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Abstract 

Estimation of the quantile model, especially with a large data set, can be computationally 
burdensome. This paper proposes using the Gaussian approximation, also known as 
quantile coupling, to estimate a quantile model. The intuition of quantile coupling is to 
divide the original observations into bins with an equal number of observations, and then 
compute order statistics within these bins. The quantile coupling allows one to apply the 
standard Gaussian-based estimation and inference to the transformed data set. The 
resulting estimator is asymptotically normal with a parametric convergence rate. A key 
advantage of this method is that it is faster than the conventional check function 
approach, when handling a sizable data set. 
 
JEL codes: C13; C14; C21 
Bank classification: Econometric and statistical methods 

Résumé 

L’estimation d’un modèle de régression quantile peut nécessiter des calculs 
considérables, tout particulièrement si ce modèle s’appuie sur un grand ensemble de 
données. Une approximation gaussienne est ici proposée (couplage quantile) comme 
méthode d’estimation. Le principe du couplage quantile consiste à diviser les 
observations initiales en sous-groupes composés d’un nombre égal d’observations, puis à 
calculer des statistiques d’ordre pour chacun de ces sous-groupes. Ce couplage permet 
d’appliquer aux données transformées une méthode d’estimation et d’inférence 
gaussienne standard. L’estimateur obtenu suit une loi asymptotiquement normale et son 
taux de convergence est paramétrique. L’un des principaux avantages de cette méthode 
réside dans le fait qu’elle assure un traitement plus rapide des grands jeux de données que 
l’approche classique par fonction de perte. 
 
Classification JEL : C13; C14; C21 
Classification de la Banque : Méthodes économétriques et statistiques 
 

 



1 Introduction

Estimation of the quantile model, especially with a large data set, can be computationally burdensome.

This paper proposes using the Gaussian approximation, also known as quantile coupling, to estimate a

quantile model. A key ingredient of the estimator is to compute local order statistics, where the original N

observations are first divided into J bins with an equal number of observations, and then the order statistics

are computed in these bins. The quantile coupling allows one to apply a standard Gaussian-based estimation

and inference to the local order statistics. The Gaussian-based estimates applied to the local order statistics

are consistent and have an asymptotically normal distribution with the
√
N convergence rate. In addition

to reducing the effective sample size to J , the proposed estimator has a closed-form expression, thus it is

computationally efficient to handle a sizable data set. In a simulation study, this paper demonstrates that

this superior speed occurs for sample sizes N larger than 20, 000.

Using the existing Gaussian methods applied to the local order statistics, the new method offers the

following advantages: (1) estimates are from the differentiable least squares criterion and are thus com-

putationally faster to calculate than the least absolute deviation criterion based on the original data; (2)

consistency and asymptotic normality of the estimators are easy to derive when the bin size m is properly

chosen; and (3) inference of the estimators can be obtained directly from the OLS (ordinary least squares)

software package based on the transformed data, without estimating the quantile-density function, as in

Koenker and Xiao (2002).

In addition, the paper generalizes the results in Brown et al. (2008) by allowing for (1) multivariate ran-

dom design, (2) the quantile coupling for the arbitrary order statistics and (3) conditional heteroskedasticity

of the error term. Notice that Brown et al. (2008) focus on the univariate fixed-design median models with

homoscedastic errors.

The paper is organized as follows. Section 2 explains how the local order statistics for multivariate

random design are computed, and proposes the new method. Section 3 discusses Monte Carlo simulation

results and Section 4 concludes. All proofs are included in the appendix.

2 Proposed Estimator

We first introduce the classical check function approach for estimating the quantile model. Then we discuss

the computation of local order statistics, and construct the estimator from these transformed data as if they

were generated by a Gaussian data-generating process.

2.1 Parametric quantile model

In this paper, we focus on the location-scale λth quantile model studied by Koenker and Bassett (1982)

and Koenker and Xiao (2002). This model allows for data generated from the same distributional family,

but the parameters of the distributions, such as the location and scale, vary with the observation index.

