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Abstract 

Cochrane and Piazzesi (2005) show that (i) lagged forward rates improve the 
predictability of annual bond returns, adding to current forward rates, and that (ii) a 
Markovian model for monthly forward rates cannot generate the pattern of predictability 
in annual returns. These results stand as a challenge to modern Markovian dynamic term 
structure models (DTSMs). We develop the family of conditional mean DTSMs where 
the yield dynamics depend on current yields and their history. Empirically, we find that 
(i) current and past yields generate cyclical risk-premium variations, (ii) the model risk 
premia offer better returns forecasts, and (iii) the model coefficients are close to 
Cochrane-Piazzesi regressions of long-horizon returns. Yield decompositions differ 
significantly from what a standard model suggests – the expectation component decreases 
less in a recession and increases less in the recovery. A small Markovian factor “hidden” 
in measurement error (Duffee, 2011) explains some of the differences but is not sufficient 
to match the evidence. 

JEL classification: E43, E47, G12 
Bank classification:  Interest rates; Asset pricing 

Résumé 

Cochrane et Piazzesi (2005) montrent que les taux à terme retardés améliorent la 
prévisibilité des rendements obligataires en complétant l’apport des taux à terme 
courants, et qu’un modèle markovien des taux à terme ne peut produire le profil de 
prévisibilité des rendements annuels. Ces résultats compliquent la tâche des modèles 
dynamiques de la structure par terme (DTSM) de type markovien. Nous construisons des 
DTSM nouveaux, où la dynamique de la moyenne conditionnelle dépend des taux 
courants et passés. De manière empirique, nous constatons que les taux passés 
contribuent aux variations cycliques de la prime de risque, que le modèle offre de 
meilleures prévisions des rendements et que ses coefficients avoisinent les résultats des 
régressions effectuées sur les rendements de long terme, prolongeant l’étude de Cochrane 
et Piazzesi. Comparativement au modèle standard, la décomposition des taux diffère 
sensiblement : la composante des anticipations diminue moins durant une récession et 
s’accroît moins en période de reprise. La présence dans les taux d’un facteur de risque 
markovien « caché » dans les erreurs de mesure ne peut rendre compte entièrement du 
phénomène. 

Classification JEL : E43, E47, G12 
Classification de la Banque : Taux d’intérêt; Évaluation des actifs 

 



Introduction

This paper has its sources at the confluence of two stylized facts. On the one hand,

there is a broad consensus that three factors summarize the cross-section of inter-

est rates (Litterman and Scheinkman, 1991). On the other hand, we also know that

current yields do not summarize predictable variations in future interest rates. For in-

stance, Cochrane and Piazzesi (2005) devote one section to “the failure of Markovian

models,”1 documenting that past forward rates help forecast bond returns. The ten-

sion is particularly acute in dynamic term structure models (DTSMs) that use yields

as risk factors. This paper offers a constructive resolution. We introduce the family

of Conditional Mean DTSMs (CM-DTSM), capturing the cross-section of yields with

three risk factors and matching the predictive content of lagged forward rates with no

additional sources of risk. Our extension is parsimonious and intuitive, and estima-

tion is straigthforward. It is also grounded in empirical evidence and the results have

practical implications for researchers and investors alike: the implied risk-premium

variations are sizably larger and more cyclical than in standard specifications.

To understand the underlying tension, it is useful to go back to the basic build-

ing blocks of Gaussian DTSMs (GDTSM). Consider a standard (exponential-affine)

pricing kernel with N sources of risk. This is a statement about the risk-neutral

distribution Q: the cross-section of J yield portfolios Po
t is linked to N < J risk

factors Zt via a linear relationship. Next, consider the standard assumption that risk

factors are Markovian. This is a statement about time series: conditional forecasts

of Po
t+h are linked to Zt, via a linear relationship (for all horizons h > 0). Taken

together, these assumptions suggest that current yields are all we need to construct

our best forecasts of future yields. This proposition is rejected in the data.

This discussion also suggests that there is no necessary connection between (i)

the number of shocks required to match the cross-section of yields and (ii) the infor-

mation set It required for the conditional expectations E[Po
t+h|It]. Regarding point

(i), we make clear in the following that if yields are linear in N stationary Gaussian

risk factors Zt, then the no-arbitrage assumption requires that Zt have Markovian

dynamics under the Q measure. This result corresponds to the heuristic argument

that today’s prices should reflect all available information and should not generate

profitable investment strategies unless associated with proportionate risks. We main-

tain this standard assumption. Regarding point (ii), and as a corollary, we conclude

1See their Section III, particularly their Section III.C, p. 153. In their words: “The importance
of extra monthly lags means that a VAR(1) monthly representation, of the type specified by nearly
every explicit term structure model, does not capture the patterns we see in annual return forecasts.”



that we need to break away from It = {Po
t } to capture the predictive content of

lagged forward rates.

The first part of the paper studies the empirical properties of E[Po
t+h|IP,t], where

we take IP,t = {Po
t ,P

o
t−1, . . .} the history of Po

t . We revisit the predictability of

bond returns for horizons between one and twelve months, extending the results in

Cochrane and Piazzesi (2005) for annual returns. First, we confirm that forward rates

forecast bond returns at every horizon. Perhaps unsurprisingly, one combination of

forward rates is enough in each case. Second, and this is more important, we find

that lags of the return-forecasting factor add to the predictability evidence. In fact,

the relative contribution of past forward rates increases as we shorten the returns

horizon and peaks at the monthly horizon. This result stands in direct contrast

with standard Markovian models. Third, the coefficients on additional lags of the

returns-forecasting factor exhibit a clear decaying pattern. We show analytically and

empirically that the evidence is consistent with models where the conditional mean

E[Po
t+1|IP,t] is Markovian but where Po

t is not.

The second part of the paper introduces the class of CM-DTSMs. Consistent

with the cross-section evidence, we specify that the N risk factors Zt are Markovian

under Q. Consistent with the predictability evidence, we specify the process for Zt

under P via the dynamics of its conditional mean EZ,t ≡ E[Zt+1|IZ,t], with IZ,t =

{Zt, Zt−1, . . .}. To get a sense of its properties, this process is analogous to GARCH

dynamics where the conditional variance is driven by the (squared) innovations in

the underlying risk factors. Here, the conditional mean is driven by a rotation of

the N innovations ut ≡ Zt − EZ,t. Conditional DTSMs have the following important

property: there is a separation between the spanning role of Zt and the forecasting role

of EZ,t. The N ×N parameter matrix θ controls this separation.2 Indeed, if θ = 0, all

yields and all conditional forecasts are a function of Zt, nesting the standard VAR(1)

case (e.g., EZ,t = ΦZt).

Finally, the empirical section makes two broad points. First, θ = 0 is soundly

rejected in a specification with five bond yields and five risk factors. This special case

allows the risk factors to capture all the information from current yields and gives

more chances to the standard model. Yet, the variability of the risk premium is often

halved in models with θ = 0 relative to a case where we account for the information

2The representation in terms of the conditional mean was introduced by Fiorentini and Sen-
tana (1998) in the context of time-series models. The specific case we consider corresponds to
VARMA(1,1) dynamics in the usual representation and nests the standard VAR(1) specification
when θ = 0.

2



in past yields. In addition, the risk premium offers much better forecasts of excess

returns for those same bonds used for estimations of the model. In fact, a CM-

DTSM model provides a close match to the forward rate coefficients estimated from

Cochrane-Piazzesi regressions. In contrast, we find that predictive R2s are halved

and that the model does not reproduce the well-known tent shape when we impose

θ = 0. The deteriorations are much worse for shorter returns horizons. Second, we

ask whether we can match both cross-section evidence and the predictability evidence

with N = 3 factors. The answer is yes. Three factors are sufficient to generate

the cross-section evidence by construction. In addition, we find that reducing the

number of shocks leads to no loss in the variability of the risk premium or in the

predictability of bond excess returns. However, reducing the number of shocks widens

the gap between the standard case and our CM-DTSM specification. We compare

yield decompositions from different models: the risk premium is more cyclical in CM-

DTSM models, and the expectation component plays a much lesser role in explaining

yield changes in recessions.

We devote considerable space to comparing our approach with closely related

results in Duffee (2011), where the combination of a 5-factor (Markovian) model and

Kalman filtering produces a “hidden” risk factor. This hidden factor does not affect

current yields, but it loads on past yields and generates substantial risk-premium

variability. Duffee (2011) “advocates a significant change in the construction and

estimation of multifactor term structure models.” We agree. In fact, we argue that his

findings are nested in our framework. To see the connection, consider the general case

where every yield portfolio Po
t is measured with errors. The information set available

to the econometrician is IP,t. Once we condition on IP,t (and not IZ,t), our main

theorem shows that we can construct an equivalent steady-state CM-DTSM where

the conditional mean EP,t ≡ E[Po
t |IP,t] is Markovian, summarizing the dynamics

of all observed portfolios Po
t , but with cross-equation restrictions due to the factor

structure embedded in yields.

We identify two mechanisms that may coexist and generate a role for past yields

within our maximally canonical form. The first mechanism corresponds to the effect of

filtering through mismeasured yields, as in Duffee (2011). This mechanism exists even

if Zt is Markovian, in which case the observed yields have restricted CM dynamics.

The restriction arises because of the additional structure in the covariance matrix

of the measurement errors, R. The second mechanism arises when the risk factors

themselves have CM dynamics. This mechanism exists even if yields are observed

without errors, in which case the information content of past yields is parameterized

3



by θ. Each mechanism is separately identified when J > N portfolios are included

in the model.

Since the two mechanisms may coexist, it is natural to ask whether measurement

errors alone can rationalize the predictability evidence. We estimate several versions

of the 3-factor model to answer this question. We consider cases where R = σ2I,

or where R is a free diagonal covariance matrix, and cases with θ = 0, or with

θ unrestricted. The results are consistent with those in Duffee (2011). Filtering by

itself adds considerable variability in the risk premium and improves the predictability

of the risk premium. But the R2s stand somewhere halfway between the standard

case and our unrestricted CM-DTSM model. Hence we conclude that non-Markovian

effects in the risk factors themselves are required to match the evidence. We also

differ with Duffee (2011), since our results show that it is unnecessary to add more

shocks, both in theory and empirically. Our 3-factor model matches the evidence

almost as well as the best 5-factor model, but it is considerably more parsimonious.

In addition, there is no need to appeal to a special structure in the risk premium to

hide the additional factors in tiny measurement errors. Instead, breaking away from

the Markovian assumption introduces separate spanning and forecasting roles for Po
t

and EP,t, with no additional shocks.3

Our approach is equivalent to generalizing the prices of risk to an affine function of

Zt and EZ,t−1. This is consistent with existing equilibrium models where, for instance,

agents are learning about the underlying process, or because of adaptive expectations.

Froot (1989) points out that the usual tests of the expectations hypothesis rely on

the maintained assumption that investors’ expectations are rational, and argues that

expectational errors play a significant role. Piazzesi and Schneider (2009) provide

additional evidence that subjective expected excess returns are less volatile and less

cyclical. Recently, Cieslak and Povala (2013) have also recognized the significance of

lagged information and explored the role of informational frictions related to agents’

perceptions of the policy rule. Johannes, Lochstoer, and Mou (2011) formally study

the asset-pricing implication of Bayesian learning about a model’s fundamental dy-

namics. Our focus is different. We note that the predictive content of lagged forward

rates is a challenge for standard DTSMs where yield factors are Markovian and of-

fer risk-based reconcilation with the data. Compensation for risk and informational

frictions may both be consistent with non-Markovian dynamics in yields.

