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pends on the user’s profile given by the user’s utility. It is constructed on the
basis of weighted-mean trimmed regions and represents the solution of an op-
timization problem. The key feature of this measure is convexity. We apply
the measure to the portfolio selection problem, employing different measures
of performance as objective functions in a common geometrical framework.
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1 Introduction

Quantifying risk is one of the most important problems in modern economics.
Classical tools of mathematical finance include risk measures. These func-
tions, as their name states, assess the risk of some financial positions, which
are traditionally modelled by some random vector X. The basic idea of a
risk measure is to indicate a critical value of a (monetary) deposit, or reserve,
that, being added to an uncertain position, does cancel its risk in some sense.
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The latter means that the location of the distribution of the corresponding
random vector satisfies certain formal requirements that are provided by, say,
a regulator.

For example, if X is univariate, he or she may require that some α-quantile of
the distribution be non-negative. If we add a constant −QX(α), which can be
interpreted as an insurance deposit, to the distribution, where QX denotes
the quantile function of X, we make the condition hold. In other words,
only the worst α · 100% of outcomes of the insured position are expected
to be negative. In such a manner we get a famous and widely used (cf.
Jorion, 2006) risk measure called value-at-risk (V@R). Actually, there is
a plenty of different notions of risk measures, each controlling particular
aspects of the outcome distribution. There is also a list of desired properties
of such functions: to some of them we will refer below. As further examples
of univariate risk measures one can recall the expected shortfall1, expected
minimum, textitentropic risk measure and others.

A univariate risk measure concerns an investment into one asset. However,
in practice a user is usually operating with several different assets. In this
case, measuring the risk becomes a much more complicated problem than just
doing it for each asset individually. The issue lies in a dependence between
the assets, which can be rather complex and lead to an asymmetric joint
distribution of the assets’ returns.

The higher dimension is, namely the number of assets, the more importance
has to be given to the dependency information. This is similar to modelling
returns by a d-dimensional random vector X instead of d separate univariate
random variables.

At this point, immediately we get an issue: again, the risk of X could not
be comprehensively described only by risks of its marginals. To tackle this
problem, a rather natural idea has been proposed. If a univariate monetary
risk measure describes the minimal deterministic amount of money that,
being added to the investment, compensates its risk, one could do the same
in the multivariate case. In other words, to find such ‘minimal’ deterministic
vectors in Rd that compensate the risk of X. To get rid of the ambiguous
‘minimal’ qualifier, we can just take all deterministic vectors compensating
the risk. It is easy to see that these vectors form a set in Rd, of an affine

1It is also called the average value-at-risk or the tail value-at-risk in the literature.

2



dimension d in general. Obviously, ‘minimal’ vectors are lying on the surface
of this d-dimensional body. In general, if there are transaction costs, there
are many incomparable ‘minimal’ vectors.

The above gives way to set-valued risk measures, which are nowadays rather
common in considering multivariate risks.

Working with such measures is a rather complex task, however, it becomes
simpler if all such sets, that is to say, values of a set-valued risk measure, are
convex. Further on, we consider this property as an advantage.

The development of coherent risk measures (Artzner et al., 1999; Delbaen,
2002) and of the pertaining machinery (see, e.g., Föllmer and Schied (2004))
as well as tightening of economic standards have led to considering multi-
variate risks and extending the notion of the risk measure as a real-valued
function to a class of set-valued functions (Jouini et al., 2004). Recently, the
corresponding theory has been deeply developed both generally (see, e.g.,
Hamel and Heyde (2010); Hamel et al. (2011); Rüschendorf (2013)) and con-
cerning specific exemplars of risk measures (e.g., Cousin and Di Bernardino
(2013); Hamel et al. (2013)).

Such literature proposes several ways of defining set-valued risk measures.
In this paper, we pursue the approach of Cascos and Molchanov (2007), who
explore a direct connection of such measures to data central regions. This
gives us an advantage of applying geometrical algorithms for these regions
to calculating set-valued risk measures. In fact, computability of set-valued
risk measures is usually a hard issue (cf. Hamel et al. (2013, 2014)).

