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Abstract: A panel data set covering 145 countries between 1960 and 2010 has been investigated closely by using
models of parameter heterogeneity. The Functional Coefficient Model (FCM) introduced by Cai, Fan and Yao
(2000) allows estimated parameters of growth determinants to vary as functions of one or two status variables. As
a status variable, coefficients depend on the level of development, measured by initial per capita GDP. In a two-
dimensional setting, time is used as an additional status variable. At first, the analysis is restricted to bivariate
relationships between growth and only one of its determinants, dependent on one or both status variables in a
local estimation. Afterwards, the well-known Solow (1956) model serves as a core setting of control variables,
while functional dependence of additional explanatory variables is investigated. While some constraints of this
modeling approach have to be kept in mind, functional specifications are a promising tool to investigate growth
relationships, as well as their robustness and sensitivity. Finally, a simple derivation of FCM called local mean
values provides a suitable way to visualize macroeconomic or demographic development patterns in a descriptive
diagram.
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1 Introduction

Improved data availability and computing power gave birth to large empirical studies searching
for determinants of growth during the last 30 years. A popular method turned out to be cross-
country growth regressions, trying to uncover relationships between per-capita growth rates and
supposedly growth-relevant measures in a multiple regression model. Explanatory variables in
these regressions covered macroeconomics, demographic and geographic characteristics, educa-
tion measures, political and social indicators and even the prevalence of certain diseases. A
numerous but still incomplete list of variables that have been applied in growth regressions is
provided by Durlauf, Johnson and Temple (2005).

Without mentioning, most of these empirical studies assume parameter homogeneity, that is, a
certain explanatory variable is expected to have a homogeneous influence on economic growth
across countries and years. McCartney (2006) denotes this procedure the ‘assumption of univer-
salism’ - which exposes the view that each statistical observation will shed light on a universal
underlying economic relationship, no matter when and where it has been observed.

Some authors deny this assumption of universal growth determinants. For example, Sala-i-
Martin and Artadi (2004) rank countries according to their definition of competitiveness, which
supposedly influences future growth prospects. According to this concept, there are three dif-
ferent stages of development in which different input factors are most relevant for a countries’
growth prospects.2 Put differently, certain economic variables are of changing importance for
growth, depending on the stage of development. Aghion and Howitt (2006) argue that countries
with highly developed technology will accomplish further improvements of their productivity
only by innovation, while less developed countries primarily need to adapt available technologies
in order to enhance growth prospects. Therefore, economic policy and the design of institutions
should depend on a countries stage of development. As a result, capital accumulation and the
adaption of available technologies serve as a powerful growth engine as long as the country is
somewhat distant to the technological frontier. The closer an economy converges to the tech-
nological frontier, the more important becomes, for example, attainment of higher education for
further growth prospects. Again, changing success factors to foster economic growth are high-
lighted dependent on a countries’ development stage. With regard to growth regressions, this
implies coefficients for mentioned variables to be dependent on the stage of development.

A suitable way to investigate functional dependencies of estimated coefficients is provided by Cai,
Fan und Yao’s (2000) Functional Coefficient Models (FCM), which was applied in a different

2 The underlying idea is that economic development is following three subsequent stages: In the factor-driven
stage, basic economic requirements are considered crucial for development: Quality of institutions, infrastructure,
macroeconomic stability, personal security and basic human capital. In the second, efficiency-driven stage, a
growing importance is attached to advanced human capital, efficiency of goods markets, labor markets and finan-
cial markets, ‘technological readiness’ and access to markets. During the innovation-driven stage of development,
capability to innovate and business sophistication are considered most important. See Snowdon (2006) for more
details.
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context by Herwartz and Xu (2007). It is a multivariate version of the non-parametric Nadaraya-
Watson-Estimator3 and allows for local estimation depending on one (or more) economic status
variables. FCM is considered a semi-parametric approach, since a linear (parametric) model is
estimated locally by a nonparametric method, which is Kernel regression (cf. Härdle, 1990). For
instance, in the light of arguments of Aghion and Howitt (2006) the status variable indicates the
stage of development of an economy. Using FCM, estimated functional parameters can be plotted
against the underlying status variable in a suitable diagram. This way, we are able to investigate
whether an economic relationship changes during the stages of economic development, but we
may also confirm that it remains rather stable as is implicitly assumed in conventional growth
regressions. The aim of this study is an investigation of functional dependence of coefficients
in empirical growth models. Thereby, we weaken the restrictive assumption of universalism, i.e.
we allow estimated parameters of growth determinants to vary across development stages. In a
setting with two status variables, we also allow coefficients to change over time.

The remainder of this paper is structured as follows: Section 1.1 provides a brief overview on
existing literature modeling economic growth with parameter heterogeneity. Section 2 describes
briefly the composition of our panel dataset, followed by descriptions of statistical methods
and diagrams used throughout the paper. The paper presents selected results with regard to a
bivariate setting (section 3), a multivariate model with partial least squares prefiltering (Section
4), followed by some examples of two-dimensional local mean values, which provide a useful
visualization of macroeconomic and demographic panel data (Section 5). Section 6 concludes.

1.1 Related Literature: A Brief Overview

Explicit modeling of varying parameters has been conducted by several studies. Durlauf and
Johnson (1995) use average growth rates between 1960 and 1985 and divide their sample of
96 countries into four groups according to output level and literacy in order to generate four
subsamples. Estimated coefficients in each regression differ considerably in sign, magnitude and
p-value, so Durlauf and Johnson conclude that there are considerable differences between the
groups which may be explained with a perspective of different steady states for each subsample.
At the same time, countries of similar initial conditions may obey the same linear model.

