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1 Introduction

Matching matters. Not only marriage can make or ruin a man�s life, but

so can the choice of the right or wrong school, university, job or house. At

�rst sight these matching problems seem very di¤erent in nature. While

some of them, like most housing or job matching problems, are solved quite

satisfactorily in more or less frictionless markets, others seem to inevitably

generate chaotic conditions which cannot be eliminated without the help of

a central matching authority.

It is widely accepted that the crucial di¤erence between problematic

matching problems and those solved satisfactorily in decentralized matching

markets is the availability of su¢ cient �exible means to transfer the utility

from one market side to the other. Thus we are faced with two separate

branches of research on matching games. On the one hand there is a huge

literature on matching in housing or labor markets with side payments, in

which perfect information together with a �exible price system would allow

an e¢ cient perfectly competitive solution1, while search or other frictions

may distort the market outcome and hence call for political activities.2

On the other hand, there is an unrelated literature on the allocation prob-

lems that arise in student or school matching problems, where side payments

are not available so that there is no price mechanism to organize the market.

Roth (1984) was the �rst to discuss the role of centralized authorities for the

performance of such matching markets. He described the problems caused

by the unravelling of the search over time in the market for medical interns

and attributed the success of the centralized matching procedure, the NRMP,

which was introduced to solve the allocation problem, to the stability of the

1The linear assignment problem with a nice perfectly competitive solution was pre-
sented by Shapley and Shubik (1974). Roth and Sotomayor (1990, part III) present re-
sults from several papers which show that many of the properties of this special model
generalize to models with non-linear transfers and many-to-one matching problems.

2As it is not the focus of this paper we do not try to give an adequate introduction to
the literature on search and matching markets, but only refer to the scienti�c background
paper �The Prize in Economic Sciences 2010 - Advanced Information� compiled by the
Economic Sciences Prize Committee of the Royal Swedish Academy of Sciences.
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outcomes constructed by this algorithm. Later Roth (1991) con�rmed this

intuition with the help of a comparison of seven British matching authorities

showing that those which did not construct stable solutions but allowed sim-

ple manipulation by blocking pairs did not succeed to eliminated the chaotic

search frictions. Following these seminal papers several authors identi�ed

further matching problems in which the lack of a price system caused various

ine¢ ciencies in markets with or without a central authority3.

In this context also the school choice problem received considerable atten-

tion. The matching of pupils to schools is usually considered as an important

political issue, because parents feel very strongly about the education of their

children and articulate their disappointment about the outcome of a school

matching very loud and clearly. Abdulkadiroglu and Sönmez (2003) present

an abstract formulation of the school choice problem and an algorithm to

construct the e¢ cient stable solution, while Abdulkadiroglu et.al. (2005a)

and (2005b) describe and compare the performance of the two most popular

school matching procedures used in the United States.

These papers are typical for the market design approach established for

matching problems without side payments4. They identify properties of a

desirable solution, describe the procedures used to solve a real matching

problem, compare the outcome of the real institution with the ideal solution,

and propose mechanisms which would produce better outcomes. This way

they helped improve the performance of several matching markets including

those which assign graduates of law, psychology or medicin to their �rst jobs,

students and children to schools and universities, and even organ transplants

to potential receivers.

3Roth and Xing (1994) present further matching problems which unravel over time.
Unravelling problems in the market for law clerks are described in Avery et.al. (2001).
In Germany the matching of medical students to universities is run by a complicated
centralized matching procedure discussed in Braun et.al. (2010). Roth et.al. (2004,2005)
even discuss the e¢ cient assignment of kidney donors to transplant patients.

4Note that Roth (2008) does not only summarize the success story of these applications
of game theory, but also mentions (p.8-9) the worries about the long run e¢ ciency in the
market for interns which we discuss below.
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However, concentrated on the last di¢ cult step of these allocation prob-

lems the analysis in all these models neglects that money would, in principle,

allow to transfer utility also in these applications, and that the lack of a price

system is usually justi�ed by informational or legal barriers. In the market

for medical interns or judicial clerks, for instance, the available transfer pay-

ments are not su¢ ciently �exible as a competitive price system would have to

produce personalized wage o¤ers based on information which is unavailable

to the market participants. In other markets like those of the public educa-

tion system competitive prices are often considered as unfair and therefore

as politically unacceptable. Even in marriage the distribution of the gains

can be shared between the spouses with the help of explicit or implicit side

payments.

If such side payments are feasible but �xed ex ante the matching mecha-

nism is nothing but a complicated rationing scheme which is used after the

transfers are already �xed or for which they are determined in a bargaining

stage later. Many problems in decentralized matching markets, in particu-

lar the unravelling of the outcome over time, can be interpreted as a rush

for the rents that remain whenever a market does not reach a competitive

equilibrium. These rents do not disappear if the pure matching problem is

solved e¢ ciently. They rather go to some of the market participants and

may distort their long run incentives considerably.

If we include the distribution of long run rents into the analysis, stability

and even ex post e¢ ciency of the matching problem is not as desirable for

a satisfactory performance as it appears if one concentrates on the match-

ing outcome alone. Kamecke (1989) showed that the market participation

constraint may already be distorted if the transfer payments are determined

before the e¢ cient matching is implemented. Even if the subsequent paper

by Bulow and Levin (2006) demonstrates that this ine¢ ciency depends on

the exact formulation of the matching model and that it almost vanishes

if the model allows a little bit more competition, one would expect similar
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problems to appear in matching situations in which there is not even an

incomplete price mechanism at work.

In this paper we address the question of the long run e¢ ciency of matching

mechanisms in the context of a simple school matching problem. For this

purpose we combine a standard rent o¤er equilibrium in a simple location

choice model with a standard school choice solution of a simple matching

model. Our schools di¤er only by their location and the households prefer

schools, because their children have to bear higher transportation costs if

they live further away from their schools. In the long run the households

choose their locations freely and the higher value of the locations close to

the schools is re�ected by higher equilibrium prices of these locations. We

will show that in this environment both, the stable and the Boston matching

mechanism produce ine¢ cient allocations and that the Boston allocation is

less ine¢ cient than the stable allocation.
With our model we combine two strands of literature. Our long run model

is a very simple urban economy in which identical mobile households consume

land and a local public service with rivalry in consumption. The capacities of

the schools are �xed and there are enough places for all households, but the

capacities are distributed such that there is excess supply of schools in the

center and excess demand for those in the outskirts. Our short run model, on

the other hand, is a simple assignment problem in which the children of the

households are matched to a school with a centralized matching mechanism.

Our long run model with land and schooling does not have a natural

source of market failure so that it is not surprising that it is possible to

decentralize the e¢ cient allocation in a competitive market system. If com-

petitive prices can form for both, school capacities and land, the e¢ cient

allocation is reached as a simple bid-rent equilibrium in the sense of Alonso

(1964). In order to generate a short run matching problem we therefore

impose the natural political restriction that schooling is costless (or that

school fees are identical for all children). Under this restriction the value of
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the public service is capitalized in the housing prices5. In the light of the

Tiebout-hypothesis, it is therefore not surprising that the e¢ cient allocation

can still be reached if we allow a complicated location dependent housing

price mechanism, or if we introduce a local authority which solves the school

matching problem with the ex ante e¢ cient location dependent matching

mechanism.
It is the central point of our paper that long run ine¢ ciencies appear

as soon as the short run matching mechanism depends on the household

preferences, and that these ine¢ ciencies vary with the matching mechanism

used. This is an important observation, because the introduction of �partici-

patory�elements into the school matching mechanism is the central concern

of the school choice literature. In the �rst paragraph of their seminal pa-

per Abdulkadiro¼glu and Sönmez (2003) state that �Wealthy parents already

have school choice, because they can a¤ord to move to an area with good

schools, or they can enroll their child in a private school. Parents without

such means, until recently, had no choice of school, and had to send their chil-

dren to schools assigned to them by the district�. Then they concentrate on

the discussion of criteria which a participatory matching mechanism should

have such as Pareto e¢ ciency, strategy proofness, envy freeness and �if the

preferences of the schools are also considered �stability of the match. The

result of their analysis is a recommendation how to introduce elements of

household preferences into the school matching mechanism without violating

fundamental requirements of fairness and e¢ ciency, but this recommenda-

tion ignores the long run e¢ ciency of, for instance, the residential housing

market.
The reason for the long run market failure in our model is closely related

to the discussion of cardinal utility considerations in school matching. In a

recent paper Abdulkadiro¼glu, Che and Yasuda (2011) demonstrate that there

5Capitalization of local public services as a mode of the Tiebout (1956) hypothesis
models was �rst proposed by Oates (1969), even though e¢ ciency of these equilibria must
be considered an exception as pointed out by Bewley (1981).
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is a natural con�ict between the strategy proofness of the DA mechanism and

the sensitivity to intensities of cardinal preferences which, for instance, the

Boston mechanism incorporates better than DA. In the DA algorithm every

household submits a preference ordering to the matching authority. The

households are tentatively assigned to their �rst choices and if a school is

over-demanded the households with the lowest priorities are rejected and have

to turn to their next best alternatives.6 The tentative matching generates

a Vickrey-property of this algorithm, because unsuccessful applicants can

always turn to their next best alternatives later without diminishing their

success probabilities for these alternatives by waiting in vain.