1



For i = 1, · · · , N , Y is a scalar random variable, X is a dX × 1 vector of explanatory variables and e is a

disturbance error, such that

Yi = α+XT
i β + ei, where ei ≡ σ (Xi) · Ui. (1)

In order to estimate α and β, we minimize the check function as follows:

argmin
α,β

N∑

i=1

[
λ− I

{
Yi − α−XT

i β < 0
}] (

Yi − α−XT
i β
)
. (2)

The finite and large sample properties of this method are summarized in Koenker (2005), and numerical

implementations are discussed in Portnoy and Koenker (1997). However, its limiting distribution needs to

work on the non-differentiability of the criteria function, and the rounding and approximation have to be

done in the computation in order to find the unique numerical solution. In addition to these issues, the

inference based on the check function approach needs to non-parametrically estimate the density of U , which

is sensitive to the choice of smoothing parameter in finite samples. The next subsection introduces the

new method applied to local order statistics and shows that the method is easy to compute, avoiding the

estimated density function for the inference.1

2.2 Local order statistics

To find local order statistics, we first divide the N observations into J groups (bins) with m observations in

each bin, and then compute the order statistics value of the dependent variable Y in each bin. We denote

⌈·⌉ to be the rounded-up integer. Given the J bins, the transformed data set is generated as

Yj,λ ≡ the ⌈λm⌉ th smallest value of Y in the jth bin, 1 ≤ j ≤ J.

We set

Ej,λ ≡ the ⌈λm⌉ th smallest value of e in the jth bin, 1 ≤ j ≤ J,

θj (α, β) ≡ Yj,λ − Ej,λ,

then Yj,λ can be written as

Yj,λ = θj (α, β) + Ej,λ, 1 ≤ j ≤ J. (3)

By working on the local order statistics, the error ei is transformed to Ej,λ. Lemma 2.1 shows that Ej,λ
can be closely approximated using Gaussian random variables. Then, according to Lemma 2.2, θj (α, β) is

approximated by α + X T
[j]β, in which the vector X T

[j] is the coordinates of endpoints in the jth bin (which

will be precisely defined later).

Assumption 1: {Ui}ni=1 is a sequence of i.i.d. errors that is also independent of Xi, and Ui has an unknown

density function fU , such that
∫ 0

−∞ fU (u)du = λ and |fU (u)− fU (0)| ≤ Cu2 in an open neighborhood of 0

for some constant C.
1Another “direct” inference approach for the quantile model is by Fan and Liu (2012).

2



Assumption 2: The scale function σ : Rdx → R is δ−Holder continuous with δ ≥ 1.

Assumption 3:
∫
|u|ε fU (u)du < ∞ for some ε > 0.

Assumption 4: max1≤j≤J

∥∥∥X T
[j] −X T

[j−1]

∥∥∥
1
= Op(J

−1), where X[j] is the coordinates of endpoints in the

jth bin.

Assumptions 1-3 are similar to the ones made for estimating the location-scale model by Equation (2).

The |fU (u)− fU (0)| ≤ Cu2 in Assumption 1 is satisfied, for example, by the Cauchy distribution, the

Laplace distribution and the t distribution. Assumption 2 states the necessary smooth condition for the

scale function σ (·) in Equation (1), so that the heteroskedastic error e can be treated as homoscedastic

within each bin. Assumption 3 guarantees the existence of moments of the order statistics, as in Cramer

et al. (2002). Assumption 4 imposes the conditions on the spacings of X T
[j], which can be substituted by

low-level conditions on the density function of X, as in Gasser and Müller (1979).

Lemma 2.1 When Assumptions 1-4 hold, we have

Ej,λ =
1√
m

[
σj

√
λ (1− λ)

fU (0)
Zj + ζj

]
,

where {Zj}Jj=1 is i.i.d. standard Gaussian errors and σj ≡ σ
(
X[j]

)
. In addition, for all l > 0,

E |ζj |l = O

[(√
m

Jδ

)l

+

(
1

m

)l
]
.

Lemma 2.2 When Assumption 4 holds, we have

θj (α, β)− α−X T
[j]β = Op

(
1

J

)
.

It is essential to have J bins. For the univariate fixed-design case, Brown et al. (2008) simply divide

the data along the real line at equal interval lengths. However, when X is a multivariate random design,

this is not possible. In particular, it is more difficult to bin the data in order to have an equal number of

observations in each bin (see the following remark). Thus we propose using conditional (sequential) ordering,

conducted on one of the marginal sets of the covariates, conditional on ordering within other marginal sets

of observations. Heuristically speaking, the bins in the multivariate case are constructed by slicing according

to the chosen ordered values of the first covariate, then internally slicing according to the ordered values of

the second covariate within that slice, and so on.

Remark: Although bins with an unequal number of observations are allowed (for example, the data are

binned with equal lengths in each dimension of X), the current bins with equal numbers of observations

provide a homoscedastic Gaussian approximation for Ej,λ, where the variance of this Gaussian random

variable depends on m, the number of observations in the bin.