The investigation of multivariate risk measures develops in several major
tasks. The first one, the representation, is connected with a discussion of a
set of desirable properties for a risk measure, which the reader can find, e.g.,
in Rachev et al. (2008). A specialized analysis of comonotonic risk measures
is given by Ekeland et al. (2012). A widely used dual representation of risk
measures via acceptance sets is comprehensively described, for example, in
Hamel and Heyde (2010). The second task, again, computability, is a very
recent one and concerns mostly applying methods from vector optimization,
such as Benson’s algorithm (cf. Schrage and Löhne (2013), Hamel et al.
(2014)). In our research, we concentrate on the computability via efficient
geometrical representations. Besides this, we the measures can be applied
not only in the sphere of finance but also in completely different ones (see,
e.g., Bazovkin and Mosler (2014)).
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2 Vector-valued multivariate risk measure based

on data trimmed regions

In this section, we define a measure combining the objective evaluation of the
risk by means of a set-valued risk measure, and the subjective preferences of
the user, which are modelled by the user’s admissable set.

2.1 The measure

According to Cascos (2009), using the ideas from Cascos and Molchanov
(2007), a risk measure µd based on some data trimmed region D∗α can be
defined as follows:

µd(X) = −
(
D∗α(X)⊕ Rd

+

)
,

meaning a reflection of the set D∗α(X)⊕ Rd
+. In simple words, it states that

for all z ∈ µd the trimmed region D∗α(X + z) does not lie in the positive
orthant. For example, if D∗α is a halfspace region, we obtain a multivariate
quantile, which enables us to get a set-valued generalization of the value-
at-risk. The subadditivity property and the analytical simplicity of zonoid
regions enable us to use them for generalization of the expected shortfall,
which is a coherent risk measure. In turn, the expected minimum, also a
coherent measure, is generalized by means of expected convex hull regions.

In the same manner, we define a special class of multivariate risk measures
based on weighted-mean trimmed regions Dwα given by a weight vector wα.

Definition 1. The multivariate set-valued distortion risk measure is defined
as follows:

µd(X) = −
(
Dwα(X)⊕ Rd

+

)
⊂ Rd. (1)

A detailed consideration of distortion risk measures the reader can find, for
instance, in Mosler and Bazovkin (2014). In this paper, we are only inter-
ested in a measure with desirable properties, such as the subadditivity, which
encourages diversification and is crucial in risk management.

We should mention that this is not a unique way of defining a multivariate
distortion risk measure. For comparison, Rüschendorf (2013) gives a different
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notion of such a measure, which is scalar-valued: For a d-variate distribution
having p.d.f. F , he considers the level set Q(t) of F at level t and defines
some scalar measure of Q(t) as the t-quantile. Then, based on these scalar-
valued quantiles, he introduces multivariate risk measures in the same way
as univariate ones. Obviously, much information is lost in this case and the
choice of the scalar measure is not straightforward.

To flexibilize our definition by incorporating the information about the user’s
preferences, described by his or her utility function U(·), we introduce the
admissable set F . This set collects all such returns that are perceived posi-
tively by the user. To relate it to the utility function, we assume F = {y ∈
Rd : U(y) ≥ u0}. Thus, the surface of F is the u0-level set of the utility
function.

We take the natural assumption of the user’s risk aversion, which is equiva-
lent to possessing a convex admissable set F (see, e.g., Föllmer and Schied
(2004)). As an approximation, we suppose F to have the following form:

F = {y ∈ Rd : p′ky ≥ δk, k = 1 . . . K } (2)

with some p1, . . . ,pK ∈ Rd
+ and δ1, . . . , δK ∈ R, that is, F is an upper convex

polytope.

E.g., a market with proportional transaction costs F is a cone with the apex
at 0. Each level set of U(·) is the same (but translated) cone.

