30)

18A Hermitian, strictly diagonally dominant matrix with positive diagonal entries is also positive definite (cf. Horn and

Johnson, 1985, Corollary 7.2.3). However, the converse cannot be concluded in general.

13



Denoting ∂Ln

∂Kc =
(
∂Ln

∂Kc
1
, . . . , ∂Ln

∂Kc
n

)T
and ∂Ln

∂µ =
(
∂Ln

∂µ1
, . . . , ∂Ln

∂µn

)T
, the corresponding KKT conditions can

be derived using matrix calculus:

∂Ln
∂Kc

= (I− L)T cinv + diag
(
t(Kc)

)
(I− L)T cop + (I− L)T µ + λ(in)T t(Kc)+

+A diag
(
(I− L)t(Kc)

)
Σ(I− L)QI(Kc) ≥ 0, ⊥ Kc ≥ 0, (31)

∂Ln
∂µ

= (I− L) Kc ≤ 0, ⊥ µ ≥ 0, (32)

∂Ln
∂λ

= QE −QI(Kc
n) ≤ 0, ⊥ λ ≥ 0. (33)

Similar to the previous problem, we can again assume QE = QI(Kc
n) and condition (31) to be fulfilled

with equality. Hence, ∂Ln

∂Kc = 0 is the remaining central optimality condition to be solved. From Kc
n = D(0),

it is however clear that tn = 0 and consequently λ is eliminated from the optimality condition. Shifting the

risk-free term and the risk term to the two sides of the equation, we can now rewrite Eqn. (31) as shown in

Appendix B.4:

−AΣQ(Kc,LKc) = diag
(
(I− L)t(Kc)

)−1
(

(I− L)T (cinv + µ) + diag
(
t(Kc)

)
(I− L)T cop

)
(34)

Focusing on solutions which include all technologies, we assume again µ = 0. At a closer look, optimality

condition (34) represents an n-dimensional equation system consisting of two functional terms l, r of the

form 
l1(Q1(Kc

1), . . . , Qn(Kc
n,K

c
n−1))

l2(Q1(Kc
1), . . . , Qn(Kc

n,K
c
n−1))

...

ln(Q1(Kc
1), . . . , Qn(Kc

n,K
c
n−1))

 =


r1(t1(Kc

1))

r2(t2(Kc
2), t1(Kc

1))
...

rn(tn(Kc
n), tn−1(Kc

n−1))

 (35)

Assuming cinv,u > cinv,u+1 for all u = 1, . . . , n− 1, the existence of a Kc satisfying optimality condition

(35) is clearly given, because row u of r is monotone decreasing in tu, while row u of l is monotone increasing

in tu (respectively in Kc
u). Indeed, it can be easily verified that for A > 0 and cinv,u > cinv,u+1 for all

u = 1, . . . , n−1 also the combined portfolio problem (8)-(11) is convex for an arbitrary covariance matrix Σ

when taking Q as decision variable (cf. Appendix B.4). Furthermore, strict convexity is given if Σ is positive

definite. Hence, any local minimum satisfying (35) must be the global minimum of the portfolio problem.

Therewith, we have shown that there exists a unique solution to the risk-adjusted peak-load pricing problem

under a strictly monotone load duration function with uncertain fuel prices.

Deeper insights may be gathered from the solution in the two-technology case. Therefore the following

paragraph is devoted to this special case.
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3.6. Results in the two-technology case

In this example we consider two competitive19 generation technologies (i.e. u = {1, 2}) with specific

operating and investment costs being available to meet demand. For this case with n = 2, the central

condition to be satisfied for an interior solution with K1,K2 > 0 can be obtained from dL2
dK1

= 0 as

(c̄op,1 − c̄op,2)t1 + cinv,1 − cinv,2 + t1A
(
σ2

1Q1 − σ2
2Q2 + σ12 (Q2 −Q1)

)
= 0

Eliminating Q1 through Q1 = QE −Q2, this condition may be rewritten leading to

A
(
(σ2

1 − σ12)QE − (σ2
1 + σ2

2 − 2σ12)Q2

)
=
cinv,2 − cinv,1

t1
− c̄op,1 + c̄op,2, (36)

with

Q2 =
∫ t1

0

(
D(t)−D(t1)

)
dt.

Using t1 as decision variable, we show in Appendix B.5 that this equation is uniquely solvable for

AQE(σ2
2 − σ12) ≥ 1

T
(cinv,1 − cinv,2) + c̄op,1 − c̄op,2

As a first optimality property, two limiting parameter configurations can be observed from Eqn. (36) for

the case of pure variance-efficient portfolios (i.e. A→ +∞):

Property 3.6.1. The variance-efficient portfolio does not include technology 2 for σ1
σ2
< ρ, while it includes

only technology 2 for σ2
σ1
< ρ, i.e.

Q2 =

0 for σ1
σ2
≤ ρ,

QE for σ2
σ1
≤ ρ

Since per definition 0 ≤ |ρ| ≤ 1, we can further conclude that technology 2 will always be included in

variance-efficient portfolios for σ1 ≥ σ2 while technology 1 will be included in any variance-efficient portfolio

for σ2 > σ1 for arbitrary levels of correlation.20

19Two generation technologies u, v are competitive in the long-term equilibrium, if (cinv,u > cinv,v) ∧ (cop,u < cop,v).

Otherwise, one technology dominates the other on a pure cost base.
20Note that the parameter ranges derived in Property 3.6.1 are consistent with those derived in Section 3.4 for the variance-

minimal portfolio: First, the inverted covariance matrix Σ−1 for the case with two technologies is computed from its adjoint

(cf. Horn and Johnson, 1985, p. 21) as:

Σ−1 =
1

det(Σ)
adj(Σ) =

1

σ2
1σ

2
2 − σ2

12

 σ2
2 −σ12

−σ12 σ2
1


Then, Qo

u can be computed from Eqn. (29) as Qo1 = QE
σ2
2−σ12

σ2
1+σ2

2−2σ12
, Qo2 = QE

σ2
1−σ12

σ2
1+σ2

2−2σ12
. It can be seen that Qo1, Q

o
2 to

be greater than zero requires σ2
σ1

> ρ and σ1
σ2

> ρ, respectively. If satisfied, both technologies are part of the variance-minimal

portfolio.
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For a better understanding of efficient portfolio characteristics, we next discuss sensitivity properties of

the efficient fuel mix with respect to variations of the risk parameters σ1, σ2, A and the coefficient of (fuel

price) correlation ρ := σ12
σ1σ2

.

Property 3.6.2. As shown in Appendix B.6, risk-cost-efficient operating hours (respectively capacities) of

the considered technologies are independent from the risk-aversion parameter A if (and only if) σ1
σ2

= ρ.