2.3 Bivariate case

We illustrate the conditional ordering with a bivariate case, XT ≡ {X1, X2}, where J = J1×J2. The random

design with more than the bivariate could be easily extended from Wald (1943).
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Figure 1 provides an illustrative example of λ = 1/4. In Step 1, the 250 scattered observations are divided

into 5 slices along the X1 axis, ensuring an equal 50 observations in each slice. In Step 2, each slice is divided

into another 5 slices along the X2 axis, so that 10 observations are in each bin. This results in a total of

25 bins. Step 3 computes the quartile of Y in each bin, and its corresponding coordinates of {X1, X2} are

marked as red solid points.

The algorithm for computing local order statistics under the bivariate case is as follows:

Step 1 (Order X1): We reorder the original sample {X1,i, X2,i, Yi}Ni=1 based on the order statistics

of X1,i, where X[1,1] ≤ X[1,2] ≤ · · · ≤ X[1,N ]. We define Sj1 ≡ X[1,r1j ] and Mj1 ≡ X[1,s1j ], where r1j

and s1j denote some positive integers, r1j < s1j < N , and the number of observations between Sj1 and

Mj1 are N/J1, where j1 = 1, 2, · · · , J1. We consider only those sample points {X1,a, X2,a, Ya} for which

X[1,r1j ] < X1,a < X[1,s1j ], i.e., the sample points
{
X[1,r1j+1], X(2,r1j+1), Y(r1j+1)

}
, · · · , {X[1,s1j−1], X(2,s1j−1),

Y(s1j−1)}, which are ordered by X[1,r1j+1], · · · , X[1,s1j−1] associated with the induced order statistics from
{
X(2,r1j+1), Y(r1j+1)

}
to
{
X(2,s1j−1), Y(s1j−1)

}
.

Step 2 (Order X2 conditional on the ordered X1): We denote by X∗
[2,r1j+1], · · · , X∗

[2,s1j−1] the

values X(2,r1j+1), · · · , X(2,s1j−1) arranged in order of increasing magnitude. We define Sj2 ≡ X∗
[2,r2j ]

and

Mj2 ≡ X∗
[2,s2j ]

, where r2j and s2j denote some positive integers for which r2j < s2j < s1j − r1j − 1, and the

number of observations between Sj2 and Mj2 are m = N/ (J1 × J2), where j2 = 1, 2, · · · , J2.
Step 3 (Take order statistics): Choose Yj,λ as the ⌈λm⌉th smallest value of Y in the range of

[Sj1 ,Mj1 ] × [Sj2 ,Mj2 ] . Here X T
[j] is denoted as

{
X[1,s1j−1], X

∗
[2,s2j−1]

}
, which are simply the coordinates of

the northeast endpoints in the jth bin.

2.4 Asymptotic properties

Based on Steps 1-3, we regress Yj,λ on
{
1,X T

[j]

}
for j = 1, · · · , J in order to estimate (α, β)

T
. Proposition

2.3 justifies the above regression, which states the order of approximation errors between Yj,λ and α+X T
[j]β+

σj

√
λ (1− λ)Zj/ [

√
mfU (0)].

Proposition 2.3 When Assumptions 1-4 hold, then

√
mYj,λ =

√
m
[
α+ X T

[j]β
]
+

σj

√
λ (1− λ)

fU (0)
Zj + ξj ,

where {Zj}Jj=1 is i.i.d. standard Gaussian errors, and for all l > 0

E |ξj |l = O

[(√
m

Jδ

)l

+

(√
m

J

)l

+

(
1

m

)l
]
.

This Proposition demonstrates three approximation-error terms between Equation (3) and the Gaussian

model. The first term is at the order of magnitude
√
m/Jδ, which results from approximating the het-

eroskedastic errors σ (Xi) · Ui in each bin by the i.i.d. σ
(
X[j]

)
· Ui. The second is at the order of magnitude

√
m/J , resulting from using the constant α+X T

[j]β in each bin to approximate the variation of the functional
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values within the bin. The smaller the bin size m, the smaller these two error terms are. The last error term

is at the order of magnitude 1/m, and is due to the approximation by the Gaussian random variable. We

require the bin size m to be large so that the last error term can be negligible.