Our idea lies in a comparison of the position of the set-valued measure µd

with that of the admissable set F .

Definition 2. ν(X), a real-valued risk measure of a risky position X given
the user’s utility U(·), is defined as follows:

ν(X) = arg min
z∈Rd

‖z‖U : {−µd(X) + z} ⊂ F , (3)

where ‖·‖U denotes a proper norm.

In other words, ν(X) is (in the sense of the norm ‖·‖U) the shortest vector
z that brings the set-valued measure ρ(X) into the admissable set F . The
conventional Euclidean norm ‖ · ‖2 is a natural choice for ‖·‖U , however, a
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weighting of dimensions is possible due to their different importance in the
user’s subjective perception. If this mutual weighting is described by some
positive definite matrix ΓU , then for any z ∈ Rd it holds ‖z‖U = ‖ΓUz‖2.

ν(·) enjoys a clear interpretation as a monetary measure: The minimal re-
serve to be added to the position to make it acceptable. While the measure
states on the optimal decision of the user, we will call ν(·) a best-decision
risk measure.

The transition from the set-valued measure µd(·) to the vector-valued ν(·) is
realized by solving an optimization problem. In fact, what we are doing is
a specific scalarization of a set-valued risk measure (cf. Hamel and Heyde
(2010), or Schrage (2012)). Our approach consists in the most broad em-
ployment of the user profile information (given by the utility function U(·))
in doing this.

It is easy to see that (3) in Definition 2 is equivalent to the following:

ν(X) = arg min
z∈Rd

‖z‖U : {Dwα(X) + z} ⊂ F . (4)

Finally, we like mention that using the measure ν(·), we can define an order
on a set of appropriate risky positions X .

Definition 3 (Ordering risks). The preference relation <ν on X is given as
follows:

∀Y, Z ∈ X Y <ν Z ⇐⇒ ‖ν(Z)‖U ≥ ‖ν(Y )‖U .

3 Portfolio choice as a special case

A portfolio choice problem can be stated using risk measures. Unlike stan-
dard portfolio theory, where variances are used as proxies for risk, the risk
measures machinery allows to treat risk more comprehensively. It is worth
to mention that the disadvantage of representing risk by the variance has
become a vital issue in the literature of the last decade. Besides this, two-
stage mean-variance procedures, where on the first stage parameters of a
model should be estimated, such as covariance matrix of random returns, are
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subject to estimation risk (cf. Meucci, 2009). Authors from various math-
ematical fields propose approaches for solving the problem. For instance,
Fabozzi et al. (2010) give a detailed review of robust methods emerged in
portfolio optimization and the corresponding literature. These methods are
usually based on modelling uncertainty either in parameters (e.g., Tütüncü
and Koenig (2004); Costa and Paiva (2002); El Ghaoui et al. (2003)) or in
the whole distribution (e.g., Calafiore, 2007) and appropriate modifications of
the variance. A part of recent approaches consider risk measures (e.g., Rock-
afellar et al. (2006); Bion-Nadal and Kervarec (2012); Drapeau and Kupper
(2013)). A qualitatively new algorithm, which efficiently combines robust
optimization with coherent risk measures, contributing to this trend, has
been proposed by Mosler and Bazovkin (2014). In this paper, we solve the
portfolio choice problem using optimization of either the multivariate risk
measure ν(·) or some performance measure. In our approach, we get rid of
usual distributional assumptions on returns, namely their ellipticity.

Let r̃1, . . . , r̃d be random return rates on d assets. We will notate r̃ =
(r̃1, . . . , r̃d)

′. A convex combination of the assets’ returns is sought, r̃′ω =∑d
j=1 r̃jωj, that maximizes some performance measure. Let us have a portfo-

lio of d assets and the historical information about its returns {r1, . . . , rn} ⊂
Rd. Now we can consider a task of finding a portfolio with the lowest risk
possible or a portfolio optimized by means of some generalized performance
measure, for example, a Sharpe ratio.

