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Abstract: Traditional ‘delta-change’ approach of scenario generation for climate change impact 
assessment to water resources strongly depends on the selected base-case observed historical 
climate conditions that the climate shocks are to be super-imposed. This method disregards the 
combined effect of climate change and the inherent hydro-climatological variability in the 
system. Here we demonstrated a hybrid uncertainty approach in which uncertainties in historical 
climate variability are combined with uncertainties in climate predictions to conduct more 
comprehensive climate change impact assessment to hydropower in Zambezi and Congo River 
basins. Synthetic ensembles of base-case scenarios of the significant climate variables were 
generated using frequency domain simulation to represent the uncertainty in natural variability. 
These were combined with large sets of uncertainties in future climate anomalies, hybrid 
frequency distributions which are based on the full set of the IPCC AR4 global circulation 
models. Biophysical modeling of water resource systems in both basins was conducted to study 
the impact of these scenarios. Results from this study indicate that the use of single base-case 
approach of delta-change technique could substantially underestimate the potential impact of 
climate change to hydropower. Particularly, assessments for water resource systems in areas with 
high natural hydroclimatic variability, careful consideration should be given to the natural 
variability as the combined effect is more pronounced.  
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1 Introduction  

Hydropower resource is highly sensitive to climate change since water resources are directly 
linked with climate variables. Changes in temperature and precipitation as a result of climate 
change will affect the availability of surface water resource both spatially and temporarily. 
Consequently, changes in river flow volume, in variability or its magnitude have the potential to 
affect hydropower generation directly, which in turn has significant developmental implications 
(Kumar et al. 2011). Studies have shown a major potential loss in hydropower generation as a 
result of changing climate (Harrison and Whittington 2002, Atsushi IIMi 2007; Schaefli et al. 
2007; Cherry et al. 2010; Brown et al. 2010; Jia et al. 2012).  

While general circulation models (GCM) are commonly accepted as being the most appropriate 
tools to obtain future scenarios, raw GCM outputs are inadequate to be directly used for 
conducting climate change impact assessment at regional scales (IPCC 1996). Despite the 
considerable effort made by climate modelers, the spatial resolution of GCM output variables is 
still too coarse and unreliable to model hydro-climatological processes at sub-grid box scale. One 
of the simplest and most widely used approach to deal with this drawback is to use the ‘delta-
change’ method. Anomalies of climate variables, e.g. precipitation and temperature, are 
computed either as ratio or absolute changes relative to a selected base-case from the raw GCM 
output. The computed anomalies are then super-imposed over observed historical sequence to 
generate future climate states. The idea behind this is the assumption that GCMs are more 
reliable for modeling the relative changes than the absolute values (Hay et al. 2002). 

One of the limitations of the delta-change approach is the selected historical sequence is taken 
from a window of observed past series which is but a single realization of many possible climatic 
futures. Thus, most extreme events and natural variability might not be adequately captured in 
the selected window of observed historical climate. Additionally, the different scales of natural 
variability of the climate variable, also introduces temporal uncertainties in the prediction of 
future hydropower generating capacity. Impact assessment practice based on a single historical 
time series therefore excludes these uncertainties and its combined effect with future climate 
changes.  

This paper shows the significance of taking into consideration the combined effect of 
uncertainties in human induced climate change and uncertainties in natural climate variability by 
looking at them together in impact assessment. Comparing the individual risks is also significant 
in terms of understanding the possible risk of climate change relative to the variability that 
already exists in the system for future water resources planning and management. An alternative 
hybrid uncertainty approach is illustrated in which scenarios are generated by the combination 
GCM output and synthetic generation of climate variables. The GCM outputs used are from 
hybrid frequency distributions (HFD) from the results by Schlosser et al. (2011) which comprise 
a wider range of uncertainties of GCM results namely (a) structural uncertainty of using different 
models, (b) downscaling and (c) possible future emissions scenarios corresponding to different 
policies of adaption.  