This is very di¤erent in the Boston mechanism (BM), where such a tenta-

tive matching is not used. Instead BM matches as many applicants as possi-

ble in each round and rejects only those in over-demanded schools who then

have to apply for the remaining capacities. Consequently over-demanded

schools may be �lled already in the �rst round, creating an incentive to drop

high ranked over-demanded schools from the list in order to improve the

chance to get a place in a less over-demanded lower ranked school in an

earlier round of the mechanism. This incentive to misrepresent preferences

makes rational play in the BM very di¢ cult and has therefore usually been

considered as a major drawback of the BM.

Abdulkadiroglu et.al. (2011) readdress this issue. They argue that strat-

egy proofness means that the participants have no incentive to reveal the

intensity of their preferences. They propose a model in which all house-

holds have the same ranking of schools but di¤erent cardinal von Neumann-

Morgenstern utility values which they aggregate ex ante with the help of a

symmetric priority lottery. In this model they show that the households with

less intense preferences are the �rst to omit an over-demanded school from

6If all schools rank the households in the same order the households with the highest
priorities get their �rst choices, while households with lower priorities have to take what�s
left �so that they get exactly the same as in the serial dictatorship (if the same priorities
are used). Pareto improvements for the households as computed by the top-trading cycles
algorithm are not possible in our model.
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their list in the BM. This way they generate a framework in which ex ante

e¢ ciency distinguishes the matching mechanisms and makes BM perform

better than DA even though all matchings are ex post e¢ cient.

By embedding the school matching in a simple spatial model we give

more economic meaning to this argument. In the second stage of our model

households have chosen their location and prefer closer schools because it is

more costly for their children to travel from home to distant schools. These

transportation costs serve as a simple cardinal measure for the utility loss.

Moreover, the spatial structure of our model creates a natural preference

ranking which di¤ers between households. In our �rst stage a perfectly com-

petitive housing market endogenizes the school rankings of the households.

In this stage we assume identical, mobile households thereby generating an

outcome which gives the same long run expected utility to everybody, while

the short run utility di¤erences at di¤erent locations are re�ected in the

equilibrium prices.

This way we reestablish the major result by Abdulkadiroglu et.al. (2011)

in a more general and (in our opinion) more natural economic framework.

We demonstrate that short run e¢ ciency allows for many di¤erent outcomes

in the matching market so that the usual arguments in favor of stable or un-

dominated solutions apply. Long run e¢ ciency, on the other hand, requires

the minimization of total transportation costs so that it is ine¢ cient to �ll

the school capacities with the children from symmetric closest neighborhoods

of the schools. Instead applicants from a neighborhood with over-demanded

schools should receive preferred access at the neighboring locations and we

will show, that this task is not solved by DA nor by BM, and that BM out-

performs DA systematically. Finally, we will also show that this advantage of

BM disappears if the households know their priorities before they participate

in the short run mechanism, because the incentive to reveal the intensity of

the preferences depends crucially on the uncertainty involved in this lottery,

and that both BM and DA create arti�cial social segregation if the priorities
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are known already before the housing market clears.

For this purpose we proceed as follows. In section 2 we present a simple

limit model with a continuum of households and locations, and with �nitely

many schools distributed over the city such that there is excess demand for

schooling in the outskirts and excess supply towards the center. In section

3 we discuss the e¢ cient outcome in this model and in sections 4 and 5 we
characterize the outcomes of our two-stage allocation mechanism if a stable

solution is implemented with DA and if BM is used to assign children to

schools. In section 6 we discuss the consequences of di¤erent assumptions on

the information asymmetries in our model. The �nal section concludes with

an outlook on further potential applications of our modelling approach.

2 The model

In order to embed our school matching model in a simple general equilibrium

framework we use the following spatial economy. A linear city consists of a

continuum of uniformly distributed identical houses which are characterized

by their location l 2 [0; 1]. Houses are public property. They are o¤ered at
the competitive prices p (l) ; and the housing revenues together with a lump

sum tax (or transfer) � constitute the public revenues B =
R 1
0
p (l) dl + �

which are used to �nance the schooling expenses.

The houses are bought by a continuum of households h 2 H endowed

with a probability measure �. Both, the set of households and the set of

houses are assumed to have measure one so that a measure preserving7 map-

ping of households to locations is feasible. Each household has a child which

has to be educated in one of the schools in town. Education is costly and

expenses ch needed to educate a child vary with the child�s ability. We as-

sume that the household characteristic ch is uniformly distributed on [0; 1],

independent of the school, and (for most of the paper) unobserved by the

7For measure preserving mappings as a natural generalization of a matching for a
continuum of agents see Kaneko and Wooders (1986).
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households. Further, we assume that all households are ex ante identical and

choose their residential locations without knowing their children�s ch so that

we will have ex ante equal treatment of the households in equilibrium. It is

therefore natural to model the location of the household as a random char-
acteristic of the households which is independent of the education cost, so

that the households�and their children�s characteristics (l; c) are distributed

uniformly on [0; 1]2.

Each child attends one of the S schools s 2 S in town. The quality of the
education is the same in every school. School s is characterized by its location

Ls 2 [0; 1] with L1 < : : : < LS and by its capacity Ks 2 [0; 1]. We assume
that the total school capacity just allows to educate all children,

P
sKs = 1,

and that these capacities are concentrated towards the city center which

we place at the right boundary of the town, that is at L = 1. Denote the

midpoint between two schools by Ls = (Ls + Ls+1) =2 for s = 1; : : : ; S�1, let

L0 = L0 = K0 = KS+1 = 0, and LS+1 = LS = 1, and denote the cumulative

capacity by �t =
Pt

s=0Ks for t = 0; : : : ; S. To de�ne the concentration we

consider the rings of households living closest to school s and assume that

the schooling capacity per child in these rings of closest distance is increasing

as we move from the city limit at L = 0 towards the city center at L = 1:

Ks

Ls � Ls�1
<

Ks+1

Ls+1 � Ls
: (1)

This assumption (1) generates excess demand for schooling at L = 0 and

excess supply at L = 1 so that some children have to travel towards the city

center to �ll the excess capacity. Moreover, (1) implies that the cumulated

average excess demand at the ring boundaries
�
Ls � �s

�
is positive and n-

shaped: it increases up to the location s at which Ks=
�
Ls � Ls�1

�
< 1 �

Ks+1=
�
Ls+1 � Ls

�
and decreases thereafter.

A (complete) matching of households to schools is represented by a
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measurable mapping � : H ! S. Throughout the paper we concentrate
on school choice problems which guarantee a place to every child, that is

we assume � (��1 (s)) = Ks for every school. Consequently we do not have

to specify matchings that allow outside options at this place. In addition,

we assume that there is a density function m (l; c; s) which characterizes the

mass of households with characteristic (l; c) assigned to school s by

� (fh 2 H jlh 2 L, ch 2 C and � (h) = sg) =
Z
L

Z
C

m (l; c; s) dcdl

for all measurable L � [0; 1] and C � [0; 1] so that
R 1
0

R 1
0
m (l; c; s) dcdl = Ks

holds for all schools s. A household h living at lh is assigned to school s with

probability M (lh; s) =
R 1
0
m (lh; c; s) dc.

For a matching � school s has to bear the total education cost Cs =R 1
0

R 1
0
c �m (l; c; s) dcdl. In order to cover these costs the government deter-

mines a budget for each school Bs in the �rst stage of the game, which may or

may not cover the entire education costs. Throughout the paper we assume

that schools care about their pro�ts Cs � Bs so that they prefer children

with low ch, and that these preferences determine the households�priorities

in the matching mechanism. However, in reality most public schools are

not allowed to select their pupils according to their preferences. In order

to make our model more realistic we can interpret ch as a random priority8

which each household receives in a lottery after he submits his preferences to

the matching authority. In this case it does not make sense to assume that

the education cost depends on ch, but since these costs do not in�uence the

e¢ ciency of the outcome our results are not a¤ected if we replace the school

budget constraints by Cs = Bs = 0.
8See, for instance, the mechanisms discussed in Abdulkadiroglu et.al. (2005). The close

relationship between models with and without school preferences is also discussed in Ab-
dulkadiroglu and Sönmez (2003, p.31). Our assumption of a uniform ranking of pupils by
all schools according to ch simpli�es the matching problem considerably. In particular the
stable solution constructed by DA and the solution constructed by serial ch-dictatorship
conincide and there is no room for further improvement if the school preferences don�t
matter as in Abdulkadiroglu and Sönmez (2003).
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Households care about di¤erent schools because the transportation to

school is costly. In addition to the housing price p (lh) household h has to

pay the linear transportation cost t �
��L�(h) � lh

�� for the distance from his

home lh to the location L�(h) of the school at which the child living in this

household is accepted. Moreover, we assume that every household has to pay

the lump sum tax � which we introduce to balance budgets so that the total

utility loss of h is given by

uh = � + p (lh) + � (h) � t � jlh � Lsj :

If the households choose their locations before observing ch they minimize

their ex ante expected utility loss

Uh =

Z 1

0

uhdc = � + p (lh) +
SX
s=1

t � jlh � Lsj �M (lh; s)

The �nal allocation in our model is constructed in a two stage proce-

dure. In the �rst stage the housing market clears at equilibrium prices p� (l)

and the government determines the budgets Bs granted to the schools. In

this stage the government determines the Bs such that they just cover the

ex post equilibrium education costs in all schools, while the households max-

imize their expected utilities. In the second stage each household submits

a complete ranking Rh from the set < of complete ordered preference lists
Rh = (Rh (1) ; : : : Rh (S)) of all S schools9, a centralized matching mechanism

determines the matchingm (�) of children to schools, and (in order to guaran-
tee ex post feasibility of the outcome) the lump sum tax (or subsidy) � for the

households always balances the total budget, � =
P

s(Cs � Bs)�
R 1
0
p (l) dl.