The class of Gaussian DTSMs includes the large family of VAR and VARMA

3Importantly, a hidden factor is not precluded. The generalization θ 6= 0 also allows innovations
with opposite loadings on the expectation term and the risk-premium term.
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models, but empirical applications almost exclusively consider the VAR(1) case.4

Monfort and Pegoraro (2007) consider cases with 0 < p < ∞ lags and with regimes

in the coefficients. We treat the case p = ∞ parsimoniously, circumventing the need

for regimes (non-linearities).

Decomposing yields into a pure expectation component and the compensation for

risk offered to bondholders is the raison d’être of modern DTSMs. The evidence

of predictable bond return variations “stand[s] as challenges or ‘stylized facts’ to be

explained by candidate models” (Fama, 1984).5 Using the evidence in Campbell and

Shiller (1991) as a benchmark, Dai and Singleton (2002) show that Gaussian DTSMs

meet this challenge. But this literature ignores the information content of lagged

forward rates. We extend the results in Dai and Singleton (2002), showing that

conditional mean DTSMs capture the evidence of non-Markovian dynamics in bond

risk premia.

In the context of macro-finance models, Ang and Piazzesi (2003) incorporate lags

of macro variables (see also, e.g., Ang, Dong, and Piazzesi 2007; Jardet, Monfort,

and Pegoraro 2008). More recently, Joslin et al. (2012) study macro-finance models

where they project the economy-wide pricing kernel on the risk factors Zt. Macro

risks are unspanned in yields but help predict bond returns, consistent with the

evidence in Ludvigson and Ng (2009). Economically, this is a restriction on the set

of priced risk in the bond market. We see these approaches as complementary: both

macro variables and past yields contain information about future returns. Feunou and

Fontaine (2012) show the importance of including a moving-average term within a

macro-finance term structure model that includes inflation. Joslin, Le, and Singleton

(2013) consider lags of macro variables and the effect of spanning restrictions on

estimated monetary policy rules.

The following section presents the evidence on bond returns predictability, em-

phasizing the empirical properties of E[Pt+h|IP,t]. Section 2 develops the family of

CM-DTSMs, and discusses in detail the connection with existing approaches. Sec-

tion 3 reports all the results. All proofs are provided in the appendix.

4A common argument is that dynamics with longer lags can be recast within an extended state
representation with only one lag. See, e.g., Equations (7)-(8) in Ang and Piazzesi (2003) or footnote
7 in Joslin, Singleton, and Zhu (2011). We document the empirical relevance of lagged yields.

5See also Shiller (1979); Startz (1982); Fama (1984); Fama and Bliss (1987); Campbell and Shiller
(1991) for earlier evidence against the expectation hypothesis.
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1 Evidence in Bond Risk Premia

This section builds on Cochrane and Piazzesi’s 2005 (CP’s) results and establishes a

set of stylized facts to motivate a non-Markovian model for yields. Most importantly,

we find that long lags of forward rates add to the predictability of bond returns. For

each horizon, a single combination of current and past forward rates summarizes the

predictability for bonds with different maturities. We show that (i) for each horizon,

lagged coefficients decay exponentially, (ii) the return-forecasting factors are highly

correlated across return horizons, and (iii) the predictability patterns are consistent

with adding a parsimonious moving-average component to standard VAR(1) dynam-

ics.

1.1 Cochrane-Piazzesi Regressions

CP document that a linear combination of forward rates forecasts annual excess re-

turns from holding Treasury bonds. We repeat CP’s analysis of returns predictability

across holding periods between one month and one year. We consider the same pre-

dictors and the same sample period as in CP: annual forward rates with 1, 2, 3, 4

and 5 years to maturity from the Center for Research in Security Prices (CRSP) data

set from 1963 until 2003. We find similar results in longer samples. We estimate the

following regressions:

xr
(n)
t,h = bn,hγ

′
hft + u

(n)
t,t+h, (1)

where xr
(n)
t,h is the excess returns from holding a bond with maturity n over an h-

month horizon, and where ft stacks a constant with the forward rates. We compute

excess returns for different horizons using the Gurkaynak et al. (2006) (GSW) data

set.6 Note that Equation (1) imposes the single-factor restriction: bn,h is a scalar and

γh is a horizon-specific vector of coefficients. Panel (A) of Table 1 reports the R2s

for bond maturities up to 10 years. The predictability increases with the horizons

– from around 3% at the 1-month horizon, to around 10%, 20%, 30% and 35% at

the 3-, 6-, 9- and 12-month horizons, respectively. The last column matches results

in CP. Unreported results show that the single-factor restriction is supported in the

data: predictability regressions without a factor structure yield essentially the same

results.

6In contrast, we can only compute annual excess returns from the CRSP Fama-Bliss data files.
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1.2 Recursive Cochrane-Piazzesi Regressions

CP show that lags of the forward-based factor increase the predictability of annual

returns. To illustrate, define x̄rt+12 as the cross-sectional average of annual excess

returns across different bond maturities and extend CP’s regression to include dis-

tributed lags of the forward rate factor. Allowing for eight lags,

x̄rt+12 = γ′ (a0ft + · · ·+ a8ft−8) , (2)

the estimates âj display a decaying pattern: 0.29, 0.25, 0.16, 0.14, 0.05, 0.07, 0.03

and 0.002.7 The estimates are significant jointly but not individually, suggesting that

a parsimonious model is required. Distributed-lag models with geometrically decay-

ing coefficients have a long history in econometrics and arise naturally in partial-

adjustment or adaptive-expectation models (see, e.g., Koyck 1954; Griliches 1967).

We adapt a standard infinite distributed-lag model to the context of return pre-

dictability:

xr
(n)
t,h = bn,hRt,h + u

(n)
t,h ,

Rt,h = (1− αh)γ
′
hft + αhRt−1,h, (3)

where the scalar αh is constant across maturities, and with 0 ≤ αh < 1, nesting

Equation (1) if αh = 0. The weight on current forward rates is given by 1−αh, while

αh controls the weights on past forward rates. The lag representation of returns is

given by

xr
(n)
t,h = bn,h(1− αh)γ

′
h

∞∑

j=0

αj
hft−j + u

(n)
t,h . (4)

Equation (3) parsimoniously captures the decaying patterns observed in the estimates

from Equation (2). Beyond its simplicity, this reduced-form representation is also

consistent with our term structure model (see Section 2.6).

Panel (B) of Table 1 reports the R2s from estimates of Equation (3).8 Relative

to the case αh = 0, predictability increases for each horizon and maturity. The

predictability almost doubles for the 1-month and 2-month horizons, from 3% to

7Compare with Table 5B in CP. We proceed via iterated OLS estimation over γ and a.
8Equation (3) can be estimated easily via non-linear least squares. We set the initial value R0,h

to the unconditional population mean. As in CP, we impose that N−1
∑N

n=1 bn,h = 1 to identify
bn,h from γh and αh where N is the number of maturity in the cross-section of excess returns.

7



6% and from 6% to around 11%, respectively, and increases substantially at longer

horizons. Consistent with Duffee (2011), the relative importance of lagged forward

rates increases as the returns horizon decreases.

Table 2 reports the coefficient estimates from Equation (3). For each horizon,

the predictability gains follow from the scalar parameter αh. Panel (A) shows that

estimates of αn,h exhibit a gradual decline across horizons, ranging between 0.8 and

0.6. Past forward rates are given a greater weight to forecast short-horizon returns.

Panel (B) reports estimates for the loadings bn,h. As expected, the estimates are

centered around one and increase with the bond duration. Panel (C) reports estimates

of γh. The tent shape is clear and strikingly similar even if estimation was carried

out independently for each horizon.9

One natural question is whether we can collapse the return-forecasting factors

γ′
hft into an encompassing factor that does not depend on the horizon. Indeed, we

find that the horizon-specific factors are highly correlated. In the case α = 0, the

first principal component extracted from the panel of return-forecasting factors (for

different horizons) explains 93.7% of the total variations and the second component

explains most of the remaining variations. For the more general case, Table 3 reports

results from a principal-component analysis. The first principal component explains

97% of the total variation, with loadings that are spread out evenly across maturities.

1.3 Reconciling Yield Dynamics

What yield dynamics can connect the predictability evidence across these horizons?

Following CP, define the yield vector Yt = [y
(1)
t y

(2)
t y

(3)
t y

(4)
t y

(5)
t ]′, where y

(n)
t is the

n-year zero-coupon yield, and consider a Markovian model for Yt at the monthly

frequency:

∆Yt = KY,0 +KY,1Yt−1 + ǫY,t, (5)

where ǫY,t is a mean-zero innovation. The Markovian assumption connects the dis-

tribution of future yields Yt+h to current yields Yt, exclusively. Importantly, lagged

forward rates are excluded from the projection of future returns xr
(n)
t,t+h on current

forward ft (e.g., αh = 0 in Equation (3)). But lagged forward rates play a significant

role in the data. Should we add lagged yields Yt−j to Equation (5)? For instance, CP

add 12 lags to capture the predictability evidence from bond returns (for the purpose

9We also considered the unrestricted case where the forward rate coefficient γn,h and the lag
coefficient αn,h vary with the horizon and the maturity of the bond. Estimates of the R2s and the
α remain essentially the same.
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of constructing bootstrapped inference). But adding 11 lags to Equation (5) involves

275 parameters!

The data suggest a more direct solution. The pattern of decaying coefficients

in Equations (2) and (3) may be due to a moving-average component in the yield

dynamics. It is well known that inverting a moving-average term generates an au-

toregressive form with infinite lags, and with decaying coefficients (see, e.g, Hamilton

1994). Appendix A.1 shows that this pattern translates to the predictability coef-

ficients. If a moving-average component is hidden in the residuals of Equation (5),

then we have that

ǫY,t = ut − θY ut−1, (6)

where θY is a matrix and ut−1 is white noise. A direct implication is that successive

residuals ǫY,t and ǫY,t−1 are correlated. Hence, we estimate the VAR(1) in Equation (5)

and we assess the correlation structure in the panel of residuals.

First, we focus on the time-series dimension. Panel (A) of Table 4 reports the

results from regressions of each element of ǫY,t on its own lag. We find that the first lag

is significant in the majority of cases, but that longer lags are always insignificant.10

Next, we focus on the first lag and examine the cross-sectional correlations. Panel (B)

shows estimates of the cross-correlation between each element of ǫY,t and each element

of its lag ǫY,t−1. Again, the individual correlation coefficients are significant at the

5% level in the majority of cases, and significant at the 10% level in almost all cases.

In addition, the matrix of estimates in Panel (B) reveals a striking factor structure:

each column is nearly a parallel shift of the previous column. In other words, each

component of ǫY,t is correlated with the same linear combination of ǫY,t−1.