To solve the task, we use the multivariate measure ν(·) given by Definition 2
in the previous section. The considered problem has a certain form of the
admissable set: a halfspace, that is, a special case of (2). The border of
the halfspace, a hyperplane, is determined by a portfolio vector, or simply
a portfolio, ω ∈ ∆d = {δ ∈ Rd : δ ≥ 0, 1′δ = 1}. This fact enables us to
control the admissable set by means of varying ω and find one that produces
the minimal risk in such a way. Thus we obtain a parametric optimization
problem in the sense of optimizing the risk measure ν(·) or some function
dependent on it. In the following subsection we propose an efficient geometric
procedure of finding the optimal ωopt in the space Rd.
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3.1 Minimal risk portfolio

Further on, a d× d matrix Ω denotes diag(ω). We are minimizing the risk
of a portfolio, that is, are employing the following criterion g(ω):

g(ω) = ‖ν(Ωr̃)‖U → min
ω∈∆d

. (5)

Note that later the restriction to ω ∈ ∆d will be relaxed concerning the
non-negativity of components.

For a specified distortion risk measure, namely a given weight vector wα, and
an empirical sample r1, . . . , rn, we construct a trimmed regionDwα(r1, . . . , rn).

Taking the Euclidean norm as ‖·‖U , the value of the objective g(ω) for some
ω is the Euclidean length of the minimal shift sω ∈ Rd of the admissable set
F = {x : 1′x ≥ 0} such that for the data weighted by ω it holds:

Dwα(Ωr1, . . . ,Ωrn) ⊂ F − sω. (6)

Obviously, sω = ν(Ωr̃), where r̃ is empirically distributed on r1, . . . , rn. For

convenience, we will denote F − sω by F̂ω.

Let us now do an inverse transform of the space, that is, a linear transform
by Ω−1. Then, we get Ω−1F instead of F and, respectively, the condition (6)
becomes equivalent to the following:

Dwα(r1, . . . , rn) ⊂ Ω−1F̂ω. (7)

Because of the budget constraint 1′ω = 1, it is easy to show that the harmonic
mean of axes intersections with the hyperplane ∂F̂ω does not change after
getting to ∂{Ω−1F̂ω}. It equals g(ω)

√
d, where ∂{·} denotes the border of

a set. Now, let some ω1,ω2 produce the same objective values g(ω1) =

g(ω2) = g and form the borders ∂{Ω−1
1 F̂ω1} and ∂{Ω−1

2 F̂ω2}, respectively.
It can be shown that these borders intersect at the point −sω1 = −sω2 =
(− g√

d
, . . . ,− g√

d
)′. This point delimits the interval (0;−sω1) on the bisector,

which has length g.

Thus, we see that there is a bijection between all plausible ω-s and Ω−1F̂ω.
Moreover, g(ω) is the length of the interval cut off by the surface ∂{Ω−1F̂ω}
on the bisector. Hence we have to find a hyperplane ∂{Ω−1F̂ωopt} that ‘cov-
ers’ Dwα and cuts the shortest interval on the bisector. It is easy to show
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Figure 1: Searching the minimal risk portfolio.

that it is a hyperplane `min containing the facet intersected by the bisector
(see Figure 1). Hence the solution is the following: the sought-for ωopt is the
normalized (to the component sum of 1) normal to the facet intersected by
the bisector.

3.2 Portfolio selection with a generalized Sharpe ratio

Now we solve the problem of maximizing the ratio of expected returns to the
risk taken. It stands on the same principle as the well-known Sharpe ratio
(Sharpe, 1966) and will be denoted by SRr̃:

SRr̃(ω) =
ω′ · µ(r̃)

‖ν(Ωr̃)‖U
, (8)

where µ(r̃), or simply µ, is the expected return E(r̃) of the investment.
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3.2.1 Finding the optimum

Under the standard restriction on ω, ω ∈ ∆d, we have to solve the following
optimization task:

g(ω) = SRr̃(ω)→ max
ω∈∆d

. (9)

