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1. INTRODUCTION

This chapter surveys the sizable and growing literature on coalition formation. We
refer to theories in which one or more groups of agents (“coalitions”) deliberately
get together to jointly determine their actions. The defining idea of a coalition, in
this chapter, is that of a group which can coordinate agreements among its mem-
bers, while it interacts noncooperatively with other non-member individuals and
the outside world in general.

It is hard to overstate the importance of coalition formation in economic, political
and social analysis. Ray (2007) gives several examples in which such a framework
comes to life: cartel formation, lobbies, customs unions, conflict, public goods
provision, political party formation, and so on. Yet as one surveys the landscape
of this area of research, the first feature that attracts attention is the fragmented
nature of the literature. The theories that bear on our questions range from collusive
behavior in repeated games, to models of bargaining, to cooperative game-theoretic
notions of the core, or notions of coalition-proofness in noncooperative games. To
unravel the many intricacies of this literature would take far more than a survey.
To prevent our terms of inquiry from becoming unmanageably large, we impose a
basic restriction.

Note that two fundamental notions are involved (usually separately) in the many
theories that coexist. One has to do with the formation of groups, the “process”
through which a coalition comes together to coordinate its subsequent actions. The
other aspect involves the enforcement of group actions, say as an equilibrium of
an appropriate game. In this survey, we deliberately omit the latter issue. We
presume that the problem of enforcement is solved, once coalitions have chosen
to form and have settled on the joint actions they intend to take. Of course, that
does not necessarily mean that we are in a frictionless world such as the one that
Coase (1960) envisaged. After all, the negotiations that lead up to an agreement are
fundamentally noncooperative. In addition, it is entirely possible that a negotiation
once concluded will be renegotiated. Such considerations place enough analytical
demands that we exclude the question of implementing an agreement, perhaps via
dynamic considerations, from this survey. On the other hand, we are centrally
interested in the former issue, which also involve “no-deviation” constraints as
action maintenance would, but a different set of them. Just because a coalition —
once formed — is cooperative, does not mean that the creation of that coalition
took place in fully cooperative fashion.

An example will make this clear. Suppose that a market is populated by several
oligopolists, who contemplate forming a monopolistic cartel. Once formed, the
cartel will charge the monopoly price and split the market. A standard question
in repeated games (and in this particular case, in the literature on industrial orga-
nization) is whether such an outcome can be sustained as an “equilibrium”. If a
player deviates from the cartel arrangement by taking some other action, there will
be punitive responses. One asks that all such play (the initial action path as well as
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subsequent punishments) be sustainable as an equilibrium of noncooperative play.
This is the problem of enforcement. Ignore it by assuming that an agreement, once
made, can be implemented. In contrast, we emphasize the question of formation.
Say that the formation of the cartel is being negotiated. A firm might make pro-
posals to the others about cost and revenue sharing. Other firms might contemplate
alternative courses of action, such as the possibility of standing alone. In that case
they would have to predict what their compatriots would do; for instance, whether
they would form a smaller cartel made up of the remaining firms, thus effectively
converting the situation into a duopoly. This sort of reasoning in the negotiations
process is as non-cooperative as the enforcement problem, but it is a different prob-
lem. It can exist even if we assume that an agreement, once made, can be enforced
without cost. And indeed, that is just what we do here.

So questions of enforcement may be out of the way, but a variety of models and
theories remain. The literature on coalition formation embodies two classical ap-
proaches that essentially form two parts of this chapter:

(i) The blocking approach, in which we require the immunity of a coalitional ar-
rangement to “blocking”, perhaps subcoalitions or by other groups which intersect
the coalition in question. Traditionally, blocking has been employed in a nega-
tive way, as undermining or destroying proposed arrangements. As we shall show,
blocking can also be viewed as part of the “negotiation process” that leads up to an
agreement.1

There is, of course, an entire area of cooperative game theory devoted to such
matters, beginning with the monumental work of von Neumann and Morgenstern
(1944). This literature includes notions such as the stable set, the core and the
bargaining set (von Neumann and Morgenstern (1994), Gillies (1953), Shapley
(1953), Aumann and Maschler (1964)). Extensions of these ideas to incorporate
notions of farsighted behavior were introduced by Harsanyi (1974), and later Au-
mann and Myerson (1988). The farsightedness notion — one that is central to
this chapter — was furthered developed by Chwe (1994), Ray and Vohra (1997),
Diamantoudi and Xue (2007) and others.

(ii) Noncooperative bargaining, in which individuals make proposals to form a
coalition, which can be accepted or rejected. Rejection leads to fresh proposal-
making. The successive rounds of proposal, acceptance and rejection take the
place of blocking. Indeed, on the noncooperative front, theories of bargaining
have served as the cornerstone for most (if not all) theories of coalition formation.
The literature begins with the celebrated papers of Ståhl (1977), Rubinstein (1982)
and Baron and Ferejohn (1989), the subsequent applications to coalition formation
coming from Chatterjee et al. (1993), Okada (1996), Seidmann and Winter (1998)

1While we recognize that the term “block” has not been in favor since Shapley (1973), ‘the block-
ing approach’ seems to us to be preferable to ‘the improve upon approach’, or to the coining of a new
term.
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and several others. There is also a literature on coalition formation that has pri-
marily concerned itself with situations that involve pervasive externalities across
coalitions, such as Bloch (1996), Yi (1996), Ray and Vohra (1999). In several of
these papers bargaining theory explicitly meets coalition formation.

We mean to survey these disparate literatures. This is no easy task. After all, the
basic methodologies differ — apparently at an irreconcilable level — over coop-
erative and noncooperative game approaches, and even with each methodological
area there is a variety of contributions. Moreover, this is by no means the first
survey of this literature: Bloch (2003), Mariotti and Xue (2003), and Ray (2007)
are other attempts and while the survey component varies across these references,
all of them provide a perspective on the literature. It is therefore important to ex-
plain how we approach the current task, and in particular why our survey is so very
different from these other contributions.

We proceed by suggesting a unifying way of assessing the literature and perhaps
taking it further. We propose a framework for coalition formation that has the
following properties:

A. It nests the blocking and bargaining approaches under one umbrella model, and
in particular it permits a variety of existing contributions to be viewed from a single
perspective.

B. It allows for players to be farsighted or myopic, depending on the particular
model at hand.

C. It deals with possible cycles in chains of blocking, a common problem in coop-
erative game theory.

D. It allows for the expiry or renegotiation of existing agreements, or insists that
all deals are irreversible, depending on the context at hand.

The chapter is organized as follows. In the next Section we present an abstract,
dynamic model of coalition formation, followed by a definition of an equilibrium
process of coalition formation (EPCF). This framework will be shown to be gen-
eral enough to unify the various strands of the literature, and to suggest interesting
directions for further research in the area. Section 3 concerns the blocking ap-
proach to coalition formation. Here we review some of the basic concepts in clas-
sical cooperative game theory that are based on notions of coalitional objections
or “blocking”. We show how some of the standard notions of coalitional stabil-
ity, such as the core of characteristic function games, can be subsumed under our
general notion of an EPCF, despite the fact that these standard cooperative models
are static while our general framework is a dynamic one. We then illustrate some
of the limitations of the blocking approach in environments with externalities and
argue that our explicitly dynamic model provides a way to resolve some of these
difficulties.
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Section 4 is devoted to a review of coalitional bargaining in noncooperative games.
Here “coalitional moves” are replaced by individual proposals to a group of agents,
and acceptance of such a proposal signifies the formation of a coalition. Externali-
ties can be incorporated by considering partition functions rather than characteristic
functions, and an equilibrium of a bargaining game now describes an equilibrium
formation of coalitions. There are three distinct branches of this literature depend-
ing on whether agreements are permanently binding or temporary and whether
renegotiation of existing agreements is possible. A suitable specialization of our
model seems well suited to encompass all of the bargaining models. We show that
in general the process of coalition formation corresponding to an equilibrium of
a bargaining game conforms to our notion of an EPCF. We then describe some
results on coalition formation from this literature.

The general framework that we use lays bare a large degree of incompleteness in
the literature, something that’s evident in the asymmetry of exposition between
Sections 3 and 4. In terms of the general framework that we lay out, the existing
literature falls short on several counts, and in particular, different aspects receive
disparate attention in the bargaining and blocking approaches. For instance, the
blocking approach has been concerned with questions of “chains of coalitional ob-
jections” so that farsightedness has appeared as a natural component, as in Harsanyi
(1974) or Chwe (1994). In contrast, the bargaining approach, with its insistence on
a well-defined game-theoretic structure has invariably been more explicit about the
structure of moves, which then lends itself more naturally to considerations such as
the renegotiation of agreements (or the impossibility thereof). Unfortunately, these
uneven developments are mirrored in the varying emphasis we lay on these matters
at different points of the text, and one can only hope that a survey ten years hence
would be far more balanced.

Finally, Section 5 concerns one of the most important questions in coalition forma-
tion; namely, the possibility of achieving efficiency when there is no impediment to
the formation of coalitions. For the clearest understanding of this issue we assume
away the two most commonly recognized sources of inefficiency. First, decentral-
ized or non-cooperative equilibria may quite naturally yield inefficient outcomes,
e.g. Nash equilibria in games or competitive equilibria in the context of “market
failure” resulting from incomplete markets or externalities. These problems are ex-
plicitly assumed away when we allow for coalitions to make binding agreements.2

Second, inefficiency may arise due to incompleteness of information, which we
have assumed away. Thus there may be a presumption that in our framework
Pareto efficiency will obtain in equilibrium. Indeed, much of cooperative theory
is built on this presumption, and the Coasian idea that efficiency is inevitable in
a world of complete information and unrestricted contracting is very much part
of the economics folklore. As the recent literature shows, however, efficiency in

2Note that in our framework inefficiency cannot arise in a two-player game even if there are
externalities; full cooperation (formation of the grand coalition) must be the equilibrium outcome if
it Pareto dominates the “non-cooperative” outcome represented by singleton coalitions.
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the presence of externalities, even in a world with complete information and no
restrictions on coalition formation, may be more elusive. If coalitional agreements
are permanently binding, then the possibility of inefficiency in equilibrium is a
robust phenomenon. The ability to renegotiate agreements can restore efficiency
under certain conditions, e.g., in the absence of externalities, but not in general. A
detailed examination of these issues is provided in Section 5.

2. THE FRAMEWORK

In this section, we describe a general framework for coalition formation that serves
as an umbrella for a variety of different models in the literature. Central to our
approach is a description of coalition formation in real time, one which allows
for both irreversible and reversible agreements, and yields payoffs as the process
unfolds.

2.1. Ingredients. Our framework contains the following components.

[1] A finite setN of players, a compact setX of states, an infinite set t = 0, 1, 2 . . .
of dates, and an initial state x−1 at the start of date 0.

[2] For each player i, a continuous one period payoff function ui defined on X ,
and a (common) discount factor δ ∈ (0, 1).

[3] For every pair of states x and y, a collection of coalitions E(x, y) that are
effective in moving the state from x to y, with E(x, x) being the collection of all
coalitions.

[4] A protocol, ρ, which defines a probability over the choice of an “active coali-
tion” S at each date.

[5] Along with S, a (possibly empty) set of potential partners P ⊆ N \ S, also
chosen by the protocol. The interpretation is that S has the exclusive right to pro-
pose to a (possibly empty) set of partners Q ⊆ P a move to a new state for which
S ∪Q is effective.

[6] An order of responses, again given by the protocol, for every set of partners Q
included by S in its proposed move. If any individual in Q rejects the proposal, the
state remains unchanged. The first such rejector is “responsible” for that move not
occurring.

[7] At each date t, possible histories ht that begin at x−1 and list all active coali-
tions, partners, and moves up to period t−1, as well as any individual “responsible”
for the refusal of past moves. The protocol ρ is conditioned on this history.

The basic idea is both general and simple. Each date t begins under the shadow
of a “going history” ht, as in [7]. If a coalition St becomes active, as in [4], then
it moves to a possibly new state xt with the help of partners Qt chosen from the
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potential set Pt (see [5]); by “move” we refer to mt = (xt, St, Qt). Of course,
St ∪ Qt must be effective in implementing the new state xt.3 Note that by [3] an
active coalition always has the option not to call upon any partners and keep the
state unchanged at the status quo (that, too, is a move, by convention). Each player
receives a return at each state, with discounted returns added over time to obtain
overall payoffs or values; see [2]. The one additional feature we need to embed
into histories is a record of the “responsible” individual (if any) who rejected a
proposed move in any previous period in which the state did not change; see [6].
There will be no such individual if the active coalition in that period suggested no
change, or chose no partners, or if all its partners accepted the proposed move.
(The reason we track the rejectors is that in some bargaining models, the choice of
future active proposers may depend on the identity of past rejectors.)

It should be noted that implicit in the existence of a “pivotal” or “responsible”
individual for each rejected move is that a proposed move must be unanimously
accepted by partners who have been invited by the active coalition, and who re-
spond sequentially given the protocol. As we discuss later in Section 4.1.4, there is
little loss of generality in making the unanimity assumption, provided we redefine
coalitional worths in an appropriate way.

The process formally continues ad infinitum, but all movements in states may or
may not cease at a particular date. That will depend on the specification of the
model. For instance, it is possible that for some states x, E(x, y) = ∅ for all
y 6= x. If such an end state is reached, the process ends, though our formalism
requires payoffs to be received from that final state “forever after”. The notion of
end states will be useful in the blocking approach. Another possibility is that after
certain histories the protocol may cease to choose active coalitions. This is useful
in models in which the renegotiation of an existing agreement is not permitted.

The two leading applications of this general framework are, of course, to theories
of coalition formation based on cooperative game theory, or what we will refer to
here as the blocking approach, and a parallel theory based on noncooperative bar-
gaining, what we will call here the bargaining approach. In the blocking approach,
active coalitions do not make proposals to partners; formally, this is captured by
having an empty partner set at every history. In the bargaining approach, active
coalitions are invariably individuals, and proposals made by them to other play-
ers (the “partners”) will occupy center stage. This allows us to nest a variety of
solution concepts under a common descriptive umbrella.

A schematic representation of the model is shown in Figure 1. Time goes from
left to right. The squares in the upper panel depict implemented states x−1, . . . , xt,
while the ovals in the lower panel denote various individuals. Following every
history, the dark ovals denote members of an active coalition and the light ovals

3The importance of employing a notion of effectiveness in cooperative games was emphasized
by Rosenthal (1972).
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FIGURE 1. TIMELINE

are partners. Together, these create histories for later dates. The process continues,
possibly indefinitely, and payoffs are received at every date.

2.2. Process of Coalition Formation. A process of coalition formation (PCF) is
a stochastic process λ that takes existing histories (beginning with h0 ≡ {x−1}) to
subsequent histories, consistent with the following restrictions:

(i) At every history ht, λ is consistent with the probability measure induced by the
protocol in selecting an active coalition St and potential partner set Pt, and

(ii) Every move mt = (xt, St, Qt) generated by λ has the properties that Qt ⊆ Pt
and St ∪Qt ∈ E(xt−1, xt).

Think of the active coalition St as “moving” the process from state xt−1 to xt with
the consent of its partners Qt.

Why might the process be stochastic? One obvious reason is that the protocol that
selects an active coalition may be stochastic; for instance, it may choose an active
coalition equiprobably from the set of all possible coalitions. In addition, agents
and coalitions may randomize their decisions; e.g., the choice of partners or moves.

A PCF defines values for every person i at every history ht:

Vi(ht, λ) ≡ IEλ

( ∞∑
s=t

δs−tui(xs)|ht

)
,

where all states from t onwards are generated by λ conditioned on the history ht.
Note that the expectation is taken prior to the choice of active coalition, which is
“about to happen” following that history.
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2.3. Equilibrium Process of Coalition Formation. We now define an equilib-
rium process of coalition formation. Suppose that a PCF λ is in place and a partic-
ular coalition S is active at some date, along with a set of potential partners. Both
S and its chosen set of partners must “willingly participate in the law of motion”
of the process. We judge such participation by two criteria: (a) the move to a new
state — which includes the possibility of no move — must be “profitable” for both
S and any partners that are called upon to implement the move; and (b) of all the
profitable moves that can be entertained, there is no other move that S can make
that would be better for all the members of S.

Formally, a move m = (x, S,Q) at history ht and going state xt−1 is profitable for
S ∪Q if S ∪Q ∈ E(xt−1, x) and

Vi(ht+1, λ) ≥ Vi(hit+1, λ) for every i ∈ S ∪Q,

where for each i ∈ S ∪ Q, hit+1 is a subsequent history consistent with the state
remaining unaltered (xt = xt−1). For i ∈ Q it is the history resulting from i’s
rejection of the proposed move, under the presumption that all earlier respondents
accepted the proposal. For i ∈ S it is the history resulting from the status-quo
move. That is, a move is profitable if no member of the active coalition would have
been better off with the status-quo move and no member of the partner set would
have been better off rejecting the move.

Given active coalition S and potential partner set P , a move m = (x, S,Q) at
history ht with state xt−1 is efficient for S if there is no other move, say m′ =
(z, S,Q′), that is profitable for S ∪Q′ for some Q′ ⊆ P , such that

Vi(h
′
t+1, λ) > Vi(ht+1, λ) for every i ∈ S,

where, as before, ht+1 is the history created by implementing m, and h′t+1 is the
history created by the alternative profitable move m′. The interpretation is that S
can always form the coalition S∪Q′ and make the movem′, so no such move must
strictly dominate what S actually does under the going PCF.