Liu and Stengos (1999) use a semiparametric partially linear approach for the augmented Solow
model from Mankiw et al. (1992), in which they allow the coefficients of initial GDP and of initial
human capital investment to vary for different values of the respective explanatory variable. Data
covers 86 countries from 1960 to 1990 in three 10-year-averages for all included variables. They
find that there is a threshold effect, such that a growth-dampening effect of high initial GDP
is only valid if initial GDP exceeds $ 1800. Similarly, results suggest that secondary school
enrollment (as a measure of human capital formation) fosters growth only for values beyond 15
%. Similarly to Durlauf and Johnson (1995), findings of Liu and Stengos (1999) suggest that

3 See Nadaraya (1964) and Watson (1964).
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there might be different growth regimes and different equilibria.

Durlauf, Kourtellos and Minkin (2001) allow for parameter heterogeneity also in the augmented
Solow model, while they use initial GDP per capita as a status variable. Explanatory variables
are population growth, investment and initial human capital, such that they use a theory-based
small setting for their cross-country growth regression model. Data covers 98 countries with
average growth rates over the whole period between 1960 and 1985. They conclude that there
appears to be a considerable degree of parameter heterogeneity in the data, without providing an
explicit interpretation of locally estimated parameters. Instead, a general finding is that growth
rates, the magnitude of local parameters as well as estimated residuals vary considerably more
for the poorest countries. Accordingly, local measures for goodness-of-fit reach a much higher
level for countries with a high initial GDP. Kourtellos (2002) confirms the finding of parameter
heterogeneity using the same smooth coefficient approach. Instead of initial GDP, he uses initial
literacy and initial life expectancy as status variables for dependent local parameters. Additional
studies investigating parameter heterogeneity and finding considerable nonlinearities with regard
to economic growth regressions are Ketteni, Mamuneas and Stengos (2007), Mamuneas, Savides
and Stengos (2006) as well as Vaona and Schiavo (2007).

2 Dataset and Model Setup

2.1 Dataset and Status Variable

The data set is combined from two sources. From ‘Penn World Tables’ Version 7.1 (Heston,
Summers and Aten, 2012) annual data on per capita growth rates, GDP levels, investment and
government shares between 1960 and 2010 are obtained. The second source is World Banks
‘World Development Indicators’ (World Bank, 2012) providing other macroeconomic measures,
demographic variables and data on educational attainment.4

Measurement quality of real per capita GDP is not convincing throughout the whole dataset,
since we observe considerable fluctuations of real GDP values that can hardly be explained by
regular growth dynamics. Annual growth rate “jumps” of more than 10 percentage points, up
or down, are recorded in 1150 cases out of about 7500 valid observations. Annual growth rates
of more than 10 per cent, up or down, can be observed in 839 observations. A few extreme
values may reasonably be explained by growth spurts (for example in East Asia) or economic
and political turmoil. Nonetheless, there appears to be a considerable amount of measurement
uncertainty in the data. Since too much additional uncertainty may jeopardize our goal of

4 Data availability: Time series from PWT are rather complete, except for countries of former Yugoslavia and
Soviet Union and some developing countries. As a result, no more than about 10-15% of values are missing for
measures drawn from Penn World Tables between 1960 and 2010. Data availability for WDI measures is rather
mixed: While demographic variables offer almost complete time series for most countries and years, time series
of macroeconomic variables and some of the educational attainment measures are incomplete more often with
missing values in 20-25% of the cases.
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explaining economic growth rates, extreme fluctuations have been reduced to some extent. To
this end, a standard HP-Filter (Hodrick and Prescott, 1997) was employed on annual observations
of real GDP per capita. Resulting trend growth rates, computed from HP-filtered GDP values,
are used in subsequent growth regressions.5 Throughout this paper, per capita growth rates
and explanatory variables were transformed to 5-year averages in order to focus on medium-run
growth. Former HP-Prefiltering ensures that discussed fluctuations of annual GDP values at the
beginning and at the end of 5-year episodes do not affect the dependent variable too much. Each
country in the dataset consists of up to 10 growth observations between 1960 and 2010.

Logarithm of real GDP per capita (measured in constant PPP-adjusted prices) is used as status
variable. It is expected to capture and to rank the development stage of each country in the
dataset at any point in time. Thus, the status variable contains initial GDP of each of the ten
growth episodes. However, due to our choice, we exclude a few heavily oil- and gas-producing
small countries from estimation, because growth rates are fluctuating strongly and GDP levels
may not reflect their true stage of development.6 We also exclude countries with a population
of less than one million in order to exclude tax havens and independent island groups whose
economies may work differently. From 185 countries available both in the WDI and PWT
datasets we use 145 countries in the following analysis.7

2.2 One-Dimensional Status Dependence

2.2.1 Model

A model equation for the growth rate gi,t is specified as follows:

gi,t = x′i,t · β + ei,t, i = 1, . . . , N, t = 1, . . . T, (1)

where N and T are the cross sectional an time dimension number of observations, respectively,
xi,t is the vector of a constant and one explanatory variable for country i at time t, β is a vector
containing 2 corresponding coefficients and ei,t is the stochastic error term satisfying E[ei,t] = 0.

5 HP-filtered time series of real GDP per capita for each country were computed by using a (small) smoothing
parameter of 10, in order to smooth away only strong short-term fluctuations. Then, first and last values of the
smoothed time series were replaced by actual values, such that a countries’ overall growth record remains to be
built upon observed values only. Trend growth rates are computed by taking logarithmic differences.

6 Annual GDP levels of these countries are influenced strongly by concurrent international oil prices and oil pro-
duction quotas. Therefore growth rates as the dependent variable is influenced strongly by it, which is not the
focus of our study. Moreover, some of these countries have very high average income levels, not capturing their
real development stage. This might render the chosen status variable unsuitable, since these countries were to be
found among the highly developed countries.