Throughout the paper the (strategy) pro�le R : H ! < is assumed to be
measurable.

9As the households do not have outside options it is reasonable to restrict the atten-
tion to complete rankings of all S schools. Under our assumption of su¢ cient capacity
this guarantees that every ranking will generate a feasible solution under the matching
algorithms discussed in the following.
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3 E¢ ciency

Free mobility of the households implies that that the ex ante expected equilib-

rium payments Uh = Euh coincide in all locations. We therefore restrict also

our e¢ ciency discussion to the attention to outcomes with ex ante identical

utilities. Since Uh increases with the transportation costs, while the total edu-

cation costs are not in�uenced by the matching of children to schools, society

should try to select an aggregate transportation cost minimizing matching.

In our linear model this minimum is reached whenever no children travel
unnecessarily to a school in the �wrong�direction away from the city center.

The �capacity ring�matching

m� (l; c; s) =

�
1 if l 2 [�s�1;�s]
0 otherwise

(2)

obviously solves this problem by �lling the school capacities with households

living in capacity rings. The resulting minimal transportation costs are:

T � = t �
SX
s=1

Z �s

�s�1

jl � Lsj dl:

If all school locations s < S satisfy �s � Ls then every school has to accept

some children who travel away from the center and m� is the unique e¢ cient

matching. However, if �s < Ls some children living on the left side of the

school, lh < Ls, have to move further towards the city center. In this case

e¢ ciency requires thatKs of the households in the ring [�s�1;Ls] are assigned

to school s, and that the rest travels further towards the center. A matching

which does not satisfy this condition is ine¢ cient, but it does not matter for

e¢ ciency which children have to travel.

Since our simple urban model does not exhibit a natural market failure

it is not surprising that the e¢ cient allocations can be decentralized as com-

petitive equilibria with location dependent prices p� (l) for the houses and

with school fees F �s . Ex ante indi¤erence of the mobile households requires

12



that all total payments coincide so that the e¢ cient matching can only be

decentralized if

p� (l) + t jLs � lj+ F �s = p0 (3)

holds for �s�1 � l � �s and all s 2 f1; : : : ; Sg. Optimality of the school

choices in (2) implies that p� (l) is continuous at the ring borders �s � Ls

(by assumption (1)), so that

F �s+1 � F �s = 2 � t �
�
Ls �maxf�s; Lsg

�
(4)

must hold for all s 2 f1; : : : ; S � 1g. The level of the equilibrium fees F �S
and the housing prices p0 are undetermined, because higher fees and prices

lead to lower � and hence to the same allocation. The e¢ cient equilibria

are therefore characterized by (3) and (4), if we normalize, for instance, by

F �S = � = 0.

Throughout this paper we will assume that schooling is free of charge. In

this case the value di¤erence between di¤erent school neighborhoods capital-

izes in the housing prices so that we could still reach the e¢ cient solution if

we can impose school dependent housing prices

bps (l) = p� (l)� F �s :

For these housing prices all households are indi¤erent so that the matching

m� is an equilibrium outcome. For this competitive mechanism to work,

however, there have to be S di¤erent prices at each location.

In order to reach this capitalization equilibrium in a more natural setting

with only one discontinuous price function

p�� (l) = p� (l)� F �s for �s�1 � l � �s for all s 2 f1; : : : ; Sg

we have to introduce a matching agency which forces households to accept the

e¢ cient equal treatment matchingm� in the last stage. This matching agency

therefore uses a purely location dependent algorithm to assign children to
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schools. In this case the households know to which school the children are
sent when they move to their houses so that it is indeed the combination

of free (or equal fee) schooling and a preference depending school choice

procedure which introduces a second best problem into our model.

Example To demonstrate the problem consider the following example.

Suppose there are three schools s = 1; 2; 3 located at Ls 2 f1=3; 2=3; 1g,
while the population of pupils is distributed uniformly on the unit interval.

All schools are identical in quality and they all have a capacity Ks = 1=3.

We further assume that the linear transportation costs are given by t = 1 for

each distance unit from the location to the school so that the school located

at the center L3 = 1 is under-demanded, while the left school at L1 = 1=3 is

over-demanded.

The e¢ cient matching in this example is10

m� (l; c; s) =

�
1 if l 2 [(s� 1) =3; s=3]
0 otherwise

with total transportation costs

T � =

Z 1=3

0

jlj dl +
Z 2=3

1=3

jl � 1=2j dl +
Z 1

2=3

jl � 3=4j dl = 1=6:

They measure the e¢ ciency of the allocation since all utilities coincide and

since the total education costs are C = 1 independently of the matching.

As there are no children traveling outward the prices are increasing every-

where so that the e¢ cient allocation is realized with the price function

p� (l) = 1=6 + l, the school fees F � = (2=3; 1=3; 0), and the school bud-

gets Bs = 1=3. For these prices and fees every household pays a total of

p0 = 7=6 for housing and school fees so that the total revenue just covers the

education costs of 1 and the total transportation costs of 1=6 (� = 0).

10Since no students have to commute from the outer rings to the center this matching
is unique.
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4 Deferred Acceptance

In this section the households�utilities are not observed by the schools or the

social planner. Instead the (strict) preference list Rh = (Rh (1) ; : : : ; Rh (S))

over schools becomes a strategic choice of each household. In �nite models

stability of a matching is a well-known concept. A proposed matching can

be blocked by a school-household pair if the school prefers the household�s

child to some of its proposed pupils, while the household prefers the school

to the proposed school. A matching is stable if it cannot be blocked, and it is

well-known that such a stable outcome can be constructed with the following

deferred acceptance (DA) algorithm11:

1. in the �rst iteration i = 1 every household applies for one of the places

in the �rst school Rh (1) on his preference list; for each school s the

applicants are collected in the set ASs1:
12

2. in iteration i = 1; : : : the critical cost level

cSsi = max
�
c 2 [0; 1]

���(h 2 ASsi jch � c) � Ks

	
is determinedeach for each school; each school s �lls the open capacity

Ks tentatively with the best households from the actual set of appli-

cants ASsi and the remaining candidates
�
h 2 ASsi

��ch > cSsi
	
are rejected;

3. if there are households h 2 ASsi who were rejected in the present itera-
tion i by the school s which ranked jhi-th on their preference list, these

households are forwarded as additional applicants to the next school

Rh (jhi + 1) on their preference lists so that

ASsi+1 =
�
h 2 AS

��ch � cSsi
	
[
[
t

�
h 2 AS

��ch > cSti and Rh (jhi + 1) = s
	

11See Roth and Sotomayor (1991) for a survey of the origins of the algorithm.
12In the following the superscript S denotes stability while the subscript s is the variable

for the schools.
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and the algorithm returns to step 2 setting i = i + 1; otherwise the

algorithm stops with cSs1 = cSsi and A
S
s1 = A

S
si.

In the in�nite model discussed in this paper stability can be de�ned in the

same way, and our version of DA works also for a continuum of households,

even though it does not necessarily converge in �nitely many steps. However,

measurability of the strategies guarantees that the decreasing sequence of

critical costs converge to cSs1 = limi!1 c
S
si so that the algorithm converges

to a well-de�ned (tentative) stable limit13 which assigns the applicants h 2

ASs1 = limi!1A
S
si to school s.

The structural assumption (1) makes it easy to predict the outcome of the

deferred acceptance algorithm. For all households it is a dominant strategy

to apply at the closest schools �rst and all schools use the same criterion c to

rank their applicants, while (1) guarantees that for large H the schools are

less over-demanded as we move towards the city center. We can therefore

conclude that the �rst school s = 1 will eventually have the strictest entry

requirement cS11 and that schools further downtown accept also more and

more costly applicants. Rejected applicants have to travel further downtown,

and since the critical costs are decreasing a dominant strategy involves listing

the closest school towards the city center next (perhaps also after listing some

schools further away from the city center which can never be successful after

a rejection). The new applicants allow the schools to improve the average

cost parameter of their pupils, and again the children with the highest costs

are rejected. This way we construct a class of dominant strategies which

construct a unique ex post stable matching so that also the schools have no

incentive to misrepresent their preferences.