Note well that profitability and efficiency are defined relative to an ongoing pro-
cess: the value functions will vary with the process in question.

An equilibrium process of coalition formation (EPCF) is a PCF with the property
that at every history, every active coalition, faced with a given set of potential
partners, makes an efficient and profitable move. That is, all movers (weakly)
prefer their “prescribed” move to inaction, and that move is not dominated for
members of S by some other profitable move that S can engineer.

Our formulation is related to the equilibrium definition introduced by Konishi and
Ray (2003), and extended by Hyndman and Ray (2007). It is also related to the
solution concept used in Gomes and Jehiel (2005) and Gomes (2005). As in these
papers, the definition allows for a fully dynamic model of widespread externalities
in which coalitions are farsighted in “blocking” a status-quo. But there are some
important differences. The current approach is designed to allow for a level of
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generality substantial enough to encompass not only the blocking approach but
also the bargaining approach. We include the possibility that an active coalition
can enlist the help of others to form an “approval committee” that is capable of
carrying the proposed move. As we shall see by example, bargaining is a special
case of our formulation in which S is always a singleton asking for acceptance of
a proposal from other players (the “partners”). On the other hand, the blocking
approach corresponds to the polar case in which the partner set is always empty.
This formulation also opens up intermediate and unexplored possibilities, in which
a (non singleton) coalition can choose partners.

Setting this innovation aside, Konishi and Ray also define efficient and profitable
moves. However, there is no protocol that determines which coalition is active at
a given date. Konishi and Ray require that if there is some coalition for which a
strictly profitable move exists from the current state, then the state must change.
That is, some such coalition must perforce become active. Under our definition,
it is possible that some coalition has a profitable move, but is not active. This
distinction is blurred if different “dates” are very closely bunched together, for
then (under a natural full-support assumption) every coalition must sooner or later
become active. Moreover, as we shall see, having an explicit protocol has the
distinct advantage of overcoming coordination problems that can arise with the
blocking approach in a dynamic context.4

Since we will be showing how various solution concepts in the literature corre-
spond to an EPCF of a suitably specialized version of our general model, existence
of an EPCF in each of these cases will follow from corresponding existence results
in the literature. While it would be desirable to provide a general result on the
existence of an EPCF, we shall not attempt to do so here.

2.4. Some Specific Settings. The framework presented so far is quite general
and potentially amenable to a wide range of applications. It will be useful to
present some concrete illustrations of how this general framework can be special-
ized to cover various models of coalition formation. In particular, we shall discuss
state spaces, protocols and effectively correspondences in a more explicitly game-
theoretic setting.

2.4.1. State Spaces. So far we have let the state space be an entirely abstract ob-
ject. Given our specific interest in coalition formation, however, it should be the
case that at a minimum, a state must describe the coalitions that have formed as
well as the (one-period) payoffs to each of the agents.

4Both our definition and that of Konishi and Ray’s share the feature that they implicitly rely
on dynamic programming; in particular, on the use of the one-shot deviation principle. Because
coalitions have vector-valued payoffs, it is possible that the one-shot-deviation principle fails when
every member of a coalition is required to be better off from a deviation. This issue is discussed in
Konishi and Ray (2003) and Ray (2007).
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But states can be suitably “tagged” to encode more information. For instance, in a
situation in which all previous actions are irreversible, it is important to keep track
of precisely which agents are “free” to engage in further negotiation. In such cases
it suffices to tag every agent as “committed” or “uncommitted”. When agreements
are temporary or renegotiable, every agent is open in principle to further nego-
tiation. However, the concept of effectivity will need to be suitably altered; for
instance, with renegotiation, existing signatories to an agreement will need to be
part of an effective coalition in any move to a new state even if they are physically
not required in the implementation of that state.

In other models a description of the state in terms of ongoing action vectors may be
necessary. This will be the case if such actions (rather than the formation of coali-
tions) are viewed as irreversible, at least for a certain length of time. In yet others
there might be limits on the number of times a particular coalition is permitted to
move, so that a state will need to keep track of this information.

Finally, in other settings that we do not emphasize in this survey, a state might
describe a network structure, in which the links of each agent to every other agent
are fully described.5

2.4.2. Characteristic Functions and Partition Functions. A particularly important
object that is used to create the state space in a variety of situations is a mapping that
assigns each coalition structure (or partition of the player set) to a set of payoffs for
each of its member coalitions. The simplest version of such a mapping comes from
a cooperative game in characteristic function form as defined by von Neumann and
Morgenstern (1944). Such a game is defined as (N,V ), where N denotes a finite
set of players and for every coalition S (a non-empty subset of N ), the set of
feasible payoff profiles is denoted V (S) ⊆ IRS .6 In this setting a state may consist
simply of a coalition structure and a feasible payoff profile. Typically, for a state x
we will denote by π(x) the corresponding coalition structure and u(x) the profile
of payoffs, where uS = (ui)i∈S ∈ V (S) for each S ∈ π(x). In some applications
we will find it more convenient to restrict payoffs to be efficient, i.e., u(S) ∈
V̄ (S) for each S ∈ π(x) where V̄ (S, π) = {w ∈ V (S, π) | there is no w′ ∈
V (S, π) with w′ � w}.7

The presumption that the feasible payoffs for coalition S can be described inde-
pendently of the players in N \ S is easily justified if there are no external effects
across coalitions. In many interesting models of coalition formation, however, the
feasible payoffs to a coalition depend on the behavior of outsiders. As we shall see,

5There is a literature on networks that we do not address in this survey, but it is worth pointing out
that our general framework incorporates the case of network formation as well. See Jackson (2010)
for a comprehensive review of the literature on networks. For network formation in particular, see,
for example, Jackson and Wolinsky (1996), Dutta, Ghosal and Ray (2005), and Page, Wooders and
Kamat (2005).

6IRS denotes the |S| dimensional Euclidean space with coordinates indexed by members of S.
7We use the convention�, >,≥ to order vectors in IRS .
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externalities can be very effectively incorporated into the analysis by generalizing
the notion of a characteristic function to a partition function (see Thrall and Lucas
(1963)), and this is the formulation we adopt for this paper.8 In such a game, the
feasible payoff profile for a coalition depends on how the complementary players
are organized into coalitions of their own. For a partition function game (N,V ),
the feasible set for S is therefore written as V (S, π) ⊆ IRS , where π is a coali-
tion structure that contains S. The interpretation is that a coalition S embedded in
an ambient structure π can freely choose from the set of payoffs V (S, π). In this
setting, again, at a minimum, a state x will refer to a pair consisting of a coalition
structure π(x) and a payoff profile u(x) such that u(x)S ∈ V̄ (S, π(x)) for every
S ∈ π(x).

Note, however, that all externalities in a partition function are fed through the exist-
ing coalition structure rather than on specific actions that non-coalitional members
might take. How might a partition function be then compared to the more familiar
setting of a game in which players choose actions from their respective strategy
sets and the payoff for players in a coalition depends on the actions of all players?
The answer is that the partition function, while a primitive object for our purposes,
is often derived from just such a normal form setting. The idea is that each coali-
tion in the structure (never mind for the moment how they have formed) can freely
coordinate the actions of their members (they can write binding agreements), but
they cannot commit to a binding course of play vis-à-vis other coalitions and so
play non-cooperatively “against” them. More precisely, given a coalition structure
for a normal form game, equilibrium non-cooperative play across coalitions can be
defined by first defining coalitional best responses as those which generate vector-
valued maximal payoffs for each coalitions, and then imposing Nash-like equilib-
rium conditions; see, e.g., Ichiishi (1981), Ray and Vohra (1997), Zhao (1992) and
Haeringer (2004). The resulting set of equilibrium payoffs may then be viewed as
a partition function.9 In this way, a partition function can be constructed from a
normal form game, with the understanding that an equilibrium concept is already
built into the function to begin with.

Here are four examples of partition functions; for others, see Ray (2007).

EXAMPLE 1 (Cournot Oligopoly). A given number, n, of Cournot oligopolists pro-
duce output at a fixed unit cost, c. The product market is homogeneous with a linear
demand curve: p = A − bz, where z is aggregate output. Standard calculations

8For an extended discussion of the historical background on characteristic functions and partition
functions see Chapter 11.2.1 of Shubik (1982) and Chapter 2.2 of Ray (2007).

9In general, when the payoffs to members of a coalition depend on the actions of outsiders, this
procedure will yield a partition function rather than a characteristic function. It is possible, though,
in our view, not advisable to make enough (heroic) assumptions on the behavior of outsiders to go
all the way from a normal form to a characteristic function. For example, assuming the worst in
terms of outsiders’ actions leads to the α-characteristic function. See Section 3.9 for a critique of
this approach.
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tell us that the payoff to a single firm in an m-firm Cournot oligopoly is

(A− c)2

b(m+ 1)2
.

If each “firm” is actually a cartel of firms, the formula is no different as long as
each cartel attempts to maximize its total profits (and then freely allocated these
profits among its members). Define

v(S, π) =
(A− c)2

b [m(π) + 1]2
,

where m(π) is the number of cartels in the coalition structure π. Then it is easy
to check that V (S, π) is the collection of all payoff vectors for S that add up to no
more than v(S, π).

This partition function is particularly interesting, in that it does not depend on S
at all, but only on the ambient coalition structure π.10

EXAMPLE 2 (Public goods). There are n people. Person i gets utility c + h(g),
where c is private consumption and g is a global public good, produced from the
sum of individual contributions. Assume that coalitions can freely make transfers
to members and can coordinate member actions without cost. To calculate the best
response of coalition S, simply maximize, for given aggregate contributions T from
the complement −S, ∑

i∈S
ci + sh(g)

subject to g = g(T ) and T =
∑

k∈S(wk − ck) + T , where g is the production
function for the public good.

It is easy to check that this formulation gives rise to a partition function.11

EXAMPLE 3 (Customs Unions). There are n countries, each specialized in the
production of a single good. There is a continuum of consumers equally dispersed
through these countries. They all have identical preferences. Impose the restriction
that no country or coalition can interfere with the workings of the price system
except via the use of import tariffs. Then for each coalition structure — a partition
of the world into customs unions — there is a coalitional equilibrium, in which
each customs union chooses an optimal tariff on goods imported into it.

In particular, the grand coalition of all countries will stand for the free-trade equi-
librium: a tariff of zero will be imposed if lump-sum transfers are permitted within
unions.

10For literature related to this formulation, see Salant, Switzer and Reynolds (1983), Bloch (1996)
and Ray and Vohra (1997).

11See Ray and Vohra (2001).
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A specification of trade equilibrium for every coalition structure generates a par-
tition function for the customs union problem.12

EXAMPLE 4 (Conflict). There are several individuals. Each coalition in a coali-
tion structure of individuals expends resources to obtain a reward (perhaps the
pleasures of political office). Resources may be spent to lobby, finance campaigns,
or engage in cross-coalitional conflict, depending on the particular application.
Suppose that the probability pS that coalition S wins depends on the relative share
of resources r expended by it:

(1) pS =
rS

rS + r−S
.

The per-capita value of the win will generally depend on the characteristics of the
coalition (for instance, coalitional size, s); write this value as wS . The coalition
then chooses resource contributions from its members to maximize

spSwS −
∑
i∈S

c(ri),

where c is the individual cost function of contributions, rS =
∑

i∈S ri, and r−S is
taken as given.

This generates a well-defined transferable-utility partition function.13

2.4.3. Remarks on Protocols and Effectivity Correspondences. Protocols, along
with the specification of coalitions that are effective for each move, can capture
various levels of complexity and detail.

When a protocol chooses a nonsingleton coalition to be active, we are typically in
the world of cooperative game theory, in which that coalition takes the opportunity
to “block” an existing state: here, to be interpreted here in more positive light as
moving the current state to a new one. The reinterpretation is important. Under the
classical view, the issue of “what happens after” a state is blocked is sidestepped;
blocking is viewed more as a negation, as the imposition of a constraint that must be
respected (think of the notion of the core, for instance). Here, a “block” is captured
by a physical move to a new state made by the active coalition in question. Partner
sets, while formally easy enough to incorporate in the definition, generally do not
exist in the theory of cooperative games.

In contrast, in the world of noncooperative coalition formation, as captured (for
instance) by Rubinstein bargaining, the protocol simply chooses a proposer: a sin-
gleton active coalition.

Here are some examples of protocols.

12For literature that relies on a similar formulation, see Krugman (1993), Krishna (1998), Ray
(1998, Chapter 18), Aghion, Antràs and Helpman (2007) and Seidmann (2009).

13For related literature, see Esteban and Ray (1999), Esteban and Sákovics (2004), and Bloch,
Soubeyran and Sánchez-Pagés (2006).
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Uniform Protocol. A coalition (or proposer) is randomly selected to be active from
the set of all possible coalitions (or proposers) at any date.

Rejector Proposes. The first rejector of the previous proposal is chosen to be the
new proposer, while if the previous proposal passed, a new proposer is chosen
equiprobably from the set of all “uncommitted” players.

Later, we adopt a generalization of both these well-known protocols.

Protocols that choose active coalitions must also address the question of potential
partner selection. As we’ve discussed, in the blocking approach the potential part-
ner set is typically empty, or so it is taken to be in existing literature. An active
coalition must move on its own. In the bargaining approach, the potential partner
set is typically the set of all individuals who are free to receive proposals.

This last item depends intimately on the situation to be analyzed. In models of
irreversible agreements, every player who has previously moved (including one
who has committed to do so on her own) is no longer free to entertain new offers,
or to make them. In models of reversible agreements, every player is a potential
partner at every date. To be sure, what they can achieve will depend on whether
their pre-existing agreements have simply expired or are binding-but-renegotiable.
That is a matter dealt with by the effectivity correspondence, and some remarks on
this are in order.

There are two broad sets of considerations that are involved in specifying effec-
tivity. The first has to to do with which coalitions can move at a particular state.
For instance, as we have already seen, issues of renegotiation (or its absence) can
preclude coalitions from moving twice, or perhaps moving only with the bless-
ings of ancillary players who must then be incorporated into the specification of
effectivity.

Other conditions that determine which coalitions can move might come from the
rules that describe the situation at hand. For instance, in multilateral bargaining
with unanimity, as in the Rubinstein model or its multi-player extensions, only the
grand coalition of all players can be effective in making a move. On the other hand,
in models in which a majority of players is needed in determining if a new proposal
can be implemented, effective coalitions must be a numerical majority.

The second broad consideration that determines effectivity is an understanding of
just what a coalition can implement when it does move. After all, the new state
specifies payoffs not just for the coalition in question, but for every player. For
instance, even when the game is described by the relatively innocuous device of a
characteristic function, a coalition is presumably “effective” over moves that pre-
serve existing payoffs to other coalitions untouched by its formation, while imple-
menting for itself any payoff vector in its own characteristic function. But there
still remains the question of what happens to members of the “coalitional frag-
ments” left behind as the coalition in question forms. Often, the issue is settled by
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presuming that one can assign any payoff vector in the characteristic function of
those fragments, which are after all, coalitions in their own right.

In summary, the effectivity correspondence describes the power that each set of
players possesses over the implementation of a new state. This entails the use of
several considerations that we discuss in greater detail as we go along. Effectivity
specifies both physical feasibility as well as the rules of the game: legalities, consti-
tutions and voting rules. In addition, and provided the state is described carefully,
effectivity correspondences allow easily for situations with irreversible, temporary
or renegotiable agreements. The protocol and the effectivity correspondence play
complementary roles.

Various combinations of protocol and effectivity correspondence can be used to
serve different descriptive needs. For instance, one might wish to capture the pos-
sibility that a coalition which does not move at a particular state remains inactive
until the state changes:

A Single Chance at Any State. For any history ht, let m be the maximal date at
which the state last changed; i.e., m is the largest date τ such that xτ 6= xτ−1.
Then, if m < t − 1, exclude all active coalitions chosen between m + 1 and t,
and choose a coalition at random from the set of remaining players (no coalition is
ever chosen again if the remaining set is empty). This restriction guarantees that at
any state, a chosen coalition that does not “actively move” is debarred from being
active again, until the state changes.

As another example, the protocol might only choose doubleton coalitions to be
active, as in Jackson and Wolinsky (1996) on networks:

Link Formation in Networks. The protocol chooses a pair of players (perhaps ran-
domly, and perhaps with restrictions depending on what has already transpired);
such a pair can form a link in a network. In addition, the protocol can be aug-
mented to choose singleton players to unilaterally sever existing links.

3. THE BLOCKING APPROACH: COALITIONS IN COOPERATIVE GAMES

The classical concepts in cooperative game theory are based on coalitions as the
primary units of decision making. These concepts rely on the notion of coalitional
“objections” or “blocking”. A proposed allocation is blocked by some coalition
if there is an alternative allocation, feasible for that coalition, that improves the
payoffs of each of its members. Blocking is used as a test to rule out certain
allocations from membership in the solution. What happens “after” a block is
typically not part of the solution, which consists only of those allocations that are
not blocked. The notion of the core is the leading example of the use of blocking
as a negation.14 Various notions of the bargaining set (for example, Aumann and

14The formal concept of the core for characteristic function games was introduced by Gillies
(1953) and Shapley (1953). See Chapter 6 of Shubik (1982) for additional background.
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Maschler (1964) and Dutta et al. (1989)), look beyond the immediate consequence
of an objection by considering the possibility of counter objections. However,
these considerations are really meant to refine the logic of negotiations underlying
the stability of an allocation in the grand coalition rather than to describe coalition
formation. While we will not be reviewing this literature, the interested reader is
referred to Maschler (1992) for an extensive survey.