This parameter configuration at the same time implies that the pure cost-efficient portfolio equals the pure

variance-efficient portfolio. Only if σ1
σ2
> ρ, the efficient run time of the technology 2 increases with increasing

risk aversion and vice versa. For σ1
σ2

< ρ, which is in general satisfied as the operating costs of the peak

technology are much higher than those of the base technology (see Section 4), an increasing risk aversion

leads ceteris paribus to a shorter optimal run time and therewith to smaller optimal capacities of technology

2. Thus, increasing risk aversion leads in the latter case to a decline of fuel mix diversification in the

considered portfolio. In summary it is

dt∗1
dA

Q 0, for
σ1

σ2
Q ρ.

Property 3.6.3. Alternatively, a comparison of optimal operating times for the pure cost-efficient portfolio,

tc∗1 , and for the pure risk-efficient portfolio, tr∗1 , can provide evidence on the sensitivity. As shown in

Appendix B.6, it equivalently holds
dt∗1
dA

Q 0, for tc∗1 R tr∗1 .

This is an interesting finding, since it implies by taking into account Properties 3.6.1 and 3.6.2, that the

case tc∗1 < tr∗1 cannot occur if both technologies are part of the variance-efficient portfolio.

For the following sensitivity properties of the solution to the two-technology problem corresponding to

Eqs. (8) to (11) with n = 2, we will hence concentrate on the more interesting case where both technologies

are part of the variance-efficient portfolio, i.e. σ1
σ2
> ρ and σ2

σ1
> ρ as shown in Appendix B.6.

Property 3.6.4. For technologies 1 and 2 being part of the cost-efficient and the variance-efficient portfolio,

the following parameter conditions are sufficient for the stated sensitivity properties of optimal operating

hours (respectively capacities) of technology 2:

dt∗1
dσ1
≥ 0 for all σ1, σ2 ≥ 0, 0 ≤ ρ ≤ 1,

dt∗1
dσ2
≤ 0 for all σ1, σ2 ≥ 0, 0 ≤ ρ ≤ 1,

dt∗1
dρ
≤ 0 for all σ1, σ2,≥ 0, −1 ≤ ρ ≤ 1.

Reciprocal sensitivity properties are obtained for optimal operating hours (respectively capacities) of tech-

nology 1.
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Table 1: German power generation fuel mix 2007 (BMWi, 2008, source:).

Gross production (TWh) Gross capacities (GW)

Hard coal 142.0 (22.3%) 29.3 (21.3%)

Lignite 155.1 (24.3%) 22.5 (16.4%)

Nuclear 140.5 (22.0%) 21.3 (15.5%)

Gas 75.9 (11.9%) 21.3 (15.5%)

Oil 9.7 (1.5%) 5.4 (4.0%)

Wind 39.7 (6.2%) 22.2 (16.1%)

Water 28.1 (4.4%) 10.1 (7.4%)

Miscellaneous 46.4 (7.3%) 5.3 (3.9%)

Total 637.6 (100%) 137.5 (100%)

4. Application: Long-term efficient fuel mix of the German electricity market

In the following section, we will deepen the insights gained from the analytics on risk-efficient generation

portfolios by a real case application. For two reasons, we decided to focus for this on the German electricity

market: For the first, there is a considerable need for new investments in generation assets in Germany in

the next decades induced by the age of the existing plant fleet, the so far planned stepwise phaseout of

nuclear generation until 2022 (Deutscher Bundestag, 2002) and the increased consciousness to act against

climate change which has led to a diminishing acceptance of coal plants – so far the dominating generation

technology in Germany.

The second reason for analyzing the German fuel mix is that to our best knowledge, a MVP analysis

of the German electricity market has not yet been published before, so that this market will provide a

worthwhile example.

4.1. Parameter estimates

4.1.1. Estimation of plant costs and fuel prices

As reported by the German Ministry for Economics and Technology in BMWi (2008), the fuel mix for

power generation in Germany is dominated by coal and nuclear plants, which in 2007 added to almost 70% of

the gross power production (Table 1). Gas plants serve as the predominant peak technology, supplemented

by pumped store and (reserve) oil plants. For replacements and extensions of the existing plant fleet, (hard)

coal and natural gas plants as well as renewable technologies represent currently the most considered options.

Due to economic incentives from subsidies, renewable technologies do already contribute to more than 10%

to the German electricity production.

A comparison of technical and economic key parameters for typical representatives of the main generation

technologies based on 2007 values derived from Konstantin (2009) is summarized in Table 2. Total investment
17



Table 2: 2007 based key parameters for typical coal, gas and nuclear plants (source: Konstantin, 2009, own analysis).

Parameter Unit Hard coal Lignite CCGT GT Nuclear

Thermal efficiency MWhe/MWht 0.46 0.43 0.56 0.34 0.37

Carbon emission rate tCO2/MWht 0.34 0.41 0.20 0.20 0.0

Total net investment costs e/KW 1419 1934 608 456 3225

Technical lifetime a 45 45 30 25 50

Fixed O&M, overhead e/KW a 36.06 43.26 13.97 9.69 74.06

Variable O&M, transport e/KWhe 2.9 1.7 5.5 20.0 0.0

costs21 include engineering, procurement, construction, decommissioning and for the EPR nuclear waste

management costs as well as interest payments during construction. Annualized specific investment costs

per KW are quoted with respect to the gross installed capacity including plant consumption of auxiliaries.

For all technologies, capital costs are calculated based on the annuity method with a uniform interest rate

of 10% after tax and the quoted economic lifetimes. For consistency with the other plant key parameters,

we use 2007 average fuel prices as depicted in Table 2.

To account for fuel price risks, total operating costs cop,u are modeled as normal random variables

calculated as the sum of the respective fuel prices plus the emission factor weighted price of CO2 emission

rights divided by the technology specific efficiency rate, i.e. cop,u = pf,u+eupco2
ηu

.

Since valuing the influence of fuel price fluctuations on the long-term investment optimum in a MVP

approach requires a reliable long-term estimate of the covariance matrix which captures all underlying price

risks, we estimate variance and covariance for (pairs of) total fuel prices including CO2 for the considered

generation technologies over the sample period 1986–2008 as shown in Table 3. Quarterly coal import prices

1986–2008 and monthly natural gas import prices 1991–2008 are based on reports of the Federal Office of

Economics and Export Control (BAFA, 2009). Annually averaged gas import prices before 1991 are provided

by the German Council of Economic Experts (Sachverständigenrat, 2008). Coal and gas fuel prices reflect

the average cross-border price converted to e/MWht for all contracted deliveries in the respective month.