7 Exclusion of countries has been made by using arbitrary thresholds of at least one million people (which excludes
34 countries) and an average share of fuel exports of at most 80% of all merchandise exports in combination with
a logarithm of GDP per capita of more than 9.5 (about US-$ 13.300) which excludes additional 6 countries).
Arbitrary thresholds were not chosen in order to influence results in any way.
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The model equation for a one-dimensional FCM is

gi,t = x′i,t · β(ui,t) + ei,t. (2)

A local vector β̂(ui,t) is determined through minimization of the weighted residual sum of squares

RSS =
N∑
i=1

T∑
t=1

[
gi,t −

K∑
k=1

βk · xi,t,k

]2
·Kh(ui,t − u)

Local estimation at focus u is carried out by computing

β̂(u) =

(
N∑
i=1

T∑
t=1

xi,t · x′i,t ·Kh(ui,t − u)

)−1
·

N∑
i=1

T∑
t=1

xi,t · gi,t ·Kh(ui,t − u). (3)

In this study, we rely exclusively on the Gaussian pdf as a Kernel function, denoted as Kh(u):

Kh(u) =
1

h ·
√
2π
· e−

1
2(

u
h)

2

(4)

Note that (3) is reduced to the pooled least squares estimator, if multiplication of each term with
Kernel function Kh is left out of the equation, that is, if we assign uniform weights to all available
observations. In that case, estimates for β are no more dependent on focus u. In other words,
equation 3 is a “Pooled Least Squares” regression, augmented by a certain weighting scheme. The
weights for each observation are dependent on the current focus u of local estimation, such that
observations with a status variable very close to u are given a relatively high weight. Moving
away from the estimation weight peak, weights are reduced according to the pdf of a Normal
distribution. The local environment around u will be given relevant weights capable to influence
the local estimates, distant observations will be given weights close to zero.

Bandwidth Selection

Selection of a proper bandwidth parameter for the Kernel is crucial to allow for a useful interpre-
tation of results. Loosely speaking, the higher bandwidth parameter h, the more smoothing will
be done. A relatively high value of h ensures that more weight will be applied to more distant
observations relative to the focus of local estimation. Estimated functional coefficients will be
smoother if a larger value for the bandwidth parameter is chosen. On the other hand, a low
value for h ensures that only observations in a very close environment to the focus will be given
relevant weights in the estimation. In that case, functional coefficients are more volatile over the
status variables support.

Local estimation can only provide reasonable results in an environment with a sufficient number
of observations. Otherwise a functional coefficient estimate may be dominated by very few
observations and will be characterized by strong fluctuations and weird estimates in that range.
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To maintain confident with the results it is desirable to apply a slightly higher value for bandwidth
parameter h when the density of observations is comparably thin at a certain local environment
around u. Therefore, local bandwidth parameters are selected dependent on the density of
observations. Loosely inhabited environments of the status support will be smoothed stronger.8

2.2.2 Visualisation of Local Coefficients

(a) (b)

Figure 1: Functional coefficient estimates for 5-year growth rates between 1960 and 2010 as a dependent variable,
using a constant and investment (% of GDP) as explanatory variables, N=1267, 1960-2010. (a) Functional
coefficient of the constant, (b) Functional slope coefficient of investment in a one-dimensional FCM. The grey
shaded area around 0 depicts the interval of coefficient values that are not considered significant at 5% level in
pooled OLS estimation. The dashed line marks the pooled OLS point estimate.

Figures 1(a) and 1(b) depict the estimated functional coefficient values across the support of
the status variable. The grey area around 0 can be considered the “area of insignificance”, i.e.
coefficient values not significant at 5% confidence level in a pooled ordinary least squares (OLS)
regression, while the dashed line depicts the pooled OLS point estimate of both parameters,
respectively. The left figure 1(a) shows the intercept of the regression line in a scatter plot of

8 See Jennen-Steinmetz and Gasser (1988) for density-dependent local bandwidth selection. A two-stage approach
for the choice of appropriate local smoothing parameters along the support of the status variable has been followed
here. In the first stage, a fixed value of h = 0.35 served to compute a preliminary weighting scheme Kh(ui,t − u).
The ”effective number of observations“ for each point u of the status support is computed as follows:

Neff (u) =

∑N
i=1

∑T
t=1 Kh(ui,t − u)

max(Kh(ui,t − u))

Thus, all the weights given to observations across countries and years are summed up, divided by the maximum
weight of the current local weighting scheme. In a second stage, local bandwidth parameters in dependence of
Neff are generated via:

h(u) =
1

Neff (u)
1
4

A low number of effective observations at some point u will result in a larger bandwidth parameter h(u). Therefore,
desired additional smoothing in loosely populated environments of the status support is done. Note that the
bandwidth parameter of the functional coefficient model needs to be multiplied by the standard deviation of its
status variable, if it is not normalized to a standard deviation of 1.
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growth vs. investment with OLS estimation. Since the influence of explanatory variables on
growth is of primary interest, following sections will focus on slope parameters only, leaving
functional estimates of the constant in the dark.

2.2.3 Local Mean Value

By using the weighting scheme from functional estimation, we are able to compute weighted, local
mean values of explanatory variables. In fact, this procedure is identical to using the variable
xi,t as dependent variable and to regress it on a constant using FCM along the support of the
status variable ui,t as before. They are computed for different values of u as follows:

x(u) =

∑N
i=1

∑T
t=1 xi,t ·Ku,h(ui,t − u)∑N

i=1

∑T
t=1Ku,h(ui,t − u)

(5)

Figure 2: Local mean value of investment (% of GDP) over the support of the status variable, N=1267, 1960-2010.
Dotted line depicts the non-weighted, overall mean.