But the concept of blocking can also be used in a more “positive” way, as a gen-
erator of actual moves that actively involve the formation of coalitions or coalition
structures. In these approaches, it becomes especially necessary to explicitly model
what follows a blocking action. Often, there will be repercussions: the blocking of
an allocation may be followed by additional moves. In such contexts the question
of farsightedness becomes focal: do players only derive payoffs from the immedi-
ate results of their blocking activities, or must they consider the ongoing implica-
tions of their initial actions as further blocks are implemented in turn?

When taken to their logical limit, considerations such as these naturally provoke a
view of coalition formation as one that occurs in real time, on an ongoing basis,
with blocking translated into moves, and with the discount factor as a yardstick for
judging just how farsighted the players are.

With these notions in mind, we review the blocking approach to coalition forma-
tion. First, we discuss several solution concepts that rely on blocking. We then
show how some of these solutions can be usefully subsumed in the general concept
of an EPCF we introduced in the previous section. Finally, we show how the EPCF
serves to both illustrate and deal with some of the pitfalls of the blocking approach,
in which a sequence of moves is viewed more as an abstract shorthand rather than
an actual course of actions. In particular, we will argue that the simplicity afforded
by an abstract notion of blocking becomes too restrictive in more general settings;
for instance, in the presence of externalities, where deviations become hard to han-
dle without an explicitly dynamic process of coalition formation. In summary, in
many special cases of interest, the findings from a fully dynamic model parallel
those from the classical, “timeless” theory of coalitional blocking. In addition, in
the more general setting, the dynamic model yields a resolution to some of the
difficulties that arise with the traditional approach.

3.1. The Setting. Much of the analysis that follows can be conducted in the set-
ting of our general framework in Section 2. However, both from an expositional
perspective and in an attempt to link directly to existing literature, it will be useful
to work with partition functions. (See Section 2.4.2 where we’ve already intro-
duced them.)

Our state space, then, will explicitly track two objects. A state x contains informa-
tion about the going coalition structure π(x) and a vector of payoffs u(x), one for
each player. It is natural to suppose that these arise from an underlying partition
function V (S, π) defined for every π and every coalition S ∈ π. That is, if we
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denote by uS the restriction of u to coalition S, then u(x)S ∈ V̄ (S, π) for each
S ∈ π(x).

We will augment this traditional setting with an effectivity correspondence, E(x, y),
that specifies the set of coalitions that have the power to change x to y. It is some-
times more convenient to use the notation x →S y to denote S ∈ E(x, y). Denote
by Γ = (N,V, E) the (extended) partition function game.

While coalition structures directly generate externalities and affect payoffs in parti-
tion function games, they are of interest (as outcomes) even in characteristic func-
tion games. For an extensive treatment of various solution concepts in the context
of exogenously given coalition structures, see Aumann and Dreze (1974). Our in-
terests are closer to contributions such as Shenoy (1979) and Hart and Kurz (1983)
that study the endogenous formation of coalition structures. Although this liter-
ature is mostly concerned with characteristic function games, thereby assuming
away externalities, the payoff to members of a coalition can still depend on the
entire coalition structure for strategic reasons.15 Greenberg (1994) provides an ex-
cellent review of this literature.

Note that the traditional cooperative-game setting has no explicit notion of time.
Yet solution concepts abound that take stock of “farsightedness” and therefore im-
plicitly involve time. We will argue below that our abstract dynamic setting allows
us to naturally incorporate such farsightedness and thereby integrate different so-
lution concepts in this literature.

3.2. Blocking. We begin with the standard notion of blocking applied to Γ. A
pair (T, y), where T is a coalition and y a state, is an objection to state x (or
equivalently, T blocks x with y) if T ∈ E(x, y) and u(y)T � u(x)T .

This notion of an objection quickly leads to the fundamental concept of the core: a
state is in the core of Γ if there does not exist an objection to it.

It also leads to the equally fundamental von Neumann-Morgenstern stable set: a
set Z ⊆ X of states is stable if no state in Z is blocked by any other state in Z
(internal stability), and if every state not in Z is indeed blocked by some state in Z
(external stability).

In the context of a characteristic function game, the effectivity correspondence
is typically replaced with the requirement that an objection (T, y) satisfy u(y)T ∈
V (T ) (or u(y)T ∈ V̄ (T )). The standard notion of the core is defined asC(N,V ) =
{u ∈ IRN |6 ∃S ⊆ N and u′ ∈ V (S) with u′ � uS}. It is important, however, to
emphasize that in what follows we invoke the generality of an extended partition
function game.16

15See in particular the Owen value; Owen (1977) and Hart and Kurz (1983).
16Indeed, it is possible to define blocking in a still more general setting (see, for example, Lucas

(1992)). An abstract game is defined as (X,�), where X is the set of states and �, referred to as a
dominance relation, is a binary irreflexive relation onX . Say that y blocks x if y � x. In this general
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3.3. Consistency and Farsightedness. There are two (related) drawbacks of this
notion of blocking, which have both been studied in the recent literature. The first
is that of consistency. The traditional notion of the core has been criticized for
not being consistent; see Ray (1989) and Greenberg (1990). While allocations for
the grand coalition are tested against possible objections from subcoalitions, the
objections are not similarly tested for further objections. In some situations, this
turns out only to be a conceptual issue that doesn’t affect the set of states ultimately
judged to be stable (see the discussion following Proposition 2 below). However,
in general, the issue becomes impossible to ignore. We illustrate this with the
following example.

EXAMPLE 5 (Cournot Oligopoly and Farsightedness). Consider Example 1 with
three identical firms, each with a constant average cost of 2. Suppose the inverse
demand function is p = 14−z, where z denotes aggregate output. Suppose that all
firms within a coalition are required to share profits equally. We will generally use
πN to denote the coalition structure containing the grand coalition alone, πi the
coalition structure in which i is a singleton and the other two are together, and π0
the finest partition of three singletons. With minor abuse of notation, we will use i,
j. . . to denote singleton coalitions as well as agents, and ij, ijk. . . to denote multi-
agent coalitions. Thus, πN = {123}, πi = {i, jk} and π0 = {1, 2, 3}. Standard
computation yields the following partition function:

xN : πN = {123}, u(xN ) = (12, 12, 12)
x1 : π1 = {1, 23}, u(x1) = (16, 8, 8)
x2 : π2 = {2, 13}, u(x2) = (8, 16, 8)
x3 : π3 = {12, 3}, u(x3) = (8, 8, 16)
x0 : π0 = {1, 2, 3}, u(x0) = (9, 9, 9)

Clearly, any single player i can move from the grand coalition to πi and, in turn,
either j or k can move from πi to π0. So every singleton coalition i has a myopic
objection to the state corresponding to the grand coalition; it can get 16 rather
than 12 by unilaterally moving to πi. However, this is not a sustainable gain. The
intermediate structure πi is itself unstable: either player in the two-player coalition
jk will do better by moving to the finest coalition structure. The myopic blocking
notion fails to take such repercussions into account.

The von Neumann-Morgenstern stable set resolves the consistency issue by only
taking seriously those objections which are themselves stable. But that brings us to
the second drawback of the traditional blocking notion: it is myopic. Such myopia
creates problems with the notion of the stable set, as Harsanyi (1974) first pointed
out. The following example, due to Xue (1998), provides a simple illustration of
this problem.

formulation, the restrictions imposed by an effectivity correspondence are implicit in the definition
of dominance.
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EXAMPLE 6 (Stability and Farsightedness). Consider two players and three states.
Suppose that only player 1 is effective in moving from state a to b and only player
2 is effective from b to c. The payoffs to the two players in each of the states are in
parentheses in Figure 2.

a
(1,1)

b
(0,0)

c
(10,10)

1 2

FIGURE 2. ILLUSTRATION OF EXAMPLE 6.

The core consists of states a and c. These two states also constitute the unique sta-
ble set. The stability of a, however, is based on myopic reasoning. Farsightedness
on the part of player 1 would surely cause her to move to b, anticipating that player
2’s self-interest will then lead to c as the final outcome. Clearly, stability in the
sense of von Neumann and Morgenstern does not imply farsightedness.

This discussion motivates the concept of “farsighted blocking”. A coalition moves,
not necessarily because it has an immediate objection, but because its move can
trigger further changes, leading eventually to a favorable outcome.

(T, y) is a farsighted objection to x if there is a collection of states y1, . . . , ym
and a corresponding collection of coalitions, T1, . . . , Tm, where T1 = T , such
that x →T1 y1 →, . . . , ym−1 →Tm−1 ym, and u(ym)Tk � u(yk−1)Tk for all
k = 1, . . . ,m. We will often refer to y as farsightedly blocking x, leaving T
implicit.

A farsighted objection pays no attention to what might transpire “immediately” af-
ter the objection is made. The first coalition to move may induce an “intermediate”
state, in the anticipation that there may well be other states on the way to the “final”
state. The definition asks that the objecting coalition be better off at the “end” of
this process. Furthermore, it is required that every participant at every intermediate
step, namely the coalitions Tk for k ≥ 2, be better off “pushing” the process a step
further at the state yk−1, once again with the “final state” y in mind. Note that the
coalition that initiates the sequence of moves has an optimistic view of the ensuing
path. After all, there may be multiple potential continuations from the first step,
but it is enough to find some sequence of moves that makes all the participating
coalitions better off at the “final state”.

The notion of farsighted blocking was suggested by Harsanyi (1974) in his critique
of the stable set. It was formalized by Chwe (1994) in developing his notion of the
largest consistent set, and introduced as “sequential blocking” in the the context of
equilibrium binding agreements by Ray and Vohra (1997).

As we will discuss in Section 3.10, this definition of farsighted blocking is not
without its own drawbacks. For now, it is imperative to note that the definition
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cannot make sense unless it is intimately tied to consistency. A farsighted objection
y to x has not much meaning unless matters indeed terminate at y. A state that acts
as a “credible” farsighted objection must itself have immunity with respect to the
same kind of objections that can in turn be leveled at it. The “farsighted stable set”
comes close to addressing these issues.

3.4. The Farsighted Stable Set. The marriage of farsightedness and consistency
leads us to investigate the notion of a farsighted stable set (Harsanyi (1974)).17 Say
that a set Z∗ of states is a farsighted stable set if no state in Z∗ is farsightedly
blocked by any other state in Z∗ (internal stability), and if every state not in Z∗

is farsightedly blocked by some state in Z∗ (external stability). Put another way,
if we attach a description to the states in (or not in) Z∗ — call them stable (or
unstable) – then no stable state has a farsighted objection that terminates in another
stable state, while every unstable state does have such an objection.

Observe that at first sight, this appears to add very little at a conceptual level, simply
replacing the blocking relation used for von-Neumann-Morgenstern stability by
its farsighted analogue. But that is not the case. Recall from Example 6 that a
coalition might “exploit” the von-Neumann-Morgenstern stable set by blocking
some element in it, while profiting from that block even if the initial objection is
“counter-objected” to by some other element in the stable set. In other words, a
coalition could be better off even by moving to an unstable state.

That exploitation is not possible any more in the farsighted stable set. Suppose that
a coalition T replaces a “stable point” x ∈ Z∗ by a new state w. If w ∈ Z∗, then w
is “stable” and, in addition, cannot serve as a farsighted objection to x, so T cannot
be better off by the internal stability property. If w 6∈ Z∗, then by external stability,
there is a farsighted objection to w that leads to some y ∈ Z∗, which is “stable”.
But then T cannot be better off under y, for if it were, the entire sequence of states
starting with w and terminating in y would act as a farsighted objection to x, which
is ruled out by internal stability.

Thus, as we wrote above, the farsighted stable set captures the joint imposition of
consistency and farsightedness. But there is a certain degree of bootstrapping im-
plicit in the notion of a stable set. In the discussion above, a farsighted objection
was treated as “credible” if it terminates in a “stable” state; i.e., a state in Z∗. But
“stability” does not automatically guarantee that no further farsighted objection ex-
ists, only that such an objection must itself terminate in an “unstable” state, defined
to be a state not in Z∗. Thus stability and instability need to be simultaneously de-
fined.

17It is of interest to note that Harsanyi originally provided a definition that does not conform to
the one given here, insisting in addition to farsightedness that each step of the blocking chain result in
an instant improvement. However, in the last section of his paper, Harsanyi eliminates — correctly,
in our opinion — this extraneous requirement; see also Chwe (1994) which makes this point.
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An+1

InA0
I0

An

X

FIGURE 3. RECURSIVE DEFINITION FOR CREDIBILITY OF FAR-
SIGHTED OBJECTIONS

In contrast, consider a recursive definition of stability. Say that a state is “admis-
sible” if there exists no farsighted objection to it and let A0 be the set of all such
states. It is hard to quarrel with this as a sufficient requirement for the stability of
a state, but as a definition it is incomplete. However, we should certainly label as
“inadmissible” all states to which there exists a farsighted objection terminating in
A0. Let the set of such states be denoted I0. Clearly A0 ∩ I0 = ∅. We may now
recursively proceed with the concept, labeling additional states as admissible, if
any farsighted objection from such a state terminates in I0. Label all such states at
A1. Note that A0 ⊆ A1 and A1 ∩ I0 = ∅. Next, define I1 to be the set of all states
to which there exists a farsighted objection terminating in A1. We can continue in
this way to recursively define An and In given An−1 and In−1. This process must
widen the scope of admissibility and inadmissibility at every step of the recursion;
see Figure 3 for a graphical depiction. In other words, for all n, An−1 ⊆ An,
In−1 ⊆ In, and An ∩ In = ∅.

Define A∗ = ∪∞n=0An and I∗ = ∪∞n=0In. A∗ may be viewed as the collection of
“unambiguously stable” states, while every state in I∗ is “unambiguously unsta-
ble”. We will refer to A∗ as the farsighted core.18

Note that the farsighted core is nonempty if and only if A0 is nonempty. A suffi-
cient condition forA0 to be nonempty is the existence of end states, from which no
further change is possible. (Recall that x is an end state if E(x, y) = ∅ whenever
y 6= x.) However, even if the farsighted core is nonempty, it is possible that the
admissible and inadmissible sets do not cover the entire set of states. If they do,
then, as the next Proposition shows, the bootstrapping inherent in the definition of
a stable set may be entirely avoided.

PROPOSITION 1. Suppose A∗ ∪ I∗ = X . Then the farsighted core, A∗, is the
unique farsighted stable set.

18Note that Béal et al. (2008) define the farsighted core to be the set of states immune to any
farsighted objection, which is the same as A0.
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Proof. It is easy to check thatA∗ is a farsighted stable set. Now suppose thatK is a
farsighted stable set. Certainly A0 ⊆ K, which implies, from the internal stability
of K, that I0 ∩K = ∅. This in turn means that A1 ⊆ K. A recursive application
of this argument shows that, for all n, An ⊆ K and In ∩K = ∅. Thus, if all the
admissible and inadmissible sets cover X it must be the case that A∗ = K.

As we shall see in the next Section, the recursive approach works fully when the
effectivity correspondence only permits subsets of existing coalitions to form.19

Such situations may be important when communication becomes impossible across
already formed coalitions.

3.5. Internal Blocking: A Recursive Definition. The potential circularity of far-
sighted stability is easily avoided when only subsets of existing coalitions can pre-
cipitate new states. We refer to this as internal blocking.

For a partition π and a subcoalition T of some S ∈ π, denote by π|T the partition
obtained from π by dividing S into T and S \ T , leaving all other elements of π
unchanged. If π = (S, S1, . . . Sm), and T ⊂ S, then π|T = (T, S \ T, S1, . . . Sm).
A partition π′ is said to be a refinement of π if every T ∈ π′ is a subset of some
S ∈ π, and at least one is a strict subset. It is said to be an immediate refinement of
π if π′ = π|T for some T ⊂ S ∈ π.

Now we can describe internal blocking by placing a necessary restriction on the
effectivity correspondence: if T ∈ E(x, y) and x 6= y, then T ⊂ S for some
S ∈ π(x), T ∈ π(y) and π(y) is a refinement of π(x). Thus, only a subset of an
existing coalition is effective in making a non-trivial change to an existing state.

We will now describe a recursive procedure for constructing the farsighted core
which exploits the assumption of internal blocking.20

With the restriction to internal blocking (and the use of efficient payoffs) the state
corresponding to the finest partition, π0, is an end state, and therefore belongs to
A0. Consider a state x such that the only refinement of π(x) is π0. Since payoffs in
each state are required to be efficient, and objections can only make the coalition
structure finer, any objection to x must lead to π0. Now, x ∈ I0 if there is an
objection to it and x ∈ A1 otherwise. Recursively, suppose that all states with
associated partitions of cardinality k + 1 or greater (where k < n) have been
labeled either admissible or inadmissible. Consider any state x with associated
coalition structure of cardinality k. Since objections can only lead to states that

19This is by no means the only situation in which the recursive approach works. More generally,
if bounds are placed on the number of times a coalition can move at any node, then one can carry
out the same recursive procedure provided that states are appropriately defined to keep track of those
bounds.