Theorem 1 (Stable solution) The critical cost level for school s is given by

cSs1 = Ks=
�
Ls�1 � �s�1

�
. The stable matching �S assigns the low cost chil-

13Note that each household can be rejected at most S times so that the total mass
of rejections during the procedure is bounded by S. If a positive mass " > 0 remained
unmatched in the limit, the total mass of rejections would diverge.
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dren to their most preferred schools and higher cost children further down-

town, so that the corresponding matching density satis�es

mS (l; c; s) =

8<:
1 if

�
l 2 [Ls�1;Ls) and c 2 [0; cSs1]

	
or
�
l 2 [0;Ls] and c 2 (cSs1; cSs+11]

	
0 otherwise.

The unique limit allocation constructed by the corresponding two-stage market

mechanism is ine¢ cient.

Proof: In the �rst iteration the households located in the rings
�
Ls�1;Ls

�
select school s as their �rst choices, and the critical cost levels are set to

cSs1 = min
�
Ks=

�
Ls � Ls�1

�
; 1
	
so that monotonicity of the critical costs

cS11 � : : : � cSS1 holds by construction (with a strict inequality as long as

cSs1 < 1).

Suppose that the monotonicity of the critical costs holds in iteration i,

i.e. cS1i � : : : � cSSi (with a strict inequality as long as c
S
si < 1), then it also

holds in iteration i+1: if new applicants lead to a decrease of the critical cost

level cSsi+1 < cSsi then monotonicity implies that these new applicants must

have been rejected at a school s0 < s and hence in particular in school s� 1
before. Since the critical costs never increase in an iteration, cSsi+1 � cSsi, this

implies cSsi+1 � cSs�1i � cSs�1i+1 so that monotonicity holds also for iteration

i+ 1.

Given this monotonicity we can construct the �nal outcome with the fol-

lowing modi�ed algorithm: after the �rst iteration, no household will ever

turn successfully to s = 1, so that cS11 = cS11 = K1=L1. The rejected

households h 2 [0;L1] will turn to s = 2 and decrease the critical cost to

cS21 = K2=(L2 � K1). All households h 2 [0;L2] who were rejected by

s 2 f1; 2g will eventually turn to s = 3 and decrease the critical cost to

c331 = K3=(L3�K1�K2) = K3=(L3��2), and so on. This way we construct

the critical costs cSs1 and the matching mS as de�ned in the theorem.

17



Finally, note that (1) implies that cS11 < 1 so that there is some " > 0 such

that the mass " of children travel from their locations l 2
�
0; "=

�
1� cS11

��
to some school s > 1, while another mass " of children travel from their

locations l 2
�
L1 � "=cS11;L1

�
to school 1. Moreover, we can select " small

enough to garantee that L1 � "=cS11 > L1 so that the live to the right of L1.

If these children exchange their schools the aggregate transportation costs

are reduced by more than
�
L1 � L1 � "=

�
2cS11

��
� " > 0, because each such

exchange of children saves the transportation costs spent on traveling away

from the city center. �

Example In the example introduced above all households with loca-

tions l 2 [0; 1=2) prefer the left school, so that the available capacity in the

inner ring is �lled with the applicants whose costs are below cS31 = 2=3. The

households with locations l 2 (1=2; 5=6] prefer the middle school so that the

critical cost level cS21 = (2=3) (6=5) = 4=5 �lls the school with a mass of 4=15

living in the middle ring and (4=5� 2=3) =2 = 1=15 in the inner ring. The
remaining households commute to the center at l = 1. The stable matching

density is therefore given by

mS (l; c; s) =

8>>>>>><>>>>>>:

1 if s = 1, l 2 [0; 1=2] and ch 2 [0; 2=3]
1 if s = 2, l 2 [0; 1=2] and ch 2 [2=3; 4=5]
1 if s = 2, l 2 [1=2; 5=6] and ch 2 [0; 4=5]
1 if s = 3, l 2 [0; 5=6] and ch 2 [4=5; 1]
1 if s = 3, l 2 [5=6; 1]
0 otherwise.

The total transportation costs generated by this stable matching are

T S =
2

3

Z 1=2

0

j1=3� lj dl + 2

15

Z 1=2

0

j2=3� lj dl + 4
5

Z 5=6

1=2

j2=3� lj dl

+
1

5

Z 5=6

0

j1� lj dl +
Z 1

5=6

j1� lj dl = 28

135
:
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They exceed the minimum transportation costs, because 2=3 of the house-

holds living in [1=3; 1=2] and 4=5 of those in [2=3; 5=6] should also commute

inward to the center instead of outward.
The possibility that the children may have to travel long distance to the

school diminishes the value of the left locations. To level this disadvantage

the equilibrium prices (calculated again such that � = 0 and Bs = 1=3) have

to re�ect the expected travel costs in each location,

pS (l) = 1 +
28

135
� E

�
T S (l)

�
which in turn are determined by

E
�
T S (l)

�
=

8>>>><>>>>:
23=45� l if l 2 [0; 1=3]
1=15 + l=3 if l 2 [1=3; 1=2]
11=15� l if l 2 [1=2; 2=3]
�5=15 + 3l=5 if l 2 [2=3; 5=6]
1� l if l 2 [5=6; 1]

The e¢ ciency loss caused by the stable matching is re�ected by the higher

price at the school location s1 = 1, where the households don�t have to pay

any transportation costs. At the other two school locations they pay less than

in the e¢ cient matching if they do not have to travel, but there is always a

positive fraction of households who have to commute.

5 The Boston solution

The Boston mechanism (BM) does not know a tentative matching. It im-

mediately assigns best applicants to best schools so that households who are

not successful with their earlier priorities are assigned to schools which are

not �lled in earlier iterations. Again the individual rankings Rh are selected

from the set < of all
PS

k=1 k! possible preference lists and R is a (measurable)

strategy pro�le. In the following we denote the expected transportation costs
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of household h for a strategy pro�le R by Th (R), a strategy pro�le in which

household h plays R0h instead of Rh by (R j R0h).
The Boston outcome is constructed with a repetition of the following

steps14:

1. in the �rst iteration i = 1 every household applies for one of the places

in the �rst school Rh (1) on his preference list; for each school s the

applicants are collected in the set ABs1. The remaining capacity is set

to KB
s1 = Ks and the matching is set to �B (h) = ;:

2. in iteration i = 1; : : : ; I each school s �lls the remaining capacity KB
si

with the best households from the actual set of applicants ABsi: for each

school the critical cost level is determined as

cBsi =

8>><>>:
0 if KB

si = 0

inf
�
c
���(�h 2 ABsi jch � c

	
) � KB

si

	 �
if ABsi 6= ;
and KB

si > 0
1 otherwise

(5)

the low cost households are matched to school s, �B (h) = s if h 2

ABsi and ch 2 [0; cBsi]; the remaining candidates
�
h 2 ABsi

��ch > cBsi
	
are

rejected15;

3. if there are rejected households, they are forwarded as applicants to

the next school Rh (i+ 1) on their lists so that

ABsi+1 =
[
t

�
h 2 ABti

��ch > cBti and Rh (i+ 1) = s
	

and the algorithm returns to step 2 withKB
si+1 = max

�
KB
si � �

�
ABsi
�
; 0
	
;

otherwise the algorithm stops with a feasible solution.
14The algorithm is the continuous generalization of the Boston matching scheme as

presented, for instance, in Abdulkadiroglu et.al (2005, p.369).
15With this formulation we guarantee that �nitely many applicants high costs are re-

jected. This is necessary to destroy an incentive to deviate below.
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In every iteration of this algorithm every household is either matched or

rejected so that the solution is constructed after at most S iterations. How-

ever, this computational simpli�cation comes with a strategic complication

as the households now face a tradeo¤ if they rank over-demanded schools

�rst, because they risk to lose an attractive alternative during the ongoing

round. To see this consider the strategies of the households living close to

and left of the middle of the town, l = 0:5 � ", in our example above. If

all households submit their true preferences in BM then the �rst school is

over-demanded while the second school can just accommodate all applicants.

So the households living close to l = 0:5 � " are accepted at school 1 with

probability 2=3 and have to travel to the center otherwise which generates an

expected transportation cost of almost T = 4=9: If they turn immediately to

school 2 instead, they are accepted (almost) certainly and therefore expect

transportation costs of a little more than 1=3. We can therefore expect that

these households are the �rst to turn to the schools toward the center of the
city. This improves the performance of the matching mechanism, because

the incentive to turn to a less over-demanded schools is stronger for those

households who care less for the over-demanded school. This will lead to a
more e¢ cient outcome than the stable matching.

Unfortunately, the e¢ ciency gain of the Boston mechanism is not for free,

because the �nite Boston game is strategically much more complex than the

dominance solvable stable mechanism. In particular, it is easy to see that the

game is not dominance solvable. Moreover, the �nite Boston game may su¤er

from a serious coordination problem which may lead to multiple ine¢ cient

equilibrium or to non-existence of a pure strategy equilibrium. In our simple

limit model most of these problems disappear and all equilibria of the game

will turn out to be well-structured, because all remaining strategic di¢ culties

appear in the �Boston scramble�, that is the strategic choice of the schools

ranked second, third and so on, and this part of the game is irrelevant for

the overall welfare as the total transportation costs are not a¤ected by the
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matching realized by the households who are rejected in the �rst round.