This factor structure implies that a regression of one element ǫ
(n)
Y,t on the vector

ǫY,t is inappropriate due to the collinearity of the coefficient matrix. We adopt the

following two-step estimation procedure. First, regress the cross-section average ǭY,t ≡

N−1
∑

ǫ
(n)
Y,t , with N = 5, on ǫY,t−1:

ǭY,t = γ⊤
ǫ ǫY,t−1 + w̄t,

and then regress each element ǫ
(n)
Y,t on γ̂⊤

ǫ ǫY,t−1. These two steps provide an estimate

of the single-factor regression:

ǫY,t = αγ⊤
ǫ ǫY,t−1 + wt, (7)

10We cannot recover a consistent estimate of θ based on the residuals from the VAR1 ǫ̂Y,t+1 =

∆Yt+1 − K̂Y,0 − K̂Y,1Yt, since the estimate K̂Y,1 is based on a misspecified model.

9



with the identification restriction that
∑

n αn = N .11 Panels (C) and (D) of Table 4

report the results from the first step and the second step, respectively. The estimate of

γǫt shows the familiar tent shape. Individual t-statistics are low due to the collinearity,

but we can reject the null hypothesis that the vector of coefficients is jointly equal

to zero: the F-statistic for restriction γǫt = 0 has a p-value of 0.02. Finally, the

coefficient estimates αn on the lagged factor γ⊤
ǫ ǫY,t−1 are all statistically significant.

The predictability evidence and the time-series evidence both support the presence

of a moving average. To conclude, and before turning to the formal modelling section,

we sketch how we can connect the two pieces of evidence. The simplest way to

introduce a moving-average component assumes that the conditional mean EY,t ≡

E[Yt+1|IY,t] is Markovian:

Yt = EY,t−1 + ΣY ǫY,t

∆EY,t = KY,0 +KY,1EY,t−1 + ΣEY ǫY,t, (8)

where ǫt is white noise. The benchmark is the VAR(1) and we also estimate a VAR(12),

as in CP. For comparability, we estimate each model via least-squares. Using the es-

timates, we then derive the model-implied population R2s for the regression in Equa-

tion (1). Table 5 reports the results. Consistent with CP’s results, the predictability

of annual returns implied by the VAR(1) model is typically half that obtained from

direct regressions. On the other hand, the VAR(12) implies population R2s that are

close to the regression results. Strikingly, adding a small moving-average compo-

nent also matches the evidence. Unsurprisingly, this suggests that the VAR(12) is

overparameterized.

2 Markovian Yields and Measurement Errors

The previous section revisited and added to the evidence showing that lagged forward

rates predict bond excess returns. CP suggest that lagged forward rates are informa-

tive because: “time-t yields (or prices, or forwards) truly are sufficient state variables,

but there are small measurement errors that are poorly correlated over time.” Then,

it follows from the standard Kalman “that the best guess of the true [state] is a ge-

ometrically weighted moving average.” (See Cochrane and Piazzesi 2005, p. 154.)

This is in the same spirit as Duffee’s 2011 advocacy of a significant change in the

construction of multifactor term structure models. Specifically, multifactor models

11CP use a similar two-step procedure in predictability regressions with a single-factor structure.
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must allow one factor to determine investors’ expectations of future yields, but with

no effect on current yields. Arguably, Duffee’s hidden factor has two drawbacks: (i)

this factor must have opposite effects on expected future interest rates and on bond

risk premia at all times and for every yield maturity, and (ii) the hidden factor is

only detectable in a term structure model with five sources of risk.

This section shows that none of these features is needed to generate a role for

lagged forward rates. We construct a parsimonious extension of the standard Marko-

vian DTSMs where the current cross-section of yields is not a sufficient state variable

to forecast future yields. We differ from Duffee (2011) and Joslin, Priebsch, and Sin-

gleton (2012) in that we do not rely on any price of risk restriction to generate the

hidden factor. However, we follow Duffee (2011) in allowing for measurement errors

in all yields.

2.1 Risk-Neutral Dynamics

We postulate a small number of N stationary Gaussian risk factors Zt driving the

cross-section of bond yields:

Assumption 1 The cross-section of n-period yields, y
(n)
t , n ≥ 1, can be expressed as

a linear function of Zt,

y
(n)
t = An +B′

nZt, (9)

where Zt ∈ RN has a stationary Gaussian distribution.

Assumption 1 is consistent with the observation that a small number of principal

components suffice to explain most of the variations in the term structure of yields.

Note that the coefficients An and Bn are free at this stage. Cross-equation restrictions

arise if we assume that bond prices offer no arbitrage opportunity. Proposition 1

clarifies an important implication of the absence of arbitrage.

Proposition 1 If bond prices offer no arbitrage opportunity, Assumption 1 implies

that Zt has Markovian dynamics under Q and we can write

∆Zt = KQ
0 +KQ

1 Zt−1 + ΣǫQZ,t, (10)

where ǫQz,t is a standard Gaussian innovation. Then, An and B′
n follow (standard)

recursions, which are given in the appendix.
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Proposition 1 is useful in clarifying that once we fix N , the number of linear risk

factors required to explain the cross-section of yields, then these factors must have

linear Markovian dynamics under risk-neutral dynamics. The result is not trivial

but depends crucially on the absence of arbitrage opportunities among bond prices.

Nonetheless, this result should not come as a surprise. Almost all existing models

consider the natural case where Zt has Markovian dynamics under the risk-neutral

measure.

2.2 Historical Dynamics

If Zt is Markovian under Q, how is the no-arbitrage restriction consistent with the

stylized fact that past yields predict excess returns? To answer this question, consider

the excess returns from holding an n-period bond between t and t + h. Under the

conditions of Proposition 1, this is given by

xr
(n)
t,h = −

h

2
B′
n−1ΣΣ

′Bn−1 + B′
n−1

h∑

j=1

(
∆Zt+j −EQ [∆Zt+j |IZ,t+j−1]

)
, (11)

where Bn−1 = −nBn. Taking conditional expectations under the P-measure, EP[xr
(n)
t,h |IZ,t],

each summand in the second term becomes

EP
[
−KQ

0 + (IN −KQ
1 )∆Zt+j |IZ,t+j−1

]
, (12)

where we use the fact that the time-t conditional expectation operator under Q is a

function of Zt only. Therefore, Proposition 1 implies that the predictability of bond

excess returns in Equation (11) depends on lagged yields if and only if the yield

factors Zt are non-Markovian under the P-measure. This can arise from two distinct

mechanisms. Conditional on the econometrician’s information set, this expectation

will be a function of the past if we observe Zt with errors. Alternatively, the P-

dynamics of Zt could be non-Markovian from the standpoint of investors who observe

the risk factors directly. We allow for both effects. Proposition 2 introduces CM

dynamics under P.

Assumption 2 The risk factors Zt ∈ RN have the following generic conditional

mean dynamics:

Zt = EP
Z,t−1 + ΣǫPt

∆EP
Z,t = KP

0 +KP
1 E

P
Z,t−1 + ΣEZ ǫ

P
t , (13)
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where EP
Z,t ≡ EP[Zt+1|IZ,t] and ǫPt is a standard Gaussian innovation. Define

θ ≡ IN +KP
1 − ΣEZΣ

−1. (14)

Then, Zt has Markovian dynamics if and only if θ = 0.

Spanning vs. forecasting

Relaxing the Markovian assumption for Zt implies that the number of state variables

increases from N to 2N , but with no increase in the sources of risk. The states Zt

and EP
Z,t are driven by the same N shocks ǫPt . The Zt innovations are given by ΣǫPt ,

while the EP
Z,t innovations are given by ΣEZ ǫ

P
t . The joint covariance matrix for Zt and

EP
Z,t has rank N only (conditionally or unconditionally as estimated via principal-

component analysis, say). This is uncontroversial, since the same properties hold in

a VAR where EP
Z,t is a deterministic function of Zt.

Although they are driven by the same shocks, the states Zt and EZ,t play distinct

roles. The yield factors Zt summarize the cross-section of yields: there areN principal

components in the cross-section of yields. On the other hand, the conditional means

EZ,t summarize the future evolution of yields and it is a function of the entire history

of Zt. To see this, iterate Equation (13) backward. This separation of the spanning

and the forecasting roles is at the heart of our modelling strategy.

Markovian Expectations

The conditional mean EP
Z,t is Markovian under P, but the risk factors Zt are not. The

conditional expectations EP
Z,t depend on lagged expectations, EP

Z,t−1, via the auto-

regressive matrix (IN + KP
1 ), and on the current shock Zt − EP

Z,t−1, via the matrix

ΣEZΣ
−1. The restriction θ = 0 states that Zt is Markovian when these weights

are equal. Consistent with the evidence in Section 1, Assumption 2 is equivalent

to an unrestricted VARMA(1,1) for Zt where θ is the moving-average parameter.12

Therefore, the dependence between EP
Z,t and the past is characterized parsimoniously

by θ.13 Note that the conditional mean EP
Z,t can be filtered easily given the time-series

of ZP
t using the recursion in Equation (13) and starting from some initial value EP

Z,0.

Nonetheless, Zt is latent in our context and must be filtered from its effect on yields.

12This is analogous to a GARCH(1,1) model where the conditional variance can be filtered directly
from observed returns. The general CM representation was introduced in Fiorentini and Sentana
(1998) in the context of time-series models.

13Alternatively, one can directly introduce lagged values of Zt in a VAR(p) representation. We
argue that this approach is not parsimonious and that the conditional mean representation is more
intuitive in the context of term structure models (where conditional expectations play a key role).
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General Equilibrium

Non-Markovian effects arise naturally within DSGE models. Expectations and cur-

rent values are driven by the same set of shocks; see for instance the discussion in

Fernández-Villaverde et al. (2007). In addition, Ravenna (2007) discusses the invert-

ibility problem associated with finding a finite-order VAR representation in DSGE

models. Non-Markovian effects also arise in a limited-information context even if

there exist some Markovian state variables. Consider an equilibrium where Zt is part

of a broader system involving other financial or macro variables, say Ξt ≡ [Zt Z2,t],

and where Ξt is Markovian and stationary. Then, the subset Zt, grouping only those

variables that explain the cross-section of yields, will in general have non-Markovian

dynamics under P, unless specific exogeneity conditions are imposed between Zt and

Z2,t.

2.3 Conditional Mean Representation of the Kalman Filter

Dynamics

To complete the specification of our model, we specify the statistical properties of

observed yields. Let {m1, m2, . . . , mJ } be the set of maturities (in years) of the bonds

used in estimation, Yt ≡ {y(m1)
t , . . . , y

(mJ )
t } ∈ RJ be the set of model-implied yields

(see Equation (9)) and Y o
t the corresponding set of observed yields. As above, define

IP,t = {P0
t ,P

o
t−1, . . .}, the history of Po

t . We consider the case where measurement

errors are pervasive.

Assumption 3 Any yield portfolio Po
t ≡ WYt, with W a J × J matrix of portfolio

weights, equals its DTSM-implied values Pt ≡ WY o
t plus a mean zero, independent

and normally distributed error, wt = Po
t −Pt.

Assumption 3 leads to a well-known Kalman filtering problem, which is often sum-

marized via the following state-space representation:

Po
t = H0 +H ′Zt + wt (15)

Zt = EP
Z,t−1 + ΣǫPt . (16)

Equation (15) stacks the measurement equations for yields and Equation (16) corre-

sponds to the state dynamics. This representation is based on the latent factors Zt:

all time-series and cross-section implications from the model are not direcly available.