20The definition will resemble that of a coalition proof Nash equilibrium of Bernheim et al.
(1987). But that concept is purely non-cooperative and is not directly related to the theme of this
chapter.
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have already been labeled admissible or inadmissible, x can now be assigned a
unique label: admissible if no farsighted objection terminates in an admissible
state and inadmissible otherwise. Continuing in this, all the way to the coalition
structure πN , every state can be identified as either admissible or inadmissible.
By Proposition 1, all admissible states defined through this recursive procedure
constitute the farsighted core as well as the unique farsighted stable set.

As we shall see, the farsighted core corresponds to different (familiar) solution
concepts depending on the context. To explore those connections it will be useful
to first draw a general connection between the farsighted core and the process of
coalition formation.

3.6. An Equilibrium Process and the Farsighted Core. An important test of the
versatility of our dynamic process of coalition formation is its connection to the
(static) notion of the farsighted core. To study this connection we consider a pro-
cess of coalition formation that inherits some of the simplicity of the static model.
In particular, states will refer to a partition and feasible payoffs to coalitions within
the partition, and the partner set for any active coalition will be taken to be empty.
In additional to the effectivity correspondence, the only additional ingredient that
will be necessary in defining a process of coalition formation is a protocol.

Recall that a protocol chooses an active coalition depending on the history. Here
we will seek to condition the protocol on the history in a minimal way and require
that at any given state a coalition has at most one chance to make a move. Suppose
xt−1 6= xt−2. In other words, the immediate history at date t is not a result of
inaction on the part of some coalition. In such a case, the protocol will depend
only on the current partition, i.e., on π(xt−1). It will choose a subcoalition T of
some coalition S ∈ π(xt−1) to be active with probability ρ(T | xt−1). Given
the restriction to internal blocking ρ(T ′ | xt−1) = 0 for any T ′ that is not a sub-
set of a coalition in π(xt−1).21 Suppose, on the other hand, xt−1 = xt−2. Let
T ⊂ S ∈ π(xt−2) be the active coalition at t − 1, i.e., the one that chose to keep
the state unchanged, or effectively gave up an opportunity to make a real change.
The protocol will then assign positive probabilities only to sub coalitions of S that
have not (unlike T ) already declined to change the state. If there are no such sub-
coalitions of S that remain, the protocol will choose a subcoalition of some other
S′ ∈ π(xt−1) that hasn’t similarly exhausted all chances to change xt−2. If all
coalitions in π(xt−1) have already declined to move, the state remains unchanged,
and becomes an absorbing state.

We will now explore some conditions under which the absorbing states of an EPCF
coincide with the farsighted core, and thereby identify situations in which the dy-
namic process predicts the same set of stable outcomes as those emerging from the
static model of internal blocking. To be consistent with the blocking definitions,

21Strictly speaking, this is not necessary. The protocol could assign a positive probability to such
a coalition, but the only state this coalition would be effective for is xt−1, and the only change would
be that one unit of time would go by.
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we will assume throughout the rest of this Section that any non-status-quo prof-
itable move is strictly profitable for all members of the active coalition, i.e., there
is a strict inequality in the corresponding definition of Section 2.3.

A state x is said to be an absorbing state of an EPCF λ if the process does not move
from x whatever the history. Formally, x is an absorbing state of λ if λ(ht+1 |
ht) = 1 for all histories ht, ht+1 such that xt−1 = xt = x.

An EPCF is said to be absorbing if from any state it leads to an absorbing state in
a finite number of steps.

Given our restrictions on the protocol, and because every change in a state only
serves to refine the coalition structure, it follows that every process defined on
(N,V, E , ρ) is absorbing.

We will now show that if the steps of a farsighted objection and those of a profitable
move can be compressed into a single step, then there is a tight connection between
the absorbing states of an EPCF and the farsighted core. This abstract result will
be useful in Sections 3.8 and 3.9.

We say that an EPCF is immediately absorbing if whenever x is a transient state
there exists an objection (T, y) to x such that y is an absorbing state.

We say that an extended partition function (N,V, E) has the one-step objection
property if whenever x is not in the farsighted core there exists an objection, (T, y)
such that y belongs to the farsighted core. Thus, the initiating coalition achieves
a higher payoff in the very first step.22 These situations are important not only
because of the added simplicity of the farsighted core but also because there is
then no ambiguity stemming from the possibility of multiple continuation paths in
a farsighted objection. The latter is crucial in drawing a connection with EPCFs.
Otherwise, as we will see in Section 3.10, there may be good reason for not ex-
pecting the farsighted core to be related to an EPCF.

We can now present a result connecting the farsighted core to absorbing states of
the dynamic model.

LEMMA 1. Suppose (N,V, E) has the one-step objection property and λ is an im-
mediately absorbing EPCF of (N,V, E , ρ). Then all absorbing states of λ coincide
with the farsighted core of (N,V, E).

Proof. Consider an EPCF λ. The state corresponding to the finest coalition struc-
ture is clearly an absorbing state. It is also by definition in the farsighted core.
Thus, the equivalence between absorbing states of an EPCF and the farsighted
core holds for the finest coalition structure. We now use an induction argument
to prove the result. Accordingly, assume that the result holds for all states with at
least k + 1 coalitions in the coalition structure.

22Under this condition farsightedness reduces to consistency.



25

Suppose π(x) consists of k coalitions and x is not an absorbing state. Since λ is
immediately absorbing this means that there exists an objection (T, y) to x such
that y is an absorbing state for T . Note that T must be a strict subset of some
S ∈ π(x) for it to have an objection. Thus π(y) is a refinement of π(x), and it
follows from the induction hypothesis that y is in the farsighted core. This implies
that x is not in the farsighted core and completes the proof that the farsighted core
is contained in the set of absorbing states of λ.

Next, we show that if x is an absorbing state, with π(x) consisting of k coalitions,
it must be in the farsighted core. Suppose not. Then, by the one-step objection
property, there exists y and a coalition T ⊂ S ∈ π(x), where T ∈ E(x, y) and y
is in the farsighted core. Since π(y) is a strict refinement of π(x), it follows from
the induction hypothesis that y is an absorbing state. By hypothesis, no coalition
moves from x regardless of the history. There must be some history for which
the protocol chooses T when the current state is x. Coalition receives u(x)T in
perpetuity by not moving and u(y)T in perpetuity by moving to y. Since u(y)T �
u(x)T , this is a strictly profitable move, and a contradiction to the hypothesis that
x is an absorbing state.

It is of course important to identify assumptions on the primitive model that will
allow us to appeal to Lemma 1. That we shall do in Sections 3.8 and 3.9.

3.7. Characteristic Functions. Suppose the partition function is actually a char-
acteristic function, so there are no externalities. We shall now impose some restric-
tions on the effectivity correspondence which are natural, perhaps even implicit, in
this setting. Throughout this Section, in addition to internal blocking, it is assumed
that if T ∈ E(x, y) and y 6= x, then (i) π(y) = π(x)|T , (ii) u(x)S = u(y)S for
all S that belong to both π(x) and π(y), (iii) T ∈ E(x, y′) for any y′ such that
π(y) = π(y′) and u(y′)i = u(y)i for all i /∈ T . Thus, whenever a coalition can
change the state, it must move to an immediate refinement. While it may choose
any efficient feasible utility profile for itself, it must leave undisturbed the payoff
configuration in coalitions that remain unchanged as a result of this move.

In many situations, we may want to go a step further and allow all subsets to form.
Say that E has full support if for every T ⊂ S ∈ π(s) there exists a state y 6= x
with T ∈ E(x, y). Given internal blocking, it is easy to see that x is in the core of
(N,V, E) if and only if u(x)S ∈ C(S, V ) for every S ∈ π(x).23 As our next result
shows, under these conditions, the farsighted core coincides with the core.

PROPOSITION 2. Suppose (N,V, E) is such that (N,V ) is a characteristic func-
tion game and E is restricted to internal blocking and has full support. Then the
farsighted core coincides with the core of (N,V, E), i.e., x belongs to the farsighted
core if and only if u(x)S ∈ C(S, V ) for all S ∈ π(x).

23Recall that C(N,V ) denotes the standard notion of the core. For S ⊆ N , C(S, V ) refers to
the core of the characteristic function (N,V ) restricted to S.
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Proof. Suppose x belongs to the core of (N,V, E) but there exists a farsighted ob-
jection (T, y) to x. Given internal blocking, the coalition structure corresponding
to y, π(y), must contain a coalition T ′ ⊆ T . Since (T, y) is a farsighted objection
to x, u(y)T ′ � u(x)T ′ . The full support assumption implies that T ′ is effective in
moving from x to y′ where π(y′) = π(x)|T ′ and u(y′)T ′ = u(y)T ′ � u(x)T ′ . But
this contradicts the hypothesis that x belongs to the core of (N,V, E).

Suppose x is in the farsighted core. We now claim that it must be in the core of
(N,V, E). Suppose not. Then there exists S ∈ π(x) such that u(x)S /∈ C(S, V ).
Let (S1, u1) be an objection to u(x)S such that u1 ∈ C(S1, V ). This can always be
assured by taking S1 to be one of the smallest subcoalitions of S with an objection
to u(x)S . By internal blocking and full support, it follows that S1 ∈ E(x, y1) where
u(y1)S1 = u1 and π(y1) = π(x)|S1

. If u(y1)S\S1
∈ C(S \ S1, V ), then (S1, y1) is

a farsighted objection to which there cannot be any objection from a subset of S1
or S\S1. If u(y1)S\S1

/∈ C(S\S1, V ) we can find some subcoalition in S\S1, say
S2, with an objection from the core of S2. Continuing in this way it is possible to
construct a partition (S1, . . . Sm) of S and (u1, . . . um) such that ui ∈ C(Si, V ) for
every i. Clearly, there is no farsighted objection to ((S1, . . . , Sm), (u1, . . . , um))
from any allowable coalition in (S1, . . . , Sm). This procedure can be applied to
any S′ ∈ π(x) for which u(x)S′ /∈ C(S′, V ). All such objections can be collected
into one farsighted objection which culminates in x′ where π′(x) is a refinement
of π(x) and u(x′)T ∈ C(T, V ) for all T ∈ π(x′). Of course, this must mean that
there is no further farsighted objection to x′. But this contradicts the hypothesis
that x is in the farsighted core.

Note that one of the steps in the above proof relies on the property that if u 6∈
C(N,V ) then there exists an objection (S, u′) such that u′ ∈ C(S, V ). The
only reason this doesn’t imply the one-step objection property is because coali-
tions other than S may also need to “move” in order to arrive at a stable outcome.
If we ignore the rest of the coalition structure, then farsighted blocking becomes
equivalent to myopic blocking and Proposition 2 can we be seen as the coalition
structure analog of Ray (1989) and Proposition 6.1.4, Greenberg (1990).

We can now turn to a formal connection between the core and absorbing states of
an EPCF.

PROPOSITION 3. Suppose (N,V ) is a superadditive characteristic function game
such that V (S) is convex for all S ⊆ N . If x is in the core of (N,V, E), then x is
an absorbing state of every EPCF corresponding to (N,V, E , ρ).

Proof. Suppose x is in the core but is not an absorbing state of an EPCF λ. This
means that for some history at least one subcoalition of some S ∈ π(x) has a
profitable move. Let T be the last coalition according to the protocol which would
choose to move from x to y. Of course, if T were to choose not to move, it would
be assured of u(x)T in perpetuity. If y is an absorbing state, the fact that it is a
profitable move for T contradicts the hypothesis that x is in the core. Thus, with
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positive probability, there is a further move from y. All possible paths leading from
y must reach an absorbing state in a finite number of steps. Letm be the maximum
number of steps along any such path before an absorbing state is reached. For
every step i = 1, . . . ,m, following T ’s move, let µi be the probability measure on
the states generated by λ. Denote by ui the corresponding expected utility profile
at stage i: ui =

∫
u(x)dµi. Since T has a strictly profitable move,

(2) u1T + δu2T + δ2u3T + . . .+
δm−1

(1− δ)
umT �

1

(1− δ)
u(x)T .

It follows from superadditivity and the convexity of V (S) that

ujT ∈ V (T ) for all j = 1, . . . ,m.

Letting

û = (1− δ)u1 + δu2 + δ2u3 + . . .+
δm−1

(1− δ)
um

(2) can be rewritten as:

(3) ûT � u(x)T .

Note that û is a convex combination of u1, . . . , um. Since ujT ∈ V (T ) for all j,
it follows that ûT ∈ V (T ), but then (3) contradicts the hypothesis that x is in the
core.

PROPOSITION 4. Suppose x is an absorbing state of an EPCF of (N,V, E , ρ). If E
satisfies the full support property, then x belongs to the farsighted core of (N,V, E).

Proof. Suppose x is an absorbing state but does not belong to the farsighted core.
By Proposition 2, there exists S ∈ π(x) such that u(x) /∈ C(S, V ). Moreover,
there exists T ⊂ S and u′ ∈ C(T, V ) such that u′ � u(x)T . Since x is an
absorbing state, T receives u(x)T in perpetuity by not moving. However, by the
full support assumption, it could move to a state y in which it receives u′. Since
u′ ∈ C(T, V ), we know from the previous Proposition that no subcoalition of T
can move to a higher payoff. The only possible moves from y must come from
coalitions in N \ T . Since that has no affect on the payoff to T we conclude that
by moving to y coalition T can receive u′ � u(x)T . But this contradicts the
hypothesis that x is an absorbing state.

Combing Propositions 3 and 4 we have:

PROPOSITION 5. Suppose (N,V ) is a superadditive characteristic function game
such that V (S) is convex for all S ⊆ N and E satisfies the full support property.
Then all absorbing states of every EPCF of (N,V, E , ρ) coincide with the set of
core (or farsighted core) of (N,V, E).
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There is also an earlier literature that studies processes converging to core alloca-
tions. Green (1972), Feldman (1972), and Sengupta and Sengupta (1996) show
how in a characteristic function game a process of recontracting can be constructed
to lead from any non-core allocation to a core allocation. Recontracting refers to a
process in which every active coalition makes a (myopic) improving move, with-
out any guarantee of gaining at the end of the process. In contrast, Proposition 5
applies to farsighted behavior.

Konishi and Ray (2003) show how for a farsighted dynamic process can be con-
structed so as to have any particular core allocation as its absorbing state. They also
provide conditions under which a deterministic process converges to a core alloca-
tion. Proposition 5 provides a stronger connection between the core and absorbing
states since it concerns a coincidence of the set of core allocations and absorb-
ing states of any EPCF. The key features of our model that make this possible are
internal blocking and the specification of a protocol.

3.8. Effectivity without Full Support. It is important to stress that the full sup-
port property is not always natural. One important class of restrictions emanate
from the possibility that additional disintegration of a newly-formed coalition may
be legally or politically impossible. While we will have more to say about such
“irreversible agreements” in Sections 4 and 5, in the current Section we discuss a
model due to Acemoglu et al. (2008) in which the full support property does not
hold for a very different reason. This is a model of a political game of coalition
formation in which coalitions are farsighted and their ability to make a non-trivial
move depends in an important way on the current state.

The political power of player i is described as γi > 0. A coalition T ⊆ S is said to
be winning within S if γT > αγS , where γT =

∑
i∈T γi and α ∈ [0.5, 1) denotes

the degree of weighted supermajority required to win.

The payoff to players depends on the ultimate ruling coalition (URC). If S is the
ruling coalition, w(S) denotes the unique profile of utilities for members of S.
Players outside the ruling coalition receive 0. A specific functional form, which
we assume for convenience, is w(S) = (γi/γS)i∈S .

In this model the only coalition of interest at each state is the ruling coalition and
it will be useful therefore to define a state as x = (w(S), S) with the interpretation
that S is the ruling coalition.24 We will use R(x) to refer to the ruling coalition at
x. Of course, coalition S can enforce such a state only from states in which it is a

24Although we have departed from our earlier formulation in replacing a coalition structure with
a ruling coalition, this difference is not substantive. In particular, notions of the farsighted core and
EPCF, as well as Lemma 1 are easily translated into the present model. Alternatively, we could retain
the original formalism by associating with each ruling coalition the coalition structure in which all
other players are singletons and, in addition, keeping track of the ruling coalition corresponding to
every coalition structure of this form. The latter consideration is important for the coalition structure
consisting of all singletons because in that case whether a singleton gets 0 or 1 depends on the identity
of the ruling coalition.
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winning coalition.

For x 6= y, E(x, y) =

{
R(y) if R(y) is winning in R(x)
∅ otherwise

The effectivity correspondence does not satisfy the full support property because
only winning coalitions can effect a non-trivial move. The model implicitly as-
sumes internal blocking because a winning coalition must necessarily be a subset
of the current ruling coalition. Given internal blocking, the recursive procedure de-
scribed in Section 3.5 can be applied to determine the farsighted core. We illustrate
this with the next Example.

EXAMPLE 7. There are three players with γ = (γ1, γ2, γ3) = (4, 5, 6). A coalition
T ⊆ S is said to be winning within S if

∑
i∈T γi > 0.5

∑
j∈S γj . The payoff

profile for a ruling coalition is described as follows:

w(123) = (4/15, 5/15, 6/15),
w(12) = (4/9, 5/9),
w(13) = (0.4, 0.6),
w(23) = (5/11, 6/11),
w(i) = 1, for all i.