In the inverse transformed space, a hyperplane parallel to ∂{Ω−1F̂ω} is a
set of same-return outputs x. The value of this return equals the length of
the origin-started segment of the bisector cut off by the hyperplane, because
this segment is not effected by the transformation. Hence, the expected
return of a portfolio ω is equal to the length of a segment cut off by such a
hyperplane containing µ. Consider Figure 2: for a case of minimal risk (see
Subsection 3.1), this segment corresponds to 0E′ (µ ∈ `′min, `′min‖`min, where
‘‖’ means that `′min and `min are parallel). Let us now draw a line through
the points µ and 0 and find its intersection with the hyperplane `min (the
solution hyperplane for the minimal risk problem, a green dashed line on the
Figure 2) - the point A. `min cuts off the segment 0E with length equal to
the risk estimate. `′min cuts off the segment 0E′ with length equal to the
expected return. Thus, we obtain SRr̃(ω) = 0E′

0E
.2

Let us now rotate `min in Rd arbitrarily around the point A to some position
`. Of course, ` must not intersect Dwα . `′min is rotated parallelly around
the point µ to some hyperplane `′‖`. The rotation corresponds to browsing
through different portfolios ω.

Thus, the points E and E′ move: E 7→ B, E′ 7→ B′. We immediately get
40EA ∼ 40E′µ and 40BA ∼ 40B′µ, where under ‘∼’ we understand
the similarity relationship. Hence SRr̃(ω

′) = 0E′

0E
= 0µ

0A
= 0B′

0B
= const. For

each rotation ω there is a hyperplane `0‖` which touches Dwα and intersects
the bisector at D, that is, gives the actual estimation ‖0D‖U of risk of the
portfolio ω.

To maximize SRr̃(ω) = SRr̃(ω
′) · 0B

0D
, we should maximize 0B

0D
by a rotation.

Let C be an intersection of the line (0,µ) with the hyperplane `0. Then it
holds 40DC ∼ 40BA, leading to 0B

0D
= 0A

0C
. At the same time, 0A remains

constant, which means that we should just minimize 0C. It is easy to see
that the shortest possible 0C is the interval with the point C lying on the

2Further in this paper the name of a segment in a formula implies the length of the
segment.
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Figure 2: Searching the Sharpe ratio optimized portfolio.

border of Dwα . In turn, it means that the sought-for optimal hyperplane `opt
0

is that containing the facet intersected by the line (0,µ).

Hence, the sought-for solution ωopt is a normalized (to the component sum
of 1) normal to the facet of the lower boundary of Dwα intersected by the
line (0,µ).

It is easy to check, that the above considerations hold for all d ≥ 2, although
being illustrated in R2.

The reader may make the following observations, which are quite important:

1. If all assets yield similar expected returns, the procedure calculates
the minimal risk portfolio (because µ lies on the bisector), which is
intuitively natural. In this case, the procedure degenerates to one from
Subsection 3.1.

2. The procedure can be enlarged to the case of data following a general
probability distribution. The solution will be the similarly normalized
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vector tangent to the lower surface ofDwα at the point of its intersection
with the line (0,µ).

3. µ can be replaced, for example, by a median or a shrinkage location
estimator (cf. Meucci (2009)).

If we have some risk-free asset with the risk-free rate rf , we put a point u0 on
the bisector so that the length of the interval [0,u0] equals rf . Then, it is easy
to show that one should apply the same procedure as above, just replacing
the line (0,µ) by (u0,µ), likewise changing the focus of the intersecting ray.

At this step, it is interesting to observe how the procedure works in the special
case of elliptically distributed returns with some covariance matrix Σ. While
in this case WM regions asymptotically converge (see Dyckerhoff and Mosler
(2012); Mosler (2002)) to ellipsoids with the shape matrix Σ for any choice
of α and type of the region, it can be easily shown that the solution will, in
turn, converge to the tangential portfolio:

ωopt =
Σ−1µ

1′Σ−1µ
. (10)

Really, the normal to the tangent hyperplane at the ellipsoid’s point inter-
sected by the line of direction µ is Σ−1µ. Having normalized the vector, we
get the above formula (10).