Lignite price series are derived from observations by Konstantin (2009) and energy price trends reported by

the German Federal Statistical Office StaBu (2009). From 2005 onwards22, total fuel prices are computed

including the costs of CO2 emission allowances (EUA) based on front year price data from ECX (2009).

EUAs are modeled to be purchased at market conditions (full auctioning) as it has been announced by

the EU for ETS Phase III starting in 2013. The price statistics for nuclear fuels represent total fuel cycle

costs. They are composed of monthly spot prices for delivery within a year for uranium oxide U3O8, for

the conversion in tho uranium hexafluoride UF6 and for the enrichment process. Monthly data is provided

21In economic literature sometimes also denoted as “overnight” costs.
22Phase I of the European Union Emission Trading System (EU ETS) started in 2005.
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Table 3: Distribution parameters for fuel costs 1986–2008 (Germany), EUA costs included from 2005 on (source: BAFA, 2009;

UxC, 2009; ECX, 2009; StaBu, 2009, own analysis).

Coefficient of correlation Std.-dev. Mean 2006-08

Gas Hard coal Lignite Nuclear e/MWht e/MWht

Gas 1.00 0.92 0.88 0.77 7.48 28.73

Hard coal 0.92 1.00 0.94 0.67 4.32 15.83

Lignite 0.88 0.94 1.00 0.62 3.33 11.41

Nuclear EPR 0.77 0.67 0.62 1.00 0.30 2.66a

aFuel price EPR represents total fuel cycle costs, thereof 1.55 e/MWht for fuel supply (uranium production, conversion,

enrichment and fabrication) and 1.11 e/MWht for disposal.

by UxC (2009) for the period 1987–2008. Where missing, conversion and enrichment prices are estimated

based on calculated averages. Cost of fabrication is estimated as a constant price component of 275 $/kg

UO2, the cost of disposal with 2500 $/kg UO2.

To avoid disruptions from short-term market imbalances, we use 2006–2008 average prices for the expec-

tation of generation costs as depicted in Table 3.

Under the assumption of normal distributed fuel price levels, it can be seen that the probability for

reversals in the merit order, P(c̃op,1 > c̃op,2), is negligibly small. Applying the transformation z̃ = c̃op,1 −

c̃op,2, where z̃ ∼ N (c̄op,1 − c̄op,2, σ2
1 + σ2

2 − 2σ12)23, the year-to-year likelihood for a reversal in the merit

order is given by

P(c̃op,1 > c̃op,2) = Pz(z̃ > 0) = 1−
∫ 0

−∞
φz(z)dz = 1− Φz(0). (37)

where Φz denotes the cumulated distribution function of z̃. With the empirical data from Table 3 we

obtain for the pairwise reversal likelihoods P(c̃op,coal ≥ c̃op,gas) = 0.06%, P(c̃op,lignite ≥ c̃op,coal) = 0.47%,

P(c̃op,nuclear ≥ c̃op,lignite) = 0.13%. Therefore, reversals in the merit order are neglected in the following.

4.1.2. Load duration curve

We use historical load data for Germany provided in an hourly resolution by UCTE (2009) for the years

2006–2008. For comparability reasons, we adjust the data sets for the general increase in energy consumption

by 1.02% in 2007 and 0.4% in 2008, respectively. A historical reference load duration curve can then be

generated from the hourly means of the historic data. To accomplish the further analysis in Matlab with a

23It is well-known that the sum of n jointly normal distributed random variables Xi, with Xi ∼ N (µi, σ
2
i ) is also normal

distributed with mean and variance

µ =

n∑
i=1

µi, σ2 =

n∑
i=1

n∑
j=1

σij =

n∑
i=1

n∑
j=1

σiσjρ, with ρ =
σij

σiσj
.

For a proof see e.g. Elishakoff (1999).
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Table 4: Specification of fitted load duration functions, comparison with historical data (historical data: UCTE, 2009).

Mean 2006–2008 Polynomial I Polynomial II Linear I Linear II

q = 5 q = 5 q = 1 q = 1

A0 - 78486 74746 78486 73310

A1 - -23.962 -9.492 -4.704 -3.818

A2 - 2.223 · 10−2 4.586 · 10−3 - -

A3 - −1.123 · 10−5 −1.395 · 10−6 - -

A4 - 3.019 · 10−9 1.801 · 10−10 - -

A5 - −4.494 · 10−13 −8.32 · 10−15 - -

A6 - 3.493 · 10−17 - - -

A7 - −1.106 · 10−21 - - -

SSR - 3.90 · 109 0.49 · 109 62.25 · 109 3.58 · 109

R2 - 0.9979 0.9997 0.9978 0.9978

Sample calculation results for two-technology case (coal, CCGT) with A = 10−10:

t∗1 4929.1 5239.6 4955.1 5171.1 5171.0

K∗
2
a 31.8% 32.1% 28.6% 30.9% 26.9%

K∗
1
a 68.2% 67.9% 71.4% 69.1% 63.1%

aOptimal installed capacity as a share of annual maximum load.

continnous function D̃(t), we use linear and non-linear OLS regression to fit a polynomial function of the

form

D̃(t) ≈


∑q
j=0Aj · tj , for t ≤ 8760

0, for t > 8760.
(38)

Table 4 shows the coefficient estimates for polynomial functions of the degree q = {1, 5}. For the first

polynomial and the first linear function parameter A0 is forced to equal the intercept of the empirical load

at its maximum of 78486 MW. For the other polynomials, this parameter is also obtained from the OLS

regression. Due to the large population, all parameter estimates are highly significant with t-values beyond

the 0.1% level. Table 4 depicts for each function a comparison of the OLS-fitted function to the empirical

data. The sum of squared residuals (SSR) is clearly the lowest for the polynomial II and would in absolute

terms further improve for polynomials of higher degrees, however with decreasing marginal improvement.

Without adjusted intercept, polynomial I would slighly perform better. Due to the fact that the empiric

load duration curve is linear for a wide range of hours corresponding to cycling load times (see Figure 2), the

OLS-estimated linear form II does also perform relatively well. However, the non-linear load characterisitcs

in about the 200 hours with the highest load have an immense impact on optimal capacities of the peak-load

plant technology.24

24Since only in the risk-free case with A = 0 optimal operating hours are independent from the shape of the load duration
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Figure 2: Historical load duration curve (red) and OLS fitted polynomial functions with degree n = 1 (light blue), n = 1 with

adjusted intercept (dark blue), n = 5 (dark green), and n = 5 with adjusted intercept (green) (source: UCTE (2009); own

analysis).
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The comparison of results for an exemplary calculation (A = 10−10) is provided in the lower part of Table

4: Manually adjusting the intercept of the polynomial to the maximum load observed leads here to results

that are closer to those from using the empirical load date compared to OLS-estimated intercepts. The

comparison of ’Linear I’ and ’Polynomial I’ shows that an improved exactness in the calculation of optimal

capacities goes with an increasing error in the calculation of optimal operating hours. In the following, we

will use ’Polynomial I’ which provides an adequate fit for capacity-based calculations.