The main objective in the hybrid uncertainty approach is to integrate the uncertainties involved 
in the natural variability of the hydrologic system and thus enabling to conduct a more 
comprehensive assessment of hydropower vulnerability to climate change. The method is 
demonstrated by making basin-wide impact assessment on existing and planned hydropower 
schemes at the Inga site in the Democratic Republic of Congo (DRC) and the hydropower 
system in Zambezi River basins. 
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Little has been reported in the literature on the impact of climate change on the Congo River 
Basin (Mukheibir 2007) and even less on the Grand Inga systems. This paper in addition to the 
methodological contribution will provide valuable additional information on the risk of climate 
change to the Grand Inga project.  

2 Hydropower systems in Congo and Zambezi River basins  

The DRC holds nearly 42 percent of Africa’s technically exploitable hydropower potential. The 
annual energy potential is estimated to be 774 TWh. When this is expressed as firm power 
capacity, the potential is equivalent to 100 GW of power. The majority of this power potential is 
concentrated at the Inga site while the rest is distributed all over the country. Inga hydropower 
existing facilities and identified large projects in DRC consist of Inga 1and 2 with a total installed 
capacity of 1,745 MW, Inga 3 generating capacity of 4,320 MW and Grand Inga, the world’s 
largest hydropower scheme, with a total of 39,000 MW of power generated from 52 turbines 
(Tshombe et al. 2007). This study mainly looks at the combined generating capacity of these four 
hydropower schemes and other small power plants were not considered in water resource 
systems modeling for current the analysis.  

In the long-term, the Grand Inga hydropower potential could be developed to integrate the 
power system interconnections of the sub-regions in Africa and become the major contributor 
of the southern African power pool (SAPP) grid. Feasible identified power highways include (i) 
the DRC-Congo-RCA-Sudan-Egypt interconnection (ii) the DRC- Congo Gabon- Cameroon-
Nigeria interconnection (iii) the DRC-Angola-Namibia-RSA.   

Zambezi is the fourth-longest river in Africa after Nile, Congo and Niger, and the largest river 
with an average discharge of about 3,200 m3/sec. The drainage basin of about 1.4 Million km2 
represents about 4.5 percent of the total continent by area. Climate and runoff is highly variable 
across the basin, and from year to year. The basin has an estimated hydropower potential of 
14,250 MW of which 30 percent is developed so far. Currently the largest plant is in 
Mozambique (Cahora Bassa) with a capacity of 2075 MW. In Malawi, three hydropower plants 
(Nkula, Tedzani and Wovwe) are operational with a combined capacity of 220 MW, of which 98 
percent are in the Shire River. Zambia has six plants (Victoria Falls, Kariba North Bank, Kafue 
Gorge, Mulungushi, Lusemfwa and Lusiwasi) with a combined capacity of 1,658 MW. 
Zimbabwe has Kariba South Bank with a capacity of 666 MW. 

SAPP, currently plays the co-ordination role for the centralized energy market in the region 
integrating the power pool across countries and provide reliable and economical electricity 
through co-operation and planning and operation of systems to minimize costs and maintain 
reliability.  

3 Methods 

3.1       Formulating uncertainties  

The procedure of incorporating natural variability in the analysis involves employing an 
ensemble of scenarios of climate variables that are formulated by stochastic hydrologic methods 
of a weather generator. Weather generators are statistical methods that base on observed 
historical records of climate variable to generate long-term series of synthetic climatic data by 
preserving statistical properties of the observed data. The variance across an ensemble at a time 
step represents the temporal variability of the hydrologic variables.  
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The variance across projected GCM anomalies of HFD (Schlosser et al. 2011) are combined 
results of uncertainties in structural (across all the climate models) , downscaling and possible 
future carbon emission. These are combined with natural variability to form different ensembles 
of scenarios which are discussed in 3.6 below.  