The following theorem shows that the Boston equilibrium exists, that it

has the natural ring structure (as long as it is also imposed by e¢ ciency)

with increasing success probabilities towards the city center, and that the

Boston allocation is in general less ine¢ cient than the stable solution.

Theorem 2 Suppose the households do not know their cost characteristic ch

before the application procedure starts, then there is a Boston equilibrium RB.

Moreover, every Boston equilibrium RB has the following three properties:

� (Decreasing �rst round excess demand) There is a school sB > 1 such

that cB11 < cB21 < : : : < cBsB1 and c
B
s1 = 1 for all s = sB : : : S.

� (Ring structure) De�ne ring borders bBs recursively by bB0 = 0 and

bBs = bBs�1 +Ks=c
B
s1. Households h living at lh 2

�
Ls; b

B
s

�
list school s

�rst, that is RBh (1) = s, while households h living at lh 2
�
bBs�1;Ls

�
do

not lose deviating to the equilibrium strategy RBs of a household who

lists school s �rst, that is, Th
�
RB
�
= Th

�
RB j Rh = RBs

�
so that in

particular bBs�1 > Ls�1 ) RBh (1) = s for all households h living at

lh 2
�
bBs�1; b

B
s

�
.

� (E¢ ciency) A Boston equilibrium allocation is at least as e¢ cient as

the stable equilibrium allocations.

The proof of this theorem is rather complicated and therefore deferred to

the appendix.

Example In the example introduced above the �rst two schools are

�lled in the �rst round because their capacities are exhausted by the �rst

choice households with locations l 2 [0; 1=2] and l 2 [1=2; 5=6] so that unsuc-
cessful households have to travel to school 3 at the center. For households
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l 2 [1=2; 5=6] it is obviously better to try to get their �rst choice school so

that �2 = 5=6. Using c
B
11 = 1=3�1 and c

B
12 = 1=3 (5=6� �1) the indi¤erence

condition for households at the boundary of the �rst ring

(�1 � 1=3) � cB11 + (1� �1)
�
1� cB11

�
= (2=3� �1) � cB12 + (1� �1) �

�
1� cB12

�
yields the ring border and the critical cost levels

�1 =
5�

p
5

6
� 0:46066

cB11 =
2

5�
p
5
=
5 +

p
5

10
� 0:72361

cB12 =
2p
5
� 0:89443:

The Boston matching is therefore given by

mB (l; c; s) =

8>>>>>><>>>>>>:

1 if s = 1, l 2 [0; �1] and ch 2 [0; cB11]
1 if s = 2, l 2 [�1; 5=6] and ch 2 [0; cB1"]
1 if s = 3, l 2 [0; �1] and ch 2 [cB11; 1]
1 if s = 3, l 2 [�1; 5=6] and ch 2 [cB12; 1]
1 if s = 3, l 2 [5=6; 1]
0 otherwise

and the total transportation costs generated by this Boston matching are

TB =
5 +

p
5

10

Z 5�
p
5

6

0

j1=3� lj dl + 5�
p
5

10

Z 5�
p
5

6

0

j1� lj dl +

2p
5

Z 5
6

5�
p
5

6

j2=3� lj dl +
p
5� 2p
5

Z 5
6

5�
p
5

6

j1� lj dl +
Z 1

5
6

j1� lj dl

= �5�
p
5

18
+
5 +

p
5

90
+
17
p
5

180
+
35� 14

p
5

72
+
1

72

=
5

18
�
p
5

30
� 0:20324
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As expected these transportation costs satisfy

T � =
1

6
� 0:166 67 < TB � 0:20324 < T S =

28

135
� 0:207 41;

because the households living in [0:46066; 1=2] apply at the more promising

s2 as they should in the social optimum.

Again, the possibility that the children may have to travel long distance

to the school diminishes the value of the left locations. The equilibrium prices

in the Boston equilibrium with the zero lump sum tax are therefore given by

pB (l) = 1 + 0:20324� E
�
TB (l)

�

E
�
TB (l)

�
=

8>>>><>>>>:
0:51760� l if l 2 [0; 1=3]
0:035191 + 0:44721 � l if l 2 [1=3; 0:46066]
0:70186� l if l 2 [0:46066; 2=3]
�0:49071 + 0:78885 � l if l 2 [2=3; 5=6]
1� l if l 2 [5=6; 1]

The comparison of the (reservation) price functions of the e¢ cient, the

stable and the Boston solution illustrates the e¢ ciency gains and losses of

the three solutions. In all three solutions the households at the city center

do not pay transportation costs so that the prices at l = 1 re�ect the equilib-

rium utilities in the expected order. In the e¢ cient matching the households

are assigned to the optimal school with certainty so that the households at

location 1=3 and 2=3 also have no transportation costs and also pay the

same highest price ps = 7=6, while the other households are compensated

for this with lower prices. Both the stable and the Boston matching are

ine¢ cient, because some households travel away from the city center, while

others are rejected at their favorite school. Consequently the peaks of the

reservation price functions are lower than e¢ cient school speci�c housing

price. At s1 = 1=3 the peak of the Boston price function is the lowest, be-

cause the rejected households do not have the chance to apply at school 2.

This is not always the case, as the acceptance probability at school 1 is higher
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in the Boston solution. At the second peak the order is reversed, because

the acceptance probability is higher under the Boston than under the stable

mechanism, while the option for the rejected households is, of course, the

same under both mechanisms.
While there is always unnecessary back traveling in the stable allocation

the Boston solution may even be e¢ cient. To demonstrate this we modify

the example changing the school locations to (1=2; 3=4; 1) and the capacities

to (1=4; 3=8; 3=8). As in section 3 an e¢ cient matching is de�ned by

m� (l; c; s) =

�
1 if l 2 [�s�1;�s]
0 otherwise

but now every matching which avoids traveling away from the city center

leads to the same aggregate expected transportation costs of T � = (1=2� 1=8) =4+
3 (3=4� 7=16) =8 + 3 (1� 13=16) =8 = 12=128 + 15=128 + 9=128 = 36=128.

The Boston matching in this case is characterized by

mB (l; c; s) =

8>>>><>>>>:
1 if s = 1, l 2 [0; 0:5] and ch 2 [0; 0:5]
1 if s = 2, l 2 [0:5; 0:875]
1 if s = 3, l 2 [0; 0:5] and ch 2 (0:5; 1]
1 if s = 3, l 2 [0:875; 1]
0 otherwise.

so that also no child has to travel away from the city center. The expected

transportation costs are, as expected, TB =9=32 = 0:281 25, and hence e¢ -

cient. The stable matching, on the other hand, is

mS (l; c; s) =

8>>>>>><>>>>>>:

1 if s = 1, l 2 [0; 0:625] and ch 2 [0; 0:4]
1 if s = 2, l 2 [0; 0:625] and ch 2 (0:4; 0:714]
1 if s = 2, l 2 [0:625; 0:875] and ch 2 [0; 0:714]
1 if s = 3, l 2 [0; 0:875] and ch 2 (0:714; 1]
1 if s = 3, l 2 [0:875; 1]
0 otherwise.

so that the ine¢ cient transportation costs are T S = 669= (7 � 5 � 64) = 0:298 66.
This ine¢ ciency of the stable solution arises because 40% of the households
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living in [0:5; 0:625] and 71% of the households living in [0:75; 0:875] travel

away from the city center.

6 Early Information

The e¢ ciency gain of BM is only realized as long as the households cannot

foresee the consequences of their application decisions. If the households

know all rankings before they submit their preferences the critical cost lev-

els are su¢ cient information to avoid unsuccessful applications so that every

instability of the �nal outcome generates the potential for a successful devi-

ation in the second stage. Consequently the stable matching is also reached

in the BM equilibrium.

Theorem 3 (Interim equivalence) Suppose all households know their char-

acteristics (lh; ch) before the application procedure starts, then a BM equilib-

rium outcome coincides with the stable solution constructed by DA. Moreover,

all households who are not assigned to school S under the stable matching,

that is all h =2
�
�S
��1

(S), list the school which they are assigned to in the

stable matching �rst, RBh (1) = �S (h).

Proof: Suppose the households apply such that the Boston mechanism

generates an unstable solution, that is, there are households h0 = (l0; c0)

matched to school s0 and h00 = (l00; c00) matched to school s00 such that c0 < c00

and jLs0 � l0j > jLs00 � l0j. Let household h0 change the application strategy
and turn to school s00 in the �rst round. Since s00 accepts h00 its capacity

cannot be �lled with better students in the �rst round (i.e. cBsi � c00), hence

h0 would be accepted in school s0 and can thus increase his payo¤ with the

deviation.

Suppose there is a household h located at lh < 1�KS with �S (h) = s for

some s < S who does not list s �rst. As this household is eventually assigned

to s there is empty capacity in school s after round 1, i.e. cBs1 = 1. Moreover,
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there are households h0 located at lh0 2 (bs�1; bs) whose ch0 is so large that

�S (h0) = S. In equilibrium such a household h0 must be assigned to school

S so that it could deviate successfully from the equilibrium strategy listing

school s �rst.�
This equivalence result is interesting, because it favors DA over BM.