4.2. Results: Efficient fuel mix characteristics for the German electricity market

We characterize the cost risk efficient generation fuel mix in a “green-field” analysis, i.e. regardless to the

existing fuel mix, limited availabilities and other possible constraints. This intentionally over-idealizing study

allows to first identify long-term preferable technologies before looking in more detail to a narrowed-down

set of more realistic investment options in the mid-term.

With respect to fuel price risks, we investigate gas turbine (GT), combines cycle gas turbine (CCGT),

lignite, coal and nuclear (EPR) plants as risky technologies. In addition, an enforced share of base-load

serving technologies are incorporated as indicator for existing renewable technologies (mainly wind, water)

which can be considered as nearly risk-free in terms of operating costs.25 GTs are in all cases the technology

with the highest, nuclear with the lowest operating costs.

The efficient fuel mix for varying risk aversion in the first scenario with nuclear technologies is shown in

Figure 3: Based on the historically estimated covariance characteristics of total fuels prices including EUAs,

higher risk aversion leads always to an increase of nuclear generation in efficient portfolios. In contrast,

lignite dominates the efficient portfolio in the second scenario calculation without nuclear technologies with

increasing risk aversion (Figure 4).26 Vice versa, gas-fired generation decreases in all cases with increasing

risk aversion. Surprisingly, hard coal does not represent a substantial share of generation in any considered

case as it cannot compete with the low operating costs and low variance characteristics of nuclear and lignite

generation for base load generation and with the low investment costs for gas technologies tailored to mid

and peak load generation.

Clearly, this comparison shows nuclear and lignite as the most favorable generation technologies in terms

of minimal costs and its corresponding variance. Although geologically feasible, the mid-term potential for

curve, they are influenced, too.
25We are aware that a solid valuation of renewable technologies in electricity generation systems requires a much deeper

reflexion of technology characteristics such. Since this empirical application aims to demonstrate in a traceable manner the

analytical results discussed before, we kindly refer readers with special interest in renewable technologies to the various existing

publications with special focus on this topic.
26Lignite operating costs are very stable compared to other commodities even with taking into account volatile EUA markets.

The reason for that is the lack of a liquid world market for lignite due to very high transportation costs. Instead, lignite power

producers have usually closed long-term contracts with nearby opencast mines.
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lignite generation capacity extensions in Germany is realistically very limited as the exploitation of new

open-cast mines faces long lasting approval processes with usually little public and political acceptance.

Moreover, nuclear capacity extensions in Germany are currently prohibited by the Nuclear Exit Law which

was enacted in 2002 (Deutscher Bundestag, 2002). Even though the political opinion is about to change and

the time limit for the shut down of nuclear power stations may be postponed, new nuclear plant seem fairly

unrealistic in the mid-term. Therefore, we will focus in the following paragraphs on the comparison of hard

coal and CCGT technologies in optimal portfolios in more detail.

4.3. Trade-off between coal and gas fired technologies

To analyze the trade-off between the two technologies, we now consider that only CCGT and hard coal

technologies are available to serve the load approximated by the function specified as ’Linear I’ in Table

4. Optimal peak plant capacities, K∗CCGT (in MW) and corresponding generation costs for varying risk

aversion coefficient A and fuel price correlation ρ are shown in Figure 5. In addition to the technology

cost characteristics and the form of the load duration curve, the optimal portfolio selection is directly

determined by the society’s risk attitude, A. Since risk proclivity can be considered as abnormal for power

plant investments, we will concentrate on the case A ≥ 0.

Consistent with the results of section 3.6, we observe that with increasing risk aversion the optimal

combination of capacities in the portfolio moves in general away from the risk-free optimum with A = 0.

As already discussed in Property 3.6.2, the portfolio selection is equal to the risk-free case if σ1
σ2

= ρ. Hence

at a correlation coefficient of 0.6 the variance-minimal portfolio corresponds to the cost-minimal portfolio.

Consequently at this particular level of correlation, the portfolio composition is independent of the risk

aversion. At higher correlations, as indicated in section 3.6, higher risk aversion reduces the share of the

gas peak technology, since the diversification effect is lower than the addition in variance due to the higher

price volatility of gas. If correlations were however below 0.6, risk aversion would induce an increase in

the proportion of the gas technology. These results clearly emphasize the need for appropriate correlation

estimates. Given that the portfolio components have lifetimes of 30 years and more, long term correlations

as those used here, estimated based on price levels, are certainly more adequate than (typically lower)

short term correlations of price changes. With increasing correlation between total fuel prices of the two

technologies, the optimal selection becomes additionally more and more a binary decision as depicted in

Figure (7). Total expected generation costs increase as expected with increasing risk aversion as shown in

Figure 6. However, the effect of increasing risk aversion is diminishing. When an increase in A leads to

a complete elimination of the more risky asset in the portfolio, a further increase of A does not lead to a

different portfolio selection.
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Figure 3: Efficient fuel mix of GT, CCGT, lignite, coal and nuclear technologies (in GW) for varying risk aversion coefficient

A.
Efficient net plant capacities (scenario without nuclear)
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Figure 4: Efficient fuel mix of GT, CCGT, lignite, and coal technologies (in GW) for varying risk aversion coefficient A.
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Optimal peak capacity K*
CCGT for varying risk aversion and fuel price correlation
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Figure 5: Optimal peak plant capacities, K∗
CCGT (in MW) in two technology-case for varying risk aversion A and fuel price

correlation ρ.
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Figure 6: Expected total generation costs C∗ (in billion EUR) in two technology-case for varying risk aversion A and fuel price

correlation ρ.
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.

5. Concluding remarks

This paper has analyzed the impact of fuel mix diversification on the long-term optimum of electricity

generation portfolios. By integrating Mean-Variance Portfolio theory into a classical peak-load pricing

framework, an optimality condition for efficient portfolios has been derived and analyzed.

The proposed model has been used to demonstrate quantitatively the derivation of efficient generation

fuel mixes for Germany. The calculations show that fuel mix diversification can considerably influence the

total standard deviation of generation costs by more than 10%.

With respect to the current debate on security of supply, the results indicate that increasing risk aversion

implies a higher share of lignite and nuclear generation in efficient portfolios and conversely to a decrease

of gas-fired generation. Independently from the risk attitude, the optimal fuel mix is highly sensitive to the

price and/or the allocation method of CO2 emission rights. The results indicate that with full auctioning

of CO2, efficient portfolios at historically observed CO2 price levels consist of more nuclear and lignite and

less coal-fired generation compared to the current fuel mix. If nuclear and lignite capacities are reduced or

fixed at the current level, hard coal is the most economical technology instead.