3.2 Time series generation of climate variables – uncertainty in natural variability  

There are different variations of both parametric and non-parametric methods that have been 
developed and used in the past for single, as well as multivariate time series. One of the key 
differences between these methods is the capability of which they are able to reproduce the 
different statistical property of the historical data. While the parametric models such as 
autoregressive moving average models,(Thomas and Fiering 1962; Yevjevich 1973; Box and 
Jenkins 1976; Salas and Obeysekera 1992) are able to capture the mean, variance and skewness; a 
widely used non-parametric bootstrap models such as, K-nearest neighbor (K-NN) (Lall and 
Sharma 1996; Rajagopalan and Lall 1999; Adri Buishhand 2001; Yates et al. 2003; Grantz et al. 
2005; Apipattanavis et al. 2007) have effectively reproduced the probability distribution function 
(PDF) of the original historical data. These statistical methods have been applied to climate 
impact studies for downscaling in studies (Gangopadhyay et al. 2005; Eum et al. 2010) or climate 
sensitivity analysis by simulating possible climate scenarios (Yates et al. 2003).  

The traditional models just discussed, however, fall short when it comes to capturing the spectral 
property of the original time series. Low frequency signals that could potentially be driven by 
large scale climate phenomena, such as El Niño-Southern Oscillation, ENSO, the Pacific 
Decadal Oscillation, PDO, etc., are lost in the reconstructed ensembles of synthetic time series. 
Figure 1 shows the Wavelet decomposition of precipitation for Congo and Zambezi Basins, 
where we can observe a 3 to 8 year of signal in Congo catchment at the beginning of the century 
roughly up the until end of the 1970s and 5-8 years of signal in the Zambezi basin. These signals 
are the potentially major source of inter-annual variability in the hydrologic series, (Amarasekera 
et al. 1996; Nicholson and Kim 1997; Ghil et al. 2002; Gaughan and Waylen 2012), thus it is 
essential to consider a model that would carry these long-term frequencies into the simulated 
ensembles to have a better representation of uncertainties in natural variability. Furthermore, in 
climate impact studies we are often interested in the impact at the end our analysis time span, in 
this particular study average over 2045-2050, taking historic series does not guarantee an active 
dry/wet epoch to show at this particular time window, consequently underestimating the effect 
of natural variability.  

Frequency domain simulation of time series has provided a means that would allow to capture 
the spectral property of time series and have found a growing application in water resource and 
climate studies as an alternative approach to time domain stochastic simulation methods 
particularly where the low frequency signals are significant drivers of climate variables. 

The use of wavelet decomposition followed by an autoregressive model (AR), Wavelet-based 
Auto Regression Modeling (WARM) framework, as demonstrated by (Kwon et al. 2007), has 
been shown to capture the spectral property of the historical data in addition to the low order 
statistical parameters. An improvement on this model coupled with disaggregation is published 
by (Nowak et al. 2011) and has shown to capture both the local and global spectral property, as 
well as the spatial dependence of variables at multiple locations, simultaneously capturing 
spectral and distributional properties of the historic data.  

Analogues to time domain simulations – one of the other variations of frequency domain 
simulations – is the use of bootstrap techniques. The surrogate method of Theiler et al. (1992), 
first introduced by them, is a widely applied technique in the literature. Its basic idea is to first 
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compute Fourier transformation coefficients of the observed time series data followed by 
bootstrapping the phase coefficients, and then back-transforming them to obtain a surrogate 
sample in the time domain. Since the randomized components in the reconstruction is the phase, 
the magnitude of values obtained in time domain are all members of the original time series. 
More details are presented in Theiler et al. (1992). 

This method was used in this analysis to produce surrogate times series. Simulation was 
conducted on a 102-years observed precipitation and temperature dataset on annual time step, 
but the monthly structure was later reinstated to get monthly time series ensamples. Additionally, 
since there is a spatial and temporal correlation of observed data between the catchment 
divisions, application of the surrogate simulation was conducted simultaneously for all the 
catchments to preserve this correlation. 

To do that, the surrogate method is accompanied by a space aggregation-disaggregation 
technique. Three steps are engaged to carry this out: 

• Fit a space aggregation of the climate variables to an index basin. This index basin is a 
hypothetical sub-basin constructed as the sum of each climate variables of the identified 
26 sub-basins  

• Generating 500-year ensembles of precipitation and temperature based on the past 100 
years of record using surrogate bootstrapping technique. 