It is only after a recursive application of the Kalman filter to the data that model
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forecasts and model yields can be obtained using the filtered estimates of Zt and

EP
Z,t−1. This also delivers the likelihood of the data {Po

t } for the purpose of parameter

estimation.

Hence, all the relevant model implications of the model must be derived in terms

of the observables Po
t . Theorem 1 establishes a central result: the CM-DTSM given

by Equations (15)-(16) can be represented directly in terms of the observed Po
t and

its conditional mean EP,t. The resulting model belongs to the family of CM-DTSMs:

the portfolio dynamics is analogous to that in Assumption 2. This holds whether Zt

has CM dynamics or Po
t are measured with errors.

Theorem 1 Let Pt = H0+H ′Zt for some J ×1 vector H0 and N ×J full-row rank

matrix H, where J > N . Define R ≡ var(Pt −Po
t ), a full-rank diagonal matrix, and

EP
P,t ≡ EP[Po

t+1|IP,t]. Then, Po
t has the following conditional mean dynamics:

Po
t = EP

P,t−1 + ΣPǫ
P
P,t (17)

∆EP
P,t = KP

0P +KP
1PE

P
P,t−1 + ΣEP ǫ

P
P,t. (18)

Our canonical form is parameterized by ΘP = {KP
0P , H,KP

1 , R, θ} with positive ele-

ments on the first line of H and with the eigenvalues of KP
1P ordered from high to

low. Define H⊥H ′ = IN . The other parameters in Equations (17)-(18) are given by

KP
1P = H ′(KP

1 + IN )H⊥ − IJ

KP
0P = (IJ −KP

1P)H0 +H ′KP
0

ΣEP =
(
(KP

1P + IJ )P −H ′θH
)
(Σ′

P)
−1

ΣPΣ
′
P = P +R, (19)

where P has rank N and is given as the solution of a generalized algebraic Ricatti

equation in terms of the canonical parameters (see Appendix A.3). Define

θP ≡ H ′(KP
1 + IN )H⊥R(P +R)−1 +H ′θH(P +R)−1. (20)

Then, Po
t is non-Markovian if and only if θP 6= 0.

We refer to the CM-DTSM in Theorem 1 as the CM canonical form parameterized

by ΘP .14 One identification assumption is that Σ = IN . Theorem 1 summarizes all

14It is tempting to stack Zt and EZ,t within an extended VAR representation and apply the results
in Joslin, Singleton, and Zhu (2011), but these are not applicable: their canonical form requires an
unrestricted VAR specification.
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the dynamic implications of the model. This is really all we can know about the

yield dynamics given the observable data IP,t. It is similar in spirit to Theorem 1

in Joslin, Singleton, and Zhu (2011) deriving a canonical model in terms of yield

portfolios measured without error. Our proof connecting the state-space representa-

tion in Equations (15)-(16) to the direct representation in Equations (17)-(18) uses

the steady-state solution of the Kalman filter. This is innocuous in our case – the

distribution is Gaussian with constant variance – since the filter converges very fast

to its steady state irrespective of the initial gain matrix.

2.4 Two Mechanisms for Unspanned Information

Equation 20 identifies two mechanisms that generate non-Markovian effects in the

dynamics of the portfolios Po
t . This is one clear benefit from the representation in

Theorem 1. Rearranging Equation (20), θP is given by

θP =
(
H ′(KP

1 + IN )H⊥
)
R(ΣPΣ

′
P)

−1 +
(
H ′θH⊥

)
QP(ΣPΣ

′
P)

−1, (21)

whereH ′(KP
1+IN )H⊥ is the persistence of Pt, (H

′θH⊥) the moving-average coefficient

and QP = H ′ΣΣ′H the covariance matrix of its innovations. The portfolios Po
t are

not Markovian, θP 6= 0, whether the latent risk factor Zt is non-Markovian, θ 6= 0, or

the portfolios are measured with errors, R = 0, or both.

The first term in Equation (21) is zero if R = 0. This term is the source of the

hidden factor in Duffee (2011): the conditional dynamics of Po
t depends on the history

of yields via the Kalman filter. This is why the estimate of θP is closely related to the

estimate of the yield persistence H ′(KP
1 + IN )H⊥. Empirically, the yield dynamics

implied by the Kalman filter should be close to Markovian if the measurement errors

are small relative to the innovations in yield portfolios; i.e., if R is “small” relative to

ΣPΣ
′
P .

15 This mechanism is further restricted, since R is a diagonal covariance matrix

(N parameters), to preserve the interpretation of the measurement errors. The more

restricted case R = σ2I is often used in practice, as in Duffee (2011).

The second term in Equation (21) provides a more flexible channel to generate

non-Markovian dynamics. Since measurement errors are small, the innovations in Pt

represent a large share of the innovations in Po
t and QP is close to ΣPΣ

′
P . Therefore,

the moving-average term in the risk factor Zt is communicated directly to the yield.16

15The dynamics will also be close to Markovian if the persistence of the yield portfolios (KP

1P+IJ )
is small, but this case is irrelevant.

16Equation (21) suggests that θ and R interact in the determination of θP : θ appears in the first
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This mechanism differs from that for the unspanned yield factors in Duffee (2011)

or for the unspanned macro variables in Joslin, Priebsch, and Singleton (2012). As

discussed above, Et and Zt have different roles if the latent factor Zt is non-Markovian.

It suffices that θ 6= 0; then, Zt spans the cross-section of yields but current yields do

not span the conditional dynamics of Zt. There is no need to restrict the pricing

kernel.

2.5 Risk-Neutral Parameters

The canonical form in Theorem 1 does not include parameters of the Q-dynamics

for Zt. Instead, we allow for free parameters in H to emphasize that the result does

not rely on the no-arbitrage assumption. Nonetheless, this structure imposes cross-

equation restrictions from the generic factor model Pt = H0 +H ′Zt. If, in addition,

bond prices are free of arbitrage opportunity, the vector H0 and the matrix H embody

additional restrictions that are derived from the Q-dynamics of Zt:

H0 =




An1

...

AnJ


 H =




B′
n1

...

B′
nJ


 , (22)

where An and B′
n follow standard recursions, which are given in terms of KQ

0 , K
Q
1 ,

Σ, as well as δ0 ≡ A1 and δ1 ≡ B1. Using a standard identification assumption for

the risk-neutral parameters generates the following alternative canonical form for the

dynamics of Po
t :

Θ̃P = {δ0, δ1, K
Q
1 , K

P
1 , R, θ}, (23)

where δ > 0 (element by element). The N × (N + 1) risk-neutral parameters δ1 and

KQ
1 replace the N × J matrix H (recall that J > N ). The connection between δ1,

KQ
1 and H is given directly from Equation (22) and Proposition 1. We set KQ

1 = 0

for identfication. The matrix KP
0P is not included in Θ̃P , but it is given by

KP
0P = (IJ −KP

1P)H0 +H ′KP
0 ,

in terms of other parameters (see Theorem 1) with H0 given in Equation (22).

The pricing equation for all the observed portfolios Po
t is embedded within Equa-

tions (17)-(18). Conditioning on IP,t, the pricing equation y
(n)
t = An + B′

nZt for any

term, and R appears in the second term. However, this effect is of second order and can be safely
ignored in practice.
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other maturity n becomes

y
(n)
t = AP,n +B′

P,nP
o
t + C ′

EP ,nEP,t, (24)

with coefficients

AP,n = An −H⊥H0

BP,n = B′
nH

⊥P (P +R)−1

CP,n = B′
nH

⊥(IJ − P (P +R)−1). (25)

2.6 Bond Risk Premium

This section shows that the same mechanisms generating unspanned risk factors also

generate lagged coefficients in the bond risk premium. For that purpose, Proposi-

tion 2 first derives the pricing kernel that is consistent with Equations (10) and (13),

respectively.

Proposition 2 The unique pricing kernel Mt+1 consistent with the Q-dynamics and

the P-dynamics in Equations (10) and (13), respectively, is given by

Mt+1 ≡ exp

(
−
Λ′

tΣΣ
′Λt

2
− Λ′

tΣǫ
P
t+1

)
,

with prices of risk

Λt ≡ (ΣΣ′)
−1 (

Λ0 + ΛZZt + ΛEE
P
Z,t−1

)
. (26)

The mapping between parameters of Equations (10) and (13) is given by

KP
0 = Λ0 +KQ

0

KP
1 = ΛZ + ΛE +KQ

1

ΣEZ =
(
ΛZ +KQ

1 + IN
)
Σ. (27)

Therefore, the CM dynamics for Zt in Assumption 2 is a generalization of the prices

of risk. Indeed, we have that θ = 0 is equivalent to ΛE = 0, yielding the standard

pricing kernel. Otherwise, the prices of risk are functions of both Zt and EZ,t−1. More

generally, ΛE 6= 0 is consistent with a habit specification (Campbell and Cochrane,

1999). It is also consistent with a moving-average component in the state dynamics of

a long-run risk economy (Bansal and Yaron, 2000). Building on this result, Proposi-
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tion 3 confirms that long lags of Zt enter the bond risk premium in this non-Markovian

market.

Proposition 3 For CM-DTSMs, the risk premium from holding an n-period bond

between t and t+ h,

brp
(n)
t,h ≡ E[xr

(n)
t,h |IZ,t], (28)

is given by

brp
(n)
t,h = δh,0 + δ

(n)′
h,ZZt + δ

(n)′
h,E E

P
Z,t−1, (29)

where xr
(n)
t,h is defined in Equation (11). We have that δ

(n)
h,E = 0 if and only if Zt is

Markovian under P (θ = 0).

The coefficients δ
(n)
h,Z and δ

(n)
h,E in Equation (29) are given by

δ
(n)′
h,Z = B′

n−1 ×
[
ΛZ − (ΛZ + ΛE)

(
KP

1

)−1
(
IN −

(
KP

1 + IN
)h−1

)
ΣEΣ

−1
]

δ
(n)′
h,E = B′

n−1 ×
[
IN + (ΛZ + ΛE)

(
KP

1

)−1
(
IN −

(
KP

1 + IN
)h−1

)]
ΛE . (30)

Again, we cannot use Equation (29) directly in practice, since Zt is latent (and there-

fore EP
Z,t) and must be filtered. Conditioning on IP,t, the expected bond risk premium

is given by

b̂rp
(n)

t,h = E[brp
(n)
t,h |IP,t]

= δh,0P + δ
(n)′
h,ZH

⊥P (P +R)−1Po
t

+
[
δ
(n)′
h,ZH

⊥
(
I − P (P +R)−1

)
+ δ

(n)′
h,E H

⊥
]
EP
P,t−1. (31)

The risk premium depends on the current forward rates, via the yield portfolios Po
t ,

but also depends on past forward rates, via EP
P,t−1. Again, there are two channels

driving the results, as shown by the two terms in brackets. Past forward rates will

help predict the future bond premium whether ΛE 6= 0 (in which case δ
(n)
h,E 6= 0)

or R 6= 0. The role of the history of yields in the P-dynamics and its role in the

bond risk premium are intertwined. Therefore, the CM model is consistent with the

predictability evidence: Equation (31) is similar to the reduced-form specification in

Equation (4).