The exemplary results for the German generation mix demonstrate that fuel-mix diversification does not

provide reduced risk characteristics per se. Blind diversification without consideration of technology costs

and price risks as well as the correlation risks may even be counterproductive.
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A. Symbols and model notation

Indices

u generation technology

t hours time step during analysis period [0;T ]

Parameters and variables

A 1/e Risk aversion parameter

Dt MW Total system demand at time t

tu hours Lower bound of operating hours of technology u during analysis period [0;T ]

pu,t e/MWhth Fuel price of technology u in period t

ηu MWhe/MWhth thermal efficiency of technology u

hu MWhth/MWhe heat rate of technology u

eu tCO2/MWhth emission rate of technology u

Ku MW Installed capacity of technology u

Qu MWh Energy produced of technology u in period [0;T ]

QE MWh Total energy produced in the system in period [0;T ]

yu,t MW Output level of plant u at time t

Cinv,u e Annuity of overnight costs (total investment costs) of technology u

cinv,u e/MWe Annuity of specific overnight costs of plant u per installed capacity K

Cop,u,t e Operating costs of plant u in period t

cop,u,t e/MWhe Specific operating costs of plant u in period t per output yu,t

c̄op,u e/MWhe Mean operation costs of plant u

σu e/MWhe Standard deviation of total operation costs of technology u

σuv e2/MWh2
e Covariance of total operation costs of technologies u and v

ρ - Coefficient of correlation

Vectors, matrices and operators

i One vector

in Unit vector of dimension n

I Identity matrix

L Lag operator

Var[ · ] Variance operator

E[ · ] Expected value operator
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B. Mathematical Appendix

B.1. Portfolio variance and variance of operating costs

Proof. As in Section 3.2, we assume specific operating costs per MWh to be uncertain but constant within the

planning period. More specific, let specific operating costs for technology u be represented by multivariate

distributed random variables, c̃op,u, with mean c̄op,u, variance Var(cop,u) = σ2
u and corresponding covariance

σuv. Then, the relation between variance of total operating costs for technology u, Var(Cop,u), and the

variance of specific operating costs, Var(cop,u) = σ2
u, can be calculated as follows:

Var[Cop,u] = Var
[∫

t

yu,tcop,udt
]

= E

[(∫
t

yu,tcop,u − yu,tc̄op,udt
)2
]

= E

[(∫
t

yu,t(cop,u − c̄op,u)dt
)2
]

= E

[(∫
t

yu,tdt
)2

(cop,u − c̄op,u)2
]

=
(∫

t

yu,tdt
)2

E
[
(cop,u − c̄op,u)2

]
= σ2

u

(∫
t

yu,tdt
)2

= Var [Qucop,u] = Q2
uVar [cop,u] .

The variance of specific operating costs, Var(cop,u) = σ2
u, can be calculated from the technology-specific heat

rate, hu, and from the variance of the underlying fuel price, Var(pu), as

Var [cop,t] = h2
uVar [pu,t]

Thus, the total variance of operating costs for the set of all plants u = {1, . . . , n} can be calculated as:

Var[Cop] = Var

[∑
u

(∫
t

yu,tcop,udt
)]

=
∑
u

∑
v

(∫
t

yu,tdt
)(∫

t

yv,tdt
)
σuv =

=
∑
u

σ2
u

(∫
t

yu,tdt
)2

+
∑
u

∑
v,v 6=u

σuv

(∫
t

yu,tdt
)(∫

t

yv,tdt
)

=
∑
u

σ2
uQ

2
u +

∑
u

∑
v,v 6=u

σuvQuQv.

B.2. Optimal technology selection for pure cost minimal portfolios with n technologies

Proposition B.2.1. Technology u is part of the cost-minimal portfolio, i.e. K∗u > 0, only if tou < tou−1.

Proposition B.2.2. If tou < tou−1 for all 1 ≤ u < n, then the cost-minimal portfolio will consist of all

technologies, i.e. K∗u > 0 for all 1 ≤ u < n.

A graphical interpretation of these propositions is depicted in Figure 8: Comparison of the full cost

curves shows that although technology 3 (dashed line) is not “dominated” by any other technology v such

that cop,2′t+ cinv,2′ > cop,vt+ cinv,v for all admissible t, it is not part of the cost-minimal portfolio because

the condition formulated in Proposition B.2.2 is violated. The cost-efficient technology mix is characterized

by the lowest envelope of the different cost functions which yield piece-wise linear efficient cost curve per

capacity unit as function of operating time (gray line in Figure 8). Only if all intersections of the full cost

curves are obtained in a decreasing order the cost-minimal portfolio will consist of all technologies.
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Q1
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Q3

Figure 8: Graphical solution of the deterministic peak-load pricing problem from load duration curve and full-cost curves.

With to3 > to2, technology 3 will not be included in the cost-efficient portfolio.
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Proof of Proposition B.2.1. The proposition is proved by contradiction: From Ku = D(t∗u) −D(t∗u−1) > 0,

it can be concluded from KKT condition (10) that µu = 0. Assuming contrarily to the proposition that

tou ≥ tou−1. We can compute straightforwardly t∗u = tou + µu+1
cop,u+1−cop,u

and t∗u−1 = tou−1 −
µu−1

cop,u−cop,u−1
from

Eqn. (18). Given that µu−1, µu+1 ≥ 0, this implies t∗u > t∗u−1. The strict monotony of D(t) then yields

D(t∗u)−D(t∗u−1) < 0, which is in contradiction with the initial hypothesis Ku > 0.

Proof of Proposition B.2.2. To show the implication

tou < tou−1 for all u ⇒ K∗u > 0 for all u,

we proceed again by contradiction. Taking tou < tou−1 for all u as given, we assume for one single u that

Ku = D(t∗u)−D(t∗u−1) = 0. Without much limitation of the generality for the succeeding technology u+ 1

and the preceding technology u − 1, we assume Ku+1 > 0,Ku−1 > 0, implying µu+1 = 0 and µu−1 = 0.27

Straightforwardly, t∗u = tou −
µu

cop,u+1−cop,u
and t∗u−1 = tou−1 + µu

cop,u−cop,u−1
may be computed which yields

t∗u < t∗u−1 for all µu ≥ 0. This, however, implies Ku = D(t∗u)−D(t∗u−1) > 0, in contradiction to the starting

assumption.