• Disaggregating the ensembles into the original sub-basins.  

An example of similar application of this method in combination with a time domain model, K-
NN, is illustrated by Tarboton et al. (1998), Clark et al. (2004), Prairie et al. (2007) and Bracken 
et al. (2010). More application are also found in Santos and Salas (1992) and Tarboton et al. 
(1998).  

A spectrum plot and probability density functions of the simulated ensemble of scenarios and 
original data is shown in  

Figure 2. It can easily be inferred that simulated time-series have managed to capture both the 
spectral as well as the distribution statistic of the original time series. Forty years of data are 
selected from the simulated enables to be used for future (2011- 2050) scenarios of base-case 
precipitation and temperature scenarios which shall be discussed in the coming sections.  

3.3 Hybrid frequency distribution – uncertainty in climate change  

Many previous approaches of climate change impact assessment exercises have often been 
limited to a selected number of future climate scenarios obtained by the combination of IPCC 
SRES (Special Report on Emissions Scenarios - SRES) and GCM outputs.  Schlosser et al. 
(2011) HFDs, regionally downscaled model scenarios, numerical hybridization of 400 members 
of policy ensembles from the IGSM1 results of Sokolov et al. (2005) and Webster et al. (2011); 
for each 17 IPCC AR4 climate model results producing a meta-ensemble of climate change 
projections containing 6,800 distinct members for different possible adaptation.  

                                                 
1 The MIT integrated global system model framework (IGSM) is a global integrated assessment modeling 
framework that uses emission predictions and economic outputs from the MIT emission prediction and policy 
analysis model and earth system modeling predictions from the IGSM to drive a land system component, a crop 
model (CliCrop) and a water resource system model. 
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These HFDs datasets are the latest available characterization of possible future climate outcomes 
which combines uncertainties in structural difference of climate models, in downscaling and 
possible emission scenarios, as represented by the different policy of adaption. 

Climate change scenarios in temperature and precipitation are taken from this dataset to 
represent the uncertainties in future cases of climate variables. These datasets are generated for a 
different policy of adaption, however, two of them are selected and used in this assessment (1) 
unconstrained emission (UCE) scenarios where no policy action is taken to limit greenhouse gas 
emissions (2) ‘level one stabilization’ (L1S) where restraints are imposed on global emissions to 
limit greenhouse gas concentration at 560 ppm CO2 equivalent, as defined in Webster et al. 
(2011). From this large dataset about 400 are selected by quadrature thinning technique discussed 
in 3.5. The distribution for average temperature and precipitation for the years 2041-2050 is 
indicated in Figure 3. 

We can observe from Figure 3 for the 2040s that for unconstrained emission scenario changes in 
precipitations are different spatially. The mode change of precipitation is negative for central 
catchments while for northern and southern catchments it is close to zero and positive, 
respectively. The temperature, however, remains positive with an average value of 1.25 degrees 
Celsius rise for all the catchments. Similarly, for L1S scenarios, the temperature rise reaches 1.75 
degrees Celsius.  

3.4 Filtering  

Although, the HFD scenarios have relatively less noise as compared to IPSS AR4 outputs it was 
still necessary to filter some noise from the data to utilize the information effectively. A simple 
moving average technique with a six month window was employed to reduce the level of noise 
and separate the dominant signal from climate projections.  

3.5 Quadrature thinning technique  

Combinations of future base-case uncertainty ensembles together with the HFD GCM outputs 
will create a huge number of scenarios which might be not practical to process. Following the 
techniques presented in Arndt et al. (2006) later expanded to the application on HFD climate 
variables, Arndt et al. (2012) demonstrated an application of Gaussian quadrature sampling to 
systematically select samples of representative scenarios from the ensembles of possible HFD 
scenarios mentioned above designed to represent the full distribution of likely climate in the 
Zambezi Basin.  