2.7 Unspanned Macro Risks

Joslin, Priebsch, and Singleton (2012) generate unspanned information via a very

different mechanism. To see the difference, start with a simple Markovian model
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for the yield factor Zt and expand the system with one latent factor Z2,t. This

additional variable affects the future of Zt and it comes with its own shock ǫ2,t. Then,

the spanning restriction in Joslin, Priebsch, and Singleton (2012) corresponds to a

projection of the economy-wide pricing kernel, which is a function of ǫt and ǫ2,t on

“the priced risks in the bond market and on the state of the economy.” Only then is

the extra factor Z2,t not spanned by the current yield curve.

This restriction connects the parameters governing the prices of the risks ǫt and

ǫ2,t with the parameters governing the dynamics of Zt and Z2,t under the historical

measure P (see Appendix B in Joslin, Priebsch, and Singleton 2012). In contrast,

we relax the Markovian assumption. This introduces a role for lagged forward rates

directly, consistent with the bond premium evidence in Section 1, but does not require

additional sources of risk. Hence, we do not need to project the pricing kernel Mt on

a subset of the sources of risk and there is no need to connect the parameters driving

the prices of ǫt with those driving the dynamics of Zt.
17

3 Results

This section studies the roots of the non-Markovian bond risk premium. We explore

two alternative channels in great detail, asking the following questions. First, are

the risk factors truly Markovian? In this case, small measurement errors should

be sufficient to generate the predictability seen in the data. Second, if not, can a

small number of non-Markovian risk factors with conditional mean dynamics match

the evidence? Pre-empting the results, we conclude that measurement errors on their

own are not sufficient to match the evidence, but that a CM model with three factors

matches the evidence.

3.1 Nomenclature

We use the following model nomenclature. Each model is designated by a label of

the form CMn
N -KFM. The subscript N indicates the number of latent factors,

and the superscript n ≤ N indicates the rank of θ: the case n = 0 corresponds to

the case where θ = 0 and the risk factors are Markovian. Finally, M designates

different structures for the covariance matrix of measurement errors R. We consider

three cases. KF0 supposes that N linear combinations of the J yields are observed

17This should make clear why using a stochastic mean model for Zt, where the conditional mean
has its own shocks, cannot resolve the tension between the time-series and the cross-sectional prop-
erties.
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without errors. In this case, we invert the yield equations to reveal the risk factors,

following standard practice. The other two cases suppose that all yields are measured

with errors. KF1 designates models where R = σ2IN and KF2 designates models

where R is a free diagonal matrix.

3.2 Data

We use end-of-month zero-coupon yields from CRSP between December 1963 and

December 2007 and focus on bonds with annual maturities of 1 to 5 years. This choice

of sample period and maturities eases comparison with the results in Cochrane and

Piazzesi (2005) and Duffee (2011). For instance, the evidence of a non-Markovian

bond premium in Cochrane and Piazzesi (2005) is based on a monthly Markovian

model for the first five annual forward rates. Similarly, Duffee (2011) uses these

yields to argue for the presence of a hidden factor. As in Cochrane and Piazzesi

(2005) , we set Pt = [f
(12)
t f

(24)
t f

(36)
t f

(48)
t f

(60)
t ]′ where f

(n)
t is the 1-year forward rate

n/12− 1 years ahead (f
(1)
t is the short rate).

3.3 Likelihood

The extant literature uses the Kalman filter for estimation whenever all the portfolios

Po
t are measured with errors. Theorem 1 shows the equivalence between the steady-

state Kalman filter and the CMk
N -KF1 and CMk

N -KF2 models. Then the joint

likelihood of yields observed at time t is given by

f(Po
t |It−1; Θ

P) = −
1

2

(
log ΣPΣ

′
P + (Po

t − EP
P,t−1)

′(ΣPΣ
′
P)

−1(Po
t − EP

P,t−1)
)
, (32)

where It−1 includes the history of observed portfolios {Po
t−1 . . .P

o
0}, E

P
P,t−1 is given by

Equation (18), and the initial value is set to its unconditional mean.

As discussed in Section 2.5, the canonical form ΘP is defined in terms of free fac-

tor loadings H . When imposing the no-arbitrage restriction, we estimate parameters

of the canonical form Θ̃P via the following two-step procedure. The first step corre-

sponds exactly to maximizing the likelihood in Equation (32) for the whole sample.

In the second step, we estimate the risk-neutral parameters KQ
1 , δ0 and δ1, keeping

the parameters KP
1 , R and θ at values estimated in the first step. The likelihood is

then given by

f(Po
t |It−1; Θ̃

P) = −
1

2

(
log ΣPΣ

′
P + (Po

t − EP
P,t−1)

′(ΣPΣ
′
P)

−1(Po
t − EP

P,t−1)
)
, (33)
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where the plugged-in values from the first stage are consistent estimates for the pa-

rameters of interest. Therefore, the second-stage estimates of KQ
1 , δ0 and δ1 are

consistent as well.18 In all cases, we restrict the eigenvalues of KQ
1 and KP

1 within the

unit circle, we calibrate the level of the risk factor under P to match the sample aver-

ages of f
(12)
t , f

(36)
t and f

(60)
t , and we also calibrate δ0 to match the average of the short

rate y
(1)
t in our sample. This makes the different models more easily comparable.

In cases where the risk factors can be inverted to reveal the risk factors, the

parameterization reduces to the canonical form in Joslin, Singleton, and Zhu (2011).

We also use their two-step estimation procedure. Denote P t = WPo
t the N yield

portfolios that are measured without errors and Pe
t the portfolios that are measured

with errors and redefine Po
t = (P t Pe

t ). Suppose that the measurement errors Po−Pt

have conditional distribution P σ, for some parameters σ, and that these errors are

independent of lagged measurement errors.19 In this case, the joint likelihood of Po
t

of all yields observed at time t is given by

f(Pe
t |P t;λ

Q, kQ
∞,Σ, P σ)f(P t|It−1;K

P
0 , K

P
1 ,Σ). (34)

Parameters of the P-dynamics are estimated in a first stage via equation-by-equation

OLS regressions of P t on its lagged value P t−1. Parameters of the Q-dynamics are

estimated in a second stage by minimizing the squared pricing errors for the remaining

portfolios Pe
t .

3.4 Markovian Models

The first question of interest is whether the non-Markovian dynamics are necessary

to match the risk-premium evidence. For this purpose, we focus on CM0
5 -KF0 and

CM5
5 -KF0 models with five factors. We endow the Markovian model with as many

factors as forward rates in Pt, so that the results cannot be attributed to information

in the cross-section of yields being missed by a low-dimensional model. We drop the

KF0 label in this case since R and θ are not separately identified (we estimate θ).

We also use the 3-month and 6-month yields y
(3)
t and y

(6)
t to estimate the Q-dynamics

(we need at least one additional yield for J < N and to identify the Q-parameters).

We will ask whether we can reduce the number of factors in later sections.

18The two-step estimator will be strongly consistent but not efficient for the parameters of the
conditional mean dynamics in the CMN models. However, one could construct a three-step Aitken
type estimator that reaches the efficiency bound along the way suggested in Gallant (1975).

19The measurement errors also satisfy the consistency condition P(WPo
t = Pt) = 1, as in Joslin

et al. (2011).
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3.4.1 Variance Ratios

Following Duffee (2011), we compare the variability of the bond risk premia from

each model. This provides one measure of the gap between the information content

of each model’s state vector. Specifically, we compute the conditional risk premium

for bonds with 6, 12, 24 and 60 months for holding periods between 1 and 12 months

at each date in the sample. We then compute the sample variance for each case and

within each model. Panel (A) of Table 6 reports the ratio of the sample variance

from the CM0
5 model relative to the CM5

5 . A value of less than one indicates that

the CM0
5 risk premium is less variable than the CM5

5 risk premium, and gauges the

additional information contained in the history yields. This contribution is large.

The ratios typically hover around 40-50%. For instance, the ratio increases from 32%

to 55% and from 18% to 59% for the 2-year and the 5-year bonds, respectively. The

ratio for the 6-month and the 1-year bonds is also low at short horizons – 52% and

41%, respectively – but rises rapidly when we reach horizons near the bond maturity.

Consistent with Duffee (2011) and the evidence from direct regressions in Table 1,

the contribution from past yields increases at shorter horizons.

3.4.2 Bond Returns

In a second step, we ask whether the additional information content translates to

a greater accuracy in forecasting actual excess returns. Specifically, we estimate

the following Mincer-Zarnowitz regressions of excess returns on the model bond risk

premium:

xr
(n)
t,h = a + b× b̂rp

(n)

t,h + u
(n)
t,h . (35)

Panel (B) of Table 6 reports the ratios of the R2s using the CM0
5 risk premium

relative to the CM5
5 risk premium. A value of less than one gauges the accuracy gap

in forecasting bond returns. This gap is large. In fact, the ratios in Panel (B) are

close to the ratios in Panel (A): much of the added variability in the risk premium

translates into an improved accuracy. The relative improvements are striking at the

shorter horizons (in part because the predictability implied by the CM0
5 is low), but

remain large across the board. For instance, the R2 ratios range between 13% and

72% for a 2-year bond, and between 27% and 64% for a 5-year bond.20

20Strictly speaking, the GDTSMs imply that a = 0 and b = 1 in Equation (35). Unreported
results show that, with a few exceptions, this constraint yields little change in predictability.
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3.4.3 Return-Forecasting Factors

How much of the variation in the return-forecasting factor in Section 1 is captured in

the model-implied risk premium? Consider a regression of the factor estimated using

Equation (3) on the risk premium implied by the models,

x̂r
(n)
t,h = a + b× b̂rp

(n)

t,h + u
(n)
t,h . (36)

Again, we report the ratio of the R2s obtained from the CM0
5 model relative to that

obtained from the CM5
5 model.21 Figure 1 shows this ratio for bonds with 2, 3, 4 and

5 years to maturity and across horizons up to 12 months. Again, the improvements

are substantial. The fit in the CM0
5 model ranges between 55% and 85% of the fit

in the CM5
5 model for 3-month returns, and between 65% and 95% for 12-month

returns.

3.4.4 CP’s Regression

Relaxing the Markov assumption improves model forecasts even when keeping the

information content fixed. Consider CP’s regression of annual bond excess returns

on Pt. This keeps the information set constant. We then compare the population

coefficients of this projection within the CM0
5 and the CM5

5 models, respectively.

Otherwise, the information set used to form a forecast is larger in the CM5
5 model

than in the CM5
0 model (the former uses the history of forward rates as well). This

comparison is also analogous to using coefficients from the Campbell-Shiller regression

as a benchmark to gauge DTSMs. Figure 2 shows the coefficients for bonds with ma-

turities of 3 and 5 years and for horizons of 3, 6 and 12 months across Panels (A)-(C),

including estimates from direct regressions. The OLS coefficients show the familiar

tent shape. The coefficients from the CM5
5 model are close to their sample counter-

part and show the expected tent shape. But the coefficients from the CM0
5 do not.

CP also show that the CM0
5 does not match these coefficients for annual returns. The

fact that the CM5
5 model provides a better fit means that it bridges the aggregation

gap between the monthly yield dynamics and bond returns at longer horizons.

21Note that the variable on the left-hand side is measured with errors and the estimates of b may

be biased. In addition, x̂r
(n)
t,h

has been obtained from a finite sample and may suffer from overfitting.