Each two-player coalition is winning in N , and can therefore move to become
a ruling coalition, and improve upon the status-quo. However, within each two-
player coalition the more powerful player can win to become a singleton ruling
coalition and earn 1. (The only way for a singleton to earn 1 rather than 0 is
to form a winning coalition. Player 3 can do this from any two-player coalition,
player 2 can do this only if the current coalition is 12, but player 1 is unable to
do this from any two-player coalition). Thus, although there exist objections to
the state corresponding to the grand coalition, none of them is credible because
the weaker of the two players in the objecting coalition will be abandoned by the
more powerful player at the next stage, ultimately doing worse than at the grand
coalition. It is easy to see thatN belongs to the farsighted core even though it is not
in the core. Note that the singleton winning coalition from the two-player coalition
prefers the final outcome, a payoff of 1, even at the grand coalition state but is not
effective in making that move in a single step.

Notice that since players who are not in a ruling coalition earn 0, it is always
better to belong to a ruling coalition than not. This implies that every farsighted
objection must immediately end in a stable state. Otherwise, there must be at least
one member of the initiating coalition who is left out of the final ruling coalition,
and any such player would have been better-off not participating in the objection.
In other words, every farsighted objection that ends in the farsighted core must be
a one-step objection. This of course means that the one-step deviation property
holds.
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Now consider an EPCF for this model and assume that the protocol is deterministic:
at every state there is a fixed order in which eligible coalitions are called upon to
move. (We will presently specialize the protocol even further).

Suppose x is a transient state. Thus there a coalition T , winning in R(x), with a
profitable move. Without loss of generality, let T be the last such coalition given
the protocol. If T does not move it is guaranteed a payoff of u(x) forever, which
must be less than the discounted payoff from moving. Note that all members of
T experience an instantaneous gain by forming a winning coalition. However, if
there is a further move (from a subcoalition), those left out of the second move
then receive 0. In other words, if T is not an absorbing state, there is some i ∈ T
who receives 0 in all subsequent periods. The discounted payoff for i is therefore
wi(T ). For the move to be profitable, it must be the case that

wi(T ) >
1

1− δ
ui(x).

Since wi(T ) ≤ 1 and ui(x) is bounded below by mini∈N wi(N), δ can be chosen
close enough to 1 so that this is impossible. Thus, for δ high enough, every EPCF
in this model must be immediately absorbing. As we’ve already observed, the
one-step deviation property holds. We can therefore appeal to Lemma 1 to assert:

PROPOSITION 6. In the model of political coalition formation, for δ sufficiently
close to 1, all absorbing states of an EPCF coincide with the farsighted core.

With some additional assumptions it becomes possible to provide a sharper char-
acterization of an EPCF in this model. Observe that for a winning coalition which
can induce a state in the farsighted core, there is never any advantage in forgoing
such an opportunity; a profitable move is also an efficient and profitable move.
Given the protocol, there is a unique move from any state that is not an absorbing
state: it is the move by the first coalition according to the protocol which is both
winning and moves immediately to a state in the farsighted core. A lot depends,
therefore, on the protocol.

Let

T (S) = {T ⊂ S | T is winning within S and (w(T ), T ) is in the farsighted core}.
and let the first coalition in T (S) according to the protocol be denoted T ∗(S). We
can now describe the equilibrium process by a mapping φ, where

φ(S) =

{
S if (w(S), S) is in the farsighted core
T ∗(S) otherwise.

Starting from the grand coalition as the initial state, the process moves, in at most
one step, to φ(N) as the absorbing state.

Acemoglu et al. (2008) provide a characterization of the subgame perfect equilibria
of their extensive form game of political coalition formation by assuming that the
power mapping γ, is generic in the sense that γS 6= γT for S 6= T . By adopting
this assumption, and imposing a restriction on the protocol we can obtain precisely
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their characterization through our framework. Suppose the protocol is such that
among all winning coalitions, relative to the current state, priority is given to those
with lower aggregate power. In other words, winning coalitions are arranged in
ascending order of aggregate power: if S and S′ are both winning, γS < γS′
implies that the protocol chooses S before S′. Given the genericity assumption,
this means that T ∗(S) = arg minA∈T (S) γA. Now φ(S) can be written inductively
as follows. Suppose φ(.) has been defined for all coalitions with fewer than k
players. Then, for S with k players let

φ(S) = arg minA∈T (S)∪SγA,

where,
T (S) = {T ⊂ S | T is winning within S and T ∈ φ(T )}.

This is precisely the mapping φ defined by Acemoglu et al. (2008). They prove
that every subgame perfect equilibrium of their extensive form game leads to φ(N)
as the ultimate ruling coalition.

3.9. Internal Blocking in the Presence of Externalities. The characteristic func-
tion has proved to be a very useful construction in studying coalitional behavior.
It was derived by von Neumann and Morgenstern (1944) from a more general
specification of a game by taking the feasible payoffs for a coalition to be those
it can achieve by assuming (from its point of view) the worst possible strategy
choices of the complementary coalition. While von Neumann and Morgenstern
(1944) adopted this conversion to a characteristic function mainly to study zero-
sum games, it was subsequently applied to more general (normal form) games by
Aumann and Peleg (1960) and Aumann (1961).25 For example, the α-characteristic
function defines V (S) for a coalition S as the set of payoffs S can achieve through
some joint strategy regardless of the actions of players outside S.26

In some settings, such as exchange economies without externalities, or zero-sum
games, this conversion involves no loss of generality. However, in the presence of
externalities, the standard construction is ad hoc, if not unreasonable. For example,
in the Cournot oligopoly, it is hard to see why a cartel should fear that the comple-
mentary coalition will flood the market and drive profits to zero, as is implicit in the
extreme pessimism embodied in the α-core. It may even be argued that coalition
formation should be studied directly through a normal form game. The essence of
the problem, however, can usually be captured through a partition function game
which makes explicit the manner in which the feasible set of payoffs for a coali-
tion depend on other coalitions. To be sure, this does not completely eliminate the
complexities stemming from externalities. A blocking coalition must now predict
how players outside the coalition will organize themselves into coalitions. In what
follows we will refer to this as the prediction problem. Of course, one could again

25See Chapter 2.2 of Ray (2007) for a historical background.
26The core of the α-characteristic function is referred to as the α-core. In the β-characteristic

function u ∈ V (S) if for every strategy of players outside S there is some joint strategy in S that
yields at least u.
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cut though these complexities by making an assumption about how outsiders will
organize themselves in response to a move by a blocking coalition. For example,
one could assume that all outsiders will immediately break-up into singletons, or
that all players left behind by a deviating coalition will continue to stay together.
The former is related to the notion of γ-stability in Hart and Kurz (1983) and the
latter to δ-stability.27 The question is how to replace such assumptions with pre-
dictions about the equilibrium behavior of outsiders. Cooperative game theory has
traditionally eschewed such considerations, but it is hard to see how coalitional be-
havior in the presence of externalities can be studied without making the response
of outsiders endogenous to the theory. As we shall discuss, considerable progress
has been made in resolving the prediction problem.28

Restricting attention to internal blocking aids significantly in terms of tractability.
To focus on the main problem we shall suppose, in addition, that the allocation
of the surplus within a coalition embedded in a coalition structure is not an issue.
This is the case if there is a fixed rule for choosing a point in V̄ (S, π), or if V̄ (S, π)
is a singleton for every (S, π), where S ∈ π. This is an extension of hedonic
characteristic functions to hedonic partition functions.29 Now when a coalition
makes a “move”, all it needs to do is predict the eventual coalition structure that
will be precipitated by its own move. The farsighted core can be seen as a natural
first step in formalizing a suitable solution concept.

At this point we should be more explicit about the effectively correspondence to be
applied to this model. The assumption of a hedonic partition function makes it un-
necessary to describe how coalitional worth will be shared within each coalition in
a given coalition structure (we’ll return to this issue for the general case in the next
Section). In fact, a state can simply be defined as a coalition structure. Given the
assumption of internal blocking it seems reasonable that if S ∈ π and a subsocoali-
tion T of S splits from S, in the first step it induces an immediate refinement, π|T ,
i.e., all the remaining players in S stay together and all the coalitions in π remain
unchanged. Of course, there is no presumption that π|T will remain unchanged.

It is also possible to temper the extreme optimism in the notion of a farsighted
objection by allowing for the other coalitions involved in a sequence of moves to
move in a different order or in fact to move simultaneously. Specifying this in a
precise way leads to the concept of equilibrium binding agreements (EBA) of Ray

27See also Carraro and Siniscalco (1993), Dutta and Suzumura (1993), Chander (2007) and Chan-
der and Tulkens (1997).

28It bears mentioning that Aumann and Myerson (1988) tackled the prediction problem head
on. We do not discuss this paper here only because its axiomatic emphasis does not fit either the
blocking or the bargaining approach which we have confined this chapter to. Maskin (2003) is
another important contribution to this issue which doesn’t fall within the purview of the present
chapter. See also de Clippel and Serrano (2008).

29See Banerjee et al. (2001), Barberà and Gerber (2003, 2007) and Bogomolnaia and Jackson
(2002).
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and Vohra (1997), which can be seen as a variant of the farsighted core. Applied to
the special case of hedonic partition functions, we can now formally define EBA.

When a process of coalition formation refines a partition there are some coalitions
that are active movers, or perpetrators, in splitting from a larger coalition while
others can be thought of as residuals, players left behind. If a coalition breaks into
k new coalitions, k − 1 of them must be perpetrators.

Coalition structures that correspond to equilibrium binding agreements (EBA) are
defined recursively. The finest coalition structure, made up of singletons, and de-
noted π0, is an EBA. If π is a coalition structure made up of singletons and one
coalition, S, with two players, it is said to be blocked by π0 if one of the players in
S prefers π0 to π. We can now proceed recursively. Suppose EBA and the associ-
ated notion of blocking has been defined for all refinements of π. Then, is said to be
blocked by π′ if π′ is an EBA and their exists a collection of perpetrators in π′ such
that one of then, a leading perpetrator, prefers π′ to π. Moreover, any re-merging of
the other perpetrators with their respective residuals is blocked by π′, with one of
these perpetrators as the leading perpetrator. Note that “blocking” is well defined
in the previous sentence because any re-merging of the other perpetrators results in
a coalition structure which is a refinement of π. A coalition structure is an EBA if
it is not blocked. Given the emphasis on full and unrestrained negotiations, EBA
for the game are defined as the coarsest partition(s) that are EBA.

The notion of equilibrium binding agreements turns out to be particularly simple in
the special case of symmetric TU games with positive externalities. In our frame-
work (of partition functions rather than normal form games) these are partition
functions in which utility is transferable within each coalition. For coalition S in
coalition structure π, the aggregate utility is denoted v(S, π), so that V (S, π) is
the collection of all payoff profiles that sum to no more than v(S, π). (We will
sometimes use (N, v) to denote a TU partition function). In a symmetric game the
worth of a coalition depends only on the number of players in the coalition and the
numerical coalition structure (number of players in each of the coalitions). Sup-
pose S ∈ π = {S1, . . . Sk}. Now v(S, π), can simply be denoted v(s, q) where s is
the cardinality of S and q = (s1, . . . sk), where si is the cardinality of Si. A game
is said to have positive externalities if a coalition’s worth is higher when the other
coalitions are merged. It is worth noting that the symmetric Cournot oligopoly is
one example that satisfies all of these assumptions.

As shown in Ray and Vohra (1997), in a symmetric TU game with positive ex-
ternalities, a state is an equilibrium binding agreement if no coalition can obtain
higher aggregate utility in a binding agreement of some refinement of the original
coalition structure. In other words, EBA are simply all the states in the farsighted
core if E allows a coalition to move to any refinement. Throughout this Section we
assume that the effectivity correspondence has this form. Of course, this immedi-
ately implies that the one-step deviation property holds.
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In this setting, additional simplicity comes from the fact that in identifying equilib-
rium coalition structures there is no loss of generality in assuming that coalitional
worth is divided equally among all members of a coalition; see Proposition 6.3 in
Ray and Vohra (1997). In other words, we can assume that states are restricted
to satisfy the property that for any S ∈ π(x), for all i ∈ S, ui(x) = a(S, π) =
v(S,π(x))
|S| . Thus, we can take the number of states to be finite.

Let a(s, q) denote the average worth of a coalition of size s in a numerical structure
q, where q = (q1, . . . qk) describes the sizes of the various coalitions in the parti-
tion. We will assume that the distribution of average worths satisfies the genericity
assumption in the sense that a(s, q) 6= a(s′, q′) if s′ 6= s or q′ 6= q.

PROPOSITION 7. Suppose (N,V ) is a symmetric, TU, partition function game
with positive externalities and the genericity assumption holds. Then, for δ close
enough to 1, all absorbing states of every EPCF of (N,V, E , ρ) coincide with EBA.

Proof. Suppose x is not an absorbing state of an EPCF. This means that for some
history at least one coalition has a profitable move. Let T be the last coalition
according to the protocol which would choose to move from x to y. Of course, if
T were to choose not to move, it would be assured of u(x)T in perpetuity. Either
y is an absorbing state or, with positive probability, there is a further move from y.
Consider the latter case.

All possible paths leading from y must reach an absorbing state in a finite number
of steps. Let m be the maximum number of steps along any such path before
an absorbing state is reached. Let ui denote the expected payoff at each step,
i = 1, . . .m, with u1 = u(y). Let Z be the set of states in the support of um and
p(z) be the probability of z being the state at stage m, i.e., um =

∑
z∈Z p(z)u(z).

The fact that T has a strictly profitable move means that

(4) u1T + δu2T + δ2u3T + . . .+
δm−1

(1− δ)
umT �

1

(1− δ)
u(x)T .

Let a∗ = maxz∈Z,S∈π(z),S⊂T a(S, π(z)) be the maximum average worth across all
subcoalitions of T in any of the coalition structures corresponding to states in Z.
Let z∗ be a state in which a∗ is attained and S∗ the corresponding subcoalition of
T . Let ū be the maximum utility that any player gets in any state. From (4) we
obtain the following inequality for coalition S∗.

(5) (1 + δ + . . .+ δm−2)ū+
δm−1

1− δ
(a∗ − ui(x)) > 0 for all i ∈ S∗.

Given that π(z∗) is a refinement of π(x) it follows that ui(x) = uj(x) for all
i, j ∈ S∗. We now claim that

(6) a∗ > ui(x) for all i ∈ S∗.
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Suppose not. Then a∗ < ui(x) for all i ∈ S∗ because, by the genericity assump-
tion, a∗ 6= ui(x). Since the number of states is finite, there exists ε > 0 which de-
notes the minimum (absolute) difference, between a(s, q) and a(s′, q′) for q 6= q′.
This means that if a∗ < ui(x), then a∗ − ui(x) ≤ −ε. Substituting this in (5) we
have:

(1 + δ + . . .+ δm−2)ū− (
δm−1

1− δ
)ε > 0,

which is impossible if δ is close enough to 1. This establishes (6).

To summarize, we have shown that if x is a transient state, one of the following
must be true:

(i) there is a move by T to y which is an absorbing state and u(y)T � u(x)T ,
(ii) there is a coalition S∗ ⊂ T and an absorbing state z∗ such that S∗ ∈ π(z∗)

and u(z∗)S∗ � u(x)S∗ .

Since a coalition is effective in moving to any refinement of the current coalition
structure, it follows that in case (ii) S∗ can move directly from x to z∗. Thus, in
any event, there is a profitable move to an absorbing state, and the process must
be immediately absorbing. The proof now follows from Lemma 1 and the fact that
the farsighted core is the set of EBA.

Note that in the dynamic model it is possible for a strictly profitable move to be one
in which the absorbing state results in the same utility profile as the current state,
with all the gains being reaped in the intervening, transitory periods. Such a move
in the dynamic model cannot possibly serve as an objection in the static model. To
tie the dynamic model to the static one, therefore, we have to impose additional
assumptions. In Proposition 7 this is achieved through the genericity assumption.

3.10. Beyond Internal Blocking. To extend the theory beyond internal blocking
a recursive definition of farsighted stability will not suffice. Despite the sometimes
obscure nature of abstract stable sets, they do offer a promising approach at this
level of generality. For the farsighted stable set to be meaningful, though, it’s
important to specify the effectivity correspondence with some care. In this respect,
as we observed in the previous Section, things are relatively straightforward with
hedonic partition functions. We can follow Diamantoudi and Xue (2007) and Ray
and Konishi (2003) in assuming that the immediate consequence of a coalitional
move is that unaffected coalitions remain intact and any residuals left behind by
the perpetrator remain together.30

In more general partition function games, when the payoff division within a coali-
tion is endogenous, a blocking coalition induces a state which consists of both a
coalition structure and a feasible payoff for each coalition: x →S y means that

30This may seem appear to be similar to the δ-stability approach but the important difference is
that here this is only meant to describe the immediate consequence of a coaltional move, not the final
outcome.
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S is effective in imposing the partition π(y) and payoffs u(y)T in V̄ (T ) for each
T ∈ π(y). The restriction on π(y) as described in the previous paragraph seems
reasonable enough, but it is not immediately obvious what restrictions (besides
feasibility), if any, ought to be imposed on u(y)T .

Indeed, this question is relevant even in the simpler setting of characteristic func-
tions. With the standard notion of (myopic) blocking in a characteristic function
game, what transpires outside the coalition does not affect the blocking coalition,
and therefore the definition of dominance does not depend on what is assumed
about the payoff distribution for outsiders. In fact, the stable set takes the set of
states to be imputations (individually rational payoffs in V̄ (N)) and S can move
from x to y provided as u(y)S ∈ V̄ (S). In other words, E(x, y) = {T | u(y)T ∈
V̄ (T )}. In effect, S is assumed to have the power to choose any feasible payoff
profile for outsiders. It so happens that in a characteristic function with myopic
blocking this doesn’t make a difference to the stable set.