A simplified version of filtering technique is devised based on Arndt et al. (2012) Gaussian 
quadrature sampling to systematically select a sample of representative scenarios from the 
ensembles of possible HFD scenarios mentioned above designed to represent the full 
distribution of likely climate in the Congo Basin. The idea behind this technique is identifying the 
dominant aspect of the distribution of future climate variables through 12 summary variables 
chosen appropriate to the particular analysis. This is then followed by using the summary 
variables and selecting a set and assigning a weight from the parent distribution where the 
moments of the distribution of the sample is equal to the moments of the parent distribution out 
to order three for the summary variables. Therefore, the scenarios will be reduced to a 
manageable number without losing much information.  

The selection of the 12 variables is based on computed three indicators. Climate moisture index 
(CMI) (Eq 1) and indicator of overall hydroclimatic conditions and water availability and it 
computed average for the years 2030-2039 and 2040-2050; standard deviation of precipitation 
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which is an important representative of seasonal variability, and maximum temperature. These 
four variables will be computed for each of the three regions identified in Congo River basin 
making a total of 12 summary variable. 

ܫܯܥ = 	൞൬ ܶܧܲܲ − 1൰ ܶܧܲ	݂݅	 > ܲ൬1 −	 ൰ܶܧܲܲ ܶܧܲ	݂݅	 < ܲ
 

                                                                (1) 

3.6 Scenario ensembles  

Five sets of scenario ensembles are generated. The first set contains ‘natural variability’ scenarios, 
in which historical climate variables are systematically resembled using surrogate sampling 
technique discussed above to produce an ensemble of 500 synthetic climatic scenarios. This 
provides the first set of uncertainty in natural variability of the hydrologic system. This set also 
represents possible combinations of future precipitation and temperature to be used as future 
base-cases when producing the hybrid scenarios. 

The second and third sets of ensembles are based on climate change uncertainties imposed over 
single historical time series, which we will hereafter simply refer to as ‘HFD scenarios’. HFD 
scenarios corresponding to the two levels of policy adaption, i.e. unconstrained emission and 
L1S represent uncertainty in climate change (both structural and emission). Out of the 6800 raw 
HFD scenarios quadrature thinning technique was applied to selected 400 members to formulate 
the HFD scenarios we used in our models for each of these two policy of adaptions. 

The remaining two sets of scenarios are generated based on the combination HFD climate 
change shocks with different historical base-case, i.e. combination natural variability scenarios 
and HFDs and following a thinning procedure to bring down to a manageable number of 
scenarios providing a total of 500 members for each set of ensembles, we will refer to them as 
‘hybrid scenarios’. When 400 HFD scenarios and the 500 member synthetic climatic scenarios 
are combined it produces a total of 200,000 unique members. This was thinned down again to 
500 members providing the third and fourth set of ensembles.  

3.7 Biophysical models  

Data and models  

The biophysical model set consists of three models: (1) hydrologic model to translate 
precipitation and temperature to runoff and stream flow (2) a crop model to estimate crop water 
irrigation requirement and (3) a water resource modeling tool for computing monthly 
hydropower generation. The dataset used in this study for temperature and precipitation is 
obtained from the Climatic Research Unit (CRU)2. Historical monthly data set for global land 
areas from 1901 to 2002, gridded at two different resolutions (2.5° latitude by 3.75° longitude 
and 5° latitude/longitude) has been constructed and is available for use in scientific research 
(Hulme 1992; 1994, Hulme et al. 1998; Mitchell et al. 2004). For the crop modeling, daily climate 
data was required and therefore daily precipitation at spatial scale of 1-degree by 1-degree was 

                                                 
2 gu23wld0098.dat' (Version 1.0) constructed and supplied by Mike Hulme at the Climatic Research Unit, University 
of East Anglia, Norwich, UK. This work has been supported by the UK Department of the Environment, 
Transport and the Regions (Contract EPG 1/1/48). 
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obtained from the Land Surface Hydrology Research Group at Princeton University (Sheffield et 
al. 2006). This dataset was adjusted to match the CRU monthly dataset.  