The two procedures yield equivalent outcomes, but this leaves us with the

usual disadvantages of BM. While DA constructs the stable solution from the

preferences revealed truthfully by the households (and schools) BM requires

that rational households compute (or learn) the critical costs and then submit

their best replies.

We can push the same question one step further and ask what happens if

the households have some information about the priorities ch already when

they chose their locations. This is particularly reasonable if these priori-

ties are determined by the individual education costs, because the individual

characteristics as well as the schools�preferences are to a large extent de-

termined by the social attributes of the households so that it is not entirely

convincing to assume that the preference of the schools come as a surprise.

We will now show how the (equivalent) matching schemes DA and BM in-

�uence the �nal allocation if there is full information about the ch from the

very beginning of the two-stage procedure.

Under full information households with a large ch know already in the

�rst stage that they are not successful in an over-demanded school so that

these households have an incentive to move towards the city center. This

diminishes the competitive pressure at the outskirts and makes the housing

prices there interesting for households with low ch. We can therefore expect

a sorting mechanism according to the ch. The resulting segregation of types

is interesting, because e¢ ciency does not impose any restriction on the al-

location of households to locations, because every distribution of household

characteristics (lh; ch) leads to an e¢ cient equilibrium if the planner commits

to implement the e¢ cient matching m�. Moreover, this segregation comes
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with unequal treatment. The households with higher priorities in the school

matching mechanism gain using their advantage to live in neighborhoods

close to schools which do not accept children of disadvantaged households.

In this sense the school matching result reverts the Tiebout (1956) hypothesis

where sorting by types is driven by e¢ ciency in the favour of all households.

Theorem 4 (Ex ante social segregation) Suppose all households know their

priorities ch before the housing market clears, then BM as well as DA generate

an e¢ cient equilibrium
�
�FI ; pFI

�
in which low priority households live closer

to the center, �FI (h) > �FI (h0)) ch > ch0, while the equilibrium prices are

continuous and satisfy

pFI (l) = �s � t � jl � Lsj for l 2 [�s�1;�s]

�s+1 � �s = t � ((Ls+1 � Ls)� 2 �min f(�s � Ls) ; 0g)

All households whose children are assigned to the same school s have the

same equilibrium payment uFIh = �s+ � , while households whose children are

assigned to a school closer to the center are worse o¤, �1 < �2 < : : : < �S.

The proof of this theorem is also deferred to the appendix.

Example In the example introduced above the stable allocation pro-

duced by both DA and BM if the priorities are known before the preferences

are submitted was computed in section 4. Thus it remains to compute the

equilibrium prices and payo¤s in the e¢ cient allocation if the priorities are

known already before the locations are chosen. In this case the locations of

households satisfy lh = ch, the equilibrium matching is given by �� (h) = s

if l 2 [(s� 1) =3; s=3], and the equilibrium prices satisfy p� (l) = l with

�2 � �1 = �3 � �2 = 1=3, so that there is a clear advantage from segregation

for high priority households.
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7 Conclusion

Reading the actual discussion on mechanism design and market engineering

an economist who grew up when general equilibrium analysis was still an

issue may get the impression that the literature focusses too much on the

little problem at hand and too little on the context of these problems. In this

paper we tried to demonstrate that this worry may not be entirely mislead.

We tried to put the matching mechanism as one particular widely discussed

rationing scheme into perspective by understanding it as one last step of

the solution to a larger economic allocation problem. In a simple urban

context we could show that e¢ ciency is indeed context dependent and that

convincing criteria for a well-functioning matching mechanism may not be

as convincing if we look at them from the contextual perspective.

We tried to make this point as simple as possible so that the model which

we introduced for this purpose is too simplistic for a serious application.

Nevertheless, we think that not only the central message of the paper is

more general than the assumptions we impose, but that our approach also

allows generalizations which have the potential to contribute to an interesting

discussion of actual policy issues.

On the demand side our model oversimpli�es the relevant characteristics

of the true school choice problem. In reality schools di¤er by their quali-

ties and households have very strong preferences for these di¤erences. Our

model allows to include this aspect into the willingness to pay for a location

in the neighborhood of a certain school. Of course such an extension would

complicate our analysis severely, but this exercise may contribute interesting

new aspects to the ongoing discussion about the desirable properties of a

school matching mechanism, and contrary of the recent attempts to identify

further re�nements which distinguish between di¤erent e¢ cient outcomes for

instance on the basis of cardinal utility or bounded rationality16 our approach

would allow a discussion solely on the grounds of established e¢ ciency crite-

16As, for instance, Abdulkadiroglu et.al. (2011) or Apesteguia and Ballester (2012).
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ria.
On the supply side our assumptions are even further away from a serious

attempt to describe reality, since our model assumes that school capacities are

�xed, while both quality and quantity of schooling are clearly variable at least

in the long run. In order to reach an e¢ cient solution in our model it would

be enough to extend the schooling capacities at the outskirts and reduce them

in the center of our town, and in the resulting model of horizontal quality

di¤erentiation there would be no serious matching problem left. However, if

location is not the only quality characteristic of a school the supply of schools

becomes a complicated positive and normative issue. A serious attempt to

analyze the consequences of the generation and distribution of economic rents

by an imperfect matching mechanism would have to embed the matching

mechanism in a much more general Tiebout-type regional model, but this

task is left for future research.
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9 Appendix: Proof of Theorems 2 and 4

9.1 Equilibrium Properties (Theorem 2)

Existence of the critical school sB: If cBs1 = 1 then all h with

lh 2
�
Ls�1;Ls

�
select RBh (1) = s so that cBs1 < 1 whenever Ks > Ls �

Ls�1, in particular for all s � �s by assumption (1). Since � (H) = 1

there must be s with cBs1 = 1 so let �sB be the smallest such s. Let eS =�
s 2

�
sB + 1; : : : ; S

	
j cB1s < 1

	
, eSc = �

s 2
�
sB + 1; : : : ; S

	
j cB1s = 1

	
, and

suppose that eS 6= ; so that �sB > �s implies that �
�n
h j RBh (1) 2 eSo� >P

s2 eS Ks even though
P

s2 eS Ks >
P

s2 eS Ls � Ls�1 by (1). This �rst round

excess demand for s 2 eS does not come from lh < L�sB , because a �rst round

application RBh (1) = �sB is always successful while a later (i > 1) applica-
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tion RBh (i) < �sB never succeeds, so that a household with RBh (1) 2 eS and
lh < LsB could reduce his expected transportation cost with a deviation to a

strategy R0h with R
0
h (1) = �s

B. The excess demand does also not come from

neighborhoods of s 2 eSc, since a household h with lh 2 �Ls�1;Ls� for some
s 2 eSc will always play RBh (1) = sh. Consequently,

n
h j RBh (1) 2 eSo �

[s2S0
�
Ls�1;Ls

�
and hence �

�n
h j RBh (1) 2 eSo� � P

s2 eS Ls � Ls�1. This

completes a contradiction.

Ring structure: We show the following: if two households h1 and h2

located at lh1 = l1 < l2 = lh2 who list schools R
B
h1
(1) = s2 and RBh2 (1) = s1

located at L1 < L2 on their �rst ranks, then the two don�t lose if they play

each others�strategies and they gain unless they are both located to the left

of L1, that is, in equilibrium this only happens if l1 < l2 � L1 < L2 and if

the expected transportation costs satisfy Th1
�
RB
�
= Th1

�
RB j Rh1 = RBh2

�
and Th2

�
RBh2
�
= Th2

�
R j Rh2 = RBh1

�
.

Denote the strategies of household hi by Ri, its conditionally expected

transportation cost for c � �c by T �ci = T c��ci , the critical cost levels by cBsi1 =

cBi1, and let L = (L1 + L2) =2. If l2 > LsB�1 the argument above implies that

h2 is assigned to his �rst ranked school at L1 � LsB . Consequently h1 would

never rank L2 > L1 �rst and the claim follows.

