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Abstract

The long-run consumption risk (LRR) model is a promising approach to re-
solve prominent asset pricing puzzles. The simulated method of moments
(SMM) provides a natural framework to estimate its deep parameters, but
caveats concern model solubility and weak identification. We propose a two-
step estimation strategy that combines GMM and SMM, and for which we
elicit informative macroeconomic and financial moment matches from the LRR
model structure. In particular, we exploit the persistent serial correlation of
consumption and dividend growth and the equilibrium conditions for market
return and risk-free rate, as well as the model-implied predictability of the
risk-free rate. We match analytical moments when possible and simulated
moments when necessary and determine the crucial factors required for both
identification and reasonable estimation precision. A simulation study—the
first in the context of long-run risk modeling—delineates the pitfalls associ-
ated with SMM estimation of a non-linear dynamic asset pricing model. Our
study provides a blueprint for successful estimation of the LRR model.
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1 Introduction

Bansal and Yaron (2004) suggest a dynamic asset pricing model (DAPM) to re-

solve prominent asset pricing puzzles by accounting for three risk factors: long-run

consumption risk, short-run risk, and volatility risk. With its far-reaching impact

on model dynamics, the first factor provides the name for the long-run risk (LRR)

model. The LRR approach is theoretically appealing, but empirical tests are im-

peded by an intricate model structure that involves unobserved state variables. As

Singleton (2006) points out, the simulated method of moments (SMM) should pro-

vide a convenient framework to estimate and test such a complex DAPM.

With this study, we show that to be successful, SMM estimation of the LRR

model must account for several theoretical and econometric caveats. For that pur-

pose, we propose a two-step estimation strategy that disentangles the moment

matches associated with the macroeconomic and financial system variables, and

which reflects the recursive LRR model structure. Our moment matches exploit

the persistent serial correlation of consumption and dividends and the equilibrium

conditions for market return and risk-free rate, as well as the model-implied pre-

dictability of the risk-free rate. We show that failing to account for the recursive

model structure when setting up moment matches for the estimation can lead to

unreliable results. In a simulation study we delineate the pitfalls associated with

the SMM estimation of the LRR model, and we present a blueprint for successful

estimation.

Previous empirical assessments of LRR models use both calibration and econo-

metric estimation techniques. Bansal and Yaron’s (2004) calibration exercise demon-

strates the ability of the LRR model to explain the equity premium. Bansal et al.

(2007a) estimate a cointegrated version of the LRR model using a vector autore-

gressive model with stochastic volatility (SV). However, the LRR model structure
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must be adjusted to permit the application of the estimation technique. Bansal

et al. (2007b) show that the LRR approach can account for size and value premia

in the cross-section. With their calibration of the LRR model, Drechsler and Yaron

(2011) explain the variance premium and its relationship to investor preferences.

Bansal and Shaliastovich (2013) advocate the LRR approach as a solution to the

bond return predictability puzzle. For that purpose, they extend the base model

with an inflation process; additional complexity is introduced by two independent

SV processes. Hasseltoft (2012) also includes inflation into the LRR framework to

model stock and bond markets jointly. Constantinides and Ghosh (2011) make use

of the possibility to express the latent model variables as functions of observables,

which in turn permits the use of the generalized method of moments (GMM). Ferson

et al. (2013) evaluate out-of-sample forecasts produced by a cointegrated version of

the LRR model and find the performance to be superior to the stationary model.

However, they also impose restrictions to identify some structural parameters from

the reduced-form estimates, which is sufficient for forecasting but not for estimat-

ing all deep parameters. Pakoš (2013) generalizes the LRR model by introducing

incomplete information and a cyclical risk component in the dividend growth rate.

Although the SMM approach to estimating LRR models is natural and appeal-

ing, its concrete implementation is impeded by both methodological and numerical

intricacies. Such obstacles have largely been ignored—or circumvented—in the pre-

vious literature, which is surprising, because it is well known that LRR models are

inherently fragile: the permissible parameter space—the set of parameters for which

the model has a solution—has a complex topology. For certain economically plau-

sible parameter values, the LRR model becomes insoluble, and the SMM procedure

must account for that. Moreover, dividends and consumption are driven by a small

but persistent latent growth component and stochastic volatility, which exacerbates
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the identification of the structural parameters, especially when the data series are

short. The estimation of univariate SV processes has preoccupied researchers for

some time.1 In the LRR model, the SV process is just one element of a complex,

non-linear system. It seems daunting to estimate such a model, and we show that

it is indeed a losing game to try to estimate the LRR parameters in one step by

GMM or SMM using an ad hoc choice of first and second moment matches. Applied

researchers may be mislead, because weak or non-identification is not always obvious

in such a highly non-linear model. It might go unnoticed that even sophisticated op-

timizers converge to one of the many local minima on the rugged objective function

surface.

Our study shows that identification crucially hinges on well-thought moment

matches, which must be tailored to the model. We advocate a two-step approach, in

which we estimate the subset of parameters associated with the macroeconomic en-

vironment separately from the representative investor’s preference parameters. The

first step consists of a GMM estimation that uses analytical moment conditions

resulting from the macro sub-model; the second step is an SMM estimation that ex-

ploits asset pricing and predictive relationships implied by the LRR model. We show

that the precision of the macro parameter estimates is of utmost importance for the

successful estimation of the model parameters. A comprehensive simulation study

documents the performance of our estimation strategy. Our findings constitute a

call for econometric due diligence and reality checks when estimating a complex

DAPM like the LRR model. We also point out that because the available (macro)

time series are relatively short, the estimation precision for some of the model pa-

rameters will inevitably be limited, emphasizing even more the need for informative

1Cf. Ruiz (1994), Gallant et al. (1997), Sandmann and Koopman (1998), Kim et al. (1998),
Andersen et al. (1999), and Jacquier et al. (2002).
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moment matches. The caveats and solutions presented in this study are potentially

important for the estimation of other DAPMs as well.

The remainder of the paper is organized as follows. In Section 2 we review the

anatomy of the LRR model, the knowledge of which is necessary to understand the

moment matching we propose. Section 3 delineates our econometric methodology.

In Section 4 we present the results of a Monte Carlo simulation study that assesses

the suitability of our approach. We conclude in Section 5.

2 LRR model anatomy

In this section, we describe the anatomy of the long-run risk model by Bansal and

Yaron (2004). We present all key equations needed for the simulation of the model,2

as well as the intricacies of the model structure that complicate the estimation of

its parameters.

2.1 Macroeconomy of the LRR model

The LRR model is based on a non-linear, four-equation macro VAR with two ob-

servable variables, log consumption growth gt and log dividend growth gd,t, and two

latent variables, a growth component xt and a stochastic variance process σ2
t :

gt+1 = µc + xt + σtηt+1 (1)

xt+1 = ρxt + ϕeσtet+1 (2)

gd,t+1 = µd + φxt + ϕdσtut+1 (3)

σ2
t+1 = σ2 + ν1(σ

2
t − σ2) + σwwt+1. (4)

2Detailed derivations are available in Sections A.1–A.5 of the Internet appendix, which can
be downloaded from http://tinyurl.com/lrr-internet-appendix. These results appear some-
what dispersed in prior literature, so we collect them to provide the interested reader with a
complete picture.
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The i.i.d. innovations ηt, et, wt, and ut, are standard normally distributed, and

contemporaneously uncorrelated random variables. The latent drivers of the eco-

nomic dynamics xt and σ2
t are assumed to be highly persistent, so the autore-

gressive parameters ρ and ν1 are usually chosen to be close to 1 in calibration

exercises (cf. Bansal and Yaron, 2004). For a model simulation, the trajectories

of gt, xt, gd,t, and σ2
t represent the elementary components for all other model

variables. Let us collect the parameters of the LRR macroeconomy in the vector

ξM = (µc, µd, ρ, σ, ϕe, φ, ϕd, ν1, σw)′.

2.2 Asset pricing with long run risk and model solubility

The representative investor who faces these macro dynamics has recursive prefer-

ences (cf. Epstein and Zin, 1989), as expressed by the utility function

Ut =

[
(1− δ)C

1−γ
θ

t + δ
(
Et
(
U

(1−γ)
t+1

)) 1
θ

] θ
1−γ

, (5)

where θ = (1−γ)
(1− 1

ψ )
. The preference parameters δ, γ, and ψ denote the subjective dis-

count factor, relative risk aversion, and intertemporal elasticity of substitution (IES),

respectively. Let us collect the preference parameters in the vector ξP = (δ, γ, ψ)′.