Figure 2 shows locally weighted mean values of investment as a percentage of GDP. Average
investment shares are lower for the poorest countries (16-18 %) compared to middle-income and
rich countries (about 25 %). The global mean value for all 1267 observations of investment is
slightly more than 22 %, which is depicted as dotted line.

2.2.4 Local Correlation

To compute a local correlation coefficient between growth (y) and some explanatory variable (x),
we have to define the local variance as follows, in this case for x:

σ2x(u) =

∑N
i=1

∑T
t=1 (xi,t − x(u))

2 ·Ku,h(ui,t − u)∑N
i=1

∑T
t=1Ku,h(ui,t − u)

, (6)

as well as the covariance between x and y:
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σx,y(u) =

∑N
i=1

∑T
t=1 (xi,t − x(u)) · (yi,t − y(u)) ·Ku,h(ui,t − u)∑N

i=1

∑T
t=1Ku,h(ui,t − u)

(7)

Thus, we are able to define a local version of Spearmans correlation coefficient, which ist the
local covariance between x and y divided by local standard deviation of x and y at point u
respectively:

ρ(u) =
σx,y(u)

σx(u) · σy(u)
(8)

Figure 3 shows estimated values for a local correlation coefficient between growth and investment
along the support of the status variable. It is largely related to Figure 1(b), but gives an idea
about the extent, to which investment is able to explain parts of the growth variation between
countries and years. The dotted line depicts a correlation of zero. In this case the correlation
between growth and investment is about 0.3 for poor countries and is decreasing with development
stage. Among the richest economies, the correlation is approximately 0.

Figure 3: Local correlation coefficient of growth vs. investment (% of GDP) over the support of the status variable,
N=1267, 1960-2010. Dotted line depicts a correlation of 0.

2.3 Local Estimation in Two-Dimensional Space

2.3.1 Model

Instead of only using the stage of development as a status variable, time might also be included
as a second dimension of status dependence. This way it is possible to investigate the temporal
development of functional relationships, such that structural breaks in the importance of a certain
variable may be detected.

The model equation for a two-dimensional FCM is

gi,t = x′i,t · β(ui,t, wi,t) + ei,t. (9)
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Local estimation at focusses u and w is carried out by computing

β̂(ui, ut) =

(
N∑
i=1

T∑
t=1

xi,t · x′i,t ·Kih(ui,t − u) ·Kth(ui,t − w)

)−1
·

N∑
i=1

T∑
t=1

xi,t · gi,t ·Kih(ui,t − u) ·Kth(ui,t − w).

(10)

Note that the mere difference to (3) is a second weighting term Kth which sets an additional
local estimation focus w in the time dimension. Bandwidth parameters for both dimensions are
selected equally to the one-dimensional case: In loosely populated areas of the status variables
(in terms of available observations) a higher bandwidth parameter is selected to ensure additional
smoothing.

2.3.2 Visualisation of Local Coefficients

Figure 4(a) depicts the functional coefficient of the two-dimensional model of growth vs. invest-
ment in a surface plot. Values for the slope parameter of investment are highlighted according
to the color scale on the right. Figure 4(b) shows the corresponding contour plot. Both figures
give rise to the impression that the relationship of growth and investment is strong and rather
stable for poorer countries, while this relation is of decreasing importance or strength in richer
economies. The relation even turns negative in recent years.

(a) (b)

Figure 4: Functional coefficient estimates for 5-year growth average, using a constant and investment (% of GDP)
as explanatory variables, N=1267, 1960-2010. (a) functional coefficient of a two-dimensional FCM as a surface
plot, (b) the same functional coefficient in a two-dimensional FCM as a contour plot.
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3 Bivariate Growth Analysis

3.1 Selection of Explanatory Variables

To reduce complexity, theoretical models of economic growth tend to emphasize one or very
few aspects, but neglect other factors, that may also play an important role for real growth
processes.9 Economic theory may contribute to the understanding of growth processes, but it
does not provide a feasible and ready-to-use empirical model of all important causal relationships.
Henderson et al. (2010) refer to this aspect as “variable uncertainty”.

A large number of possible explanatory variables have been investigated in cross-country growth
regressions. Durlauf et al. (2005) provide a still incomplete list of 140 such variables. However,
coefficients with expected sign and significance level in a certain setting of explanatory variables
cannot be regarded as sufficient evidence for a stable or even causal relationship between the
measure of interest and economic growth. For most variables it is possible to find specifications
with coefficients below critical values or even reversed sign. Levine and Renelt (1992) performed
a robustness analysis using more than 50 explanatory variables. The results were disappointing,
because almost all relationships are very sensitive to alterations in the composition of explanatory
variables, and in many settings even the sign of the coefficient was changing. Sala-i-Martin (2007),
on the other hand, used a similar robustness analysis and found some variables with rather stable
results.

Anyway, intuition suggests that “true” growth determinants are not at all related in a simple
linear model. Their growth contribution is rather interdependent, some relationships may be
hierarchical and highly complex. Moreover, each simple linear setting of explanatory variables
gives rise to scepticism on the robustness of empirical findings with regard to the chosen com-
bination of explanatory and control variables. This is even more true for functional estimates,
because in this case there is not only a single point estimate of the corresponding coefficient, but
a functional course across the support of the status variable instead. Apparently, a functional
pattern for each coefficient is even more sensitive to alterations than a mere point estimate. In
a two-dimensional functional coefficient approach, allowing for additional functional variation in
the time dimension, we have even more reason to be doubtful about the robustness. Former
approaches of parameter heterogeneity like Liu and Stengos (1999) and Durlauf et al. (2001)
circumvented this difficulty and used a theory-based list of explanatory variables from Mankiw
et al. (1993). The augmented Solow model captures investment, population growth and initial

9 The well-known Solow (1959) model highlights the role of factor accumulation, namely capital and labor en-
dowment of an economy. Explicit modeling of innovation is not captured by this model, which is why modern
growth models fill this gap by providing microfoundations for knowledge creation processes, resulting in a long-run
growth rate dependent on human capital accumulation (Lucas (1988) as well as Mankiw, Romer and Weil (1992)),
the level of research and development of new product variants (Romer (1986, 1990), Grossman and Helpman,
1991). Models of creative destruction, where newly developed products displace the old ones in an environment
of temporal monopoly gains (Aghion and Howitt, 2006), provide another idea of the knowledge creation process
and economic progress.
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educational attainment. Nevertheless, there seems to be pretty low confidence in the estimated
functional coefficients, when Durlauf et al. (2001) interpret their results considerably careful,
claiming that “there appears to be a lot of heterogeneity in the data”.