Based on Proposition 2.3, the approximating Gaussian model is

Yj,λ ≈ α+ X T
[j]β +

σj

√
λ (1− λ)√
mfU (0)

Zj . (4)

Many Gaussian-based estimators are applicable, for example, the maximum-likelihood estimator and

OLS estimator. For illustration purposes, we define the OLS estimator based on the local order statistics

(
α̂, β̂

)T
≡ arg min

(α,β)

J∑

j=1

[
Yj,λ − α−X T

[j]β
]2

. (5)

Theorem 2.4 When Assumptions 1-4 hold, then

(a) Conditional on the design {Xi}Ni=1 and m → ∞, J → ∞, we have

(
α̂, β̂

)T p→ (α, β)
T
;

(b) Conditional on the design {Xi}Ni=1 and C1N
1/3+ε1 ≤ m ≤ C2N

1/2−ε2 , where C1, C2 are generic

constants, and ε1, ε2 are small positive constants, we have

√
N

[(
α̂

β̂

)
−
(
α

β

)]
d→ N

[
0,

λ (1− λ)

f2
U (0)

WΩ−1W
]
,

where

W ≡
∑J

j=1

[
1,X T

[j]

]T [
1,X T

[j]

]

J
,

Ω ≡
∑J

j=1 σ
2
j ·
[
1,X T

[j]

]T [
1,X T

[j]

]

J
.

Although the effective sample size of the proposed estimator is J instead of N , the variance of the

Gaussian term σj

√
λ (1− λ)Zj/ [

√
mfU (0)] is proportionally reduced to 1/m. Thus the convergence rate of(

α̂, β̂
)T

will still be
√
N .

Conditional on the design {Xi}Ni=1, the asymptotic variances of
√
n
(
α̂− α, β̂ − β

)T
resemble the ones

from the check function approach, that is, λ (1− λ)VΘ−1V/f2
U (0), where V ≡∑N

i=1

[
1, XT

i

]T [
1, XT

i

]
/N and

Θ ≡
∑N

i=1 σ
2 (Xi) ·

[
1, XT

i

]T [
1, XT

i

]
/N . Moreover, inferences of

(
α̂, β̂

)T
can be obtained directly from the

OLS software package based on the transformed data, according to Equation (4). Hence both an estimation

and inference of the proposed method can be easily obtained from the standard OLS software package, which

is highly optimized and can handle a sizable data set quickly.

For the choice of the bin size m in Theorem 2.4, the term ξj in Proposition 2.3 is determined to have a

negligible contribution to the first order of mean squared error (MSE), compared with the Gaussian term

Zj . At the same time, the bin size m is chosen so that
(
α̂, β̂

)T
are asymptotically unbiased.
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Remark: The above asymptotic arguments are conditional on the design {Xi}Ni=1, because the proposed

estimator is built upon the linear combination of the order statistics of induced order statistics, i.e., Yj,λ is the

⌈λm⌉th order statistics in the jth bin of the induced order statistics in the original sample. Thus, extending

to unconditional asymptotic theories is beyond the scope of this paper and is left for future research. See

Delaigle and Hall (2012).2

3 Monte Carlo Simulations

In this section, we use a simulation study to evaluate the performance of the new estimator. We generate

the data from

Yi = X1i + 2X2i + ei,

where the error ei is 0.1 · (Xi1 +X2i +X1iX2i + 0.1) · Ui with Ui following a Cauchy distribution.

For the sample design, {X1, X2} follow Uniform [0, 1] in Model A, while in Model B {X1, X2} follow a

standard bivariate normal distribution with a correlation coefficient of 0.01. The sample sizes are 1000 and

2500, with 5000 Monte Carlo replications.

The bias and MSE properties of the estimator are shown in Table 1 for the various bin sizes. The table

shows that the new estimator β̂ performs well and has a small bias and low MSE, even when the bin size

is 5. Notice that when m is equal to 1, the estimator simply runs the OLS on the original data so that the

estimate is inconsistent and has a large bias. Next, when considering the different sample designs between

Models A and B, we observe that compactly supported variables (Model A) have a smaller bias and lower

MSE than the non-compactly supported ones (Model B). This result is because of the fact that we are using

X[j] to approximate the variation of the functional values within the bin, and we expect that an equal-spacing

transformation, as in Hall et al. (1998), applied before the binning will have better adaptivity for different

designs.

Moreover, we show the computational advantage of the new method on the sizable data set. The speed

of the new estimator is compared with the check function estimator in Equation (2), where we use the rq

command in the R quantreg package 5.05. The Monte Carlo experiment is based on Model A and we choose

the bin size m as 0.1 percent of the sample size N . Note that the choice of m makes the results comparable

with the check function estimator, in which the absolute Bias and MSE differences between the two methods

are between 0.05 and 0.01. Figure 2 shows the incredible gains in the execution time of the new estimator

relative to the check function approach. These gains seem to increase with the log10 sample size. All codes

are available upon request.