The representative investor has aggregate wealth Wt and consumption Ct. Utility

maximization under the budget constraint Wt+1 = (Wt − Ct)Ra,t+1, where Ra,t de-

notes the gross return of the latent aggregate wealth portfolio, yields the basic asset

pricing equation for a gross asset return Ri,t:

Et [Mt+1Ri,t+1 − 1] = 0, (6)

where

Mt+1 = δθG
− θ
ψ

t+1R
−(1−θ)
a,t+1 (7)
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denotes the stochastic discount factor (SDF), and Gt denotes gross consumption

growth.

Bansal and Yaron (2004) explicitly model the log returns of the latent aggregate

wealth portfolio and the observable market portfolio, ra,t and rm,t, using the linear

approximations suggested by Campbell and Shiller (1988):3

ra,t+1 = κ0 + κ1zt+1 − zt + gt+1 (8)

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1, (9)

where zt denotes the log price-consumption ratio, and zm,t is the log price-dividend

ratio. Furthermore,

κ1 =
exp(z̄)

1 + exp(z̄)
κ1,m=

exp(z̄m)

1 + exp(z̄m)
(10)

κ0 = ln(1 + exp(z̄))− κ1z̄ κ0,m= ln(1 + exp(z̄m))− κ1z̄m, (11)

where z̄ and z̄m denote the means of zt and zm,t. Bansal and Yaron (2004) model

the latent log price-consumption ratio and the observable log price-dividend ratio as

zt = A0 + A1xt + A2σ
2
t (12)

zm,t = A0,m + A1,mxt + A2,mσ
2
t . (13)

The parameters in Equations (12) and (13) must be determined by an analytical

solution of the model (details in the Internet appendix). The solution is obtained by

3Detailed derivations of Equations (8)–(11) are in Section A.1 of the Internet appendix.
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pricing the gross returns of the aggregate wealth portfolio and the market portfolio,

Ra,t and Rm,t, using Equation (6), which yields:

A1 =
1− 1

ψ

1− κ1ρ
(14)

A2 =
1

2

(
θ − θ

ψ

)2
+ (θA1κ1ϕe)

2

θ(1− κ1ν1)
(15)

A0 =
1

1− κ1

[
ln δ +

(
1− 1

ψ

)
µc + κ0 + κ1A2σ

2(1− ν1) +
θ

2
(κ1A2σw)2

]
(16)

A1,m =
φ− 1

ψ

1− κ1,mρ
(17)

A2,m =
(1− θ)(1− κ1ν1)A2

(1− κ1,mν1)

+

1
2
[(− θ

ψ
+ θ − 1)2 + ((κ1,mA1,mϕe)− ((1− θ)κ1A1ϕe))

2 + ϕ2
d]

(1− κ1,mν1)
(18)

A0,m =
1

(1− κ1,m)

[
θ ln δ − θ

ψ
µc + (θ − 1)

[
κ0 + κ1A0 + κ1A2(1− ν1)σ2 − A0 + µc

]

+ κ0,m + κ1,mA2,mσ
2(1− ν1) + µd +

1

2
[(θ − 1)κ1A2 + κ1,mA2,m]2 σ2

w

]
(19)

The A-parameters given by Equations (14)–(19) depend on κ0, κ1, κ0,m, and κ1,m

from Equations (10) and (11), which in turn depend on z̄ and z̄m. As a consequence,

the κ-parameters, and thus the A-parameters, are endogenous.

To estimate the LRR model by SMM, we need to generate series of zt, zm,t, ra,t,

and rm,t. For that purpose we must solve the model, i.e. find z̄ and z̄m such that

Equations (10)–(19) are fulfilled. This is achieved by solving for the mean of zt and

zm,t, such that the squared difference between the respective mean hypothesized

by the solver and the resulting model-implied mean is equal to zero. Hence, the

endogenous parameters are implied by the roots of two functions.

[Insert Figure 1 about here]
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Figure 1 illustrates that this structure makes the LRR model inherently fragile. The

upper panels show a plot of these two functions and their roots, based on the LRR

parameter values chosen by Bansal and Yaron (2004) for their calibration of the

LRR model (see Table 2). The lower panels show that a change of these parameters

within a plausible range can yield an unsolvable model. This fragility of the LRR

model thus exacerbates parameter estimation.

As we outline below, our estimation approach exploits the implications of the

LRR model for the log risk-free rate rf,t. To obtain the LRR model-implied expres-

sion for rf,t, we price a risk-free payoff using Equation (6), which yields:

rf,t = −θ ln(δ) +
θ

ψ
[µc + xt] + (1− θ)Et(ra,t+1)−

1

2
Vart(mt+1), (20)

where mt is the logarithm of the stochastic discount factor Mt and

Et(ra,t+1) = κ0 + κ1
[
A0 + A1ρxt + A2(σ

2 + ν1(σ
2
t − σ2))

]
(21)

− A0 − A1xt − A2σ
2
t + µc + xt,

Vart (mt+1) =

(
θ

ψ
+ 1− θ

)2

σ2
t + [(1− θ)κ1A1ϕe]

2 σ2
t (22)

+ [(1− θ)κ1A2]
2 σ2

w.

The derivation of Equations (20)–(22) can be found in Section A.4 of the Internet

appendix.
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3 Econometric methodology

3.1 Matching moments for the LRR model: choices and caveats

Singleton (2006) suggests using the simulated method of moments to estimate non-

linear dynamic asset pricing models like the LRR model, arguing that the method

is well suited to dealing with non-linearity, latent variables, and endogenous model

parameters—those complexity-driving features of the LRR model. To apply GMM,

we have to select a vector of measurable functions g(qt; ξ), where qt contains the

macroeconomic and financial system variables, and ξ = (ξ′M , ξ
′
P )′, and derive the

model-implied expectations. Observations of g(·) are collected in the vector g∗t . A

match of sample moments with theoretical moments yields:

GT (ξ) =
1

T

T∑
t=1

g∗t − E [g(qt; ξ)] , (23)

where T denotes the sample size. SMM is applied when the population moments

cannot be expressed analytically as functions of ξ but must be simulated, such that

the moment matches read:

GT (ξ) =
1

T

T∑
t=1

g∗t −
1

T (T )

T (T )∑
s=1

g (qs; ξ) , (24)

where T (T ) denotes the simulated sample size. To obtain qs for s = 1, . . . , T (T ),

we simulate the LRR model using the equations and results outlined in the previous

section. A large T (T ) ensures a good approximation to population moments. GMM

estimates, using Equation (23), or SMM estimates, using Equation (24), are obtained

from

ξ̂T = argmin
ξ∈Θ

GT (ξ)′W T GT (ξ), (25)
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where W T is a symmetric and positive definite matrix.

Because the LRR model is a complex, highly non-linear model, it is an appealing

idea to estimate its parameters by matching some selected first and second moments

of the macro and financial system variables. However, the identification of the deep

parameters may require information that is not or is only weakly reflected in the

moment matches implied by Equation (25).

This conclusion originates from an attempt to estimate the twelve LRR parame-

ters in ξM and ξP by SMM, using a set of moment matches adapted from Hasseltoft

(2012). Panel A of Table 1 shows that the moment matches invoke ten first and

second moments of the observable system variables, two autocovariances, as well as

two moments based on the prediction relationship between the log price-dividend

ratio and squared future shocks to consumption growth.

[Insert Table 1 about here]

[Insert Table 2 about here]

We perform an SMM estimation on simulated data of lengths T = 1000 and T =

100, 000, respectively. These data are generated by an LRR model, for which we use

the parameter values of Bansal and Yaron’s (2004) original calibration of the LRR

model (cf. Table 2). We use the identity matrix for W T and T (T ) = 106.

Previous studies already hint at numerical difficulties during GMM/SMM esti-

mation of the LRR model, which is reflected in the choice of (global) optimization

algorithms.4 We therefore employ a sophisticated global optimization algorithm,

the covariance matrix adaptation evolution strategy (CMAES) developed by Hansen

and Ostermeier (2001). We start the optimization of the SMM objective at three

4Hasseltoft (2012) uses simulated annealing, Constantinides and Ghosh (2011) employ the dif-
ferential evolution algorithm. These algorithms promise to find the global optimum of rugged
objective functions fraught with local minima.
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different, but not very dissimilar, vectors of initial values. The initial vector ξs1 cor-

responds to the true parameters, which we slightly change for ξs2 . The initial values

in ξs3 are further away from the true parameters but still perfectly reasonable.