Since no theoretical model provides an exhaustive list of explanatory variables; since there is
doubt whether highly complex relationships can be approximated properly by a linear regression
model; since functional estimates are even more sensitive to alterations in the list of explanatory
variables than OLS results, the growth analysis in this section is simplified. Relationships of
economic growth with a single variable at a time will be considered, dependent on chosen status
variables. Apparently, a desirable quality of empirical growth analysis is a competitive test of
certain measures in a multiple regression analysis.10 As Durlauf et al. (2005) put it, a less
ambitious goal is pursued here, namely to investigate whether or not particular relationships
have any support in the data at all. Patterns and systematic tendencies of the co-occurence
and correlation of certain parameters with good or bad growth records will be investigated with
regard to the accompanying development stage of a country.

3.2 An Aghion-Howitt Model Revisited

A closer investigation of the relation between a countries’ growth and savings rate is provided
here. Aghion und Howitt (2006) argue that middle-income countries need technological spill-overs
from higher developed countries to catch up with the technological frontier. Technology transfer
occurs when technologically leading firms from developed economies conduct direct investments.
To attract those foreign direct investments, the domestic climate for investments is crucial, i.e.
infrastructure, macroeconomic stability, social peace. The governments willingness to create this
fruitful investment climate is necessary and for this purpose economy-scale savings are needed,
as Aghion und Howitt argue. In highly developed countries, on the other hand, the ability to
create savings is not that crucial, because further growth is accomplished rather by innovations,
not by adaption of existing technologies. Therefore growth is not that dependent on savings any
more. With regard to poor countries, which are very far from the technological frontier, total
economic costs for the creation of such a favorable investment climate are relatively high, so
savings are not that important for this group of countries as well. To investigate the relationship
between growth and savings, Aghion und Howitt divide their sample into three subsamples of
poor, medium-income and rich countries and regress average growth rate between 1960 and 2000
on a constant and the savings rate. In the group of poor and rich countries, they found the
savings rate not to be significantly related to growth, while the medium income group resulted
in a significantly positive influence of economic savings on growth. Therefore, above mentioned
hypotheses could be confirmed empirically.11

Compared to arbitrary sample division, functional estimation provides a more elegant way to
estimate this relation. Again, the logarithm of real GDP per capita is used as a status variable.

10This will be provided in section 4 to some extent.
11See Aghion und Howitt (2006).
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(a) (b) (c)

Figure 5: FCM estimates for rate of adjusted gross savings (% of GNI), N=865, 1965-2010. (a) 1-dim FCM
estimate, (b) 2-dim FCM estimate as a surface plot, (c) same 2-dim FCM estimate as a contour plot. See sections
2.2.2 and 2.3.2 for a detailed description.

Average growth rates (in 5-year episodes) are regressed on a constant and the 5-year mean value
of gross savings (equation 11).

gi,t = β0(ui,t) + β1(ui,t) · savingsi,t + εi,t. (11)

Figures 5(a) through 5(c) depict functional coefficients for the gross savings rate over the the
status variables support in a one-dimensional and two-dimensional setting. Functional estimates
for the constant are left out due to space considerations, since the slope parameter is of primary
interest. Observe that the functional estimate shows exactly the expected pronounced hump
(Inverse-U) shape, thus confirming the considerations and results of Aghion und Howitt (2006).
The two-dimensional approach of Figures 5(b) and 5(c) shows that the expected hump shape is
clearly visible over the whole sample period, even if the strength of the relationship appears to
decrease since the mid-nineties.

(a) (b) (c)

Figure 6: FCM estimates for FDI inflow, N=1008, 1965-2010. (a) 1-dim FCM estimate, (b) 2-dim FCM estimate
as a surface plot, (c) same 2-dim FCM estimate as a contour plot. See sections 2.2.2 and 2.3.2 for a detailed
description.

In an alternative model setup, we replace the savings rate by a direct measure of the relationship
under investigation, i.e. the net inflow of foreign direct investments as a percentage of real GDP.
That way, we obtain Figures 6(a) through 6(c) as functional coefficient estimates of FDI Inflow.
Observe that the expected hump shape is clearly visible for the whole sample period, even if
it becomes less ponounced since approximately 1995. For very rich countries as well as very
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poor countries the influence of foreign direct investments on growth appears less present than
for middle-income countries.

3.3 Macroeconomic and Demographic Measures

Figures 7(a) through 7(c) show that while the overall influence of higher government consumption
seems to be negative, this relationship appears absent for very poor countries. Moreover, in recent
years (2005-2010), the relationship seems to become even positive, especially in rich countries.
This might be interpreted as an indication that counter-cyclical Keynesian policies during the
world financial crisis have contributed to dampen output losses.

(a) (b) (c)

Figure 7: FCM estimates for government share (% of GDP), N=1267, 1960-2010. (a) 1-dim FCM estimate, (b)
2-dim FCM estimate as a surface plot, (c) same 2-dim FCM estimate as a contour plot. See sections 2.2.2 and
2.3.2 for a detailed description.