2The only relevant paper is He and Nagaraja (2009), but it is for extreme order statistics of induced order statistics.
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4 Conclusion

The key ingredient of this approach is to compute local order statistics from the original data. This saves a

large amount of the computational cost, which makes it particularly appealing for analyzing a sizable data

set: a Monte Carlo simulation indicates that the proposed estimator is quicker when the sample size N is

larger than 20, 000.
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Appendix

Proof for Lemma 2.1: Decompose ζj as ζj ≡ ζAj + ζBj , where

ζAj =
√
mEj,λ −

√
mσj · Uj,λ (6)

and

ζBj ≡
√
mσj · Uj,λ − σj

√
λ (1− λ)

fU (0)
Zj (7)

and Uj,λ is the ⌈λm⌉th smallest value of U in the jth bin. Notice that U in the jth bin is still i.i.d..

According to Assumptions 2 and 4, we have Ej,λ ≤
[
CJ−dσ + σj

]
· Uj,λ. Then, according to Assumption

3, we have E
∣∣ζAj
∣∣l = O

[(√
m

Jdσ

)l]
.

In order to bound ζBj , we need the following lemma, which states the quantile coupling results for the

⌈λm⌉th smallest value of U in the jth bin.

Lemma 4.1 (a) Under Assumption 1, we have
∣∣∣∣
√

m

λ (1− λ)
fU (0) · Uj,λ − Z

∣∣∣∣ ≤
C

m

(
1 + |Z|3

)

for |Z| ≤ κ
√
m, where constants C, κ > 0 do not depend on m.

(b) When Assumptions 1 and 3 hold and constants C ′, C ′′ > 0 do not depend on m, we have

Pr

[√
m

∣∣∣∣
√

m

λ (1− λ)
fU (0) · Uj,λ − Z

∣∣∣∣ > z

]
≤ C ′ exp (−C ′′z) for all z ≥ 0.

For the complete proof, please refer to the technical appendix in Chen (2013). The outline of the main

procedure is: (1) exponentialize the density of the ⌈λm⌉th smallest value of U in the jth bin; (2) exponen-

tialize its distribution FUλ
; (3) obtain the inequality Φ [υ − u(υ)] ≤ FUλ

(υ−) ≤ FUλ
(υ) ≤ Φ [υ + u(υ)] for

some υ and u(υ) > 0; (4) use Corollary 1 in Mason and Zhou (2012) and Section 3.2 in Marohn (2005) to

prove the distributional bound.

The independence of Zj is because it is constructed by Φ−1 [FUλ
(Uj,λ)], where Uj,λ is independent for

1 ≤ j ≤ J .

Proof for Lemma 2.2: Denote the set of indices in the jth bin as Ij , then Yj,λ ≤ maxk∈Ij

[
α+XT

k β
]
+Ej,λ

and Yj,λ ≥ mink∈Ij

[
α+XT

k β
]
+ Ej,λ, then according to Assumption 4, θj (α, β)− α−X T

[j]β = Op

(
1
J

)
.

Proof for Proposition 2.3: Decompose ξj as

ξj ≡
√
mYj,λ −

√
m
[
α+ X T

[j]β
]
− σj

√
λ (1− λ)

fU (0)
Zj

= ζAj + ζBj + ζCj

where ζCj =
√
mYj,λ −√

m
[
α+ X T

[j]β
]
−√

mEj,λ =
√
mθj (α, β)−

√
m
[
α+ X T

[j]β
]
, and ζAj and ζBj are the

same as in Equations (6) and (7). Following Lemma 2.1 and Lemma 2.2, the proposition is proved.

Proof for Theorem 2.4:

(a) When m → ∞ and J → ∞,

(
α̂

β̂

)
−
(
α

β

)
=




J∑

j=1

[
1,X T

[j]

]T [
1,X T

[j]

]


−1 


J∑

j=1

[
1,X T

[j]

]T
(
σj

√
λ (1− λ)√
mfU (0)

Zj +
ξj√
m

)


= Op

[
1

Jδ
+

1

J
+

1

m3/2

]
p→ 0.
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(b) Conditional on {Xi}Ni=1,

Bias

[√
n

(
α̂

β̂

)]
= O

[ √
n

m3/2
+

√
n

J

]
,

and

V ar

[√
n

(
α̂

β̂

)]
= V ar


λ (1− λ)

f2
U (0)

1√
J

J∑

j=1

[
1,X T

[j]

]T
Zj


+O

[
m

J2
+

1

m2

]
.