Panel A of Table 3 documents a disturbing result that raises doubts about

whether it is possible to estimate the LRR parameters by SMM based on the ad

hoc moment matches given in Panel A of Table 1. Using the different initial values,

the optimization for simulated data of length T = 100, 000 terminates at different

parameter values (some vastly different), though they all fulfill the convergence cri-

teria.5 The conclusion is evident: You can obtain different (convenient) parameter

estimates by choosing different starting values. The ad hoc moment matches that

invoke the augmented first two moments are valid, but they are not helpful to iden-

tify the structural parameters, even in large samples. Using alternative weighting

matrices in Equation (25), such as an estimate of the efficient weighting matrix, does

not resolve the problem.

[Insert Table 3 about here]

The non-linear LRR model structure precludes an analytic identification check.

However, we can provide numerical evidence. Table 4 displays the percentage change

of each moment in Panel A of Table 1 in response to a 50% c.p. decrease of one of

the LRR model parameters.

[Insert Table 4 about here]

There is very little or no sensitivity of the moments to changes in the SV parameters

ν1 and σw. The largest impact of a 50% decrease of ν1 (σw) is a 4% (3%) decrease

5This problem occurs for all optimization algorithms we applied, inter alia simulated annealing,
genetic algorithm, and pattern search from Matlab’s Global Optimization Toolbox. The CMAES
used in Panel A of Table 3, which is specifically designed to deal with very rugged objective
functions, cannot resolve this issue.
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in the mean market excess return. These very weak responses by a moment, which

is very sensitive to many other model parameters, make it doubtful that the SV

parameters are identified. Considering the previous efforts invested in SV estimation,

this caveat does not come as a surprise. Parameter estimation is hampered not only

by the presence of stochastic volatility, though. Repeating the estimation procedure

without SV in the data generating process delivers the same result: Reliable global

optimization is infeasible, even when using sophisticated optimizers.

The GMM-based estimation strategy put forth by Constantinides and Ghosh

(2011), which uses the moments in Panel B of Table 1, is prone to the same problem.

Panel B of Table 3 shows that the algorithm that minimizes the GMM objective

converges to different points when started from alternative initial values, producing

the same question: Can the chosen moment matches ensure the identification of the

LRR model parameters?

The alarming result of our simulation exercise may also occur for real data: the

optimizer stops close to plausibly chosen starting values. If the neighborhood of

that point happens to be well-defined, asymptotic inference may yield favorably

small standard errors for plausible but utterly arbitrary estimates. A failure of

the estimation can be explained by two different scenarios, according to Extremum

Estimator theory (cf. e.g. Singleton, 2006), that cannot be ruled out in the present

application. Either, a unique estimator ξ̂T does not exist since the limit function

of the objective is not uniquely minimized at the true parameter vector, or the

estimation fails due to non-compactness of the parameter space.

These starting value dependent results in Table 3 are disturbing as they question

the ability of GMM/SMM to deal with the complexity of the LRR model. But we

will show that reliable results can be achieved. The key insight is that the moment

matches must reflect the recursive structure of the LRR model, and that you need

12



to incorporate the LRR model characteristics in strong moment matches. We will

explain our solutions in the next sections.

3.2 Disentangling LRR moment matches

The recursive structure of the LRR model suggests moment matches that involve

macro variables only (consumption and dividend growth), and which therefore only

depend on ξM . Let us denote those macro moment matches by GM
T . On the other

hand, there are moment matches that involve the financial variables (e.g. market

return, risk-free rate), and which will, by LRR anatomy, depend on both ξM and

ξP . Let us denote those financial moment matches by GP
T .

Both approaches considered in the previous section minimize the GMM/SMM

objective function (25), which entails setting linear combinations of GM
T and GP

T

to zero. Using GT (ξ) = (GM
T (ξM)′,GP

T (ξP , ξP )′)′ and properly partitioning W T ,

this can be seen by writing the first order conditions for the GMM/SMM estimation

problem as


∂GM

T (ξM )
′

∂ξM

∂GP

T (ξM ,ξP )
′

∂ξM

0
∂GP

T (ξM ,ξP )
′

∂ξP


︸ ︷︷ ︸

∂GT (ξ)
′

∂ξ

×

W
M
T W 12

T

W 21
T W P

T


︸ ︷︷ ︸

W T

×

 GM
T (ξM)

GP
T (ξM , ξP )


︸ ︷︷ ︸

GT (ξ)

!
= 0. (26)

Equation (26) shows how the GMM algebra intertwines the financial and macro

moment matches. The financial moment matches GP
T affect the estimation of the

macro parameters ξM and the macro moment matches GM
T interfere in the estima-

tion of the preference parameters ξP . Using a weighting matrix W T with non-zero

elements off the main diagonal generates the most complex mix of moment matches,

13



but macro and financial moment matches remain entangled when using W T = I.

In this case, Equation (26) becomes

∂GM
T (ξM)

′

∂ξM
GM
T (ξM) +

∂GP
T (ξM , ξP )

′

∂ξM
GP
T (ξM , ξP )

!
= 0 (27)

∂GP
T (ξM , ξP )

′

∂ξP
GP
T (ξM , ξP )

!
= 0. (28)

Both previously discussed attempts to estimate the LRR parameters are based on the

GMM/SMM objective function in (25), and we suspect that the problems reported in

Section 3.1 are caused by the interlacement of macro and financial moment matches,

which may not be appropriate in case of the LRR model. The financial moment

matches GP
T must identify the preference parameters, in particular distinguish the

risk aversion from the IES. Why should they have the additional task to help to

identify the macro parameters? By minimizing the GMM objective function in

Equation (25), the financial moment matches GP
T cannot but interfere with the

estimation of the macro parameters.

We argue that macro and financial moment matches have to be disentangled

when estimating the LRR parameters. In particular, only linear combinations of

the macro moment matches GM
T should be set to zero to estimate ξM . This entails

that the term
∂GP

′
T

∂ξM
GP
T should not be present in Equation (27). However, there is

no positive definite and symmetric weighting matrix W T that could be constructed

to accomplish that task. Disentangling macro and financial moment matches is

infeasible when parameter estimates result from a minimization of the GMM/SMM

objective function in (25).6

Our solution is to conceive the estimation of the LRR parameters as a generic

GMM problem (cf. Hansen, 1982). By generic GMM we mean that parameter esti-

6This is why using an efficient weighting matrix estimate for W T does not resolve, but rather
aggravates the estimation problems caused by intertwined moment matches.
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mates are obtained by setting linear combinations of moment matches to zero, i.e.

aT (ξ)GT (ξ)
!

= 0, but not necessarily is aT (ξ) = ∂GT (ξ)
′

∂ξ
W T as in Equation (26).

The desired disentanglement of moment matches can be achieved by estimating ξM

and ξP by solving


∂GM

T (ξM )
′

∂ξM
WM

T 0

0
∂GP

T (ξM ,ξP )
′

∂ξP
W P

T


︸ ︷︷ ︸

aT (ξ)

×

 GM
T (ξM)

GP
T (ξM , ξP )

 !
= 0, (29)

where WM
T and W P

T are symmetric and positive definite. The resulting estimates

ξ̂M thus obey

∂GM
T (ξM)

′

∂ξM

∣∣∣∣
ξ̂M

WM
T GM

T (ξ̂M) = 0, (30)

which corresponds to the first order conditions of

ξ̂M = argmin
ξM∈ΘM

GT (ξM)′WM
T GT (ξM). (31)

Furthermore, the estimates ξ̂P obey

∂GP
T (ξM , ξP )

′

∂ξP

∣∣∣∣
ξ̂P ,ξ̂M

W P
T G

P
T (ξ̂M , ξ̂P ) = 0, (32)

which corresponds to the first order conditions of

ξ̂P = argmin
ξP∈ΘP

GT (ξ̂M , ξP )′W P
T GT (ξ̂M , ξP ). (33)

LRR parameter estimates based on disentangled macro and financial moment matches

can thus be obtained by a two-step GMM/SMM estimation procedure. Since the

procedure is equivalent to the generic GMM problem in Equation (29), standard

15



asymptotic GMM inference on GT (ξ̂) and ξ̂ applies (cf. Hansen, 1982, Theorem 3.1

and Lemma 4.1).