The dotted line in Figure 8(a) shows that there is a positive sign for merchandise trade (% of
GDP) in a regular OLS growth regression, even if this result is not significant at 5% level. It also
shows that the functional coefficient is turning strongly negative for very poor countries, while
only middle-income countries seem to actually benefit from trade liberalization in a significant
way. 8(b) through 8(c) show that the result for poor countries is not stable over time. Until the
seventies, possibly due to fixed exchange rates in the Bretton-Woods-System, the coefficient of
trade was strongly positive. Since 1980, the functional coefficient became negative, thus indicat-
ing that a higher trade share was accompanied by a very bad growth record in poor countries,
at least on average. Poor open economies were probably unable to handle the uncertainty of
flexible exchange rates as good as middle-income and developed economies. However, causality
is not proven, so it is reasonable to remain careful.

Figures 9(a) through 9(c) show functional coefficients for a growth model with (a constant and)
the old age dependency ratio, which is the population share aged 65 and older divided by the
working age population (15-64 years). Functional estimates show that a positive effect of this
variable on growth seems to be present for poor and middle-income countries, which may rather
reflect a proxy variable for positive effects of good medical care. In rich economies, this positive
effect on growth seems to be non-existent over the whole span from 1960 through 2010. In recent
years, the relationship seems to have become even negative for high-income counties reflecting

13



(a) (b) (c)

Figure 8: FCM estimates for share of merchandise trade (% of GDP), N=1178, 1960-2010. (a) 1-dim FCM
estimate, (b) 2-dim FCM estimate as a surface plot, (c) same 2-dim FCM estimate as a contour plot. See sections
2.2.2 and 2.3.2 for a detailed description.

(a) (b) (c)

Figure 9: FCM estimates for old age dependency ratio, N=1267, 1960-2010. (a) 1-dim FCM estimate, (b) 2-dim
FCM estimate as a surface plot, (c) same 2-dim FCM estimate as a contour plot. See sections 2.2.2 and 2.3.2 for
a detailed description.

the demographic burden of aging societies.

It should be noted that not all variation in shown functional coefficients allows for an intuitively
convincing interpretation. There is certainly a large degree of sensitivity of results to variations in
the panel data set. However, even if a detailed interpretation of functional coefficient is not found
reliable, there are clearly benefits from using this method, since it allows a closer investigation of
heterogeneity. Similar to outlier analysis it is possible to determine whether overall results are
driven systematically by a certain number of observations. In the context of growth regressions,
the overall influence of a certain measure on growth may be driven by observations from a certain
decade only, or by a group of very poor countries. Some generalized results may not be valid for
a certain subgroup of countries. Running a functional coefficient approach may as well serve as
a sensitivity analysis from which additional insights are gained. Similarly, if we are interested
in the determination of a suitable subsample of a huge panel data set, that is, a subsample
that allows to emphasize certain principles, the discussed method might be a helpful tool to
accomplish this goal.
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4 Functional and Constant Coefficients Combined

4.1 Prefiltering of Control Variables

Bivariate analysis of growth determinants from section 3 does not include any control variables.
This could be viewed as a major shortcoming of previous analysis, since multiple regression allows
to test explanatory variables competitively. One way to include control variables is given by the
Frisch-Waugh-theorem (Greene, 2003), by which a multivariate model can be reduced via partial
regression. The desired investigation of functional relationships with a single selected variable
remains possible, while important control variables can also be included into the regression
model.12 By using a partial regression approach it is possible to filter out control variables with
assumed constant coefficients.

If we are interested in a model setting where only a part β2 of the explanatory variables’ co-
efficients are characterized by functional dependence, which, in our case, is a constant and one
additional slope parameter. The control variables’ coefficients β1 are assumed to be constant:

gi,t = x1′i,t · β1 + x2′i,t · β2(ui,t, wi,t) + ei,t. (12)

In partial regression, the dependent variable and remaining explanatory variable(s) are regressed
on the matrix of variables to be filtered out. Then, residuals of first stage regressions are used
to proceed with local estimation.13

The Solow (1956) growth model provides three explanatory variables suitable as a core model.
Initial GDP, investment and population growth are established theory-based variables that can
be filtered out via partial least squares. Logarithm of real initial GDP per capita is included
to account for the effect of convergence. The coefficient is found significantly negative in most
studies (see Levine and Renelt, 1992). Investment is a measure for physical capital accumulation,
whose coefficient is expected and usually found significantly positive. Population growth accounts
for a growing workforce that needs to be endowed with physical capital. Moreover, child care
is time-consuming, therefore high population growth is expected to reduce per capita growth.
Thus, the expected sign is negative, while existing findings in the literature are rather mixed.14

12Functional coefficients for multivariate model specifications were not found robust. See section 3.1 for some
reasoning.

13 In a strictly linear case of partial regression, constant coefficients of x1 can be computed afterwards by using the
estimated residuals of first stage partial regression. Using that procedure in our case, i.e. using residuals from
FCM regression to compute constant coefficients afterwards, a strictly linear least squares model would be mixed
up with a highly nonlinear functional coefficient approach. That is why only functional coefficients are shown,
but there are no reasonable estimates of the constant coefficients.

14Long-run growth in the Solow model is dependent only on an external rate of technological progress, so all three
variables are expected to have no effect in the long run. In the short run, however, coefficients are expected to be
of mentioned sign.
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In the following, one variable at a time is added to the core model to investigate its functional
dependence while controlling for mentioned three variables.