Hydrologic and crop model  

Climate Runoff Model (CLIRUN-II), a two-layer one-dimensional rainfall-runoff model, was 
used to simulate the hydrologic response of Congo and Zambezi River Basins for the different 
projected climate scenarios of precipitation and temperature discussed in 3.6. CLIRUN-II is one 
of the latest models in a family of hydrologic models developed specifically for the analysis of 
impact of climate change on runoff (Strzepek et al. 2008) which has a built-in modified 
Hargreaves model (Droogers and Allen 2002) to compute Potential evapotranspiration. Reader is 
referred to Strzepek et al. (2011), Arndt et al. (2012), Fant et al. (2012) and Gebretsadik et al. 
(2012) for further reference on some previous application of CLIRUN-II on climate impact 
studies. The modeling procedure involves calibration of model parameters for historical 
observed runoff data and using the calibrated parameters to generate the corresponding runoffs 
for each ensemble of scenario. 

The upstream of the Inga hydropower catchment of Congo River was delineated in to 26 smaller 
sub-basins and Zambezi Basin was divided into 29 hydrologically significant sub-basins to 
capture the spatial variability of the hydrologic systems but optimize the biophysical modeling 
effort. Each sub-basin was calibrated based on historical precipitation data obtained from CRU 
and observed stream flow data at different locations. The catchment division for Congo and the 
corresponding precipitation pattern for the different zones is illustrated in Figure 4.  

In the Zambezi basin are about 260,000 ha of irrigated land. In addition to change in stream 
flow, changing climate will also affect crop water requirement and thus irrigation demand, which 
is one of the essential input to the water resource model. Therefore, it was necessary to 
incorporate a crop model to estimate the irrigation demand for the Zambezi basin. CliCrop, first 
introduced by (Fant 2009) to simulate the impact of the baseline and climate change scenarios on 
rain-fed and irrigated crop yields and on irrigation water demand. (Fant et al. 2012) demonstrate 
the application of the CliCrop model in the context of climate change general assessment 
modeling. In this study CliCrop was used to estimate changes in crop water requirement and 
thus producing the corresponding irrigation water demand to be used in the water resource 
management model. 

Hydropower generation model 

The water evaluation and planning (WEAP) system is developed by the Stockholm Environment 
Institute SEI. WEAP is a demand- priority- and preference-driven water resources planning 
model and it is used for simulation of hydropower generated from runoff. The Grand Inga dam 
was represented with runoff river hydropower scheme with no significant storage. WEAP 
computes hydropower generation from the flow passing through the turbine with maximum 
turbine capacity and desired annual generation specified as an input. For every combination of 
scenarios ensembles identified hydropower computation was carried out through automating 
multiple runs.  

Irrigation abstractions are not considered for the Congo Basin at the current state of this study 
since no significant amount of withdrawal exists upstream of the reservoirs. Industrial and 
municipal withdrawals are also very small as compared to the total available water and thus for 
simplification of modeling and considering to reduce the computation time to run all the 
simulations industrial and municipal abstractions are ignored in the WEAP modeling. For 
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Zambezi the irrigation demands computed from CliCrop were used as abstraction at different 
nodes.  

4 Results and discussion 

4.1 Runoff  

Looking at the impact on the runoff at Inga hydropower site average for the period of 2045-
2050, results show that the mode change of runoff for the HFD ensemble is only about -1 
percent (reduced runoff). However, there is a significant variance indicating a higher uncertainty, 
extreme values roughly ranging between -10 percent to +18 percent. The distribution, estimated 
using a kernel density approximation, is shown in Figure 5. The result for the HFD scenarios are 
obtained by running the HFD climate shocks superimposed on a single historical base-case and 
computing the percentage of change in runoff by taking the ratios on the selected one historical 
base-case. The above outcomes in mode of runoff change are in accordance with results 
reported by Mukheibir (2007) in which only a slight reduction in runoff as a result of climate 
change is reported for the Congo River basin. For the hybrid scenarios, that also take the natural 
variability into consideration, the first notable improvement over the HFD scenarios is a more 
spread in the tails of the density plots indicating a higher variance we see that the extreme values 
now reaching -20 percent to +30 percent. The magnitude of mode change of runoff has also 
changed slightly to +1 percent (increased runoff). For hybrid scenarios the percent change is 
computed in reference to the corresponding base-case used from natural variability ensembles. 
Here multiple base-cases are used but since we are comparing the percentage change, the effect 
of the magnitudes of the base-case are filtered out and thus this impacts we found are just of the 
climate changes.  