It turns out that disentangling the macro and financial moment matches is neces-

sary for successful estimation of the LRR model. Yet, we still have to find informative

and empirically useable macro and financial moment matches. Only then will the

optimization problems in each step be well-defined. The next section focuses on the

macro moment matches GM
T , then we motivate the financial moment matches GP

T .

In both cases, the moment matches will reflect the key characteristics of the LRR

model structure.

3.3 Analytical macro moment matches

To estimate the parameters of the dynamic system (1)–(4) by GMM using the two

observable series gt and gd,t, we must construct moment matches that can capture

the characteristic features of the LRR model. For that purpose, it is natural to

match first and second moments, which can be analytically expressed as functions

of a subset of ξM that does not include the SV parameters. In particular, we can

employ the following moment matches:

GM1
T (ξM∗) =

1

T

T∑
t=1



gt−µc
gd,t−µd

g2t−µ2c−
ϕ2eσ

2

1−ρ2
−σ2

g2d,t−µ
2
d−φ

2 ϕ
2
eσ

2

1−ρ2
−ϕ2

dσ
2

gd,tgt−µcµd−φ
ϕ2eσ

2

1−ρ2


, (34)

where ξM∗ = (µc, µd, ρ, σ, ϕe, φ, ϕd)
′.

The defining feature of the LRR model is the latent growth component xt, a small

but persistent driver of consumption and dividend growth. If such a component is
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present, the observed consumption and dividend growth series exhibit small positive

serial correlations, which prevail over many lags. Figure 2 provides an illustration.

[Insert Figure 2 about here]

This key LRR model characteristic can be captured only by moment matches that

use auto-moments of a high lag order. We therefore consider the following moment

matches that involve (cross) auto-moments of consumption and dividend growth:

GM2
T (ξM∗) =



1
T−1

∑T−1
t=1 gt+1gt−µ2c−ρ

ϕ2eσ
2

1−ρ2

...
1

T−L1

∑T−L1
t=1 gt+L1

gt−µ2c−ρL1
ϕ2eσ

2

1−ρ2

1
T−1

∑T−1
t=1 gd,t+1gd,t−µ2d−φ

2ρ
ϕ2eσ

2

1−ρ2

...
1

T−L2

∑T−L2
t=1 gd,t+L2

gd,t−µ2d−φ
2ρL2

ϕ2eσ
2

1−ρ2

1
T−1

∑T−1
t=1 gd,t+1gt−µcµd−φρ

ϕ2eσ
2

1−ρ2

...
1

T−L3

∑T−L3
t=1 gd,t+L3

gt−µcµd−φρL3
ϕ2eσ

2

1−ρ2



, (35)

where L1, L2, and L3 denote the maximum lag orders for the respective (cross)

auto-moments. Bansal and Yaron’s (2004) reasoning suggests that the lag orders

should be high, to capture the persistence of the series induced by xt.

The theoretical moments that we match in Equation (35) are derived analyti-

cally and expressed as functions of the parameters. Thus, GMM estimation can be

performed using GM
T =

(
GM1
T

′
,GM2

T

′
)′

for the first-step objective function in Equa-

tion (31). The moment matches GM1
T and GM2

T are valid, regardless of whether SV

prevails. However, this also implies that these moment matches cannot identify the

SV parameters. Constantinides and Ghosh (2011) use the higher order moments

GM3
T (ξM) =


1
T

∑T
t=1 g

4
t−E[g4t ; ξM ]

1
T

∑T
t=1 g

4
d,t−E[g4d,t; ξM ]

, (36)
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for the estimation of the SV parameters, where the fourth moments are analytically

expressed as functions of the parameters (for details see Equations (A-1) and (A-2)

in the appendix). We revisit the estimation of the SV parameters in in Section 3.5.

3.4 Theory-based financial moment matches

We now turn to finding moment matches GP
T for the estimation of the preference

parameters ξP in the second step. For that purpose, we continue to pursue the phi-

losophy to transfer key model characteristics into informative moment matches. In

the present case, this amounts to exploiting asset pricing and prediction relationships

implied by the LRR model. The model contains three observable financial variables,

the log market return rm, the log risk-free rate rf , and the log price-dividend ra-

tio zm, which represent the candidates for moment matches. To motivate our first

moment match, we use Equation (6) to price the risk-free rate, which yields

Et (Mt+1) =
1

Rf,t+1

, (37)

where Mt+1 is given in Equation (7). Applying the law of total expectation leads to

the unconditional moment constraint

E (M) = µM = E
(

1

Rf

)
. (38)

Because E(M) cannot be expressed analytically as a function of the parameters, we

match the mean of the simulated SDF with the sample mean of the inverse gross

risk-free rate, viz:

GP1
T (ξM , ξP ) =


1
T

∑T
t=1

1
Rf,t
−µM

µM− 1
T (T )

∑T (T )
s=1 Ms(ξM ,ξP )

. (39)
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To motivate our second financial moment match, we price the market excess re-

turn (Rm−Rf ) using Equation (6), apply the law of total expectation, and rearrange

terms to obtain the moment condition

E (Rm −Rf ) = −E [(M − µM) (Rm −Rf )]

µM
. (40)

Thus, we can use the following match of sample and simulated moments:

GP2
T (ξM , ξP ) =

1

T

T∑
t=1

(Rm,t −Rf,t) (41)

+

1
T (T )

∑T (T )
s=1 [Rm,s(ξM , ξP )−Rf,s(ξM , ξP )] [Ms(ξM , ξP )− µM ]

µM
.

The set of test assets can be extended by including managed portfolios, as suggested

by Cochrane (1996). Given a vector of instruments available at t, Zt, pricing the

managed portfolio payoffs (Rm,t+1 −Rf,t+1)Zt using Equation (6) implies:

E [(Rm,t+1 −Rf,t+1)Zt] = −E [(Mt+1 − µM)(Rm,t+1 −Rf,t+1)Zt]

µM
.

To use the resulting moment matches for SMM, Zt needs to be determined within

the LRR model, because the instruments have to be simulated, too. One could, for

instance, follow Constantinides and Ghosh (2011) and construct a managed portfolio

that uses Zt = rf,t.
7

For a third financial moment match, we consider the unconditional Sharpe-Ratio

of the market portfolio, as it is a key statistic for the risk-return trade-off implied

by the LRR model. The means of the market excess return and the risk-free rate

7Note that a predictive relationship between the price-dividend ratio and future excess returns
is not a feature of the LRR model, so zm,t cannot be used as an instrument for the construction
of a managed portfolio or in a predictive regression.
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are accounted for in Equations (39) and (41), so the only remaining moment to be

matched is the expected value of the squared market excess return:

GP3
T (ξM , ξP ) =

1

T

T∑
t=1

(Rm,t −Rf,t)
2 (42)

− 1

T (T )

T (T )∑
s=1

(Rm,s(ξM , ξP )−Rf,s(ξM , ξP ))2 .

Our final financial moment matches are motivated by a prediction relation pointed

out by Campbell and Shiller (1988). They argue that the linear approximations in

Equations (8) and (9) imply that the log price-dividend ratio predicts future discount

rates.8 We make use of this predictive relationship by matching the slope parameter

of a regression of the risk-free rate on past values of the log price-dividend ratio,

which entails matching the first and the second moments of zm,t too:

GP4
T (ξM , ξP ) =



1
T−1

∑T−1
t=1 [Rf,t+1−

1
T−1

∑T−1
t=1 Rf,t+1]zm,t

1
T

∑T
t=1(zm,t− 1

T

∑T
t=1 zm,t)

2

−
1

T (T )−1

∑T (T )−1
s=1 [zm,s(ξM,ξP )−µ1,zm ]Rf,s+1(ξM,ξP )

µ2,zm−µ
2
1,zm

1
T

∑T
t=1 zm,t−µ1,zm

1
T

∑T
t=1 z

2
m,t−µ2,zm

µ1,zm− 1
T (T )

∑T (T )
s=1 zm,s(ξM ,ξP )

µ2,zm− 1
T (T )

∑T (T )
s=1 z2m,s(ξM ,ξP )



. (43)

The stacked financial moment matches GP
T =

(
GP1
T

′
,GP2

T

′
,GP3

T

′
,GP4

T

′
)′

will be used

for the SMM objective function in Equation (33).9

[Insert Table 5 about here]

8A simulation exercise shows that the predictive power of zm,t for Rf,t+1 is strong: The R2 of
a one-step predictive regression is 95%. The simulation is based on the parameter values given in
Table 2 and a simulated sample size of 106 observations.