If l2 � LsB�1 both households have to travel towards the center if they are

not successful with RBh (1) so that T
�c
1 = T �c2 + t jl2 � l1j. If in addition L � l1

then cBs11 > cBs21 because the household at l2 > l1 could reduce the expected

transportation costs by exchanging the ranks of the schools s1 and s2 in

RB2 otherwise. Using this together with jL1 � l2j = jl2 � l1j + jL1 � l1j, the

equilibrium condition T1
�
RB
�
� T1

�
RB j RB2

�
, and the triangle inequality
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jL2 � l2j � jL2 � l1j+ jl2 � l1j we derive the following contradiction:

T2
�
RB
�
= cB11t jL1 � l2j+

�
1� cB11

�
T
cB11
2

�
RB
�

= cB11t (jL1 � l1j+ jl2 � l1j) +
�
1� cB11

� �
T
cB11
1

�
RB
�
� t jl2 � l1j

�
=

�
2cB11 � 1

�
t jl2 � l1j+ T1

�
RB j RB2

�
�

�
2cB11 � 1

�
t jl2 � l1j+ T1

�
RB
�

=
�
2cB11 � 1

�
t jl2 � l1j+ tcB21 jL2 � l1j+

�
1� cB21

�
T
cB21
1

�
RB
�

�
�
2cB11 � 1

�
t jl2 � l1j+ tcB21 (jL2 � l2j � jl2 � l1j)

+
�
1� cB21

� �
T
cB21
2

�
RB
�
+ t jl2 � l1j

�
=

�
2cB21 � 2cB21

�
t jl2 � l1j+ T2

�
RB j RB1

�
> T2

�
RB j RB1

�
If, on the other hand, l1 � L we use jL2 � l1j = jl2 � l1j + jL2 � l2j, the

equilibrium condition T2
�
RB j RB1

�
� T2

�
RB
�
and the triangle inequality

jL1 � l1j � jL1 � l2j+ jl2 � l1j to get

T1
�
RB
�
= cB21t jL2 � l1j+

�
1� cB21

�
T
cB21
1

�
RB
�

= cB21t (jl1 � l2j+ jL2 � l2j) +
�
1� cB21

� �
T
cB21
2

�
RB j RB1

�
+ t jl1 � l2j

�
= T2

�
RB j RB1

�
+ cB21t jl1 � l2j+

�
1� cB21

�
t jl1 � l2j

� T2
�
RB
�
+ t jl1 � l2j

= cB11t (jL1 � l2j+ jl1 � l2j) +
�
1� cB11

� �
T
cB11
2

�
RB
�
+ t jl1 � l2j

�
� cB11t jL1 � l1j+

�
1� cB11

�
T
cB11
1

�
RB j RB2

�
= T1

�
RB j RB2

�
Since the equilibrium strategy minimizes transportation costs the inequalities
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must holds with �=�. For l2 > L1 the triangle inequality and hence the

second inequality is strict so that we must have l2 � L1 and the claim follows.

Monotonicity of cBs1: Suppose that cB11 � cB21. Take a household h with

lh � L1 and denote the strategy which exchanges the ranking of schools 1

and 2 by R1�2h . If RBh (1) = 2 then R1�2h satis�es TBh
�
R1�2h

�
� TBh (R)

(with strict inequality if lh < L1 or cB11 > cB21), because T
c�c11
h

�
R1�2h

�
=

T c�c11h (R) � jlh � L3j, T c�c21h

�
R1�2h

�
= jL1 � lhj � jL2 � lhj = T c�c21h (R)

and T c11�c�c21h

�
R1�2h

�
= jL1 � lhj � jlh � L3j � T c11�c�c21h (R). Therefore

the ring structure property above implies that RBh (1) = 1 for all households

h with lh < L1. Since cB11 � cB21 is only possible if there are at least as many

�rst round applicants per place in school 1 as in school 2, assumption (1)

implies that �
��
h j RBh (1) = 2

	�
� L2�L1. Thus there must be households

h located at lh > L2 with RBh (1) = 2. This, in turn, is only possible if

cB21 > cB31, because otherwise a deviation to R
2�3
h would be pro�table for

these households. Iterating this argument we get cs1 > cs+11 for all s and

hence
PS

s=1 �(A
B
s1) >

PS
s=1Ks = 1, a contradiction to the assumption that

the set of all households has measure 1.
Finally, suppose that c11 < c21 and c21 � c31. A repetition of the argu-

ment above for the second ring gives a contradiction unless c21 = 1, and the

iteration of this argument completes the proof of our equlibrium properties.

E¢ ciency: Monotonicity implies that the ring borders bBs satisfy b
B
s �

Ls with a strict inequality if cBs+12 < cBs+11 (i.e., for instance, if s < �sB � 1),

because the household types c 2
�
cBs1; c

B
s+11

�
have to travel further than to

s + 1 if they are not successful with RBh (1) = s, while the remaining typies

c 2
�
cBs+11; 1

�
are also not better o¤ after the �rst round rejection. If bBs < Ls
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there is some " > 0 such that households h 2
�
Ls � ";Ls

�
would have applied

for school s under DA so that cSs1 of them would travel outward to school

s, while they travel to school s + 1 towards the center under BS. Since all

capacities are �lled there are "�cSs1 households h with lh � bBs who are assigned

to school s under BS, while they were assigned to school s0 > s under DA.

This exchange of households saves at least the total transportation cost of

�T = " � t � cSs1 �
�
Ls � bBs � "

�
.

9.2 Existence (Theorem 2)

Fixed Point Argument Throughout the following we restrict our

search for an equilibrium strategy by reducing the complexity of poten-

tial strategies drastically. For s < S we assume that all households in

the ring h 2 [bs�1; bs] list school s �rst, that they list on the following

ranks only the S � s � 2 schools s0 which are located closer to but not
at the center (i.e. s < s0 < S ), and that they list school S last. More-

over, we enumerate these Js = (S � s� 1)! rankings of the form eRsj =�
s; eRsj (2) ; : : : ; eRsj (S � s� 1) ; S

�
, and interpret  sj as the share of house-

holds of every measurable subset of locations of [bs�1; bs] who, independently

of the cost characteristic ch, submit the j-th of these modi�ed (partial) rank-

ings eRsj.17
To apply a �xed point argument we construct a u.h.c. correspondence

(�;  ) ! (B;	) of right ring borders and of reduced best replies as follows.

The vectors (�;  ) and the subsets (B;	) of potential right ring borders and

modi�ed partially mixed strategies are taken from the closed and convex set

B�P = [0;Ls]S�2�
(
p 2 [0; 1](S�2)�Js

�����
JsX
j=1

 sj = 1

)
:

17This way we avoid the introduction of the equivalent mixed strategies  sj played by
all households in the ring so that we don�t have to modify the Boston algorithm.

36



For each (�;  ) 2 B�P we de�ne the image (B;	) (�;  ) � B�P of our

correspondence in three steps as follows.

First, we construct ring borders recursively by b1 (�) = �1 and

bs (�) = max f�s; bs�1 (�)g for s = 1 : : : S � 2; (6)

and de�ne the expected transportation cost function for each ring s < S, for

each vector of critical costs cB =
�
cBsi
�i<S
s<S
, each mixed ranking ps 2 Ps of the

remaining schools s+ 1 : : : Js, and each location l 2 [0; 1] as

Ts
�
cB; ps; l

�
=

JsX
j=1

psj � t �
 
S�sX
i=1

�
cBeRsj(i);i � cBeRsj(i�1);i�1

�
�
���l � L eRsj(i)

���!

with the understanding that eRsj (0) = 0 and cB00 = 0. It is obvious that Ts

is continuous.
Second, we denote the critical costs constructed by the Boston algorithm

according to (5) for the modi�ed matching problem by ecBsi (�;  ) and use this
to de�ne the strategy image of our �xed point correspondence for each s as

the set of best replies at the right border

	s (�;  ) = arg min
ps2Ps

Ts
�ecB (�;  ) ; ps; �s� :

Third, we construct the set of locations at which the households are in-

di¤erent between listing s �rst and listing some other alternative s0 �rst. For

this purpose we de�ne upper and lower contours of candidate locations for

each s and each (�;  ) by

L�s (�) =
�
l 2
�
0;Ls

�
j Ts

�ecB (�) ;  s; l� � Ts0
�ecB (�) ;  s0 ; l� for all s0 > s

	
L�s (�) =

�
l 2
�
0;Ls

�
j Ts

�ecB (�) ;  s; l� � Ts0
�ecB (�) ;  s0 ; l� for some s0 > s

	
and derive the corresponding set of potential borders for each ring s by

Bs (�;  ) =

8<:
L�s (�;  ) \ L�s (�;  ) if L�s (�) \ L�s (�) 6= ;
f0g if L�s (�;  ) = ;�
Ls
	

if L�s (�;  ) = ;:
(7)
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Notice that the critical costs ecBsi (�;  ) vary continuously with (�;  ) since
the number of applicants and hence of rejections in each iteration varies

continuously with (�;  ). Consequently, the strategy image 	(�;  ) is u.h.c.

and convex valued. Notice further that the mean value theorem for the

continuous Ts implies that L�s \L�s 6= ; if L�s 6= ; and L�s 6= ; so thatBs (�;  )

is well de�ned. By construction we have L eRsj(i) > Ls for all i = 2; : : : so that

l < l0 � Ls )
���l � L eRsj(i)

��� = jl � l0j+
���l0 � L eRsj(i)

���)
Ts
�
cB; ps; l

�
� Ts

�
cB; ps; l

0� = cBs1t
���l � Ls

��� ��l0 � Ls
���+ �1� cBs1

�
t (l0 � l)

� (l0 � l) � t:

For s0 > s with Ls0 > Ls the same argument gives

l < l0 � Ls ) Ts0
�
cB; ps0 ; l

�
� Ts0

�
cB; ps0 ; l

0� = t � (l0 � l) :

Combining the two we get the monotone di¤erences

Ts
�
cB; ps; l

�
� Ts0

�
cB; ps0 ; l

�
� Ts

�
cB; ps; l

0�� Ts0
�
cB; ps0 ; l

0� (8)

so that there are b�s and b
�
s with L

�
s (�;  ) = [0; b

�
s ] and L

�
s (�;  ) = [b

�
s ;Ls]

if the sets are non-empty. Consequently Bs (�;  ) 2
��
b�s ; b

�
s

�
; f0g ;

�
Ls
		

is convex valued. Moreover, B (�;  ) is u.h.c., because (8) garantees that 0

is the last and Ls the �rst transportation cost minimizing candidate border,

in the sense that (�n;  n) ! (�;  ) with L�s (�
n;  n) = ; and L�s (�;  ) 6= ;

implies that L�s (�;  ) = f0g � L�s (�;  ), while (�
n;  n) ! (�;  ) with

L�s (�
n;  n) = ; and L�s (�;  ) 6= ; implies that L�s (�;  ) =

�
Ls
	
� L�s (�;  ).