The main reason for mode runoff in the Congo basin being less vulnerable to changes in the 
climate variables is that the catchments area is characterized by high precipitation rate, the 
changes in precipitation predicted by HFD scenarios are small as compared to the total 
precipitation and thus the overall impact will be less severe. Additionally, the different parts of 
catchments are affected differently, increased precipitation in southern and decreased central 
catchments; this effect could cancel each other keeping the overall Congo River catchment 
relatively more resilient to the changes predicated by HFD scenarios. However, this will have less 
effect on the tails of the distributions and the uncertainty is still high since the variance is also a 
significant indicator. 

For Zambezi basin unconstrained emission for HFD scenarios will result in 9 percent reduction 
of runoff and indicating overall drought in the basin. Hybrid scenarios have shown to have a 
more pronounced effect as compared to the HFD scenarios. The mode runoff changed to 16 
percent indicating a higher climate risk. We can also observe a more spread in the tails of the 
density function the maximum change in percentage roughly going up to -60 percent from -40 
percent on the negative side of the tail while the positive tail remains relatively unchanged. 

From the two plots we can notice that the Hybrid uncertainty approach seems to deviate from 
the HFD scenarios more in the Zambezi basin than in Congo basin. One of the potential 
reasons for this is the range of natural variability. There is more variability, both inter and intra 
annual, in Zambezi than Congo basin. As can be referred from the Figure 5 and Figure 6, the 
mean annual runoff is shown to vary by only 10 percent for Congo basin while for Zambezi it 
shows up to 30 percent of variability average for the period of 2045-2050. Furthermore the 
relative changes of precipitating for Zambezi basin is higher than Congo and the combination of 
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higher variance and higher relative change would contribute to the reason as to why the Hybrid 
scenarios are showing more deviation in Zambezi than Congo. 

4.2 Hydropower  

Distribution of total hydropower generation for Congo in both the unconstrained emissions and 
L1S is roughly even in both the negative and positive side of the density function tails and the 
mode value is almost zero. Here the total hydropower includes Inga I, II, expansion on Inga III 
and the future planned Grand Inga dam. There is an indication in a slight increase of generation 
in L1s emission scenarios, + 0.5 percent increase in the mode. The distribution of percentage of 
change in hydropower generation from the base-cases for the time period of 2045-2050 is 
presented in Figure 7. We can further notice that for Inga hydropower schemes, the uncertainties 
in hydropower generation by the end of 2050s as a result of the natural variability of 
precipitation and temperature are found to be more or less equivalent to the expected changes in 
natural variability. 

For hybrid uncertainties, although the mode change is almost zero there is still a considerable 
spread in the tail of the density functions indicating a potential loss or gain of generating capacity 
ranging from -8 percent to 6 percent in UCE and to -6 percent to 5 percent in L1S emission. 
Figure 8 compares the percent of change of hydropower generation between hybrid UCE and 
L1s scenarios. Although there is a slight change in the distribution the improvement on the 
impact by restricting the emission level is not as significant as it is in Zambezi basin.  

The result of total hydropower generation for the Zambezi basin is shown in Figure 9. There will 
be a general loss of hydropower generation in the basin. The hybrid scenarios have estimated the 
mode to reduce by -10 percent. This result is an improvement over the HFD scenarios which 
show about 5 percent reduced generating capacity. The variance is also improved by 50 percent, 
extreme values ranging roughly from -30 percent to +10 percent while for HFD scenarios these 
figures were -15 percent to 8 percent.  