But with farsighted blocking this is not so. A coalition may be able to engineer a se-
quence of moves that constitute farsighted blocking only by arranging the payoffs
to outsiders in some particular way. This is clearly unreasonable. To see a rather
dramatic example of this consider a four player TU game with the following char-
acteristic function. v(i) = 0 for all i, v(12) = v(13) = v(23) = 2, v(123) = 6 and
for all S, v(S∪4) = v(S). Although Player 4 is a dummy player, if we assume the
effectivity correspondence to be unrestricted, as in the previous paragraph, there
is a singleton farsighted stable set in which the dummy player receives a positive
payoff, for example, {y}, where y = (1, 1, 0, 4). Consider x = (2, 2, 2, 0), a core
allocation. There is a farsighted objection to x leading to y. It begins with a move
by player 4 to y1 = (6, 0, 0, 0), followed by a move by player 2 to y2 = (0, 0, 0, 6)
and, finally, by coalition 12 to y. The logic depends crucially on player 4 assign-
ing 0’s to two of the other three players, and then another one assigning 0’s to all
players other than 4.

There have been a number of recent papers showing that the farsighted stable set
generally exists in characteristic function games. This is remarkable because the
existence of the stable set is not guaranteed in characteristic function games, as
shown by Lucas (1968). Diamantoudi and Xue (2005) showed that in Lucas’s
example the farsighted stable set does exist. Béal et al. (2008) proved existence
for TU games and Bhattacharya and Brosi (2011) for NTU games.31 All of these
results, however, assume that a blocking coalition has complete power to choose
the payoff allocation for outsiders. It is not known if these positive results can be
extended to a notion of farsighted stable sets with a more reasonable specification
of the effectivity correspondence.

For hedonic partition functions, where payoff division is not an issue, Diamantoudi
and Xue (2007) show that the notion of blocking used in defining EBA can be

31Mauleon et al. (2011) prove existence in two-sided matching models which don’t have this
complication as they are a special case of hedonic characteristic functions.
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reformulated in terms of farsighted blocking, where the extreme optimism implicit
in farsighted blocking is modified to make it robust to the precise manner in which
perpetrators move. And this makes it possible, in the context of internal blocking,
to interpret EBA as a stable set with an appropriate notion of dominance. They
then go on to argue that a suitable extension of EBA to the general case, extended
equilibrium binding agreements (EEBA), is the stable set with farsighted blocking
in its standard (optimistic) form. Although neither the existence of EEBA nor its
efficiency when it does exist can be guaranteed in general, extending the notion of
blocking beyond internal blocking can help sustain efficiency. Their positive result
on efficiency includes the important example of a Cournot oligopoly; see Section
5.

As Greenberg (1990) has shown, it is possible to formulate various stable stan-
dards of behavior along the lines of the stable set by assuming conservative rather
than optimistic behavior on the part of a blocking coalition. Many of the solution
concepts based on farsightedness can be comprehensively viewed through Green-
berg’s theory of social situations. As a complement to the current section we refer
the reader to Mariotti and Xue (2003) for an excellent review of this approach.

The Largest Consistent Set of Chwe (1994) is a prime example of the blocking
approach with farsightedness assuming pessimism on the part of a blocking coali-
tion. Chwe considers a more general game than an extended partition function in
the sense that the set of states, X , is an abstract set, not necessarily based on a
partition function. A set Z ⊂ X is said to be consistent if x ∈ Z if and only if
for all y, S such that x →S y, there exists z ∈ Z such that z = y or z is a far-
sighted objection to y and there exists some i ∈ S such that u(z)i ≤ ui(x). Chwe
proves that there is a unique consistent set, the largest consistent set (LCS), which
contains all consistent sets.32

At this stage one may be tempted to leave well enough alone and accept the idea,
as in Knightian uncertainty, that stable outcomes can be modeled either with op-
timistic beliefs or conservative beliefs or perhaps some combination of the two.
However, this is serious drawback of the blocking approach. It is no less ad hoc
than making some exogenous assumption about remaining players will organize
themselves into a coalition structure in response to a coalitional deviation. The
problem is easily shown through the following Example.33

EXAMPLE 8. Modify Example 6 so that player 2 can move to either state c or d.

The unique farsighted stable set is {c, d}. State a is not in the farsighted stable
set because player 1 expects player 2 to replace b with c. But now this is too
optimistic a prediction. From b player 2 has the choice to move to either c or d, and

32Chwe also shows how LCS can be related to a conservative stable standard of behavior in
Greenberg’s theory of social situations.

33While the Examples in this Section do not represent hedonic partition functions, they can all be
transformed (with the addition of players) to meet this property and still retain their message.
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a
(1,1)

b
(0,0)

c
(10,10)

1 2

d
(0, 20)

2

FIGURE 4. ILLUSTRATION OF EXAMPLE 8.

obliviously the rational decision for player 2 is to move to d. Thus, the (farsighted)
reasoning for discarding a now appears to be flawed. In this example, Chwe’s
LCS resolves this problem. For a state to be in LCS it is enough that every initial
move have some continuation that results in a stable outcome which would deter
the initial “objection”. By this criterion the LCS is {a, c, d}; unlike the farsighted
stable set, LCS considers a to be stable. In this example, the path from b should
lead only to d since that is the only rational move by coalition 2. It so happens
that this corresponds to coalition 1 being conservative in its evaluation of the move
from a to b. In general, however, a conservative forecast by the initiating coalition
need not be “rational”, as the next example shows.

EXAMPLE 9. Modify Example 8 by interchanging player 2’s payoffs in c and d.

a
(1,1)

b
(0,0)

c
(10,20)

1 2

d
(0, 10)

2

FIGURE 5. ILLUSTRATION OF EXAMPLE 9.

The farsighted stable set and LCS remain unchanged (the former is {c, d} and the
latter is {a, c, d}). But now, it should be clear that an “optimistic” view by player
1 is indeed the correct one; player 2 in his own interest will replace b by c, not d.
Thus, in this example, it is the LCS which comes to the wrong conclusion.
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It is easy to see that in both these examples, the notion of an EPCF provides a
simple resolution. But how far can one go with the traditional blocking approach?
Xue (1998) argues, persuasively, that a resolution to this issue requires us to define
stability not for allocations, such as a, b, c and d in the above examples, but for
paths such as (a, b, c) or (a, b, d). He then considers a stable standard of behavior
for a situation with perfect foresight as a collection of paths satisfying internal and
external stability.

For a stable standard of behavior σ, let σ(a) denote all stable paths originating
from a. If α ∈ σ(a), internal stability requires that there not exist a node b ∈ α, a
coalition S which is effective form moving from b to c such that S “prefers” σ(c)
to α. The same idea is used in defining external stability. The term “prefers” leads
to two versions of stability: one based on optimism and other on conservatism.

It is easy to show that this notion of stability yields the correct answer for both
Examples 8 and 9. However, in the next Example the problem reappears.

EXAMPLE 10. Modify Example 9 by addiing one more player and one more state.

a
(1,1,1)

b
(0,0,0)

c
(10,5,5)

1 23

d
(0,1,1)

23

e'
(0,20,10)

e
(0,10,20)

2 3

𝞼(d)=ɸ

FIGURE 6. ILLUSTRATION OF EXAMPLE 10.

First consider the stable paths originating from d. Player 2 would like to move
to e′ while 3 would prefer to move to e. Neither can satisfy internal stability and
therefore σ(d) = ∅. Note that while Xue (1998) shows that an acyclicity condition
is sufficient for σ to be nonempty valued, this condition is violated at d. (This is
similar to figure 4 in Xue (1998)). The problem arises because neither of the two
objecting coalitions has a priority to make a move. Because σ(d) = ∅, the stability
of (a, b, c) is vacuously satisfied; it is not possible to test if it can be deterred by a
move from b to d and some β ∈ σ(d). Indeed, (a, b, c) is a stable path. But this
doesn’t seem reasonable because for players 2 and 3 both e and e′ dominate c, so
coalition 23 should move from b to d, not c.
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Unfortunately, this kind of situation is rather common and it seriously limits the
applicability of this solution concept. Note that if there was a protocol, even a
probabilistic one, to decide who has the first move, the problem wouldn’t arise.34

For example, if upon arriving at state d the protocol selects each of two permissible
singleton coalitions with equal probability, then the expected payoff to players 2
and 3 (following state d) is 15 each. From state b, therefore, the move by coalition
23 to d is efficient (in the terminology of our dynamic model) but to c is not. And
this implies that a is an absorbing state of every EPCF.

Taken together, these examples demonstrate a serious drawback of the blocking
approach in dealing with farsightedness, at least in environment with externali-
ties. Clearly, there are limits to how effectively one can capture farsightedness in
a static concept of stability. The traditional approach in cooperative game theory
has emphasized the virtues of abstracting away from the details of the negotiation
process to highlight the essential features of cooperative behavior. In many situ-
ations that has indeed been a very fruitful approach, but in the present context it
seems too confining not to introduce some details (as well as explicit dynamics).
As the previous examples demonstrate, simply adding the notion of a protocol, and
postulating rational behavior on the part of coalitions, can provide a way out of the
conundrum that the standard approach produces. The dynamic process of coalition
formation described in Section 2 is a direct way of studying farsighted coalitional
behavior, especially in the presence of externalities. If this framework seems more
complex than, say, the characteristic function form, it nevertheless seems to be nec-
essary for the questions at hand. It could even be argued while there is additional
structure on the model, the equilibrium concept is much more straightforward that
ones we have discussed above, for example, EBA, LCS or farsighted stable sets.
The fact that in some of the simpler cases, such as characteristic function games
and symmetric TU games with positive externalities, we get the standard conclu-
sions makes it possible to see this approach as a conceptual generalization rather
than an alternative.

4. THE BARGAINING APPROACH: COALITIONS IN NONCOOPERATIVE GAMES

In this Section, we study an approach to coalition formation based on noncooper-
ative bargaining. Attention shifts from active coalitions to active individuals, and
the notion of blocking is replaced by a direct emphasis on proposals and responses.
In short, all negotiations are expressed formally as a bargaining game, for which
we draw inspiration from Ståhl (1977), Rubinstein (1982), Chatterjee et al. (1993),
Okada (1996) and several others.35

34Recall that one major difference between our dynamic model and that of Konishi and Ray
(2003) is that the latter operates without a protocol. This can result in inefficiencies arising from
a “coordination failure”. Simply having a protocol of the kind we outlined in Section 3.6 can help
avoid these kinds of inefficiencies.

35For related literature on bargaining, see Selten (1981), Binmore (1985), Baron and Ferejohn
(1989), Gul (1989), Winter (1993), Perry and Reny (1994), Krishna and Serrano (1995), Moldovanu
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Throughout, we regard the partition function as a primitive, with the idea that un-
derlying this function is a game in strategic form. As already discussed, a par-
tition function has the virtue of incorporating a number of different situations.
Two-person or multi-person bargaining is, of course, included quite trivially. So
is coalitional bargaining over a characteristic function, where different coalitions
have access to different surpluses which may be divided. Finally, partition func-
tions can also accommodate externalities across coalitions in the determination of
coalitional surplus.

We define on the partition function a noncooperative bargaining game. A history-
dependent protocol defines an active proposer at each date, perhaps stochastically.
In the language of our general framework, active coalitions are now restricted to be
singletons. A proposer is free to propose a particular (feasible) payoff allocation
to any subset of a partner set specified by the protocol. For each proposal, the
protocol also specifies the order in which the responders respond, either to accept
or to reject the proposal.36 Observe that a partner set was of no importance in
the blocking approach (at least as it currently appears in the literature), but in the
present context it is crucial, as we shall see from the special cases described below.
Coalitions form through the course of this bargaining process as proposals are made
and either accepted or rejected by responders.

The various ingredients of a bargaining model can be combined in different ways
to generate distinct branches of the literature. In the next Section we show how a
combination of the effectivity correspondence and protocol can be used to cover
this diverse set of models.

4.1. Essential Ingredients of a Coalitional Bargaining Model.

4.1.1. The Protocol. When a proposer is chosen by the protocol, she makes a pro-
posal to a subset of eligible partners a division of their aggregate worth. If all
respondents unanimously accept, the proposed coalition forms, and the process
shifts to the set of eligible players remaining in the game. The rejection of a pro-
posal creates a bargaining friction: payoffs are delayed by the passage of some
time, which is discounted by everybody using the discount factor δ.

The probability with which different individuals are chosen to be proposers will
generally depend on the history of events up to that date. Perhaps the simplest pro-
tocol is one in which an agent is chosen with uniform probability to be a proposer.
This is known as the uniform protocol; see, e.g., Baron and Ferejohn (1989). An-
other simple protocol recognizes different individuals in a given order and anoints
the first rejector of the previous proposal (if any) as the next proposer. This is the
rejector-proposes protocol; see, e.g., Rubinstein (1982), Chatterjee et al. (1993).

and Winter (1995), Hart and Mas-Colell (1996), Bloch and Gomes (2006) and Compte and Jehiel
(2010).

36This avoids the possibility of coordination failure, and is consistent with the rest of the
literature.
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One way to combine these two protocols while retaining each of them as special
cases is to suppose that an active individual (from the set of free individuals) is cho-
sen randomly at any stage if the previous proposal has been accepted. Otherwise,
if the previous proposal has been rejected by some individual, that person gets to
be the next proposer with probability µ. With probability 1 − µ, another eligible
agent is equiprobably chosen to be the new proposer. Observe that if µ ' 1, the
rejector is likely to be the next proposer, while if µ ' 0, the rejector is excluded
from making a proposal in the next round. This class of protocols therefore accom-
modates a wide variation in rejector power. It encompasses all the ways a proposer
is chosen that we know of in the literature.

A central feature of our protocol concerns the recognition of those players who are
eligible, either to make new proposals or to entertain them from others. Which
agent is eligible will depend, of course, on the situation to be modeled. In the
case of irreversibly binding agreements, a player once included in some previous
coalitional agreement is never again recognized by the protocol. When agreements
are reversible, so that renegotiation is permitted, the partner set could include a
player who belongs to a previously formed coalition, but only if all other members
of that coalition are also included as responders. (Their agreement is needed to
“free” the player to sign a new deal.) Such restrictions on the protocol can often
be substituted with corresponding restrictions on the effectivity correspondence
instead; recall footnote 21.

In short, our description of protocols can be construed as an attempt to model the
essential elements of the situation at hand: how easy it is for a rejector to seize the
initiative and make a fresh proposal, or how constrained previous signatories are in
participating in further bargaining. In this survey, we do not concern ourselves with
other approaches to “design” a proposal to deliberately “implement” some known
solution concept. For instance, Gul (1989) shows how the Shapley value can be
implemented as a stationary perfect equilibrium of a game with pairwise meetings.
Hart and Mas-Colell (1996) do so in a more general context, through a bargain-
ing game in which proposers are required to make proposals to the complete set
of available players. Moreover, the rejection of a proposal leads, with some pos-
itive probability, to the proposer being entirely eliminated from future rounds of
bargaining. These restrictions are clearly in the spirit of implementing a particular
solution concept, as the description makes it clear that there is no particular attempt
to identify the protocol with any observed bargaining situation.37 Indeed, incorpo-
rating strategic coalition formation in these models remains an important direction
for future work. For a review of this literature we refer the reader to Winter (2002).

37It should be added, however, that the above depiction makes more descriptive sense in a two-
person bargaining context; see, Binmore, Rubinstein and Wolinsky (1986) and Sutton (1986). There
these restrictions reduce, more realistically, to the possibility that the entire bargaining process might
break down following any round of negotiation.
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4.1.2. Possibilities for Changing or Renegotiating Agreements. Whether or not
a coalitional agreement once made is subject to future revision is a fundamental
issue.

Bargaining with Binding or Irreversible Agreements. In much of the literature,
all agreements to form a coalition are “fully” binding, in the sense that they are
irreversible. A coalition once formed cannot disintegrate or be subsequently ab-
sorbed into a larger group.38 The protocol responds to histories by choosing only
players (as proposers or respondents) who were not part of any previously formed
coalition. It follows, therefore, that once all players are included in some formed
coalition, the process of coalition formation must come to an end, though payoffs
continue to be received as per the various agreements. In particular, the protocol
ceases to choose new proposers. For examples of this sort of model, see Chatterjee
et al. (1993) and Okada (1996) for characteristic function games, and Bloch (1996)
and Ray and Vohra (1999) for partition function games.

Bargaining with Reversible Agreements. Situations in which agreements are only
in force for a limited period of time can be modeled by a suitably specifying the
protocol. For example, if agreements only last for one period, active proposers are
chosen from the entire population of players, and partner sets are never restricted
by the history of past coalition formation. For examples, see Stole and Zwiebel
(1996), Gomes and Jehiel (2005), and Konishi and Ray (2003).

The possibility of renegotiating existing agreements is another case in which agree-
ments may be reversible. In this case, an existing agreement may be changed, but
only with the blessings of existing signatories. Such signatories must include all in-
dividuals who are party to any existing agreement that may need to be modified as
a consequence of the new proposal. This is captured by an appropriate restriction
on the effectivity correspondence or on the protocol. For examples, see Seidmann
and Winter (1998), Okada (2000), Gomes and Jehiel (2005), Gomes (2005) , and
Hyndman and Ray (2007).