9As pointed out by Parker and Julliard (2005), we must ensure that the auxiliary parameters
µM , µ1,zm , and µ2,zm in Equations (39) and (43) are exactly matched, which can be achieved by
inserting the simulated means into the respective moment conditions.
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The moment sensitivity analysis in Table 5 shows which of the financial moment

matches provides information about which parameter values. All simulated mo-

ments respond strongly to a 10% change in the subjective discount factor δ. For

both γ and ψ, one of the moments responds sizably to a specific parameter change,

whereas all other moments do not. Most information about γ is contained in the

LRR model’s pricing implication for the market excess return, which is reflected in

the 10% decrease in the simulated moment in Equation (41) in response to a 10%

decrease in γ. The other simulated moments are not particularly sensitive to γ. The

identification of the IES ψ is mainly provided by the slope parameter of the predic-

tive regression of Rf,t+1 on zm,t. The corresponding simulated moment responds to a

10% decrease in ψ by a 14% increase; the other moments change by 4% or less. The

prediction moment is not sensitive to a change in γ, which thus helps disentangle

risk aversion and the intertemporal elasticity of substitution.

3.5 Concentrating out stochastic volatility

The estimation of the parameters of stochastic volatility processes is a topic of sub-

stantial discussion in econometrics. The methodological challenges are aggravated

in the LRR model, because stochastic consumption volatility is just one ingredient

of this non-linear multiple-equation system. We have seen in Section 3.1 that the

ad hoc moment matches based on the moments in Panel A-2 of Table 1 are not

useful to identify the SV parameters. The theory-based moment matches presented

in the previous section cannot do a better job because these matches are based on

unconditional moment constraints, and stochastic volatility is about changing con-

ditional variances. We have also seen that the analytical moment matches proposed

in Section 3.3 can be used to identify the unconditional variance σ2, but not the SV

parameters ν1 and σw. As previously mentioned, we could exploit the higher order
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moments of dividend and consumption growth in (A-1) and (A-2) (as suggested by

Constantinides and Ghosh, 2011) to identify the SV parameters, which are functions

of the SV parameters. However, a simulation study for the estimation of the SV

parameters ν1 and σw only, assuming the true values of all other macro parameters

to be known, yields starting value dependent results, which indicates that these

moment conditions are not sufficiently informative to identify the SV parameters.10

Instead of looking for more sophisticated ways to estimate the SV parameters,

we propose to simplify the problem. Table 4 shows that even large changes in ν1 and

σw have only a small impact on the unconditional equity premium. If the primary

interest is not the estimation of the SV parameters and the evolution of the con-

ditional risk premium but rather the estimation of the preference parameters and

the model-implied risk premium, an alternative estimation strategy could “concen-

trate out” the SV parameters. In a simulation of the model in the course of SMM

estimation, the stochastic volatility σ2
t is replaced by its unconditional expectation

E(σ2
t ) = σ2, which is estimated in the first step. We posit that the unconditional

moments of the simulated financial variables (and the measurable functions of them

used for moment matching) would not be greatly affected when σ2
t is replaced by σ2.

Concentrating out SV might reduce efficiency, yet it can also enhance robustness,

because the SV parameters may be poorly identified by weak moment conditions

and/or a small sample size. In Section 4.3, we assess our estimation strategy in a

simulation study and quantify the loss in efficiency.

10When testing other candidates, such as the auto-moments of the squared market return or the
fourth moments of returns, the result remains the same.
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4 Simulation study

4.1 General setup

We evaluate our methodological approach in an extensive simulation study. For that

purpose, we generate data by simulating series of varying length T for g, gd, rm, rf ,

and zm, as implied by the LRR model. The values assumed for the true macro

parameters ξM and the preference parameters ξP are those calibrated by Bansal

and Yaron (2004). They are listed in Table 2.

The length of the simulated series varies from T = 1000 to T = 100, 000. Assum-

ing a monthly sampling frequency, T = 1000 is equivalent to about 83 years, which

is a large, yet reasonable size for a real-world application. The longer series serve

to illustrate the behavior of the estimates for a growing sample size. We restrict

ϕ̂e, φ̂, and ϕ̂d to positive values, while ρ̂, µ̂c, and µ̂d must take values between 0

and 1. For a good approximation of the simulated moments, we use T (T ) = 106. To

minimize the GMM and SMM objective functions, we use the Nelder-Mead simplex

algorithm.

To assess the estimation precision, we generate 400 replications for each T . In

Section 2.2 we discussed the inherent fragility of the LRR model, which may be

insoluble for certain parameter combinations that may be used in the course of SMM

estimation. A practical solution would be a penalty term that moves the optimizer

away from those unfavorable parameter combinations. To economize computation

time in the simulation study, we choose not to use a penalty term but instead

drop any replications for which the optimizer stops at an unsolvable model. When

applying the method to real data, a penalty term should be used.

In Section 3.1 we saw that the estimation approaches based on the moments in

Table 1 yielded unreliable results, and we have emphasized the danger of reporting
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overly optimistic estimates that result from a convergence to a point near plausibly

chosen starting values. It is crucial to avoid that fallacy. Prior to engaging in

our large-scale simulation study, we therefore carefully tested our proposed two-

step estimation procedure. We started the optimization in each step from different

starting values using a variety of test data to ensure that the optimization algorithm

converges to identical values. Panel C in Table 3 provides an illustration. Using

the same data we relied on for the failed estimation attempts reported in Panel A

and B, the two-step GMM/SMM procedure yields the same estimates, regardless

of the initial values chosen. The objective functions within the two-step estimation

procedure become well defined, such that the application of sophisticated optimizers

becomes unnecessary.

4.2 GMM estimation of the macro parameters

For each simulated time series, we perform eight GMM estimations of ξM∗ , using

W T = I and the macro moment matches in Table 6. The number of moments used

ranges from exact identification (7 mc) to ample overidentification (185 mc). Each

set of them includes the first and second moment matches of Equation (34) and a

varying number of (cross) auto-moments from Equation (35). The maximum lag

order is L1 = L2 = L3 = 60, meaning that we account for autocovariances up to

five years, assuming a monthly frequency. The estimation of the macro parameters

should benefit from allowing for high lag orders for the autocovariances, because the

drivers of the LRR macro dynamics are slow-moving processes.

To ensure the feasibility of our simulation study, in which we conduct 400× 8× 4

estimations, we use one vector of starting values only. The initial robustness checks

provide confidence that starting value dependence is not an issue for the moment

matches we advocate. Nevertheless, we purposefully choose starting values that
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are at some distance from the true parameters.11 A poor starting point makes the

problem harder for the optimization algorithm, and more time-consuming, but it

also prevents the danger of reporting overly optimistic results.

Tables 7–10 report the means and standard deviations of the macro parame-

ter estimates computed across the 400 replications. Figures 3 and 4 illustrate the

estimation quality using kernel densities.

[Insert Table 6 about here]

[Insert Tables 7 through 10 about here]

[Insert Figures 3 and 4 about here]

As we can see, estimation precision varies across parameters. For ρ, ϕe, and φ,

both a relatively large sample size (T > 2000) and informative moment conditions

are needed for precise results (cf. Tables 8 and 9), whereas µc, σ, and ϕd are less

difficult to estimate (cf. Tables 7, 9, and 10). The finite sample simulation evidence

indicates that the favorably small asymptotic standard errors reported in empirical

estimations of LRR models should be taken with a grain of salt. These applications

use a much smaller sample size.

Although the precision of the parameter estimates naturally improves with the

sample size, for the critical parameters ρ, ϕe, and φ it can also be enhanced by in-

creasing the maximum lag orders L1, L2, and L3. The ability to estimate ρ precisely

is crucial, because the persistent growth component xt determines the dynamics of

all macroeconomic and financial variables in the LRR model. Large sample sizes

in the range of T = 5000 are yet unattainable in real-world applications, such that

the availability of informative moment conditions that prove to be useful in small

samples too is of utmost importance.

11We use ξM∗
= (0.018, 0.018, 0.881, 0.082, 0.003, 7.389, 7.389)

′
as starting values.
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For small samples, a moderate increase in the number of moment conditions (e.g.

up to 35 mc) does not improve the parameter estimates. In contrast, an increase of

the maximum lag order from three (113 mc) to five years (185 mc) still has some

beneficial effect. The same conclusion arises when we consult the kernel density

plots in Figures 3 and 4, which compare four different moment sets: 7 mc, 35 mc,

87 mc, and 185 mc. We observe that the larger moment sets are particularly useful

to improve the estimation quality for the critical parameters ρ, φ, and ϕe.