B.3. Solution to the pure variance minimization problem with n technologies

Based on Eqs. (25) and (26), the optimality conditions (27) and (28) can be derived as follows: Starting

with λQi = ΣQ−µQ from Eqn. (25), the positive definiteness of matrix Σ allows multiplication with iTΣ−1

from the left followed by division through the scalar iTΣ−1i yielding

(
iTΣ−1

)
λQi =

(
iTΣ−1

)
ΣQ−

(
iTΣ−1

)
µQ

⇔ λQ =
1

iTΣ−1i

((
iTΣ−1

)
ΣQ−

(
iTΣ−1

)
µQ
)

=
1

iTΣ−1i

(
iT Q− iTΣ−1µQ

)
Finally, we apply QE = iTQ from Eqn. (26) to obtain optimality condition (27):

λQ =
1

iTΣ−1i

(
AQE − iTΣ−1µQ

)
.

By inserting λQ in Eqn. (25), Q can be computed as

Q = Σ−1
(
λQi + µQ

)
= Σ−1

(
1

iTΣ−1i

(
QE − iTΣ−1µQ

)
i + µQ

)
= Σ−1

(
1

iTΣ−1i

(
QEi− iiTΣ−1µQ

)
+ µQ

)
=

QE
iTΣ−1i

Σ−1i +
(

Σ−1 − 1
iTΣ−1i

Σ−1iiTΣ−1

)
µQ.

27In the more general case with possibly several subsequent technologies with zero capacities, a recursive procedure of

elimination of inefficient technologies has to be started.
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Proposition B.3.1. The pure variance-minimization problem is convex in Q. If and only if Σ is positive

definite, then the optimization problem is strictly convex in Q.

Proof of Proposition B.3.1. For the pure variance minimal portfolio, the objective function from problem

(8) can be rewritten as

Lr(Q) = QTΣQ

The Hessian of the objective function can be derived straightforwardly with matrix calculus as Hr =

Σ. Taking into account that an arbitrary covariance matrix Σ is positive semi-definite (cf. Horn and

Johnson, 1985, p. 392), convexity of Lr can be concluded. Furthermore, the Hessian is positive definite and

consequently Lr strictly convex if and only if Σ is positive definite. Using Q as decision variable, constraints

(10) and (11) can be rewritten as −Q ≤ 0 and QE −Qi ≤ 0, so that linearity and hence also convexity of

both constraints become obvious.

Proposition B.3.2. Let be Qo := ωQEΣ−1i, with ω :=
(
iTΣ−1i

)−1 and i = (1, . . . , 1)T . The variance-

minimal portfolio consists of all available technologies, i.e. Qu > 0 for all 1 ≤ u < n, if and only if Qou > 0

for all 1 ≤ u < n. Then, Q = Qo is a solution to the variance minimization. The solution is unique if Σ is

positive definite.

Proof of Proposition B.3.2. For notational brevity, we define R := ωΣ−1
((

iTΣ−1i
)
I− iiTΣ−1

)
. Then,

we can rewrite Eqn. (28)

Q = Qo + RµQ.

Remark that the symmetric matrix R is in general indefinite, even for Σ−1 being positive definite.28

Suppose Qu > 0, which implies µQu = 0 according to KKT condition (10). Consequently, Qu > 0 for all

1 ≤ u < n implies Qou > 0 for all 1 ≤ u < n. Therewith, Qou > 0 for all 1 ≤ u < n represents the necessary

condition for the variance-minimal portfolio to consist of all available technologies.

The condition is even sufficient for the variance-minimal solution, since Qu = Qou, µu = 0 for all

1 ≤ u < n represents a solution to the equation system (27)-(28) and therewith a local variance minimum

to the considered portfolio problem. Taking into account convexity of the optimization problem as shown in

Proposition B.3.1, it is clear that any local variance minimum is also global. For Σ being positive definite,

the optimization problem is strictly convex and hence the obtained solution is unique.

28Only nonnegative linear combinations of positive semi-definite matrices are again positive definite (cf. Horn and Johnson,

1985, Observation 7.1.3), however, R represents a negative linear combination of definite matrices.
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B.4. Solution to the general portfolio problem with n technologies

The central solution condition (cf. Eqn. (34)) for the general risk-adjusted portfolio problem can be

derived from ∂Ln

∂Kc as follows:

A diag
(
(I− L)t(Kc))

)
Σ(L− I)QI(Kc) = (I− L)T (cinv + µ) + diag

(
t(Kc)

)
(I− L)T cop

⇔ AΣ(L− I)QI(Kc) = diag
(
(I− L)t(Kc)

)−1
(

(I− L)T (cinv + µ) + diag
(
t(Kc)

)
(I− L)T cop

)
⇔ −AΣQ(Kc,LKc) = diag

(
(I− L)t(Kc)

)−1
(

(I− L)T (cinv + µ) + diag
(
t(Kc)

)
(I− L)T cop

)
⇔ Q = − 1

A
Σ−1diag

(
(I− L)t(Kc)

)−1
(

(I− L)T (cinv + µ) + diag
(
t(Kc)

)
(I− L)T cop

)
Proposition B.4.1. Let be A > 0 and cinv,u > cinv,u+1 for all (u = 1, . . . , n − 1). Then the combined

portfolio problem (8)-(11) is convex in Q. If and only if Σ is positive definite, then the optimization problem

is strictly convex in Q.

Proof of Proposition B.4.1. As shown in Proposition B.3.1, the pure variance-minimization problem is con-

vex (strictly convex) in Q if and only if Σ is positive semi-definite (positive definite). For the second part

of the proof, we consider the objective function of the pure cost-minimization problem

Lc(Q) = cinv
T (I− L) Kc(Q) + c̄TopQ

Note that the first summand is linear in Kc(Q), which itself is a nonlinear function of Q. From the definition

of QIu in Eqn. (7) it is known that QIu(Kc
u) = f(Kc

u) is an increasing and concave function of Kc
u since

d(QI
u(Kc

u))2

d2Kc
u

= dR(Kc
u)

dKc
u
≤ 0 since D(t) is monotone decreasing. Hence, it can be concluded that the inverse

function Kc
u(QIu) = f−1(QIu) is convex in QIu. In fact, QIu can be expressed as the nonnegative linear

combination QIu =
∑u
i=1Qi, hence Kc

u(QIu) = Kc
u(Q1, . . . , Qu) is also convex in each Qi, (i = 1, . . . , u).

Finally, cinv
T (I− L) Kc(Q) is convex as a nonnegative linear combination of convex functions if cinv,u >

cinv,u+1 for all (u = 1, . . . , n− 1).

The second summand of Lc is linear in Q and therefore also convex in Q. Thus, also the objective

function L = Lc + Lr of the general cost variance optimization problem is convex as a nonnegative linear

combination of convex functions if cinv,u > cinv,u+1 for all (u = 1, . . . , n− 1).