Hence, it is not clear how high successful R2s should be in Equation (36).
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3.5 Conditional Mean Models

This section focuses on models with N = 3 factors and investigates the roots of the

non-Markovian bond risk premium. CM models with N = 3 are consistent with the

stylized fact that three principal components summarize the cross-section of yields

(i.e., rank(var(Pt)) = N = 3). These models are also consistent with the predictive

content of lagged yields.

We first ask whether measurement errors on their own can match the evidence.

To answer this question, we consider two models where Zt is Markovian but where

all yields are measured with errors: the CM0
3 -KF1 and CM0

3 -KF2. We can then

assess how much information is hidden within yield measurement errors, as in Duffee

(2011). If not, we ask whether the addition of non-Markovian risk factors matches

the evidence. To answer this question, we consider two models where Zt has non-

Markovian dynamics – CM3
3 -KF1 and CM3

3 -KF2 – allowing us to gauge the effect of

conditional mean dynamics on the estimated risk premium. In most cases, we compare

results with the standard CM0
3 -KF0 model, where the risk factors are Markovian and

can be inverted from three combinations of yields that are measured without error.

3.5.1 Likelihood Ratio Tests

Panel (A) of Table 7 reports the number of parameters in each model. The CM0
3 -KF0

has 24 parameters, including the standard deviation parameters for those combina-

tions of yields measured with errors. The CM0
3 -KF1 has 23 parameters: all yields are

measured with errors but only one parameter controls their variance, R = σ2I. The

CM0
3 -KF2 has 27 parameters, since in this case the diagonal matrix R is free. Each

corresponding model with non-Markovian risk factors has nine additional parameters

(θ has 3 × 3 = 9 parameters). The CM3
3 -KF0, CM3

3 -KF1 and CM3
3 -KF2 models

have 33, 32 and 36 parameters, respectively. To highlight the gain in parsimony, the

CM0
5 -KF0 and CM5

5 -KF0 5-factor models estimated in Section 3.4 have 51 and 76

parameters, respectively.

Panel (A) reports the gain in likelihood relative to CM0
3 -KF1. Note that the

CM0
3 -KF0 model is estimated in two steps where non-linear least squares is applied

in the second steps. Hence, we do not report the likelihood for this case.22 The (log)

likelihood increases by 85 between the CM0
3 -KF1 and CM0

3 -KF2. Similarly, the (log)

22We could compute the joint likelihood of the data at the two-step parameters estimates, but
this would not correspond to the maximum likelihood point in the space of parameters (in our finite
sample), and would not be comparable to the other results.
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likelihood increases by 71 between the CM3
3 -KF1 and CM3

3 -KF2. In each case, the

p-value of the LR test statistics associated with the null hypothesis that R = σ2I is

negligible (against the alternative that R is a free diagonal matrix). The restriction

that the scale of measurement errors is driven by one parameter is rejected in the

data. Turning to the restriction of Markovian risk factors, the likelihood increases by

41 between the CM0
3 -KF1 and CM3

3 -KF1 and by 27 between the CM0
3 -KF2 and

CM3
3 -KF2 models (holding the form of the R matrix constant in each case). The

restriction that θ = 0 is rejected in both cases.23

3.5.2 Variance Ratios

Notwithstanding the statistical evidence, the question of interest is whether a 3-factor

CM model captures the bond risk premium that we see in the data. We focus on

annual bond returns in the following to preserve space. Results based on annual

returns are also more easily comparable with the existing evidence. In addition,

using annual returns yields a conservative assessment, since the relative importance

of the non-Markovian effects increases for shorter horizons.

As above, we first compare the standard deviation of the model-implied risk pre-

mium. We compute the ratio relative to the unrestricted 5-factor CM5
5 model, which

is the relevant benchmark, since it captures the predictability observed in the data

(see, e.g., Table 5). Panel (B) of Table 7 reports the ratios. A ratio close to or greater

than one is favorable. First, the risk-premium variability is low in the CM0
3 -KF0,

which corresponds to the standard 3-factor model (as in Joslin, Singleton, and Zhu

(2011), say). The ratio is only 70%. Worse, the annual bond returns predictability

is only 60% of that observed in the data. These results provide a gauge to assess the

gain across 3-factor models.

The CM0
3 -KF1 model produces more variability in the risk premium, around

90% of the sample variability, but the returns predictability R2s do not match the

evidence (see Section 3.5.3). Allowing for a more flexible structure of measurement

errors worsens the results. The CM0
3 -KF2 model sees the variance ratio decrease by

15%. Filtering the risk factors is not enough. In contrast, allowing for three non-

Markovian risk factors matches the evidence in the data. Both the CM3
3 -KF1 and

CM3
3 -KF2 produce ratios above one.

23A likelihood gain of 11.8 or more is enough to reject the null using a 1% level for the test.
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3.5.3 Bond Returns Forecasts

We also compare the R2s from Mincer-Zarnowitz regressions of annual returns. We

focus on annual returns for parsimony, and compute R2 ratios relative to the unre-

stricted 5-factor CM5
5 model. Panel (C) of Table 7 reports the results. Some of the

variability of the risk premium in Markovian models does not translate into returns

predictability. The CM0
3 -KF1 model produces variance ratios of around 90% but the

predictability R2 ratios decline to between 75-85%. In contrast, the R2 ratios remain

close to one in the non-Markovian models.

3.5.4 Return-Forecasting Factors

We also ask how much is lost in fitting the returns factor when N = 3. Consider a

regression of excess returns on the model risk premium,

x̂r
(n)
t,h = a + b× b̂rp

(n)

t,h + u
(n)
t,h . (37)

Figure 3 shows the ratio of the R2s from the CM0
3 -KF2 model relative to that ob-

tained from the CM3
3 -KF2 model. This gauges the importance of allowing for non-

Markovian risk factors. The ratios are close to 100% for 1-month returns, most likely

because each model’s estimates follow from maximizing the likelihood of 1-month

forecast errors. More importantly, the ratios immediately drop to between 60% and

70% for 2-month returns, and the improvement offered by CM models declines only

slowly for longer horizons.

3.6 Summary

We provide a brief summary of this section’s results. First, the Markov assumption

is restrictive even in a 5-factor model estimated on five yields. The risk premium

estimated based on CM dynamics exhibits more variability, with higher correlation

with other return-forecasting factors, and delivers more accurate forecasts of bond

returns. Second, a parsimonious 3-factor CM specification is sufficient to match the

evidence. For instance, the CM3
3 -KF2 model adds nine parameters relative to a

Markovian specification of the risk factor, but the R2s increase by as much as 30% in

the predictability regression of bond returns. In other words, while the models agree

on the 1-month-ahead dynamics (which corresponds to the maximum likelihood cri-

teria), the aggregation of forecasts over longer horizons differs substantially. Finally,

measurement errors generate conditional mean dynamics in yields, but fail to match

the evidence: one needs to introduce conditional mean dynamics in the latent factors.
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4 Yield Decomposition

Estimates of the risk premium from the more flexible CM models are close to esti-

mates from predictability regressions. In turn, the previous section has also shown

that the CM models provide better forecasts of bond returns. In other words, the

model decomposition of yields into an expectation component and a risk component

is corroborated by indirect evidence. Since the risk premium differs from the standard

models, it is important to examine more closely how the decomposition of long-term

yields changes in our models. Figure 4 compares the decomposition of the 5-year

yields from three different models. The CM3
3 -KF2 model generates non-Markovian

effects via the risk factors and via the Kalman filter. The CM3
3 -KF0 generates

non-Markovian effects via the risk factors only. The CM0
3 -KF0 corresponds to the

standard Markovian model, with three combinations of yields measured perfectly.

Panel (A) shows the decomposition from the CM0
3 -KF0 model. Estimates of the

term premium exhibit little cyclical variability. Therefore, most of the 5-year yield

variations are attributed to changes in expectations. Panel (B) shows the decompo-

sition from the CM3
3 -KF2 specification. The term premium is substantially more

variable and cyclical. Non-Markovian effects attribute a much greater share of 5-year

variations to the risk premium, producing smoother estimates of interest rate expec-

tations. Figure 5 compares the term premium from each model, providing a better

scale to assess the magnitude of the differences. Again, the simple Markovian model

produces much less term premium variation. For instance, the estimates remain be-

tween 2% and 3% in the early 1980s, when the 5-year yield reached close to 15%. In

contrast, the CM3
3 -KF2 term premium estimates range between 4% and 5%, almost

twice as large as the benchmark case.

The cyclical differences are also immediately apparent. The larger cyclical vari-

ations imply that, early in recessions (e.g., 1990-1991 and 2001), the expectation

component falls by less and it recovers faster as the economy approaches a turning

point. In fact, the episode between 2001 and 2005 provides a powerful case in point.

Using the information from past yields produces a large decline of term premium

estimates early in the 2001 recessions. The downward adjustment in expectations is

far smaller in the early phase of the recessions. The lower expectation estimates are

also counter-intuitive. It is unlikely that yields were expected to remain as low and

for so long as suggested by the non-Markovian model.

Strikingly, this difference has further repercussions as we enter the “conundrum”

episode in 2004-2005. The risk premium from the CM3
3 -KF2 model increases steadily
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as the Federal Reserve raises short-term interest rates, but the risk premium from

the CM0
3 -KF0 falls throughout 2004 and 2005. Hence, the decline in long-term

yields in that period is wrongly attributed to a fall in expectations, an explanation

rejected at the time by Chairman Greenspan.24 Other implementations of DTSMs also

attribute the conundrum to an increase in the risk premium, but this typically requires

sophisticated bias-adjusted estimators, or auxiliary assumptions allowing researchers

to use surveys of professional forecasters. Our results suggest that misspecification of

the benchmark VAR model plays an important role: simply relaxing θ = 0 correctly

describes the evolution of the risk premium.

5 Conclusion

We revisit and extend the evidence for non-Markovian effects in the dynamics of

yields put forward in Cochrane and Piazzesi (2005) and Duffee (2011). Estimates of

the bond risk premium are much more variable and cyclical once we account for the

information content from past yields. In turn, these risk-premium estimates produce

forecasts of bond returns that are more accurate. As noted by Cochrane and Piazzesi

(2005) and Duffee (2011), among others, the evidence is inconsistent with a standard

Markovian specification of the GDTSM. This paper proposes a simple, parsimonious

and intuitive reconciliation, where we identify two separate channels generating non-

Markovian dynamics for yields (under the historical measure P). First, the latent

risk factor may include a moving-average component. Second, the application of

the Kalman filter generates non-Markovian effects from the point of view of the

econometrician.

Empirically, this approach captures much of the predictive content of past forward

rates for bond excess returns. We also show that measurement errors participate in

the observed non-Markovian dynamics, but that they cannot on their own generate

the observed pattern of predictability. In practice, our approach generates estimates

of the risk premium that are more cyclical and more accurate. In turn, this generates

economically large differences in the decomposition of long-term yields.