To determine formally the optimal lag order, we propose selecting the moment set

that minimizes the Bayes-Schwarz information criterion (BIC) for GMM suggested

by Andrews (1999):

GMM-BIC = JT − (|c|−pb) lnT, (44)

where JT is Hansen’s (1982) J-statistic, |c| stands for the number of moment condi-

tions, and pb indicates the number of parameters.

[Insert Table 11 about here]

Table 11 shows that in the vast majority of replications, the GMM-BIC selects

the largest moment set (185 mc), confirming our previous findings. Because we

simulate error-free LRR model data, GMM-BIC correctly points to the highest lag

order. Real data, consumption in particular, will be error-prone, and the applied

researcher will face the familiar trade-off between efficiency (allowing for a high

lag order) and robustness (avoid picking up noise). Tables 7–10 show that the

improvement of estimation quality from 35 mc (max. lags < 1 year) to 87 mc (max.

lags: 3 years) is considerable, while the smaller incremental benefits of using 185 mc

(max. lags: 5 years) may be offset by error-prone data. For practical applications,

we therefore recommend using a moderately high lag order.
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Replications for which the optimization algorithm failed to converge or produced

economically implausible results are not included in Tables 7–10 and the kernel plots

in Figures 3 and 4. We consider a result implausible if one of the values to which

the optimizer converges differs from the true parameter by a factor of 10 or more.12

[Insert Table 12 about here]

Table 12 shows that the number of successful estimations tends to be smaller for

shorter time series and the parsimonious moment sets. It is not surprising that

estimation problems are exacerbated in small samples. We seek to estimate the

parameters of highly persistent latent processes, which is hard to detect for small T .

However, Table 12 also shows that this problem can be mitigated by including more

informative moment conditions. For any sample size T , the use of a higher lag order

for the auto-moments increases the number of successful estimations.

The exclusion of the problematic replications entails a sample selection effect that

actually strengthens the previous conclusions. The extended moment sets facilitate

the computation of estimates on problematic data, for which the more parsimonious

moment matches fail. Because data of the more problematic, less informative repli-

cations yield worse estimates, the benefit offered by using the extended moment sets

is even understated.

4.3 SMM estimation of the preference parameters

To estimate the preference parameters ξP = (δ, γ, ψ)′, we use the six theory-based

financial moment matches GP1
T , GP2

T , GP3
T , and GP4

T in the SMM objective func-

tion (33). Stochastic volatility is present in the simulated data, but for the estima-

12In an application using a empirical data, we might try to tackle the problematic data using
the remedies of applied econometrics, such as using different (and more favorable) starting values,
probing alternative optimization algorithms and tuning the algorithm’s parameters. However, such
a clinical handling of the problematic simulated data sets is impossible in a large-scale simulation
study.
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tion we concentrate out the SV parameters, as described in Section 3.5. We perform

the SMM estimation using the first-step macro parameter estimates that are based

on the 185 mc moment set.

We also consider the hypothetical case that the true macro parameters are known,

either the complete parameter vector ξM , which includes all SV parameters, or the

subset ξM∗ , which excludes ν1 and σw. Contrasting the SMM estimates obtained

when concentrating out SV with the estimates that result from assuming the com-

plete vector of macro parameters as known (such that we can compute σ2
t when

simulating the theory-based moments) allows us to quantify the efficiency losses of

our proposed estimation strategy. By comparing the SMM results based on esti-

mated versus true ξM∗ , we can assess the quality of the financial moment matches

independent of the effect of potentially imprecise first-step estimates. We also con-

trapose the results using the theory-based moment matches with those based on the

six ad hoc moment matches in Panel A-2 of Table 1. For each estimation attempt, we

perform an initial grid search over reasonable ranges of the three preference param-

eters, and use the parameter combination that yields the smallest SMM objective

as starting values for the Nelder-Mead simplex algorithm.

[Insert Table 13 about here]

[Insert Figure 5 about here]

Panel A of Table 13 displays means and standard deviations of the SMM esti-

mates of the preference parameters that use the true macro parameters for the simu-

lation of moments. The first column reports the results based on the ad hoc moment

matches, the second contains the results for the theory-based moment matches. In

both cases, the estimates are obtained by concentrating out stochastic volatility,

i.e. using σ = E(σ2
t ) instead of σ2

t for SMM. The third column of Panel A contains
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the SMM estimation results assuming the complete vector of macro parameters as

known, and thus using σ2
t when simulating the theory-based financial moments.

Figure 5 compares the estimation quality of the ad hoc moment matches with the

theory-based moment matches by means of kernel density estimates.

We observe that the estimation quality delivered by SMM is surprisingly good.

Bias and standard deviation of the preference parameter estimates are quite small;

the kernel density estimates allocate probability masses around the true parameters

also for small T . The subjective discount factor δ can be estimated most precisely,

but the estimates of the relative risk aversion parameter γ are also quite accurate.

The estimation quality delivered by theory-based moment matches outperforms the

ad hoc moment matches, most prominently for the estimate of ψ. The theory-

based moment matches thus prove to be particularly useful for disentangling risk

aversion and intertemporal elasticity of substitution. Comparing the second and

third column of Panel A in Table 13, it is striking that the estimation quality of the

preference parameters is barely affected by concentrating out stochastic volatility,

which corroborates our proposed estimation strategy.

[Insert Figure 6 about here]

Panel B of Table 13 displays the means and standard deviations of the SMM

preference parameter estimates that use the estimated macro parameters for the

simulation of moments. We observe that the theory-based moment matches remain

superior to the ad hoc moment matches. We also note that the estimation precision

for the subjective discount factor is not much hampered by replacing the true macro

parameters by the first-step estimates. Parameter standard deviations and bias re-

main small even for T = 1000. Estimating relative risk aversion and IES based on

estimated macro parameter poses a greater challenge. Compared with the estimates

29



that rely on the true macro parameters, bias and standard deviation increase con-

siderably. But we also observe that the kernel densities for the preference parameter

estimates in Figure 6 retain their mode at the true values, and that the probability

mass is still centered around the true parameter value. This observation leads to

the conclusion that outlier estimates of γ and ψ are responsible for the increase of

standard deviation and bias of the preference parameter estimates

These results demonstrate the importance of using precise macro parameter es-

timates as input for the SMM estimation of the preference parameters. To improve

the quality of the first-step input, we consider two strategies. First, the accuracy of

the first-step GMM estimates could be increased by using a more efficient weight-

ing. In particular, we could use an estimate of the efficient GMM weighting matrix

WM
e =

(
Var(GM

T (ξ̂M∗))
)−1

and hope that the asymptotic efficiency gains also kick

in for smaller sample sizes. Second, we could raise the bar for the quality of the

first-step macro estimates and discard those that do not fulfill the requirements.

The effect of both strategies can be studied in Table 14 and again in the kernel plots

of Figure 6.

[Insert Table 14 about here]

Panel A of Table 14 shows the SMM estimation results for the preference parame-

ters that are based on “efficient” macro parameter estimates. These estimates are

obtained by a two-stage GMM procedure. The first stage uses WM
T = I in Equa-

tion (31) to get an initial estimate of ξM∗ , which is then used to compute an estimate

of the efficient GMM weighting matrix WM
e . Second-stage GMM estimates of ξM∗

result from using WM
T = Ŵ

M

e in Equation (31). Comparing Panel A of Table 14

with Panel B of Table 13 shows the improvement when using “efficient” macro esti-

mates for the SMM estimation of the preference parameters. Estimation precision

improves particularly for the empirically relevant small sample size and for the pref-
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erence parameters that are difficult to estimate, namely γ and ψ. The kernel plots

in Figure 6 show how the preference parameter estimates based on the “efficient”

macro estimates concentrate more closely around the true values. The kernel plots

also show that the likelihood of severe overestimations of γ and ψ is reduced, which

explains the beneficial effect on bias and standard deviation of the preference pa-

rameter estimates.13

Panel B of Table 14 and again Figure 6 reveal the incremental effect of raising

the bar for the quality of first-step GMM estimates before allowing to enter the

SMM estimation. For that purpose, we discard a replication if one of the macro

parameter estimates is more than twice its true value. We observe that the quality

of the preference parameter estimates further improves. The kernel plots in Figure 6

show that the number of outlier estimates is further reduced and the mass of the

distributions shifts more closely around the true parameters. Of course, such a

procedure is only useable in a simulation study. A practical application would

require a judgment call based on size and standard errors of the first-step macro

estimates. If these estimates are considered implausible, or too imprecise, one would

then refrain from entering the second estimation step.