4.2 Selected Results

Figures 10(a) through 10(c) show results of a growth model containing a constant, initial GDP,
investment (% of GDP), population growth and the share of government consumption (% of
GDP). Initial GDP, investment and population growth, referred to as the core Solow model, are
filtered out via mentioned Frisch-Vaugh theorem. The remaining variance of economic growth is
then investigated closely for its functional dependence in one and two dimensions. Comparing
the results to the model of bivariate relationships (Figures 7(a) through 7(c) we see that its
pattern is very similar. Including control variables did not change the functional dependence to
a large extent.15 Again, results suggest that while the overall influence of higher government
consumption seems to be negative, this relationship is absent for very poor countries. Moreover,
in recent years, the relationship even seems to become positive in all development stages. A
standard model of constant coefficients may claim to find a statistically significant negative
influence of government consumption over the years 1960 through 2010, but FCM analysis shows
how this finding is flawed for recent years.

(a) (b) (c)

Figure 10: FCM estimates for government share (% of GDP), controlling for investment, population growth and
initial GDP, N=1253, 1960-2010. (a) 1-dim FCM estimate, (b) 2-dim FCM estimate as a surface plot, (c) same
2-dim FCM estimate as a contour plot. See sections 2.2.2 and 2.3.2 for a detailed description.

Again, Figures 11(a) through 11(c) are comparable in shape to the bivariate case of Figures 8(a)
through 8(c). Even if overall effect of merchandise trade appears to be unrelated to growth, FCM
analysis shows that too much trade may be detrimental to poor countries’ growth prospects, at
least since approximately 1980. On the other hand, middle-income countries may benefit from
larger trade shares.

Figures 12(a) through 12(c), compared with its bivariate counterparts of section 3.3 show some
minor differences in detail, but qualitatively there is no big difference. The overall effect of a
larger dependency ratio appears slightly positive, if anything, but this finding is only true for

15Note that the dotted line in Figure 7(a) is very close to the grey-shaded area compared to Figure 10(a). Therefore,
the p-value for this coefficients OLS estimate in the multivariate model is closer to 0.05.
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(a) (b) (c)

Figure 11: FCM estimates for share of merchandise trade (% of GDP), controlling for investment, population
growth and initial GDP, N=1166, 1960-2010. (a) 1-dim FCM estimate, (b) 2-dim FCM estimate as a surface plot,
(c) same 2-dim FCM estimate as a contour plot. See sections 2.2.2 and 2.3.2 for a detailed description.

poor countries (see Figure 12(a)). The reason is that a relatively large proportion of elderly
people in a poor country reflects a good health care system to some extent, which is regarded as
a prerequisite for growth. In high-income countries, there seems to be no effect until 1990. In
latest years, however, a larger old age dependency ratio became a liability to growth prospects in
those countries, reflected by negative local coefficients in the upper right corner of Figures 12(b)
and 12(c).

(a) (b) (c)

Figure 12: FCM estimates for old age dependency ratio, controlling for investment, population growth and initial
GDP, N=1253, 1960-2010. (a) 1-dim FCM estimate, (b) 2-dim FCM estimate as a surface plot, (c) same 2-dim
FCM estimate as a contour plot. See sections 2.2.2 and 2.3.2 for a detailed description.

Figures 13(a) through 13(c) are shown to provide rather counter-intuitive results. Combined with
given control variables, this model is close to the augmented Solow model from Mankiw et al.
(1992), featuring an education variable to account for human capital accumulation. Pooled OLS
regression provides a statistically significant positive coefficient for tertiary school enrolment,
which is depicted as dotted line in Figure 13(a). While this overall result appears convincing
at first, Figure 13(a) shows that the coefficient is much higher in low-income countries, while
tertiary education has no effect on growth in middle-income and developed, industrial countries.
This appears rather counter-intuitive. Results of the two-dimensional model suggest that tertiary
education is less but still important in middle-income and high-income countries when we only
focus on the years 1985 and later. Before that time, the coefficient even turns negative.

How come that the results suggest tertiary schooling to play a more important role in poor
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(a) (b) (c)

Figure 13: FCM estimates for tertiary school enrolment, controlling for investment, population growth and initial
GDP, N=1073, 1965-2010. (a) 1-dim FCM estimate, (b) 2-dim FCM estimate as a surface plot, (c) same 2-dim
FCM estimate as a contour plot. See sections 2.2.2 and 2.3.2 for a detailed description.

countries, while the coefficient declines with GDP level? A technical constraint of functional
estimation emerges during a close investigation of results like this: Explanatory variables of
FCM should not vary in their order of magnitude across the status variables’ support. Otherwise,
estimated local coefficients may also vary in their order of magnitude, which renders results highly
questionable. In this case, tertiary school enrolment in low-income countries ranges on average
between 2 and 3 per cent, while it ranges between 40 to 50 per cent in high-income countries (see
figure 14(c)). Local estimation in an environment where most observations of the explanatory
variable assume values of 2 or 3 per cent will result in much higher slope coefficients, compared
to a local environment with an explanatory variable with values between 40 and 50 per cent,
thus local coefficients in this case are not reliable. Therefore we need to be careful regarding
the choice of explanatory variables. Questionable results may simply reflect a different order of
magnitude of the explanatory variable at different positions of the status support. Figures Figure
14(a) and 14(b) show that local mean values of government share and old age dependency ratio
vary to a lesser extent.

(a) (b) (c)

Figure 14: Local mean values for (a) Government share (% of GDP) (b) Old age dependency ratio, (c) Tertiary
school enrolment. See section 2.2.3 for a detailed description.
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5 Spin-Off: Contours of Development

By using the weighting scheme from functional estimation, we are able to compute local mean
values dependent on status variables. Note that this procedure is identical to regressing the
variable of interest yi,t on a mere constant along the support of the status variables ui,t and wi,t

using FCM. Local mean values in a two-dimensional setting at position u and w are computed
according to:16

y..
local(u,w) =

∑N
i=1

∑T
t=1 yi,t ·Ku,h(ui,t − u) ·Kt,h(wi,t − w)∑N

i=1

∑T
t=1Ku,h(ui,t − u) ·Kt,h(wi,t − w)

(13)

Contour plots of resulting local mean values across time and GDP levels provide a colourful
visualisation of worldwide economic and demographic development along two dimensions. Figure
15 is one example of how fertility (children per woman) ranges between rich and poor countries
over time.