Between the two emission scenarios, unlike the Inga hydropower schemes, we can see a 5 
percent improvement in mode on the L1S scenarios, Figure 10, indicating considerable gain in 
the mitigation policy of restricting the emission level. Furthermore, the spread in the tails of the 
density function has also shown improvement by nearly 50 percent indicating a reduced 
uncertainty in the level of impact for hydropower in Zambezi basin. 

5 Conclusion  

We have demonstrated the application of hybrid uncertainty approach to basin-wide climate 
change assessment. Results have indicated improvement over the traditional delta-change 
approach in both the mode and range of uncertainties. Our finding supports that the traditional 
‘single base-line’ approach underestimates the uncertainties involved predicting future impact on 
hydropower and water resources management in general. Particularly, in the areas with high 
natural hydroclimatic variability it is more important to consider the variability in the impact 
assessment exercise in order to be able to accurately explain the inherent uncertainty of climate 
change impact on basin-wide hydropower generation and careful consideration should be given 
to the natural variability as the combined effect is more pronounced. 

It is also worth noting that alike to the case of runoffs, results from hybrid uncertainty approach 
seem to diverge from the HFD scenarios more in the Zambezi basin than in the Congo. In 
addition to the previously discussed two reasons, the combination of higher natural variability 
and smaller ratio of change in climate variables over the total magnitude, this more pronounced 
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divergence of the hybrid uncertainty scenarios is that fact that the water resource system is 
complex and more non-linear in Zambezi than in Congo due to the storage in the reservoirs and 
irrigation abstraction in Zambezi water resource system. All the hydropower units in Congo are 
modeled as a runoff river and thus relatively less complicated than Zambezi.  

The integrated modeling approach presented here to produce hybrid uncertainty scenarios by 
making use of synthetic ensembles and quadrature selection approach can be used as an 
alternative methodology of scenarios generation where more rigorous assessment may be 
required in the subsequent climate change impact studies. 
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Figure 1: Morlet Wavelet transformation of precipitation in northern Congo (top) and Zambezi (bottom) River 

basins with 95% level of confidence for white noise 

 

 
Source: Generated by the authors.  
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Figure 2: (Left) Spectrum plot of simulated synthetic time series data for precipitation.  

(Right) Probability density function of monthly precipitation for Congo basin 

 
Source: Generated by the authors.  

Figure 3: Distribution of average temperature and precipitation for 2041-2050 corresponding to L1s and UCE 

emission scenarios for Congo basin 

Source: Generated by the authors.  
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Figure 4: Catchment division and rainfall pattern of the Congo River basin 

 
Source: Generated by the authors.  

Figure 5: Frequency distribution of percentage change in runoff 2045-2050 over the base-case for HFD and 

hybrid scenarios under UES, Congo basin 

  

Source: Generated by the authors.  
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Figure 6: Frequency distribution of percentage change in runoff 2045-2050 for combination of HFD and natural 

variability scenarios Zambezi basin 

 

Source: Generated by the authors.  

Figure 7: (Right) Comparison of HP generation average for the period of 2045-2050s for unconstrained emission 

between hybrid, climate change and natural variability scenarios, total Congo hydropower  

(Left) Comparison of HP generation average for the 2045-2050s for L1S emission scenario between hybrid, L1s 

climate change and natural variability scenarios, total Congo hydropower 

Source: Generated by the authors.  
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Figure 8: Comparison of HP generation average for the 2040s between unconstrained emission and L1S 

emission scenarios for hybrid uncertainties 

 
Source: Generated by the authors.  

Figure 9: (Right) Comparison of HP generation average for the period of 2045-2050s for unconstrained emission 

between hybrid, climate change and natural variability scenarios, Zambezi  

(Left) Comparison of HP generation average for the 2045-2050s for L1S emission scenario between hybrid, L1s 

climate change and natural variability scenarios, Zambezi. 

Source: Generated by the authors.  
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Figure 10: Comparison of HP generation average for the 2040s between unconstrained emission and L1S 

emission scenarios for hybrid uncertainties, total in Zambezi basin 

 
Source: Generated by the authors.  
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