We leave several avenues for future research. For instance, additional data, such

as bid-ask spreads, could be brought into the model to help identify the effect of

measurement errors from the effect of non-Markovian risk factors. Also, we do not

ask why the latent risk factors are not Markovian: is it because the true state exhibits

24See, e.g., Backus and Wright (2007) for a contemporaneous discussion.
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long-run dynamics, as in Bansal and Yaron (2000); because preferences exhibit habit,

as in Campbell and Cochrane (1999); or because investors form expectations adap-

tively? In any case, our approach offers researchers and investors an interpretation

of bond yields that is consistent with the dynamic properties of bond returns.
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A Appendix

A.1 Bond Returns Projections with a Moving-Average Term

The factors Yt have VARMA(1,1) dynamics with a VAR(∞) representation given by

Yt+1 =

∞∑

i=0

ΘiYt−i + ut+1, (38)

with Θi ≡ θi(φ − θ). Guess that E[Yt+h|Yt, . . . , ] ≡ Et[Yt+h] = Ch

∑∞
i=0 ΘiYt−i for h > 1 with

C1 = I, the identity matrix. Then,

Et[Yt+h] = Et[Et+1[Yt+h]] = Et[Ch−1

∞∑

i=0

ΘiYt+1−i]

= Ch−1 (I + θ)
∞∑

i=0

ΘiYt−i, (39)

where Ch = Ch−1 (I + θ). Hence, for any Rt+h ≡ WhYt+h, we have that

Et[Rt+h] = WhCh

∞∑

i=0

ΘiYt−i. (40)

Therefore, the projection coefficients of Rt+h on Yt−i for i = 0, . . . ,∞ are given by WhChΘi =

WhChθ
i(φ − θ), which has the rank of θ, where we have a separation between the dependence on

n and h (implicit in Wh) and the decaying pattern due to θi.

A.2 Proofs of Propositions 1-3

Proposition 1

Take Zt ∈ RN with stationary Gaussian distribution under Q, possibly conditional on Zt, its past,

or some other factor Z2,t. Suppose that the cross-section of n-period yields, Y
(n)
t for n ≥ 1, can be

expressed as a linear function of Zt,

y
(n)
t = An +B′

nZt. (41)

In the absence of an arbitrage opportunity, we have that

y
(n)
t = −

1

n
log

(
EQ

t

[
exp

(
−

n∑

i=0

y
(1)
t+i

)])
,

which is consistent with Equation (41) only if Zt has Markovian dynamics under Q. We can write

∆Zt = KQ
0 +KQ

1 Zt−1 +ΣZǫ
Q
Z,t, (42)
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where ǫQz,t is a standard Gaussian innovation. The relationship between the loadings An and Bn

and the Q-dynamics for Zt is standard and given by the no-arbitrage price of zero-coupon bonds,

Dt,n = EQ
t [e

−
∑

n−1

i=0
rt+i ]

= eAn+B′
nZt , (43)

for n > 1, where An and Bn satisfy the first-difference equations:

An+1 −An = KQ′
0 Bn +

1

2
B′
nΣZΣ

′
ZBn − ρ0

Bn+1 − Bn = KQ′
1 Bn − ρ1, (44)

where the coefficients for yields are An = −An/n and Bn = −Bn/n, and ρ0 and ρ1 are the loadings

on the short rate:

rt = ρ0 + ρ1Zt. (45)

Proposition 2

Let Zt ∈ RN with Markovian Q-dynamics and consider the change of measure Mt+1 given by

Mt+1 ≡ exp

(
−
λ′
tΣZΣ

′
Zλt

2
− λ′

tΣZǫ
P
t+1

)
. (46)

Define ǫPt and EP
Z,t−1:

Zt = EP
Z,t−1 +ΣZǫ

P
t . (47)

Then,

EQ
t [exp(u

′ǫPt )] = Et[Mt+1exp(u
′ǫPt )]

= exp(
u′u

2
− u′Σ′

Zλt), (48)

which implies that ǫPt = −Σ′
Zλt + ǫQt and, therefore, that

EQ
t − EP

t = −ΣZΣZλt. (49)

Assume that the prices of risk are given by

λt ≡
(
ΣZΣ

′
Z

)−1
(
λ0 + λ1Zt + λ2E

P
Z,t−1

)
. (50)

Then, Equation (13) follows from substituting for EQ
t and λt in Equation (49), where the unique

mapping between parameters of the P− and Q− dynamics is given in Proposition 2.

A.3 Conditional Mean Representation of the Kalman Filter

Theorem 1

Define the matrix H⊥ such that H⊥H ′ = IN . This matrix exists but it is not unique (also

H(H⊥)⊤ = IN ). Note that EP
P,t = H0 + H ′EP

t . Then, the unobserved portfolios Pt have the

34



following dynamics:

Pt+1 = EP
P,t +H ′ΣǫPt

EP
P,t+1 = H ′KP

0 −KP
1H0 +H ′(KP

1 + IN )H⊥EP
P,t +H ′ΣEǫ

P
t , (51)

and the observed portfolios are measured with errors,

Po
t = Pt + wt, (52)

with i.i.d. wt ∼ N(0, R). We use the VAR representation of Pt dynamics to analyze the optimal

filter. Define X ′
t ≡ (P ′

t E
P′

P,t). Then, the extended state-space representation is given by

Xt+1 = µX + FXXt +Q
1/2
X ǫPt

Po
t = H0X +H ′

XXt + wt, (53)

where

FX =

[
0 IJ
0 H ′(KP

1 + IN )H⊥

]
HX =

[
IJ
0

]
Q

1/2
X =

[
H ′Σ
H ′ΣE

]
. (54)

Then, the Kalman filter forecasts EP
P,t = EP

t [Pt+1], conditional on the observations {Po
1 , . . . ,P

o
t }

and some initial value EP
P,0 is given by

EP
P,t = H ′

XFX

{
Et−1[Xt] + PX,t|t−1HX(H ′

XPX,t|t−1HX +R)−1
(
Po
t − EP

P,t−1

)}
(55)

where

PX,t+1|t = FX

[
PX,t|t−1 − PX,t|t−1HX(H ′

XPX,t|t−1HX +R)−1H ′
XPX,t|t−1

]
F ′
X + QX , (56)

and where we define

PX,t|t−1 ≡

[
P 11
t|t−1

(
P 21
t|t−1

)′

P 21
t|t−1 P 22

t|t−1

]
.

Tedious algebra leads to

EP
P,t = (IJ −KP

1P)H0 +H⊤µ+H ′(KP
1 + IN )H⊥EP

P,t−1

+
(
H ′(KP

1 + IN )H⊥
(
P 11
t|t−1 −H ′ΣΣ′H

)
+H ′ΣEΣ

′H
)
(P 11

t|t−1 +R)−1
(
Po
t − EP

P,t−1

)
. (57)

Standard results show that PX,t|t−1 converges quickly with t, PX,t|t−1 → PX , where PX solves

PX = FX [PX − PXHX(H ′
XPXHX +R)−1H ′

XPX ]F ′
X +QX ,

if a solution to the algebraic Ricatti equation exists (see Arnold and Laub 1984). Then, dropping

the superscript on the upper left block, P 11
t|t−1 → P 11 ≡ P , we can rewrite the steady-state version

35



of Equation (57) as

EP
P,t = (IJ −KP

1P )H0 +H ′KP
0 +H ′(KP

1 + IN )H⊥EP
P,t−1

+
(
H ′(KP

1 + IN )H⊥
(
P −H ′ΣΣ′H

)
+H ′ΣEΣ

′H
)
(P +R)−1

(
Po
t − EP

P,t−1

)

= KP
0P +H ′(KP

1 + IN )H⊥EP
P,t−1

+
(
H ′(KP

1 + IN )H⊥P −H ′θΣΣ′H
)
(P +R)−1

(
Po
t − EP

P,t−1

)

= KP
0P + (KP

1P + IJ )E
P
P,t−1 +

(
(KP

1P + IJ )P −H ′θΣΣ′H
)
(ΣPΣ

′
P)

−1
(
Po
t − EP

P,t−1

)

= KP
0P + (KP

1P + IJ )E
P
P,t−1 +ΣEP ǫ

P
P,t, (58)

where the last three inequalities follow from the parameter definitions in the proposition as well as

ǫPP,t = Σ−1
P

(
Po
t − EP

P,t−1

)
.
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Figure 1: Fitting the Cochrane-Piazzesi Forecast in 5-factor Models
Ratios of R2s from regressions of the returns forecasting factor – estimated from Equation (3) – on the
model-implied bond risk premia from the CM0

5 relative to the CM5
5 model. Estimation based on a sample

from January 1964 until December 2007. Returns computed from the GSW data set.
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Figure 2: Predictability Coefficients in 5-Factor Models
Coefficients on forward rates from predictability regressions of bond excess returns on a constant and the

forward rates ft = [1f
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t ]′. Each panel displays the OLS coefficient estimates, as well as

the coefficients implied by the CM0
5 and the CM5

5 model, respectively. Panel (A) reports results for 3-month
returns, Panel (B) reports results for 6-month returns, and Panel (C) reports results for 12-month returns.
Each panel reports results for 2-year and 5-year bonds. Estimation based on a sample from January 1964
until December 2007. Returns computed from the GSW data set.
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Figure 3: Fitting the Cochrane-Piazzesi Forecast in 3-factor Models
Ratios of R2s from regressions of the returns forecasting factor – estimated from Equation (3) – on the
model-implied bond risk premia from the CM0

3 -KF2 relative to the CM3
3 -KF2 model. Estimation based

on a sample from January 1964 until December 2007. Returns computed from the GSW data set.

1 2 3 6 9 12

0.4

0.6

0.8

1

1.2

Horizon (months)

39



Figure 4: Yield Decompositions
Decomposition of the 5-year yield implied by three different models. The CM3

3 -KF2 has three non-Markovian
risk factors and a free diagonal measurement error covariance matrix. The CM0

3 -KF0 has three Markovian
risk factors and three forward rates measured without errors. Estimation based on a sample from January
1964 until December 2007.
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Figure 5: Term Premium
Term premium in 5-year yield implied by different models. The CM3

3 -KF2 has three non-Markovian risk
factors and a free diagonal measurement error covariance matrix. The CM0

3 -KF0 has three Markovian risk
factors and three forward rates measured without errors. Estimation based on a sample from January 1964
until December 2007.
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Table 1: Bond Excess Returns – OLS Predictability Regressions

Predictability of excess returns xr
(n)
t,h on bonds with n = 2, 3, 4, 5, 7, 10 years to maturity for holding horizons

of n = 1, 2, 3, 6, 9, 12 months using annual forward rates with 1, 2, 3, 4, and 5 years to maturity. Panel (A)
reports R2s from the predictability regressions,

xr
(n)
t,h = bn,hγ

′
hft + u

(n)
t,h ,

where ft stacks a constant with annual forward rates with 1, 2, 3, 4, and 5 years to maturity, bn,h is a
maturity-specific scalar and γh is an horizon-specific vector of coefficients. Panel B reports R2s from the
distributed-lag predictability regressions,

xr
(n)
t,h = bn,h ((1 − αh)γ

′
hft + αhRt−1,h) + u

(n)
t,h ,

where αh is an horizon-specific scalar. Returns computed monthly from the GSW data set between Jan.
1963 and Dec. 2003.