5 Discussion and conclusion

Estimating an asset pricing model that features two latent processes as fundamental

economic drivers, as well as a pricing kernel that depends on unobservable variables,

is a demanding job for financial econometrics. The bar is raised if such a model

must be solved every time it is computed for new values of the model parameters,

and if it is possible that the solution does not exist. Add as a final obstacle that

13N.b. that the major improvements of the macro parameter estimates result from well-chosen
moment matches rather than from applying an efficient weighting scheme. Weighting is no panacea;
it cannot compensate for ill-conceived moment matches.
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the number of observations available for empirical analysis is small, and you have

collected the hurdles to empirical tests of long-run risk asset pricing models. As

an estimation technique, SMM is designed to cope with such methodological chal-

lenges. It combines a compelling estimation philosophy—matching sample moments

and their model-implied counterparts—with computational feasibility. The model-

implied moments need not be analytically expressed as functions of the parameters

but instead can be approximated by sample means of the simulated model series.

Although SMM is thus appealing for our purpose, some empirically important

questions have not been addressed in prior literature, and our study aims to close

that gap. Are the moments selected for matching informative enough to identify the

deep model parameters that describe the dynamics of latent processes and investor

preferences? Non-identification may hide well in such a complex model structure.

Even powerful optimizers fail on an objective function surface with myriads of local

minima, implied by weakly identifying moment conditions. This caveat calls for

due diligence when transferring the key model characteristics into informative mo-

ment matches. Even if meaningful, theory-rooted, and practically useable moment

conditions can be found, what sample size is required to deliver precise estimates?

We tackle these issues by proposing a combined GMM/SMM two-step estimation

strategy, in which we elicit moment matches that reflect the key features of the LRR

model. We first estimate the parameters that drive the macroeconomic dynamics,

and then deal with investor preference parameters in a second step, using the first-

step estimates as input and exploiting the asset pricing equations and predictive

relations implied by the LRR framework. The question of how large the number

of observations must be for a successful estimation is addressed in an extensive

simulation study.
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The theoretical moments that we use in the first estimation step can be analyt-

ically expressed as functions of the macro parameters, such that GMM estimation

becomes feasible. These moment matches are valid in the presence of stochastic

consumption volatility, but they cannot identify the SV parameters. They can,

however, identify the unconditional consumption volatility, which is required in the

second estimation step. The properties of the latent persistent growth component,

the defining feature of the LRR model, are captured by including remote lags of

(cross-) autocovariances of consumption and dividend growth, which considerably

improves the parameter estimates.

Considering the notorious difficulty associated with estimating stochastic volatil-

ity processes, we propose to concentrate out the SV parameters in the second (SMM)

estimation step. We do not preclude the potential prevalence of SV in the data, but

we replace time-varying stochastic volatility with the first-step unconditional volatil-

ity estimate when computing the simulated moments in the second step. Unless the

focus is on conditional pricing implications, estimating the preference parameters is

feasible without loss of precision.

Using the proposed theory-based moment matches, SMM delivers precise esti-

mates for the subjective discount factor, relative risk aversion, and the intertemporal

elasticity of substitution even for smaller samples. Considering the complexity of

the LRR asset pricing equations, this result is encouraging. SMM lives up to the

promise of being able to deliver good estimates in a difficult setup, provided that a

well thought-out moment matching strategy is used.

The first caveat is that the recursive LRR model structure must be reflected

in the estimation strategy, meaning that the interlacement of the moment matches

has to be disentangled. We achieve this by the proposed GMM/SMM two-step

estimation strategy. For an accurate estimation of the preference parameters, the
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estimates of the macro parameters used for the second estimation step must be

of good quality. For that purpose, both informative first-step moment matches

and a relatively large sample size are required. This conclusion challenges empirical

applications, which inevitably involve small samples. It may sound like a truism, but

to estimate a complex DAPM like the LRR model informative data (long time series)

and strong moment matches are indispensable. If the data and/or estimation quality

of the macroeconomic parameters is poor, researchers cannot expect much from the

second-step estimation of the preference parameters. Refraining from estimating

them in the first place is the scientifically honest decision. Our two-step approach

thus constitutes a reality check for applied work.

Fruitful extension in subsequent research could seek to increase the quality of the

macro parameter estimates. Time has to pass until confidence bounds will narrow,

but strong and well thought-out moment matches will help applied research in the

meantime.
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A Appendix

A.1 Higher order moments for SV parameter estimation

V ar
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=
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These expressions are a corrected version of the formulas reported by Constantinides

and Ghosh (2011).

38



Tables and Figures
Table 1: Macro, financial and prediction moments used for assessment of pre-
viously suggested estimation strategies
The table lists the moments for two estimation strategies that aim to estimate the deep parameters
of the LRR model. The first estimation strategy in Panel A is the SMM approach adapted from
Hasseltoft (2012), the second estimation strategy in Panel B is the GMM approach by Constan-
tinides and Ghosh (2011). Panel 1 lists the moments of macroeconomic LRR variables, Panel 2
contains the moments of financial LRR variables, and Panel 3 lists the moments from a prediction
relationship. Finally, ζt+1 is the residual of an AR(1) process for log consumption growth that is
obtained by regressing gt+1 on gt.

Panel A – SMM approach Panel B – GMM approach

Panel 1: Macro moments

E(gt) E(gt)

E(gd,t) E(gd,t)

E(g2t ) E(g2t )

E(g2d,t) E(g2d,t)

E(gt gt+1) E(gt, gt+1)

E(gt gt+2) E(gd,t, gd,t+1)

E(gt, gd,t)

E(g4t )

E(g4
d,t

)

Panel 2: Asset pricing moments

E(rm,t − rf,t) E(Mt+1 ·Rm,t+1 − 1) = 0

E(rf,t) E(Mt+1 ·Rf,t+1 − 1) = 0

E(zm,t) E [(Mt+1 ·Rm,t+1 − 1)rf,t] = 0

E[(rm,t − rf,t)2] E [(Mt+1 ·Rm,t+1 − 1)zm,t] = 0

E[r2f,t] E [(Mt+1 ·Rf,t+1 − 1)rf,t] = 0

E[z2m,t] E [(Mt+1 ·Rf,t+1 − 1)zm,t] = 0

Panel 3: Prediction moments

E(ζ2t+1)

E(ζ2t+1 zm,t)
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Table 2: True parameter values
This table holds the parameter values calibrated by Bansal and Yaron (2004). These values are
used as true parameter values for the simulation of the LRR model.

µc 0.0015 σ 0.0078

µd 0.0015 φ 3.0

ρ 0.9790 ϕd 4.5

ϕe 0.0440 δ 0.998

ν1 0.9870 γ 10.0

σw 2.3 ·10−6 ψ 1.5
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Table 5: Moment sensitivity to parameters for theory-based moments
This table displays the sensitivity of the theory-based moments to changes in the preference pa-
rameters using the simulated part of the moment match. The moments are computed from a
simulated sample of size of 106 observations, based on the parameters from Table 2. The moment
sensitivity in this table is computed as the relative change of a moment when one given parameter
c.p. decreases by 10%. Each column of the table displays the sensitivity of all moments to a change
of that size in the parameter given in the column header.

δ γ ψ

E(M) -0.10 -0.00 -0.00

−Cov(Rm−Rf ,M)
E(M) -0.97 -0.10 -0.04

E
[
(Rm −Rf )2

]
-0.32 0.01 -0.03

Cov(Rf,t+1,zm,t)
Var(zm) 4.28 -0.01 0.14

E(zm) -0.60 0.02 -0.00

E(z2m) -0.84 0.04 -0.00

Table 6: Moment matches used for GMM estimation of macro parameters
For GMM estimation of ξM∗

, the basic set of first and second moment conditions in Equation (34)
is always included. The maximum lag lengths of the (cross-) auto-moments in Equation (35) vary
according to the scheme below.

moment set L1 L2 L3

7 mc 2 0 0

15 mc 5 5 0

20 mc 5 5 5

35 mc 10 10 10

87 mc 36 36 10

113 mc 36 36 36

149 mc 48 48 48

185 mc 60 60 60
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Table 11: Moment matches selected by GMM-BIC
This table displays the number of replications in which a given moment set minimizes the BIC
criterion for each T . Replications with implausible parameter estimates, failed computations of the
GMM-BIC, or for which the optimization algorithm did not converge were dropped. We consider
an estimate implausible if it is ten times bigger than the true parameter value. Furthermore, we
discarded any replication for which the J-statistic lies above the 99.999% quantile of the respective
χ2 distribution, which leads to an implausibly high value of the GMM-BIC.