It is immediately seen that replacing µ with 1 above gives the portolio Σ−11
1′Σ−11

,
which, in turn, is the minimal variance portfolio. It means that the latter is
defined in a standard way by the intersection of a line parallel to the bisector
and passing through µ with the trimmed region.

These facts demonstrate that our approach is a generalization of a typi-
cal mean-variance procedure, where standard distributional assumptions are
avoided and a comprehensive non-parametric risk measure is employed.

3.2.2 The algorithm

Input

• {r1, . . . , rn} ⊂ Rd - the given empirical data about returns.

12



• Risk parameter α.

• The type of distortion risk measure µd to be used.

• Optionally: The risk-free rate rf .

Output

• The optimal portfolio ωopt.

• Value of the criterion.

Steps (SR-algorithm)

SR1. Define the weight vector wα. Construct a focus point u0 = (
rf√
d
, . . . ,

rf√
d
)′

or take, by default, the origin 0. Construct a line ϕ = (u0,µ) or
ϕ = (0,µ) respectively.

SR2. Calculate (Bazovkin and Mosler, 2012) a part of Dwα(r1, . . . , rn) in the
place of a probable intersection with ϕ (cf. the efficient set in Mosler
and Bazovkin (2014)). The type of Dwα corresponds to the selected
distortion risk measure.

SR3. Find the facet of Dwα intersected by ϕ. Get the normal ~nopt to the

hyperplane containing it. The sought-for ωopt = ~nopt

1′~nopt
.

A special consideration is needed for a case when there is some negative
component in ωopt, namely ∃i : ωopt

i < 0. If it occurs, one sets ωopt
i = 0

and solves the task without the i-th asset (namely projecting onto Rd−1).
However, this situation can be managed more flexibly, which is the topic of
Subsection 3.4 below.

The intersected facet from Step SR3. of the algorithm can be realized as
follows:

A. Construct the first facet of Dwα(r1, . . . , rn) with the normal close to
the direction of ϕ.

B. Find the neighboring facet with the best criterion (Mosler and Bazovkin,
2014) describing its distance from ϕ.

13



C. Jump to the facet found and go to step B..

It can be seen that on each step of this subalgorithm we get a better solution.
Furthermore, the tactics of the ”long jump” can be used, where a jump over
some neighbors in a criterion-enhancing direction is made at one step.

The main complexity-contributing issues are the following:

1. Calculating some facets of the trimmed region Dwα : much simpler than
calculating the whole region (since knowing ϕ).

2. Finding an intersection of a line with a convex surface in Rd.

3.3 Optimization with a generalized certainty equiva-
lent

In this subsection we pursue the same optimization problem but with a per-
formance measure given by the certainty equivalent, which is commonly used
in modern portfolio theory (cf. Markowitz (1952)). Again, the difference is
that we replace the variance by the risk measure ν(·). Then the criterion is
the following:

CEr̃(ω) = ω′µ− λ · ‖ν(Ωr̃)‖U , (11)

where λ is a given positive constant describing the risk aversion of the user.

3.3.1 Finding the optimum

We will maximize 1
λ
CEr̃, namely:

g(ω) =
1

λ
CEr̃(ω)→ max

ω∈∆d
. (12)

First, we create a point µλ = − 1
λ
µ. Now consider Figure 3. If we have a

portfolio ω1 given by the hyperplane `1, the corresponding risk ‖ν(ΩX)‖U
equals the length of the segment A10. Analogously to the previous subsec-
tion, 1

λ
ω1′µ equals B10, where B1 = `′1 ∩ {bisector} and `′1 is a hyperplane

parallel to `1 and containing µλ. Now, it is directly seen that 1
λ
CEr̃ equals

14



Figure 3: Searching the certainty equivalent optimized portfolio.