Panel (A) CP Regressions

Holding Period (months)
Maturity 1 2 3 6 9 12

2 2.9 6.4 9.8 19.5 28.5 32.5
3 3.0 6.8 10.2 20.6 30.0 34.4
4 3.1 6.9 10.3 21.1 31.0 35.8
5 3.2 6.9 10.3 21.2 31.4 36.6
7 3.1 6.6 9.7 20.5 31.3 37.1
10 2.7 5.9 8.4 18.9 30.0 36.7

Panel (B) Recursive CP Regressions

Holding Period (months)
Maturity 1 2 3 6 9 12

2 6.6 10.4 15.1 26.8 35.9 35.7
3 7.0 11.3 16.8 30.1 39.4 40.0
4 7.2 11.9 18.0 32.6 42.0 43.0
5 7.3 12.2 18.7 34.4 43.8 45.0
7 7.1 12.3 19.2 36.3 45.8 47.3
10 6.5 11.7 18.6 36.7 46.7 48.6
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Table 2: Bond Excess Returns – Recursive Predictability Regressions

Predictability of excess returns xr
(n)
t,h on bonds with n = 2, 3, 4, 5, 7, 10 years to maturity for holding horizons

of n = 1, 2, 3, 6, 9, 12 months using annual forward rates with 1, 2, 3, 4, and 5 years to maturity. Panel (A)
reports estimates of αh in the distributed-lag regression

xr
(n)
t,h = bn,h ((1 − αh)γ

′
hft + αhRt−1,h) + u

(n)
t,h , (59)

where ft stacks a constant with the forward rates. Panel (B) reports estimates of the scalars bn,h and
Panel (C) reports estimates of the horizon-specific vector γh. Returns computed monthly from the GSW
data set between Jan. 1963 and Dec. 2003.

Panel (A) αh

Holding Period (months)
1 2 3 6 9 12

0.8320 0.8298 0.8170 0.7749 0.7096 0.6284

Panel (B) bn,h

Holding Period (months)
Maturity 1 2 3 6 9 12

2 0.47 0.46 0.44 0.39 0.35 0.29
3 0.67 0.66 0.65 0.61 0.59 0.55
4 0.85 0.85 0.84 0.82 0.81 0.79
5 1.01 1.01 1.01 1.01 1.01 1.01
7 1.30 1.31 1.32 1.35 1.37 1.40
10 1.69 1.70 1.74 1.83 1.88 1.95

Panel (C) γh

Holding Period (months)
γh 1 2 3 6 9 12

γ0 -0.04 -0.03 -0.03 -0.04 -0.04 -0.04
γ1 -9.53 -9.40 -9.00 -6.90 -5.06 -4.03
γ2 8.87 9.78 10.09 6.34 3.21 2.81
γ3 11.84 9.51 6.85 6.67 6.23 3.73
γ4 2.87 3.78 5.82 5.52 4.70 4.27
γ5 -13.67 -13.42 -13.59 -11.32 -8.63 -6.32
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Table 3: Bond Excess Returns – Common Factor
Principal-component analysis of the return-forecasting factors Rt,h in the distributed-lag regression

xr
(n)
t,h = bn,h ((1− αh)γ

′
hft + αhRt−1,h) + u

(n)
t,h (60)

estimated across horizons of 1, 2, 3, 6, 9, and 12 months.

Principal Component
1 2 3 4 5 6

1 0.46 -0.42 -0.60 -0.08 0.28 -0.41
2 0.45 -0.36 -0.07 0.23 -0.34 0.71
3 0.45 -0.16 0.66 0.24 -0.20 -0.48
6 0.41 0.17 0.34 -0.42 0.64 0.31
9 0.36 0.47 -0.18 -0.54 -0.57 -0.10
12 0.30 0.65 -0.22 0.64 0.18 -0.004

R2 96.8 2.7 0.31 0.11 0.02 0.003
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Table 4: Residuals from the VAR1 Model

Panel (A) reports coefficient estimates b̂
(n)
ǫ,h in regressions of each element of ǫ̂t on its own lag: ǫ̂

(n)
t =

b
(n)
ǫ,h ǫ̂

(n)
t−h+w

(n)
t,h , where ǫ̂t is the estimated residual from a Markovian model estimated for the yield vector Yt,

and where we vary h = 1, . . . , 6. Panel (B) reports coefficient estimates ĉ
(m)
ǫ,1 in regressions of each element

of ût on each element of the first lag of the residual ǫ̂
(n)
t = c

(m)
ǫ,1 ǫ̂

(m)
t−1 + w

(n,m)
t,1 . Panels (C) and (D) report

coefficient estimates γ̂ǫ and α̂ǫ from a two-step estimation of the single-factor regression ǫ̂t = αǫγ
⊤
ǫ ǫ̂t−1+wt,

respectively, including the p-value of the F-statistic associated with the null hypothesis that γǫ is zero.
Asymptotic t-statistics shown in parentheses.

Panel (A) Own Lags

ǫ
(1)
Y,t ǫ

(2)
Y,t ǫ

(3)
Y,t ǫ

(4)
Y,t ǫ

(5)
Y,t

ǫ
(n)
Y,t−1 0.15 0.17 0.12 0.09 0.08

(1.77) (2.25) (2.06) (1.47) (1.31)

ǫ
(n)
Y,t−3 -0.07 -0.07 -0.11 -0.10 -0.08

(-0.72) (-0.77) (-1.25) (-1.28) (-1.31)

ǫ
(n)
Y,t−5 -0.06 -0.08 -0.11 -0.05 -0.06

(-0.82) (-1.21) (-1.80) (-0.88) (-1.00)

Panel (B) Cross-correlations

ǫ
(1)
Y,t ǫ

(2)
Y,t ǫ

(3)
Y,t ǫ

(4)
Y,t ǫ

(5)
Y,t

ǫ
(1)
Y,t−1 0.15 0.14 0.09 0.06 0.06

(1.77) (2.00) (1.50) (1.15) (1.18)

ǫ
(2)
Y,t−1 0.18 0.17 0.11 0.08 0.08

(2.06) (2.25) (1.72) (1.36) (1.44)

ǫ
(3)
Y,t−1 0.20 0.19 0.12 0.10 0.09

(2.44) (2.72) (2.06) (1.65) (1.83)

ǫ
(4)
Y,t−1 0.20 0.19 0.12 0.09 0.09

(2.19) (2.43) (1.83) (1.47) (1.61)

ǫ
(5)
Y,t−1 0.19 0.18 0.12 0.08 0.08

(1.94) (2.20) (1.65) (1.21) (1.31)

Panel (C) Single-factor restriction – first step

ǫ
(1)
Y,t−1 ǫ

(2)
Y,t−1 ǫ

(3)
Y,t−1 ǫ

(4)
Y,t−1 ǫ

(5)
Y,t−1 p-val

γ̂
(n)
ǫ -0.08 0.04 0.37 0.17 -0.40

(-0.52) (0.12) (0.70) (0.32) (-0.84) (0.02)

Panel (D) Single-factor restriction – second step

ǫ
(1)
Y,t ǫ

(2)
Y,t ǫ

(3)
Y,t ǫ

(4)
Y,t ǫ

(5)
Y,t

α̂
(n)
ǫ 1.38 1.25 0.84 0.77 0.77

(2.59) (2.75) (2.23) (2.03) (2.32)
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Table 5: Bond Excess Returns – Model-Implied Predictability
Predictability of 1-year excess returns on bonds with 2, 3, 4, and 5 years to maturity where the predictors
are the annual forward rates with 1, 2, 3, 4, and 5 years to maturity (Equation (1)). The table reports the
predictability R2s implied by a VAR(1), a VARMA(1,1) and a VAR(12) model for the vector of yields with
1, 2, 3, 4 and 5 years to maturity.

Model
Maturity VAR(1) VARMA(1,1) VAR(12)

2 14.7 25.8 30.8
3 13.5 28.1 33.0
4 15.1 32.8 35.7
5 14.6 32.4 33.1

Table 6: Sample Bond Risk Premium
Ratios of sample bond risk-premium volatility and ratios of sample predictability R2s from the CM0

5 and
CM5

5 models. For each model and date, we compute the conditional bond risk premium in Equation (29)
for bonds with 6, 12, 24 and 60 months to maturity and for holding periods between 1 and 12 months.
Panel (A) reports the ratios of the sample variance in the CM0

5 relative to that in the CM5
5 . Panel (B)

reports the ratios of R2s from Mincer-Zarnowitz regressions of bond excess returns on each model-implied
risk premium. Estimation based on CRSP data from January 1964 until December 2007. Observed returns
computed from the GSW data set.

Panel (A) Variance ratios

1 2 3 4 5 6 7 8 9 10 11 12
6 0.52 0.68 0.88 0.87 0.88
12 0.41 0.62 0.68 0.72 0.74 0.76 0.78 0.79 0.80 0.81 0.82
24 0.32 0.44 0.48 0.48 0.49 0.49 0.50 0.51 0.52 0.53 0.54 0.55
60 0.18 0.31 0.36 0.38 0.40 0.42 0.45 0.47 0.50 0.53 0.56 0.59

Panel (B) R2 ratios

1 2 3 4 5 6 7 8 9 10 11 12
6 0.53 0.53 0.54 0.64 0.80
12 0.13 0.22 0.21 0.36 0.45 0.48 0.56 0.58 0.61 0.67 0.76
24 0.13 0.26 0.30 0.47 0.55 0.56 0.61 0.63 0.64 0.67 0.69 0.72
60 0.27 0.33 0.32 0.40 0.45 0.47 0.51 0.53 0.55 0.58 0.61 0.64
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Table 7: Conditional Mean Models with Three Factors
Results from CMk

N − KF models with N = 3. The first line shows the label of each model. Panel (A)
reports the number of parameters for each model, and the gain in likelihood relative to the most restricted
case CM0

3 −KF1. Panel (B) reports the ratio of the sample standard deviation of each model-implied bond
risk premium relative to the 5-factor CM5

5 model (see Section 3.4) for bond maturities of 24, 36, 48 and
60 months and for a holding period of 12 months. Panel (C) reports the ratio of R2s in Mincer-Zarnowitz
regressions of realized returns on the model risk premium. Estimation based on CRSP data from January
1964 until December 2007. Realized returns computed from the CRSP data.

CM0
3 −KF0 CM0

3 −KF1 CM3
3 −KF1 CM0

3 −KF2 CM3
3 −KF2

Panel (A) Likelihood gains and parameters

24 23 32 27 36
0 41 85 112

Panel (B) Variance ratios

2 0.73 0.97 1.07 0.84 1.05
3 0.71 0.91 1.03 0.77 1.04
4 0.77 0.90 1.04 0.76 1.04
5 1.02 0.92 1.04 0.79 1.05

Panel (C) R2 ratios

2 0.66 0.80 1.02 0.70 0.92
3 0.64 0.81 1.03 0.70 0.97
4 0.63 0.84 1.02 0.75 1.01
5 0.48 0.75 1.00 0.63 1.03

47


	Working Paper/Document de travail
	2014-13
	by Bruno Feunou and Jean-Sébastien Fontaine
	Bond Risk Premia and Gaussian Term Structure Models
	by
	Bruno Feunou and Jean-Sébastien Fontaine
	Financial Markets Department
	Bank of Canada
	Ottawa, Ontario, Canada K1A 0G9
	bfeunou@bankofcanada.ca jsfontaine@bankofcanada.ca
	Bank of Canada working papers are theoretical or empirical works-in-progress on subjects in economics and finance. The views expressed in this paper are those of the authors. No responsibility for them should be attributed to the Bank of Canada.
	ISSN 1701-9397 © 2014 Bank of Canada
	Acknowledgements
	Abstract
	Résumé