7mc 15mc 20mc 35mc 87mc 113mc 149mc 185mc

T=1000 0 1 5 12 11 13 31 255

T=2000 0 1 2 6 1 12 25 308

T=5000 0 1 0 0 0 3 24 364

T=100,000 0 0 0 0 0 0 0 400

Table 12: Successful estimations for the macro parameters
The table reports the number of successful first-step estimations for each sample size T . The total
number of replications is 400. The results of any replication are dropped if one of the parameter
estimates is greater than ten times the true value or if the optimization algorithm did not converge.

7mc 15mc 20mc 35mc 87mc 113mc 149mc 185mc

T=1000 248 227 257 281 317 326 325 321

T=2000 325 267 317 324 355 363 358 365

T=5000 375 341 360 369 392 393 394 389

T=100,000 397 394 397 399 400 399 399 400
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Table 13: Means and standard deviations of the SMM estimates δ̂, γ̂, and ψ̂
Panel A reports the means and standard deviations of the preference parameter SMM estimates
that use the true macro parameters for the moment simulation. The first column of Panel A reports
the results based on the ad hoc moment matches in Panel A-2 of Table 1, the second column reports
the results for the theory-based moment matches GP

T = (GP1

T ,GP2

T ,GP3

T ,GP4

T )′. In both cases,
SMM estimates are obtained by concentrating out stochastic volatility, i.e. using σ = E(σ2

t ) for
SMM. The third column of Panel A contains the SMM estimation results assuming the complete
vector of macro parameters as known, and thus using σ2

t when simulating the theory-based financial
moments. Panel B reports the means and standard deviations of the SMM preference parameter
estimates that use the estimated macro parameters for the simulation of moments.

Panel A Panel B

true macro parameters estimated macro parameters

ad hoc theory-based + SV known ad hoc theory-based

δ=0.9980

T=1000 0.9981 0.9980 0.9981 0.9 955 0.9965

(0.0008) (0.0006) (0.0006) (0.0047) (0.0021)

T=2000 0.9980 0.9980 0.9980 0.9966 0.9972

(0.0006) (0.0004) (0.0004) (0.0027) (0.0019)

T=5000 0.9979 0.9980 0.9980 0.9979 0.9978

(0.0004) (0.0003) (0.0003) (0.0011) (0.0007)

T=100,000 0.9979 0.9980 0.9980 0.9980 0.9980

(0.0002) (0.0001) (0.0001) (0.0005) (0.0002)

γ=10

T=1000 10.5409 10.3399 10.0748 34.4836 26.5381

(1.4146) (1.1108) (0.9604) (82.5210) (28.4748)

T=2000 10.3125 10.2983 10.0230 19.5936 16.4719

(1.0566) (0.7999) (0.7151) (38.9336) (14.8120)

T=5000 10.2542 10.3380 10.0145 11.7276 12.7821

(0.7275) (0.5097) (0.4542) (6.9328) (5.7417)

T=100,000 10.1376 10.3287 9.9986 10.3326 10.3929

(0.3114) (0.1112) (0.0968) (0.6271) (0.6996)

ψ=1.5

T=1000 1.8402 1.5171 1.4946 4.0093 3.1949

(1.7972) (0.0542) (0.0560) (9.5282) (3.6131)

T=2000 1.9827 1.5149 1.4981 3.3048 2.5063

(4.9717) (0.0256) (0.0308) (5.4362) (1.8937)

T=5000 1.7570 1.5154 1.5003 3.2752 1.9462

(1.3764) (0.0428) (0.0353) (7.4588) (1.5177)

T=100,000 1.7964 1.5129 1.4999 1.7586 1.5279

(2.2075) (0.0017) (0.0020) (0.9212) (0.1533)

49



Table 14: Means and standard deviations of the preference parameter esti-
mates using an efficient weighting matrix estimate in the first step and pre-
selecting first-step results
Panel A shows the SMM estimation results for the preference parameters that are based on the
“efficient” macro parameter estimates. These estimates are obtained by a two-stage GMM proce-
dure. The first stage uses WM

T = I in Equation (31) to get an initial estimate ξM∗
, which is then

used to compute an estimate of the efficient GMM weighting matrix WM
e . Second-stage GMM

estimates of ξM∗
result from using WM

T = Ŵ
M

e in Equation (31). Panel B reveals the incremental
effect of raising the bar for the quality of the first-step GMM estimates before allowing to enter
the SMM step. For that purpose we discard any replication for which one of the macro parameter
estimates is more than twice its true value.

Panel A Panel B

eff. GMM eff. GMM + select.

δ=0.9980

T=1000 0.9970 0.9971

(0.0024) (0.0016)

T=2000 0.9974 0.9975

(0.0013) (0.0012)

T=5000 0.9978 0.9978

(0.0007) (0.0006)

T=100,000 0.9980 0.9980

(0.0001) (0.0001)

γ=10

T=1000 19.8183 15.2541

(23.9993) (9.7201)

T=2000 14.5322 12.9144

(14.4060) (9.4942)

T=5000 12.0499 11.9741

(4.7351) (4.5265)

T=100,000 10.3809 10.3809

(0.6776) (0.6776)

ψ=1.5

T=1000 2.8801 2.1014

(2.9754) (1.1945)

T=2000 2.1048 1.9226

(1.4821) (1.0531)

T=5000 1.7309 1.7105

(0.6011) (0.4665)

T=100,000 1.5248 1.5248

(0.0976) (0.0976)

50



Figure 1: (Non-) existence of the solution for the endogenous LRR model
parameters
Solving for the endogenous parameters amounts to finding the roots of the squared deviations
between the hypothesized means of the log price-consumption ratio (z̄) and the log price-dividend
ratio (z̄m) and the model-implied means. If the deviation functions do not both have a root, the
LRR model cannot be solved. The upper panels show a plot of these two deviation functions
based on the LRR parameter values chosen by Bansal and Yaron (2004) for their calibration of
the LRR model (see Table 2). The lower panels show that a change of these parameters within a
plausible range may yield an unsolvable model: changing the value of the risk aversion parameter
from γ = 10 to γ = 4 and the mean of dividend growth from µd = 0.0015 to µd = 0.0035, leaving
all other parameters unchanged, implies that one of the two functions does not have a root.

root z̄∗ exists for γ = 10, µd = 0.0015 root z̄∗m exists for γ = 10, µd = 0.0015

root z̄∗ exists for γ = 4, µd = 0.0035 no root z̄∗m exists for γ = 4, µd = 0.0035
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Figure 2: Autocorrelograms of simulated consumption and dividend growth
These autocorrelograms illustrate the persistence of the growth processes defining the macroecon-
omy. The graphs are based on a model simulation with the parameter values used by Bansal and
Yaron (2004), as listed in Table 2, and a simulated sample size of T (T ) = 106 observations. The
abscissa spans a time interval of 10 years, and the half-life of both autocorrelations is about three
years.

log consumption growth log dividend growth
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Figure 5: Kernel densities for δ̂, γ̂, and ψ̂
The figure displays kernel density estimates for the preference parameter estimates resulting from
using theory-based (red solid line) and ad hoc (blue dashes) financial moment matches. SMM is
based on the knowledge of the true macro parameters; SV is concentrated out when simulating
moments. The vertical lines indicate the positions of the true parameters. The Gaussian kernel
with bandwidth as proposed by Silverman (1986) is employed.
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Figure 6: Kernel densities for δ̂, γ̂, and ψ̂
The figure displays three kernel density estimates for preference parameter estimates that result
from using estimated macro parameters and theory-based financial moment matches. The first
(blue dashes-dots) uses first-step macro GMM estimates based on the 185 mc moment set and
an identity weighting matrix for GMM (1st stage GMM). The second (green dashes) instead uses
an estimate of the efficient GMM weighting matrix (eff. GMM) when estimating the macro pa-
rameters. The third (red solid line) also uses efficient weighting but additionally applies a more
restrictive selection criterion in that the second-step SMM estimation of the preference parameters
is not performed if one of the first-step macro estimates is twice as large as the true parameter
value (eff. GMM/select). The vertical lines indicate the positions of the true parameters. The
Gaussian kernel with bandwidth as proposed by Silverman (1986) is employed.
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