B.5. Proof of uniqueness and existence of the portfolio optimum with two technologies

Proof. Rewriting the optimality condition as given by Eqn. (36) leads to

A(σ2
1 + σ2

2 − 2σ12)Q2 −A(σ2
1 − σ12)QE =

cinv,1 − cinv,2
t1

+ c̄op,1 − c̄op,2
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Here, the risk-free term is separated from the risk-term, each to one side of the optimality condition. For

brevity, we denote the left hand-side of the latter equation with l(t1) and the right hand-side with r(t1), i.e.

l(t1) :=A(σ2
1 + σ2

2 − 2σ12)Q2 −A(σ2
1 − σ12)QE , (39)

r(t1) :=
cinv,1 − cinv,2

t1
+ c̄op,1 − c̄op,2. (40)

Because it holds (σ2
1 + σ2

2 − 2σ12) ≥ 0 for all σ1, σ2, σ12 ≥ 0, |ρ| ≤ 1 and since Q2 =
∫ t1
0
D(t) −D(t1)dt is

monotone increasing in t1, it can be concluded that also l(t1) is monotone increasing in t1, i.e. ∂l(t1)
∂t1

≥ 0.

In contrast, it can be seen that r(t1) is hyperbolically decreasing in t1 thus ∂r(t1)
∂t1

≤ 0, given (cop,1 <

cop,2) ∧ (cinv,1 > cinv,2).

The optimal operating time t∗1 satisfying condition (36) is given by the intersection of l(t1) and r(t1)

(see Figure 9). This value represents the optimal operating time of the peak-load technology and captures

the trade-off of the variance-minimal and the cost-minimal run-time of the peak load technology. A unique

intersection point is obtained if l(T ) ≥ r(T ), i.e.

AQE(σ2
2 − σ12) ≥ 1

T
(cinv,1 − cinv,2) + c̄op,1 − c̄op,2

and the two functions will cross exactly once in the interval [0, T ], resulting in a unique solution from the

optimality condition (36). The latter assumption will generally be fulfilled as empirically shown in Section

4. In the rare case of AQE(σ2
2 −σ12) < 1

T (cinv,1− cinv,2) + c̄op,1− c̄op,2, l(t1), and r(t1) have no intersection

in the interval [0, T ]. Hence, in this case there is no interior solution to problem (8) to (11).

B.6. Proof of sensitivity properties of the cost-variance efficient portfolio

Proof of Property 3.6.2. To derive sensitivity properties of the optimal portfolio fuel mix on the risk attitude

factor A, we use in the two-technology case the first order derivative of the optimality condition itself. Total

differentiation of Eqn. (36) with respect to A and following reallocation leads to

dt∗1
dA

(
c̄op,1 − c̄op,2 +AQE(σ2

1 − σ12)−A(σ2
1 + σ2

2 − 2σ12)Q2

)
+

+ t∗1

(
(σ2

1 − σ12)QE −Q2(σ2
1 + σ2

2 − 2σ12) +A
(
σ2

1 + σ2
2 − 2σ12

)
t2D

′(t∗1)
dt∗1
dA

)
= 0

⇔ dt∗1
dA

=
(t∗1)2

(
Q2(σ2

1 + σ2
2 − 2σ12)−QE(σ2

1 − σ12)
)

cinv,2 − cinv,1 + (t∗1)3A(σ2
1 + σ2

2 − 2σ12)D′(t∗1)
. (41)

At first, suppose dt∗1
dA ≤ 0. Taking into account the negativity of the denominator in Eqn. (41), this

requires consequently the enumerator in the latter term to be non-negative, i.e. Q2
QE
≥ σ2

1−σ12

σ2
1+σ2

2−2σ12
. By

inserting 0 as the lower bound of Q2
QE

, it follows ∀σ1, σ2, ρ with
(
σ1
σ2
≤ ρ
)
⇒
(

dt∗1
dA ≤ 0

)
.

From the upper bound Q2
QE
≤ 1 it can be concluded in this case

(
dt∗1
dA ≤ 0

)
⇒
(
σ2
σ1
≥ ρ
)

. Remark that

condition σ1
σ2
≤ ρ can be considered as sufficient and σ2

σ1
≥ ρ as necessary for the case dt∗1

dA ≤ 0. Per definition
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t∗1

tc∗1

cop,1 − cop,2

T

−A(σ21 − σ12)QE

A(σ22 − σ12)QE

r(t1)

l(t1)

tr∗1

Figure 9: Graphical proof of the uniqueness of results from the optimality condition. The intersection of r(t1) and l(t1)

represents the optimal operating time.

of the coefficient of correlation it is |ρ| ≤ 1. Therefore, σ1
σ2
≤ ρ implies σ2 ≥ σ1. The latter again implies

σ2
σ1
≥ ρ. Hence, with

(
σ1
σ2
≤ ρ
)
⇒
(
σ2
σ1
≥ ρ
)

, the necessary condition implies the sufficient condition and

we can simply state (
dt∗1
dA
≤ 0
)
⇔
(
σ1

σ2
≤ ρ
)
.

Now, the case dt∗1
dA ≥ 0 follows directly from the negation of this equivalence:(

dt∗1
dA
≥ 0
)
⇔
(
σ1

σ2
≥ ρ
)

Proof of Property 3.6.3. Alternatively, the sensitivity of t∗1 on the parameter A can be checked by comparison

of the optimal operating times of the pure cost-efficient portfolio, tr∗2 , and the pure risk-efficient portfolio,

tr∗2 : (
dt∗1
dA

Q 0
)
⇔
(
tc∗1 Q tr∗2

)
This can be seen from the risk term and the cost term of optimality condition (cf. Eqn. (36)) as previously

defined in Eqs. (39) and (40). With l(t1) monotone increasing and r(t1) monotone decreasing in t1, we

can indirectly derive sensitivity properties of t∗1 from the sensitivities of l(0), l(T ), and the variance minimal

operating time tr∗1 with l(tr∗1 ) = 0 (cf. Figure 9). Knowing that Q2(tr∗1 ) is monotone increasing in tr∗1 , it

can be seen from that the variance minimal operating time is independent from the parameter A:

Q2(tr∗1 ) =QE
σ2

1 + σ2
2 − 2σ12

σ2
1 − σ12

> 0 for σ1 ≷ σ2.
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Therefore, it holds(
∂l(0)
∂A

R 0
)
∧ (tc∗1 < tr∗1 )⇒

(
∂t∗1
∂A

R 0
)
,

(
∂l(T )
∂A

Q 0
)
∧ (tc∗1 > tr∗1 )⇒

(
∂t∗1
∂A

R 0
)
.