Since the mapping (�;  )! (B;	) is convex valued and u.h.c there must

be a �xed point (��;  �) 2 (B;	) (��;  �). and it remains to show that this
�xed point is a Nash equilibrium of the matching game.
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Equilibrium To facilitate the notation let c�is = cBis (�
�;  �) and T �s (l) =

Ts (c
�;  �s; l). The ring borders have two important properties. First, they

satisfy bs (�
�) = ��s: if bs (�

�) = bs�1 (�
�) > ��s in (6) then c

�
s1 = 1 (as there

are no applicants for s); hence (Ls�1;Ls) \ L�s (��;  �) = ; ) ��s = Ls > ��s0

for all s0 < s. Secondly, the monotonicity argument used in the last paragraph

of 8.1 is valid for ��s as well so that there must be a school s
� such that

c�11 < : : : < c�s�1 = c�s�+11 = c�S�11 = 1: if c
�
11 � c�21 then �

�
1 = L1; assumption

(1) implies that ��2 � ��1 > L2 � L1 so that �
�
2 = L2 and hence c�21 � c�31;

iterating this argument gives a contradiction to c�11 < 1 so that c
�
11 < c�21; if

c�11 < c�21 and c
�
21 � c�31 we have �

�
2 = L2 and hence c�21 � c�31; iterating this

argument gives a contradiction unless c�21 = 1, and so on.

We have to show that the deviation from the equlibrium strategy to some

pure strategy R
0
h of all schools does not pay for any household h located at

lh 2 [0; 1]. To see this note �rst that  �s solves the optimization problem

 �s 2 arg min
ps2Ps

Ts (c
�; ps; lh)

for all households located at lh < Ls�: since all schools s < s� are �lled in

the �rst round (c�si = 0 for all i > 1) households who are not successful with

their �rst rank must travel to some s � s�; thus

Ts (c
�;  s; lh)

= t � c�s1 � jlh � Lsj+ t �
JsX
j=1

 sj

 
S�sX
i=2

�
c�eRsj(i);i � c�eRsj(i�1);i�1

�
�
���L eRsj(i) � lh

���!

= t � c�s1 � jlh � Lsj+ (1� c�s1) (�
�
s � lh)

+t �
JsX
j=1

 sj

 
S�sX
i=2

�
c�eRsj(i);i � c�eRsj(i�1);i�1

�
�
���L eRsj(i) � ��s

���!

= Ts (c
�;  s; �

�
s) + t � c�s1 � (jlh � Lsj � j��s � Lsj) + t � (1� c�s1) (�

�
s � lh)
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implies that the di¤erence (Ts (c�;  s; l)� Ts (c
�;  s; �

�
s)) is independent of  s

so that  �s minimizes Ts (c
�;  s; lh), too.

The �xed point strategies assign households lh � Ls��1 to there closest

schools so that these households cannot deviate successfully from their equi-

librium strategies. The argument above implies that households who select

R0h (1) = s0 < s� as their �rst rank cannot do better than to continue with  �s

(or one of the pure strategies which receive a positive probability in  �s). The

optimality of  �s and the construction of �
�
s with the �rst case of (7) imply fur-

ther that a household lh 2
�
��s�1; �

�
s

�
can never gain from a deviation to s0 > s

so that suppose that households h with lh 2
�
��s�1; �

�
s

�
and s < s� can deviate

successfully to a strategy Rwith R0h (1) = s0 < s. In this case lh 2 L�s0 (�
�;  �)

so that there is some s00 > s0 with Ts00 (c�;  
�; lh) � Ts0 (c

�;  �; lh) so that there

is another successful deviation to some R00 with R00 (1) = s00. Thus s00 > s is

not possible, while s00 < s implies that there is another successful deviation to

some R000 with R000 (1) = s000 > s00. Iterating this argument gives a successful

deviation to a strategy bR with bR (1) = s and hence a contradiction to the

optimality of  �.�

9.3 Social Segregation (Theorem 4)

Notice �rst that

pFI (l) = �s � t � jl � Lsj for l 2 [�s�1;�s] (10)

�s+1 � �s = t � ((Ls+1 � Ls)� 2 �min f(�s � Ls) ; 0g) (11)

de�ne a continous price function: assumption (1) implies Ls > �s. For

Ls � �s (10) reduces to �s+1 � �s = t � (Ls+1 � Ls) > 0 so that

lim
l"�s

pFI (l) = �s � t � (Ls � �s)

= �s+1 � t � (Ls+1 � �s) = lim
l#�s

pFI (l)
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while for Ls < �s (10) becomes �s+1��s = t � ((Ls+1 � Ls)� 2 � (�s � Ls)) =

2 � t �
�
Ls � �s

�
> 0 and so

lim
l"�s

pFI (l) = �s � t � (�s � Ls)

= �s+1 � t � (Ls+1 � �s) = lim
l#�s

pFI (l) :

Next we argue that the location choices lh = ch generate the equilibrium

allocation speci�ed above. As better households live further away from the

center both DA and BM construct �FI (h). Moreover, no household has an

incentive to deviate: the households�payments uFIh = �s + � coincide inside

each school ring [�s�1;�s], so that it is not possible to gain by choosing an-

other location there; moving to a location in another ring and applying to the

same school does not pay, because pFI (�) is continuous with
����pFI�0 (�)��� � t;

and moving to a location in another ring and applying to another school does

also not pay, because applying to a school s < �FI (h)� 1 is not successful,

while applying to a school s > �FI (h) does not pay as �s > ��FI(h).

To see that every equilibrium has these properties notice �rst that free

mobility implies that the equilibrium price function pFI must be continuous,

because otherwise a household could gain from changing to a cheaper location

close to his equilibrium location and still being assigned to the same school.

For the same reason the equilibrium payo¤s of all households h 2
�
�FI
��1

(s)

assigned to the same school must coincide, uFIh = �s + � . Finally, this

argument implies that pFI (l) � pFI (Ls) = t jLs � lj (and hence (10)) for
every location l 2 [lh;Ls] between Ls and a location lh chosen as residence

by some household h 2
�
�FI
��1

(s), because otherwise either the households

living close to l (if �>�holds) or the household living close to lh (if �<�holds)

could deviate successfully.

Take s = S, then by assumption (1) pFI (l) = �S � t � jl � LSj holds
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for the locations l � �S�1. Households living at l 2
�
�S�1;LS�1

�
would

prefer S � 1, so that all households assigned to S � 1 are preferred by the
school. Moreover, free mobility implies that this holds also for all other

h 2
�
�FI
��1

(S). Iterating this argument for s = S�1; : : : ; 1 gives the social

segregation by schools h 2
�
�FI
��1

(s) and h0 2
�
�FI
��1

(s� 1)) ch > ch0.

To derive the social segregation of neighborhoods note that all households

located at l � LS�1 are assigned to school S by DA so that these locations

are occupied by h 2
�
�FI
��1

(S). Suppose that all households h located at

lh � Lbs are assigned to schools s > bs so that these schools have a total
capacity of Lbs � �bs > 0 left.
If Lbs < �bs there must be l; l0 2 [Lbs;Lbs] such that hl 2 ��FI��1 (bs) and

hl0 2
�
�FI
��1

(s0) for some s0 > bs. As pFI (�) is decreasing up to l and

increasing from l0 onward there must be a boundary bbs separating the two
groups such that lh > bbs , �FI (h) > bs. As households located at l < bbs are
not assigned to a school s > bs we have bbs = �bs < Lbs so that all households
h located at lh 2

�
Lbs�1;Lbs� are assigned to school bs and �s+1 � �s = t �

((Ls+1 � Ls)� 2 � (�s � Ls)) (i.e.(11)).

If, on the other hand, Lbs � �bs the interval �Lbs;Lbs� has not enough
locations to host all households which have to be assigned to schools s > bs.
Thus there must be households h 2

�
�FI
��1

(s) with lh � Lbs for some s > bs.
Consequently pFI (�) is increasing on

�
Lbs�1;Lbs� with h 2 ��FI��1 (bs)) lh �

Lbs so that �s+1��s = t�(Ls+1 � Ls) (i.e.(11)) and lh � Lbs�1 ) �FI (h) � bs.�
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