4.1.3. Payoffs in Real-Time or Not. A substantial part of the literature studies
models in which payoffs are only experienced after all coalitions have formed.
This includes Rubinstein (1982), Bloch (1996), Chatterjee et al. (1993), Ray and
Vohra (1999) for binding agreements and Seidmann and Winter (1998) and Okada
(2000) for renegotiable agreements. A more recent literature, e.g., Konishi and
Ray (2003), Hyndman and Ray (2007), Gomes (2005), Gomes and Jehiel (2005)
and Xue and Zhang (2011), considers situations in which payoffs are realized con-
tinually, as coalitions can form and continue to renegotiate or discard previous
agreements.

38In the special case of n-person bargaining, in which only the grand coalition has a surplus
to divide, this is hardly an assumption as there is no collective incentive to alter any agreed-upon
division of the surplus.
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It is of course only natural for reversible agreements to be cast in a real-time frame-
work. It should be clear that our general framework is well suited to cover such
situations and, as we will see below, it can also encompass models in which payoffs
are realized at the end of the coalition formation process.

4.1.4. Majority Versus Unanimity. There is also a distinction to be drawn using
the rules of the game that determine when a proposal is to be passed. Two major
candidates are unanimity, as in the Ståhl-Rubinstein model and its descendants,
and majority vote, as in the Baron-Ferejohn model (and political economy models
more generally). Once again, it is easy enough to accommodate a variety of such
rules as part of the general framework. Without loss of generality, we can simply
adopt the unanimity approach, incorporating all variants in the description of the
partition function and the form of the effectivity function.

As an example, consider three-person bargaining with majority. The “true” func-
tion that describes this example sets the worth of the grand coalition equal to the
surplus at stake (say 1 unit), while setting the worth of all subcoalitions to zero.
Yet it is possible to use instead the characteristic function

v(S) = 1 if and only if |S| > n

2
,

and use the unanimity protocol. What is altered is essentially a matter of interpre-
tation: a proposal is never actually made to a subcoalition S, but it’s as if it is: the
proposal is in fact made to the grand coalition, with the implicit strategic presump-
tion that the “targeted” majority subgroup S is effective for the change and will
approve it.

In short, bargaining models that require majority approval can be easily embed-
ded in coalitional bargaining models in which subcoalitions have power. In this
sense there is little loss of generality in studying unanimity games, provided we
are general enough to accommodate subcoalitional worths.

4.2. Bargaining on Partition Functions.

4.2.1. Equilibrium in a Real-Time Bargaining Model. We begin with a baseline
model for bargaining in real time. As in the blocking approach, we consider a
partition function (N,V ) which assigns to each coalition S in a partition π a set of
payoff allocations V (S, π).

A state is denoted x = (π, u, C) where uS ∈ V (S, π) for every S ∈ π and C is the
collection of “committed” players (N \C being the set of “uncommitted” players).
We use the convention that all uncommitted players consist of singletons, while
committed players belong to formed or committed coalitions (including possibly
singletons). In other words, i /∈ C implies that {i} ∈ π and every j ∈ S ∈ π
such that |S| ≥ 2 implies that j ∈ C. Uncommitted players can be proposers
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or potential partners in all variations of the model; the others may be included to
different extents if agreements are not completely irreversible.

At each stage of the bargaining process, we keep track of past proposers, proposals,
rejectors (if any), and all committed as well as uncommitted coalitions.

A history at some stage is a list of such objects up to, but not including, the events
that will occur at that stage. Such stages may be of various kinds: a proposer
is about to be chosen, or a proposal about to be made, or a responder about to
respond, or — such matters concluded — a state about to be implemented. Obvious
nomenclature may be employed to distinguish between the histories leading up to
different stages: “proposer histories,” “responder histories,” and “implementation
histories”.

At proposer or responder histories players have to take actions. A full listing of a
particular player’s actions — proposals and responses — for all such histories is a
strategy for that player. To describe strategies more formally, consider an individ-
ual k. For a proposer history h at which k is meant to propose, she must choose
a payoff vector and a coalition S that can implement the payoff in question. In
standard bargaining theory such a vector would be given by a division of aggregate
surplus among the individuals (see, e.g., Rubinstein (1982) and Baron and Fere-
john (1989)). In coalitional bargaining theory, it would be a division of coalitional
surplus among the members of that coalition (see, e.g., Chatterjee et al. (1993),
Seidmann and Winter (1998) and Okada (1996)). In bargaining theory with exter-
nalities, the payoff vector must come from a “conditional proposal”: if coalition
structure π forms, we divide in this way, and if π′ forms, we divide in that way, and
so on (see, e.g., Ray and Vohra (1999)). In our real-time model the payoffs at each
date are feasible given the going coalition structure. For formed coalitions they
must also reflect the agreed upon payoff allocation corresponding to this coalition
structure. This can be seen as a restriction on the effectivity correspondence.

An active agent proposes a new state to one or more of her available partners. She
could employ a behavior strategy, which would be a probability distribution over
(y, S), where y represents the new state and S a coalition containing i and a subset
of available partners jointly capable of implementing that state. Denote by µk(h)
the probability distribution that she uses at proposer history h.

Likewise, at a responder history h at which k is meant to respond, denote by λk(h)
the probability that k will accept the going proposal under that history. The full
collection σ = {µk, λk} over all players k is a strategy profile.

A strategy profile σ induces value functions for each player. These are defined at
all histories of the game, but the only ones that we will need to track are those
just prior to the implementation of a fresh state (or the unaltered continuation of a
previous state). Call these implementation histories. On the space of such histories,
every strategy profile σ (in conjunction with the given protocol) defines a stochastic
process P σ as follows. Begin with an implementation history. Then a state is



46

indeed “implemented”. Subsequently, a new proposer is determined. The proposer
proposes a state. The state is then accepted or rejected. (The outcome in each
of these last three events may be stochastic.) At this point a new implementation
history h′ is determined. The entire process is summarized by the transition P σ on
implementation histories.

For each person i and given an implementation history h, the value for i at that
date is given by

(7) V σ
i (h) = ui(x) + δ

∫
V σ
i (h′)P σ(h, dh′)

where x is the state implemented at h. Given any transition P σ, a standard con-
traction mapping argument ensures that V σ

i is uniquely defined for every i.

Say that a strategy profile σ is an equilibrium if two conditions are met for each
player i:

(a) At every proposer history h for i, µi(h) has support within the set of proposals
that maximize the expected value V σ

i (h′) of i, where h′ is the subsequent imple-
mentation history induced by i’s actions and the given responder strategies.

(b) At every responder history for i, λi(h) equals 1 if V σ
i (h′) > V σ

i (h′′), equals 0
if the opposite inequality holds, and lies in [0, 1] if equality holds, where h′ is the
implementation history induced by acceptance, and h′′ the implementation history
induced by rejection.

4.2.2. Two Elementary Restrictions. To ease the exposition, we impose two simple
restrictions on equilibrium. First, equilibria might involve delay: a proposal could
be rejected on the equilibrium path. To be sure, it is natural for delays to arise
in bargaining with incomplete information.39 But in complete information models
such delays are more artificial, and stem from two possible sources. The first is
a typical folk-theorem-like reason in which history dependent strategies are boot-
strapped to generate inefficient outcomes, including equilibria with delay. More
subtly, equilibria may involve delay because an unacceptable proposal is made to
deliberately affect the identity of the rejector and subsequently the choice of the
next proposer. For examples, see Chatterjee et al. (1993) and Ray and Vohra
(1999). This will only happen for protocols that are sensitive to the identity of pre-
vious rejectors. In several models such as Rubinstein (1982) and random proposer
models as in Baron and Ferejohn (1989) and Okada (1996, 2006, 2011) this phe-
nomenon is impossible. Moreover, even in situations in which the protocol is sensi-
tive to past rejections, the literature provides reasonable conditions under which all
equilibria are no-delay equilibria; see in particular Chatterjee et al. (1993) and Ray

39For a recent example that attempts to get around the Coase conjecture in models of one-sided
incomplete information; see Abreu, Pearce and Stacchetti (2012).
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and Vohra (1999). Accordingly, in what follows we shall restrict ourselves to no-
delay equilibria, in which at each proposer history, a proposer makes an acceptable
proposal.

We will also restrict ourselves to equilibria which satisfy a minor additional restric-
tion, which we call “compliance”. Say that an individual is compliant if, whenever
she responds to a proposal, she takes an action that makes the proposer better off,
provided that this does not harm her in any way. The terms “better off” and “harm”
are defined with respect to equilibrium value functions, in just the same way as
equilibrium payoffs are. This refinement is of a lexicographic nature: it only ap-
plies when there is no danger to the payoff of the individual concerned. Alterna-
tively, one could just as easily think of compliance as an equilibrium refinement
rather than as a lexicographic restriction on individual preferences. Thus an equi-
librium strategy profile is compliant if for no individual and no history is there a
deviation by a responder which increases the payoffs of a proposer not decreasing
the responder’s payoff.

To the extent that we are aware, there is no serious departure from compliance in
any part of the literature, so we have no hesitation in imposing this requirement.

4.2.3. EPCF and Bargaining Equilibrium. In this Section, we link up bargaining
equilibrium (which will nest classical models of two-player noncooperative bar-
gaining but contain much more) with the general solution concept of this chapter,
that of an EPCF.

The central feature of such a connection is the link between an acceptable proposal
on the one hand, and the notion of a profitable and efficient move on the other.

PROPOSITION 8. Consider any bargaining game. Then the equilibrium processP σ

corresponding to any no delay, compliant bargaining equilibrium σ is an EPCF.

Proof. Pick any bargaining equilibrium σ. It generates a process P σ on all imple-
mentation histories. This is a PCF, once we identify every implementation history
with the notion of a “history” under the EPCF. Specifically, retain the list of all
active coalitions, partners, moves, and previous rejectors up to period t− 1.

Fix a history, as just identified, and consider the choice of any active (singleton)
coalition — the proposer — together with a set of potential partners, as dictated
by the protocol of the bargaining game. Consider the equilibrium proposal made.
Since, by the no-delay hypothesis each partner accepts the proposal, doing so must
yield a value that is at least as high as the value following a rejection. So it is
immediate that the proposal is profitable for all the partners concerned. We now
establish efficiency (and therefore profitability40). Suppose, on the contrary, that
there is an alternative profitable proposal that makes the proposer strictly better

40With a singleton proposer, verification of efficiency suffices to guarantee profitability for the
proposer.
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off (in terms of value under P σ). That proposal must involve at least one partner,
otherwise the proposer can unilaterally achieve his alternative, which is impossible
in equilibrium. Consider the equilibrium responses to this proposal in the order
given by the protocol, up to all the respondents or the first equilibrium rejection, if
any.41 By compliance, each respondent (working back recursively from this point)
will take the action that benefits the proposer, in case the respondent is indifferent
between the equilibrium action and some other. Therefore the alternative move
can be implemented by a proper deviation. This makes him better off relative to
the putative equilibrium, a contradiction.

4.3. Some Existing Models of Noncooperative Coalition Formation. In this
section, we describe some models of coalition formation, and embed these into
the real-time setup developed in the previous section. In most cases, these existing
models are not real-time theories, and the resulting embedding is perforce some-
what unnatural. That, to us, is a virtue: not only will we be able to describe the
positive and useful features of these models, but — to the extent that a real-time
description is called for in some situations — we will also be able to point out
potential inadequacies in the existing literature.

4.3.1. The Standard Bargaining Problem. Much of what we do relies on the solu-
tion to a standard bargaining problem, due to Ståhl (1977) and Rubinstein (1982).
In this section, we briefly recapitulate that problem. A group of n persons divide
a cake of size 1; there are no subcoalitions of any value, and there are no external-
ities. A protocol chooses a proposer in every round, and everyone else responds
sequentially to the proposal in some given order. If the proposal is rejected, a new
round begins. Future rounds are discounted by a common discount factor.

To cover both the uniform proposer protocol and the rejector-proposes protocols,
we consider a general protocol in which the first rejector of a proposal is chosen
to be the next proposer with probability µ ∈ [0, 1], and with probability 1 − µ,
another uncommitted agent is equiprobably chosen to be the new proposer.

As we will see, in the pure bargaining problem, the equilibrium will be one in
which the grand coalition forms immediately. Since there are no intervening states
before the end of the coalition formation process, there is no distinction between a
real-time model and one in which payoffs are received at the end of the process.

If n = 2, we have two-person bargaining. A remarkable property of this two-
person model is that subgame perfection fully pins down equilibrium payoffs. The
proposition that follows is well-known from Rubinstein (1982), though we write it
for a broader class of protocols:

41Our assumption of no-delay equilibrium does not rule out the possibility that a deviating pro-
posal must be accepted even if the responder is indifferent between doing and not doing so. This is
where compliance is used.
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PROPOSITION 9. There is a unique subgame perfect equilibrium payoff vector in
the two-person bargaining model.

Proof. Existence will be shown below; assume it for now and prove uniqueness.
Let M and m be the supremum and infimum equilibrium payoff to either player
as a responder, conditional on her rejecting the current offer but before the next
proposer has been decided.42 Then, because a proposer can always assure herself
an infimum of at least 1−M , and because a responder must be given at least m,

m ≥ δ[µ(1−M) + (1− µ)m],

where µ is the probability that a current rejector gets to propose next. That implies

(8) m ≥ δµ(1−M)

1− δ(1− µ)
.

But no proposer can obtain more than 1−m, so it is also true that

M ≤ δ[µ(1−m) + (1− µ)M ].

or

(9) M ≤ δµ(1−m)

1− δ(1− µ)
.

Combining (8) and (9), it is easy to see that

m ≥
δµ
(

1− δµ(1−m)
1−δ(1−µ)

)
1− δ(1− µ)

,

and simplifying this yields the inequality

(10) m ≥ δµ

1− δ(1− 2µ)
.

Following an analogous line of reasoning,

(11) M ≤ δµ

1− δ(1− 2µ)
.

and together (10) and (11) show that

(12) M = m =
δµ

1− δ(1− 2µ)
≡ m∗,

which establishes uniqueness.

Existence can now be shown by construction. Have each player accept an offer if it
yields her at least m∗ (defined in (12), and always make the proposal (1−m∗,m∗)
when it is her turn to propose. It is easy to verify that this strategy profile constitutes
a perfect equilibrium.

42When discount factors are not the same, these values vary across the players but the proof
follows exactly the same lines.
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This proposition and its accompanying proof reveal that the equilibrium involves
immediate agreement, with the proposer and the responder receiving

1− δ(1− µ)

1− δ(1− 2µ)
and

δµ

1− δ(1− 2µ)

respectively. It is worth noting that no matter how small µ is, as long as it is strictly
positive, the division of the cake must converge to an equal split as “bargaining
frictions” vanish; i.e., as δ converges to 1. It is true that the first individual to
propose may acquire a lot of power, especially if µ is small, but the value of that
added power becomes negligible provided both players are extremely patient.

To extend this analysis of the bargaining problem to n > 2 we restrict attention
to equilibria with stationary strategy profiles. It is easy to see that in equilibrium
each player must make an acceptable proposal to the grand coalition. Let mi be
the amount that i will accept as a responder, provided that all responders after her
in the response order are planning to accept that proposal.43

In equilibrium, (mi) must be built from an expectation about payoffs conditional
on rejection; these would be a probabilistic combination of i’s payoff as a proposer
(1 −

∑
j 6=imj) and as a responder (mi). Therefore, mi must solve the following

equation:

mi = δ{µ[1−
∑
j 6=i

mj ] + (1− µ)mi},

or

(1− δ)mi = δµ[1−
n∑
j=i

mj ],

which tells us that mi = m for all i, and

(13) m =
δµ

(1− δ) + δµn
.

This solution extends the two-person case and once again, convergence occurs to
equal division as bargaining frictions disappear, provided that µ > 0.

Unfortunately, the uniqueness result for two-person Rubinstein bargaining no longer
survives with three or more players if we allow for non-stationary equilibrium
strategies. The argument, due to Herrero (1985) and Shaked (see Sutton (1986))
can be generalized to the full class of protocols we consider here; see Ray (2007)
for details).

Moreover, when we consider more general coalitional games next, the protocol has
an important bearing on the actual equilibrium payoffs; see Example 12 below.

43It is unnecessary to describe here what happens if a later responder is planning to reject, as such
a proposal will be rejected anyway and that is all that matters for our argument.
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4.3.2. Coalitional Bargaining With Irreversible Agreements. In this section, we
study a model of coalitional bargaining in which an agreement once made is ir-
reversible. The protocol is therefore restricted so that no agent who has made a
deliberate decision to join a coalition can participate in future negotiations.44 This
is indeed the framework for most of the bargaining literature that we have already
cited. The real time model developed in Section 4.2, which in turn is a special case
of EPCF, can be further simplified to set up a canonical example of irreversible
coalitional bargaining with externalities. On still further specialization, the latter
yields the bulk of the models used in the literature.

Recall that a proposal refers to a division of the worth of a coalition among its
members. In a characteristic function game, for coalition S this is simply a point
in V (S). But in a partition function, the worth of a coalition will vary with the
going coalition structure. Therefore a proposal must consist of a set of conditional
statements that describe a proposed division of coalitional worth for every con-
tingency; i.e., for every conceivable coalition structure that finally forms. More
precisely, a proposal is a pair (S,v), where v is a collection of allocations {v(π)},
one for each partition π that contains S, feasible in the sense that for every coalition
S in π,

vS(π) ∈ V (S, π).