A1B1 = B10−A10. The same principle is applied to a portfolio ω2, yielding
the criterion value A2B2 for the latter.

We see that A1B1 < A2B2, because `1 rotates to the position `2 with a smaller
shoulder relatively to (i.e. distance to) the bisector as `′1 to `′2. That is to
say, AiBi increases while rotating `i if `′i has a larger shoulder relatively to
the bisector and vice versa. Thus, starting from the minimal risk position,
we first increase CEr̃ until ` gets a pivot more distant from the bisector as
µλ. It can happen when leaving a position containing a facet that, in turn,
contains points equidistant with µλ from the bisector. Hence the optimal
hyperplane is one containing a facet intersected by a hypercylinder with the
bisector as its axis and µλ lying on its surface.

To construct an algorithm, we first find a facet intersected by a line parallel
to the bisector and containing µλ. It is the first candidate. Then we move
along the ring (intersection with the hypercylinder) and check the values of
CEr̃ for each of the facets. A facet `j∗ with the maximum CEr̃ defines the
optimal portfolio.

Finally, consider a special case when λ→∞. Maximizing the criterion (11)
becomes equivalent to optimizing ν(Ωr̃). Thus, we obtain the minimal risk
problem. While µλ → 0, the hypercylinder degenerates into a line. Hence
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the sought-for facet is the facet intersected by the bisector. Obviously, we get
the same solution as in Subsection 3.1. Another extreme case occurs when λ
is small enough, so that the hypercylinder contains Dwα . In this case, we can
rotate ` until it becomes parallel to the bisector (1′~n = 0). Clearly, that from
all such hyperplanes the optimum is given by the one that is most remote
from Dwα . This optimum is a vector that has a single positive component for
the maximal expected return and others are negative. It means purchasing
only the asset j with µj = max{µ1, . . . , µd}, where (µ1, . . . , µd) equivµ.

3.3.2 The algorithm

Input

• {r1, . . . , rn} ⊂ Rd - the given empirical data about returns.

• Risk parameter α.

• The type of distortion risk measure µd to be used.

• The risk aversion constant λ.

Output

• The optimal portfolio ωopt.

Steps (CE-algorithm)

CE1. Calculate the relevant part of the trimmed region Dwα(r1, . . . , rn).

CE2. Construct the point µλ = − 1
λ
µ.

CE3. Build a line parallel to the bisector and containing µλ. Find its inter-
section with Dwα similarly to the step SR3. of the SR-algorithm.

CE4. Calculate the criterion 1
λ
CEr̃ for the current facet with the index j. It

equals the length of the segment AjBj. If it is the best currently, store
the facet.
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CE5. Find appropriate neighboring facets for the newly stored facet. For
each of them, go to the step CE4. If there is no new neighbors, stop.

a. A neighbor is appropriate if it contains points equidistant with µλ
to the bisector, which means being intersected by the hypercylin-
der. In doing this, calculate the min and max distances of the
facet’s points to the bisector.

CE6. Get a normal ~nopt to the current best facet. The sought-for ωopt =
~nopt

1′~nopt
.

A case of negative weights can be solved as proposed in Subsection 3.4. If
negative weights are not allowed, we pursue them analogously to Subsec-
tion 3.2.2.

3.4 Negative weights and short sellings

It is well-known that an estimated negative value of ωi for the i-th asset
actually proposes to do a short selling of that asset. We can use such a
strategy as an alternative to just fixing corresponding weights to 0 and solving
the similarly stated subproblem for the remaining assets. The approach given
in this subsection is common for both the SR-algorithm and the CE-algorithm.

3.4.1 Optimum with shorting permitted

First, we modify the derivation of ωopt from a found ~nopt due to the relaxation
of the restriction ω ∈ ∆d. Namely only the sum of component absolute values
‖ω‖1 is set to 1, resulting in ωopt = ~nopt

‖~nopt‖1 . Let the user possess stores of

the d assets available for allocating at the rates of S1, . . . , Sd units. The idea
is to solve the task recursively.