Figure 15: Contour plot of local mean values for 5-year fertility average, N=1607.

In order to provide additional information about observation density across the status support,
each observation is marked in the two-dimensional contour plot, as is done in figure 15. Due to
worldwide economic growth over the decades, observation marks are moving slightly to the right
from 1960 through 2010. Observe isoquants are moving from top-left to bottom-right indicating
that fertility has reduced for all income-levels over the years. In the richest economies, average
fertility has reduced from approximately 3 to less than 2 children per woman, fertility in least
developed countries declined from 6.5 to slighly more than 5 in recent years.

16See section 2.2.3 for comparison with one-dimensional local mean value and its description. Notation is in
accordance with earlier chapters.
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Selected Examples

Now that visualisation of local mean values is explained, additional examples are shown in
subsequent diagrams. Figure 16(a) features isoquants sloping downwards from top-left to bottom-
right. This indicates that trade intensity has increased worldwide between 1960 and 2010, either
in low-income, middle-income or in high-income countries. Moreover, trade intensity seems to
be proportional to GDP level: Looking from left to right there is a rise in local means over the
whole time span. The same findings are valid for life expectancy at birth (Figure 16(b)), but
here the isoquants are steeper. Local mean values of life expectancy have increased about ten
years for all per capita income levels, but the difference between poorest and richest countries
is even larger. Local mean values in high-income countries moved approximately from 67 to 77
years, while poorest countries’ local mean moved from roughly 45 to 55 years.

Figures 16(c) and 16(d) provide some insights regarding educational attainment. Adult Literacy
has been rising in all countries, but more so in poor and middle-income countries. By looking at
literacy rates as a single indicator, it appears that the gap between high-income countries and
the rest of the world has been narrowed over the years. Looking at tertiary school enrolment in
Figure 16(d) as another indicator, downward sloping isoquants indicate a rise over all income-
levels again. However, in this case the increase has been much larger for high-income countries.
Therefore, this alternative indicator of educational attainment implies that the gap between rich
and poor countries regarding higher education has widened.

Figure 16(e) shows that the stock of migrants is much higher and growing in high-income coun-
tries. Not surprisingly, high-income countries appear more attractive than low- ond middle-
income countries when people choose to migrate. The migration stock in poor and middle-income
countries has been reduced over the years. Finally, Figure 16(f) depicts local mean values of HIV
prevalence between 1990 and 2010. It appears that a maximum of infections has been recorded
around the year 2000 in low-income countries. Since then, HIV casualties outweighed new in-
fections such that the HIV prevalence in the population was reduced for the group of very poor
countries. On the other hand, ascending isoquants for middle-income and richer countries sug-
gest that overall prevalence of HIV has sharply increased over time, even if average percentage
levels for all income-levels remain below 4 per cent, in high-income countries even below 1 per
cent. Note that these are only average levels of whole countries.

The presented local mean procedure offers a new way to visualize panel data. It allows to
investigate worldwide developments in demographic, macroeconomic and financial measures in
a two-dimensional diagram.
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Contour plot of local mean values for (a) Trade share, N=1463, (b) Life expectancy at birth, N=1608,
(c) Literacy rate of population (ages 15-49), N=675, (d) tertiary school enrollment ratio, N=1216, (e) Migration
stock (% of total population), N=1668, (f) HIV prevalence (% of population ages 15-49), N=2709.

6 Conclusion

This paper applies functional coefficient analysis in the field of cross-country growth regressions.
A panel data set of 145 countries between 1960 and 2010 was used, while focusing on medium-
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run growth dynamics. Functional coefficients were determined in a one-dimensional FCM with
initial GDP as a status variable; and also in a two-dimensional FCM using the time dimension
as a second status variable. Valuable insights can be generated from visualizations of functional
coefficients of both models.

Instead of applying FCM to large multivariate models, whose results could hardly be considered
robust, it was applied for the detailed investigation of bivariate relationships of economic growth.
So the relationship of per capita growth rates with one variable at a time was investigated, namely
investment, gross savings, foreign direct investment, government consumption, trade intensity,
old age dependency ratio and tertiary educational attainment. For comparison, prefiltering of
growth rates allowed to take established control variables of the Solow model into consideration.
Estimated functional coefficients were qualitatively very similar to the bivariate case. In the light
of given results, showing that locally estimated coefficients of growth determinants indeed vary
strongly over time and also between poor and rich countries, it appears highly questionable to
simply assume parameters to be constant as it is done in a standard growth regression.

Moreover, modeling economic relationships with functional coefficients allows a closer investiga-
tion of heterogeneity. It is possible to determine whether results of a constant coefficient model
are primarily driven by a certain number of observations. The overall influence of a certain
measure on a dependent variable may be strongly influenced by observations from a certain time
period only, or by a subgroup of countries, while generalisation of the finding for the whole data
set may be invalid. Hence, FCM may as well provide a sensitivity analysis and robustness check
for OLS regression models in general.

As a spin-off, local mean values are generated if FCM is applied to a variable of interest without
explanatory variables but a constant, that is dependent on two status variables. By computing
local mean values across the support of both status variables and putting them into a contour
plot, a colourful diagram of macroeconomic or demographic panel data is generated. The result
is a descriptive statistic, useful for example in the field of development economics.
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