For l and its partial differentials we can state

l(0) = −A(σ2
1 − σ12)QE Q 0 for ρ Q

σ1

σ2
,

∂l(0)
∂A

= −(σ2
1 − σ12)QE Q 0 for ρ Q

σ1

σ2
,

l(T ) =A(σ2
2 − σ12)QE R 0 for ρ Q

σ2

σ1
,

∂l(T )
∂A

= (σ2
2 − σ12) R 0 for ρ Q

σ2

σ1
.

Note that from l(0) < 0 follows ∂l(0)
∂A < 0, similarly l(T ) > 0 implies ∂l(T )

∂A > 0. Thus, within the boundaries

where both technologies are part of the pure risk-efficient portfolio, i.e. ρ ≤ σ2
σ1

and ρ ≤ σ1
σ2

(cf. Property

3.6.1), we can conclude

(
tc∗1 Q tr∗1

)
⇔
(
∂t∗1
∂A

R 0
)
.

Proof 1 for Property 3.6.4. Total differentiation of optimality condition Eqn. (36) with respect to σ1 yields

dt∗1
dσ1

(
cop,1 − cop,2 +AQE(σ2

1 − σ12)−A(σ2
1 + σ2

2 − 2σ12)Q2

)
+

+ t∗1A

(
(2σ1 − σ2ρ)QE − 2Q2(σ1 − σ2ρ) +

(
σ2

1 + σ2
2 − 2σ12

)
t∗1D

′(t∗1)
dt∗1
dσ2

)
= 0

⇔ dt∗1
dσ1

=
(t∗1)2A

(
(σ2ρ− 2σ1)QE − 2Q2(σ2ρ− σ1)

)
cinv,2 − cinv,1 + (t∗1)3A(σ2

1 + σ2
2 − 2σ12)D′(t∗1)

. (42)

Consider dt∗1
dσ1
≥ 0 which requires the enumerator in Eqn. (42) to be negative. Consequently, two cases have

to be differentiated:

I) For non-negativity of the term Q2(·) in Eqn. (42), let be ρ > σ1
σ2

: Consequently, Q2
QE
≥ σ2ρ−2σ1

2σ2ρ−2σ1
has

to hold. Using Q2
QE
≥ 0 as the lower bound, it follows ρ ≤ 2σ1

σ2
.

II) For negativity of the term Q2(·) in Eqn. (42), let be ρ < σ1
σ2

: Then dt∗1
dσ1
≥ 0 requires Q2

QE
≤ σ2ρ−2σ1

2σ2ρ−2σ1
.

Using Q2
QE
≤ 1 as the upper bound, it follows ρ ≥ 0.

Hence, within the boundaries σ1
σ2
> ρ and σ2

σ1
> ρ, it can be concluded dt∗1

dσ1
≥ 0 for all σ1, σ2, ρ ≥ 0.29

29For
dt∗1
dσ1
≤ 0, we can proceed vice versa to obtain a sufficient condition for σ1, σ2, ρ fulfilling the assumption. Since we do

only obtain the null set, the existence of a parameter set with
dt∗1
dσ1
≤ 0 remains unproven.
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Proof 2 for Property 3.6.4. Total differentiation of Eqn. (36) with respect to σ2 yields

dt∗1
dσ2

(
cop,1 − cop,2 +AQE(σ2

1 − σ12)−A(σ2
1 + σ2

2 − 2σ12)Q2

)
−

− t2A
(
σ1ρQE + 2Q2(σ2 − σ1ρ)−

(
σ2

1 + σ2
2 − 2σ12

)
t∗1D

′(t∗1)
dt∗1
dσ2

)
= 0

⇔ dt∗1
dσ2

=
(t∗1)2A

(
σ1ρQE + 2Q2(σ2 − σ1ρ)

)
cinv,2 − cinv,1 + (t∗1)3A(σ2

1 + σ2
2 − 2σ12)D′(t∗1)

. (43)

The case dt∗1
dσ2
≤ 0 requires the enumerator in Eqn. (43) to be non-negative. It needs to be distinguished

between the following cases:

I) For non-negativity of the term Q2(·) in Eqn. (43), let be ρ < σ2
σ1

, i.e. Q2
QE
≥ σ1ρ−2

2(σ1ρ−σ2)
. Using Q2

QE
≥ 0

as the lower bound, it follows ρ ≥ 0.

II) For negativity of the term Q2(·) in Eqn. (43), let be ρ > σ2
σ1

: Then dt∗1
dσ2
≤ 0 requires Q2

QE
≤ σ2ρ−2σ1

2σ2ρ−2σ1
.

Using Q2
QE
≤ 1 as the upper bound, it follows ρ ≤ 2σ2

σ1
.

Taken both cases together and considering the boundaries σ1
σ2
> ρ and σ2

σ1
> ρ, we obtain for all σ1, σ2, ρ ≥ 0,

dt∗1
dσ2
≤ 0.30

Proof 3 for Property 3.6.4. As shown, total differentiation of the optimality condition Eqn. (36) with respect

to ρ leads to

dt∗1
dρ
(
cop,1 − cop,2 +AQE(σ2

1 − σ12)−A(σ2
1 + σ2

2 − 2σ12)Q2

)
−

− t∗1A
(
σ1σ2QE − 2σ1σ2Q2 −

(
σ2

1 + σ2
2 − 2σ12

)
t2D

′(t2)
dt∗1
dρ

)
= 0

⇔ dt∗1
dρ

=
(t∗1)2Aσ1σ2 (Q1 −Q2)

cinv,2 − cinv,1 + (t∗1)3A(σ2
1 + σ2

2 − 2σ12)D′(t∗1)
(44)

For dt∗1
dρ ≤ 0, it can be reasoned from Eqn. (44) that (Q1 −Q2 ≥ 0) ⇔

(
Q2
QE
≤ 1

2

)
has to be fulfilled. As

seen in proof 2, if σ1
σ2
≥ ρ the relation Q2

QE
≤ σ2

1−2σ12

σ2
1+σ2

2−σ12
holds and represents an upper bound for the quotient

Q2
QE

. Thus, we can conclude (
σ2

1 − σ1σ2ρ

σ2
1 + σ2

2 − 2σ1σ2ρ
≤ 1

2

)
⇔ (σ1 ≤ σ2) .

Hence, within the boundaries σ1
σ2

> ρ and σ2
σ1

> ρ, we can conclude dt∗1
dσ1
≤ 0 for all σ1, σ2 ≥ 0 with

σ1 ≤ σ2.

30Applying the analogue estimation for
dt∗1
dσ2
≥ 0, however, cannot prove the existence of a feasible set of σ1, σ2, ρ as we only

obtain the null set.
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