We start from all d assets and on each stage allocate a finite number of
units Zk and eliminate those assets whose store is fully exhausted on the
current stage. This filtering implies setting weights to 0 for the ‘bottleneck’
assets on next stages. We solve the filtered task recursively until we get some
stage T with an optimal solution without negative components, or there is
nothing more to allocate. Now consider a stage k: let Jk be a set of indices
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corresponding to negative components of the optimal portfolio on this stage,
ωoptk . We determine the volume of units to be allocated on this step:

Zk = min
j∈Jk

Skj

|ωoptk
j |

,

where Skj denotes an available store of the asset j at the beginning of the
stage k.

The structure of the problem is typical for dynamic programming, and each
stage is pursued optimally. It means that the recursive procedure yields the
overall optimal solution.

As a result, we obtain a ‘ladder’ of allocated units (see Figure 4) Z1, . . . , ZT ,
which yields the optimal allocation after an aggregation. If we want to invest
some V units, we find such K that

∑K−1
i=1 Zi ≤ V ≤

∑K
i=1 Zi. Then invest3

Zi into ωoptk for all k = 1, . . . , K − 1. The rest of V we invest into ωoptK .
For example, on Figure 4, for V = V1 we have K = 2, while for V = V2, K
equals T .

This simple example shows that the optimal aggregate portfolio depends on
V (without shorting permitted, it is independent).

3.4.2 The algorithmic supplement

Input

• An aggregate number of units V to be allocated.

• Available stores S1, . . . , Sd of the assets.

• Standard inputs for either SR- or CE-algorithm.

Output

• The optimal allocation {V1, . . . , Vd}.

Steps (NW-supplement)

3Investing into a negatively weighted asset means shorting it.
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Figure 4: The recursive procedure for negative weights.

NW1. The first step (d assets, nothing invested): k := 1, V̂ = 0, Vj = 0
∀j = 1 . . . d.

NW2. Find the optimal portfolio ωoptk by the SR- or CE-algorithm, while
fixing weights of eliminated assets at zero.

NW3. ωoptk := ωoptk

‖ωoptk‖1
; Jk = {j : ω

optk
j < 0}.

NW4. If ∀j holds ω
optk
j ≥ 0, then Zk = V − V̂ ; else Zk = minj∈Jk

Si
|ωoptk
j |

.

NW5. Zk := min{Zk, V − V̂ }.

NW6. Vj := Vj + Zkω
optk
j ,∀j.

NW7. Sj := Sj + Zkω
optk
j ,∀j.

NW8. V̂ := V̂ + Zk. If V̂ = V , go to Step NW10.

NW9. Eliminate assets with indices in Jk. k := k + 1. Go to Step NW2.

NW10. Vj is the final investment into the j-th asset. V =
∑

j Vj.

19



4 Discussion

In this paper we have shown a connection between set-valued distortion risk
measures and weighted-mean trimmed regions. The former can be calcu-
lated using the algorithms for weighted-mean trimmed regions (Bazovkin
and Mosler, 2012). We have considered the multivariate vector-valued risk
measure ν(·) that, firstly, aggregates the information from a set-valued co-
herent distortion risk measure and, at the same time, employs the user’s risk
posture information.

In a special case of substitutable components, we have applied the measure
ν(·) to solving a portfolio choice problem with different performance measures
as objective functions. As a result, the efficient algorithms for the minimal
risk, the generalized Sharpe ratio and the generalized certainty equivalent
were proposed.

As a possible extension to be regarded, the shape of a trimmed region can
be modified explicitly or via visual tools. The minimal risk and the SR-
algorithm are realized in an R package PortfolioTR (Bazovkin, 2013). Besides
this, the framework is flexible for incorporating further possible performance
measures.

One more potential way of development of the framework lies in extending
it to markets with transaction costs with admissable sets in form of convex
cones or convex upper polytopes (2). An application of the risk measure ν(·)
for such situations is considered in Bazovkin and Mosler (2014).
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