When C1N
1/3+ε1 ≤ m ≤ C2N

1/2−ε2 , where C1 and C2 are generic constants, and ε1 and ε2 are small

positive constants, then

Bias

[√
n

(
α̂

β̂

)]
= o(1)

V ar

[√
n

(
α̂

β̂

)]
= V ar


λ (1− λ)

f2
U (0)

1√
J

J∑

j=1

[
1,X T

[j]

]T
Zj


+ o(1).

The asymptotic normality then follows.
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Table 1: Monte Carlo Simulation Results

Coefficient of X1 Model A
m: bin size 1 5 10 20 25 50

n = 1000 Bias −4.2007 −0.0048 −0.0084 −0.0185 −0.02345 −0.0519
MSE 41323 0.0020 0.0016 0.0035 0.0042 0.0147

n = 2500 Bias 0.2553 −0.0004 −0.0025 −0.0067 −0.0076 −0.0179
MSE 192.67 0.0008 0.0005 0.0007 0.0009 0.0027

Model B
m: bin size 1 5 10 20 25 50

n = 1000 Bias −0.1250 −0.0328 −0.0518 −0.0774 −0.0940 −0.1328
MSE 1.7402 0.0026 0.0059 0.0148 0.0191 0.0475

n = 2500 Bias −0.3235 −0.0182 −0.0304 −0.0507 −0.0574 −0.0808
MSE 2.7170 0.0010 0.0017 0.0050 0.0063 0.0150

Coefficient of X2 Model A
m: bin size 1 5 10 20 25 50

n = 1000 Bias 3.6691 −0.0113 −0.0212 −0.0377 −0.0371 −0.0613
MSE 43447 0.0022 0.0021 0.0046 0.0051 0.0152

n = 2500 Bias −0.5909 −0.0027 −0.0077 −0.0154 −0.0186 −0.0370
MSE 382.77 0.0015 0.0005 0.0009 0.0012 0.0037

Model B
m: bin size 1 5 10 20 25 50

n = 1000 Bias 0.4858 −0.0838 −0.1289 −0.1985 −0.1924 −0.2584
MSE 3.2424 0.0100 0.0235 0.0564 0.0565 0.1176

n = 2500 Bias 0.6351 −0.0431 −0.0780 −0.1257 −0.1401 −0.1993
MSE 2.3059 0.0029 0.0079 0.0209 0.0264 0.0568

Notes: The Bias and MSE properties of the proposed estimators are listed. The model is
Yi = X1i + 2X2i + ei, where ei is 0.1 · (Xi1 +X2i +X1iX2i + 0.1) · Ui with Ui following a Cauchy
distribution. Model A specifies {X1i, X2i} ∼ Uniform [0, 1], while in Model B {X1, X2} follow a standard
bivariate normal distribution with a correlation coefficient of 0.01. Here for k = 1, 2, Bias is defined as∑5000

s=1

(
β̂s,k − βk

)
/5000, where β̂s,k is the kth covariate estimated coefficient in the sth replication, and

MSE is defined as
[∑5000

s=1

(
β̂s,k − βk

)
/5000

]2
+
∑5000

s=1

(
β̂s,k − β̂·,k

)2
/5000, where β̂·,k is the sample mean

of β̂s,k for s = 1, · · · , 5000. The m is the bin size.
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Figure 1: Local order statistics of bivariate design
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Note: The original {X1i, X2i, Yi}250i=1 are first divided into 5 slices along the X1 axis, ensuring an equal 50
observations in each slice. Each slice is then divided into another 5 slices along the X2 axis, in order to
have 10 observations in each bin. Next the quartile of Y is computed for each bin, and its corresponding
coordinates of {X1, X2} are marked as red solid points.

Figure 2: Execution time ratio

4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

log10 N

R
at

io

Note: The blue line represents the mean of the execution time ratio across 100 replications versus the log10
of the sample size N, where the ratio is defined as the execution time between the check function approach
(Equation 2) and the new estimator (Equation 5). Note that the execution time of the new estimator
includes both time from the local order statistics transformation and the ordinary least squares regression.
We use Intel i7-2640M CPU@2.80GHz, running Windows 7-64bit using R x64 3.0.2.
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