We adopt the general version of the protocol in which the first rejector of a proposal
becomes the next proposer with probability µ.

Strategies and equilibrium are exactly as defined in the general model.

The literature we will be describing in this Section concerns bargaining with pay-
offs assigned only after all coalitions have formed. However, it is easy enough to
describe a general procedure for embedding such models into our real-time frame-
work. The first step is to specify a way of assigning payoffs to the players each
time a coalition gets formed (leading to a new state). We do this by presuming that
at date 0 all agents are free and the initial coalition structure is one of singletons.45

From then on, payoffs are received in every period in a perfectly well-defined fash-
ion. For individuals i who have yet to form a coalition or have deliberately decided
to stand alone, they are given by V ({i}, πt) at date t, where πt is the coalition
structure prevailing at that date. For individuals i who are part of some coalition S,
they are given by v(πt) at date t, which comes from the agreement v that members
of S have entered into at some earlier date.

Next, we need to show that an equilibrium of a standard bargaining game, say σ,
is a also an equilibrium in the real-time framework with payoffs being defined at
each step that a new coalition forms. We know that no player has a deviation that

44That includes agents who have deliberately made the decision to stand on their own.
45In the irreversible agreements model, this assumption is without any serious loss of generality,

especially if we assume that already-formed coalitions at the start of the game have made their
agreements to begin with.



52

can result in higher payoff after all coalitions have formed. So the only possibility
of a profitable deviation must come from capturing some gains before the coali-
tion formation process comes to an end. If the long-run payoff to the deviating
player is lower, then for δ close to one, the transitory payoffs cannot make up for
the long-run loss. The only possibility that remains for a profitable deviation is
that it reaps some transitory gains but eventually results in the same payoff as σ.
Moreover, because agreements are irreversible, any such deviation must result in a
final coalition structure different from the one under σ. But this can be ruled out
by a mild genericity assumption that a different coalition structure cannot yield the
deviating player exactly the same payoff as the equilibrium payoff. In many mod-
els, the equilibrium payoff to a player is closely related to the average worth of her
coalition, and this genericity assumption can be then be imposed directly on the
partition function. Notice that this genericity argument is very similar to the one
we employed in Proposition 7 to connect the static notion of an EBA to an EPCF.

It is well known that the perfect equilibria of such a model can generate a huge
multiplicity of outcomes. We already know, in fact, that the n-person bargaining
game is prey to multiplicity when n ≥ 3, and that game is a special case of the
irreversible agreements model described here. In what follows, then, we retreat to
the use of stationary Markovian strategies. They depend on a small set of state
variables, and do so in a way that’s insensitive to the passage of calendar time. The
current proposal or response (while permitted to be probabilistic in nature) is not
permitted to depend on “past history”. Of course, it must be allowed to depend on
the current set of free players, on the coalition structure that is currently in place
and — in the case of a response — on the going proposal; after all, these are all
payoff-relevant objects.46

Note that under our initial condition, the coalition structure must steadily coarsen
(or remain unchanged) as time wears on. Thus payoffs are received in real time, and
they must finally settle down to a limit value for all concerned. We have therefore
successfully, and at little cost, embedded an irreversible agreements model into the
real-time setting of a PCF.

The existence of a stationary equilibrium (possibly with randomization) can be
proved along the lines of Ray and Vohra (1999) and Okada (2011).

It is instructive to see how the protocol affects the equilibrium payoffs. We illus-
trate this with a simple three-player characteristic function.

EXAMPLE 11. (N, v) is a TU-characteristic function withN = {1, 2, 3}, v(i) = 0
for all i, v(S) = 1 for every non-singleton S.

If the protocol chooses the first rejector to become the next proposer (µ = 1), it
is easy to see that in any stationary equilibrium the first proposer offers δ/1 + δ

46We will also permit proposers to condition their new proposals on the identity of the last rejector
(in the current round of negotiations), and for respondents to condition their responses on the identity
of the proposer.



53

to one of other player and obtains 1/1 + δ. The equilibrium payoffs are therefore
exactly as in Rubinstein bargaining with two players; as δ approaches 1, the two
players share the aggregate surplus approximately equally. If, however, a proposer
is chosen with equal probability (µ = 1/3), regardless of any previous rejection,
again a two-player coalition forms in equilibrium. However, the surplus is not
shared equally between the two players who form the ‘winning’ coalition. The
proposer offers δ/3 to one of the other players and any such offer is accepted. For
δ approaching 1, the proposer receives approximately 2/3 and the other player in
the winning coalition receives approximately 1/3. This conforms, of course, to the
Baron and Ferejohn (1989) characterization of equilibrium with majority voting.

We will have more to say about the efficiency of equilibrium outcomes in Section
5.

4.3.3. Equilibrium Coalition Structure. The central question of interest is the pre-
diction of equilibrium coalition structure. As the reader might imagine, this is an
ambitious and complex undertaking, especially in an ambient environment which
allows for a variety of strategic situations and alternative protocols. While we
do not have a comprehensive understanding of this problem and highlight it as a
fundamental open problem, it is possible to make progress in specific cases. We
outline some available results.47

In what follows we consider only TU partition functions though the analysis ex-
tends to certain nontransferable payoffs under some restrictions.48

We begin with an additional restriction, which is that the (TU) partition function is
symmetric. Such a function has the property that the worth of a coalition depends
only on its size and the ambient numerical coalition structure it is embedded in;
namely, the collection of coalition sizes in the coalition structure. Use the notation
n to refer to both numerical coalition structures and substructures, the latter being
collections of positive integers (including the “null collection” φ) that add up to any
number strictly less than the total number of players. In the sequel, a substructure
is to be interpreted as a collection of coalitions that has “already formed” in a
subgame. Define the size of a substructure to be the number of all players in it; that
is, the sum of coalition sizes in the substructure.

With some abuse of notation, then, v(T, π) may be written as v(t,n), where t is
the size of coalition T and n is the numerical coalition structure corresponding to
π. Define the average worth of t in n by

a(t,n) ≡ v(t,n)

t
.

We may interpret this number as the average worth of any coalition of size T em-
bedded in a coalition structure π with associated numerical structure n. In what

47More detail on the discussion that follows can found in Ray (2007).
48Specifically, we can extend results to symmetric, convex sets of payoffs to each coalition.
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follows, we impose for expository convenience the genericity condition

(14) a(t,n) 6= a(s,n′) for all t 6= s.

We now present an algorithm that calculates a particular coalition structure. Specif-
ically, for each substructure n with size less than n, the algorithm assigns a positive
integer t(n), to be interpreted in the sequel as the size of the coalition that forms
next. By applying this rule repeatedly starting from the “null structure” with no
coalitions, we will generate a particular numerical coalition structure.

STEP 1. For all n of size n− 1, define t(n) ≡ 1.

STEP 2. Suppose that t(n) is defined for all substructures n of size greater than m,
for some m ≥ 0. For all such n, define

c(n) ≡ n.t(n).t(n.t(n)) . . . ,

where the notation n.t1. . . . tk simply refers to the numerical coalition structure
obtained by concatenating n with the integers t1, . . . , tk.

STEP 3. For any n of size m, let t(n) be the integer in {1, . . . , n − m} that
maximizes the expression a(t, c(n.t)).

STEP 4. Once the recursive definition is completed for all structures including the
null substructure φ, define a numerical coalition structure (by

n∗ ≡ c(φ).

This completes the description of the algorithm. Its connection to equilibria is strik-
ing and direct under the rejector-proposes protocol, through the links are wider-
reaching as we shall see subsequently:

PROPOSITION 10. Assume the rejector-proposes protocol (that is, µ = 1 in our
class of protocols). Then under the genericity condition on average worths, there
exists δ∗ ∈ (0, 1) such that if δ ∈ (δ∗, 1), every no-delay equilibrium must yield n∗

as the numerical coalition structure.

We omit the proof, but it is easy to construct one along the lines of Ray and Vohra
(1999). The main argument is based on the following steps. To begin with, when
the partition function is symmetric and the rejector gets to propose with probabil-
ity one, every compatriot to whom an individual makes offers has the same options
conditional on refusal as the proposer currently does. It follows that when the
discount factor is close to 1, the same argument used to show equal division in Ru-
binstein bargaining applies, and any formed coalition must exhibit (roughly) equal
division of their worth. It follows from an inductive argument that at every stage
with a substructure already formed, it pays to form a coalition that maximizes “pre-
dicted” average worth, the qualifier “predicted” coming from the fact that “final”
average worths are not fully defined until the coalition structure has fully formed.
(That is where the induction is used.) That leaves a small item to be verified. Even
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though coalition formation is occurring in real time and these final payoffs won’t
be received until every equilibrium coalition has formed, this does not worry the
early-forming coalitions provided that they are sufficiently patient, a requirement
that will be picked up by the construction of the threshold δ∗. The real-time struc-
ture is of little importance in a model with irreversible agreements (our genericity
condition (14) helps to substantially simplify matters here).

It should be noted that the proposition does not assert that an equilibrium imple-
menting n∗ actually exists. Sometimes it may not (see Ray and Vohra (1999)), but
these cases are easily ruled out by a mild restriction on average worths. Define
algorithmic average worth â(n) to be the maximized average worth a(t, c(n.t))
achieved by choosing t at any stage of the algorithm (indexed by the substructure
n). Say that algorithmic average worth is nonincreasing (or that the partition func-
tion satisfies NAW, for “nonincreasing average worth”) if â(n) ≥ â(n.t(n)) for
every substructure n such that n.t(n) has size smaller than n.

NAW has bite only for partition functions. For all characteristic functions, in which
the worth of a coalition depends only on the coalition itself, NAW must be trivially
satisfied.49 Whether or not NAW applies more generally (i.e., when externalities
are present) is a less transparent question, and the answer will largely depend on
the application at hand. But we haven’t come across an interesting economic or
political application where NAW isn’t satisfied. Both the Cournot oligopoly and
the public goods model satisfy NAW. It is also important to note that in both cases
the algorithm yields an equilibrium coalition structure which is typically not the
grand coalition, resulting in inefficient outcomes.

Now we apply NAW by showing that in its presence, n∗ is achieved under a vari-
ety of protocols. Recall that in our class of protocols, a rejector counterproposes
with probability µ, while another uncommitted player is chosen uniformly other-
wise. Say that a protocol from this class is rejector-friendly if the rejector gets to
counterpropose with better than even probability: µ > 1/2. Of course, the familiar
rejector-proposes protocol is a special case.

PROPOSITION 11. Under NAW and genericity, there is a discount factor δ∗ ∈
(0, 1) such that if δ ∈ (δ∗, 1), there exists an equilibrium that yields the numerical
coalition structure n∗.

We note once again that n∗ is singled out, because the equilibrium behavior we
identify is connected closely to equal division of the available worth as bargaining
frictions go to zero. For a more nuanced discussion of related issues and some
qualifications, see Ray and Vohra (1999) and Ray (2007).

49The reason is simple. Our algorithm involves the stepwise maximization of average worth, set-
ting each maximizing coalition aside as the algorithm proceeds. If there are no externalities across
coalitions, such a process must result in a sequence of (maximal) average worths that can never in-
crease; for if they did, such coalitions would have been chosen earlier in the algorithm, not later.
This simple observation also assures us that NAW does not demand restrictions such as superaddi-
tivity: all (symmetric) characteristic functions satisfy it.
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An uncomfortably familiar feature of bargaining models is that their predictions are
often sensitive to the finer points of procedure — to the protocol, in the language
of this chapter. This is why we are taking care to present results that cover a broad
class of protocols. One might worry, though, that the class isn’t broad enough.
For instance, the two propositions in this sections have been stated for the class
of rejector-friendly protocols, procedures in which the rejector has quite a bit of
power. One can show, however (see Ray 2007) that Proposition 11 can be extended
to all the protocols we consider, provided that the rejector always has a strictly
positive probability of making the next proposal, and can also unilaterally exit
with no time delay. The condition that is needed is a strengthening of NAW to one
in which average worth strictly declines along the path of the algorithm;50 see Ray
(2007, p.64, Proposition 5.3). It is also possible to provide additional restrictions on
algorithmic average with that guarantee that n∗ is the unique equilibrium structure
under the rejector-proposes protocol (see Ray and Vohra (1999), Theorem 3.4). As
shown in Ray and Vohra (1991, 2001), both the Cournot oligopoly and the public
goods model satisfy this addition conditional for uniqueness. Thus n∗ appears to
be a focal prediction.

We end our discussion of the symmetric case by returning to a remark made at
the start of this section: that it is possible to incorporate nontransferable utility.
Suppose that we retain all the symmetry assumptions, but replace the TU worth
v(S, π) by some symmetric set of payoffs V (S, π). Nothing of substance will
change as long as we are willing to assume that each such set is convex. It is easy
to obtain an intuition of why the same arguments go through. Average worth will
now need to be replaced by the symmetric utility obtained “along the diagonal” for
each V (S, π), and the same algorithm may be written down with average worth
replaced by this symmetric utility.51

4.4. Reversibility. So far, we have assumed that a commitment to form a coali-
tion, once made, cannot be undone. In many situations this isn’t a bad assumption.
But there are, of course, numerous scenarios in which agreements may be reversed
freely (or at little cost). A free-trade area or customs union may initially exclude
certain countries and later incorporate them. While two firms might merge, a multi-
product firm may also spin off divisions into sub-firms. Political coalitions may
form and reform.

Reversibility comes in two flavors. An agreement may be viewed as indefinitely
in place, unless signatories to that agreement voluntarily agree to dissolve it. We
will call this the case of renegotiable agreements. Or an existing agreement may

50That is, a(n) > a(n.t(n)) for every substructure n such that n.t(n) has size smaller than n.
51Convexity is needed. There is no guarantee otherwise that “equal division” will be followed

within all coalitions, and our techniques cease to apply.
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simply come with an expiry date, after which new options can be freely explored.
One might call this case of temporary agreements.52

What is the role played by a renegotiable commitment? Why would a commitment
to form a group first be made, then reversed? Why not simply eschew the making
of that commitment in the first place? As a concrete instance, consider the public
goods model with three players. Assume that an initial proposer is drawn randomly,
that proposals must be universally acceptable to the players involved, and that the
first rejector of a going proposal gets to make a new proposal. If group formation is
irreversible, it is easy to see that there is only one (numerical) equilibrium structure.
Player i stands alone, and players j and k band together; see Example 14 below for
details. The outcome is inefficient.

Now suppose that new proposals can always be made. Then there are two possi-
bilities, both leading to an efficient outcome. First, if a player moves off on her
own, the other two players disband as well, incurring a temporary loss of payoff
but thereby getting into position to enforce a symmetric, efficient outcome with the
all three players coming together. If this path indeed constitutes credible play, then
no player will move off in the first place, and the outcome is efficient to begin with.

(Observe that this isn’t even a possibility if commitments are irreversible. Once
player i moves off, there is no bringing her back, so players j and k will never
disband.)

The second possibility concerns a situation in which once player i moves off, play-
ers j and k do not find it worthwhile to disband. For instance, this could happen
if player i can make a commitment which is irreversible for some length of time,
a situation which can be readily modeled by lowering the discount factor of all
players. In this case the outcome will still be efficient, but the path to efficiency
as well as the final outcome will look very different. Some player i must initially
move off. Thereafter, players j and k must cajole her back to the grand coalition
with an offer that gives her more than what she gets in the structure {i, jk}. So
we are ultimately at an efficient outcome, one that is “skewed” in favor of the in-
dividual who was lucky enough to be the first to make a commitment. Notice that
the commitment must have been made for her to take advantage of it, and so the
equilibrium path involves a transitory phase of inefficiency, followed by a Pareto-
superior outcome.

This example may be easily modified to take account of temporary agreements. For
instance, suppose that the signatories to the agreement to bring player i back into
the fold cannot commit to honor this agreement in the future. If — in that future —
some other player j were to unilaterally desert the agreement and take up the same
stance as player i did, then there may be little in the situation to induce player i to

52To be sure, agreements may be both temporary and renegotiable (within the period for which
the agreement is in place), but here we only look at the two features separately.



58

take up the conciliatory offer in the first place. That could result in a permanent
failure to achieve an efficient outcome, a theme that we return to in Section 5.

Both renegotiable and temporary agreements (and several other variants) can be
defined using the effectivity correspondence. Suppose that a pair x = (π, u) repre-
sents a going state, embodying certain agreements, and a move is contemplated to
a new state y = (π′, u′), in which one or more of those agreements are disrupted.
When agreements are renegotiable, we would like to describe the coalitions that are
effective in moving the state from x to y. First, if a player’s coalitional membership
is affected as a consequence of a proposed move, the move must be disrupting some
previous agreement to which that player was a signatory. That player must be in-
cluded in any group that is effective for the proposed move. Second, the proposed
move might affect the (ongoing) payoff to a particular agent, without altering her
coalitional membership. Must consent be sought from that agent? The situation
here is more subtle. It may be that the payoff is affected because a fellow-member
of a coalition wishes to reallocate the worth of that coalition. In that case — given
that the existing allocation is in force — it is only reasonable that our agent be
on the approval committee for the move. On the other hand, our agent’s payoff
may be affected because of a coalitional change elsewhere in the system, which
then affects our agent’s coalition via an externality. Our agent is “affected”, but
need not be on the approval committee because she wasn’t part of the agreement
“elsewhere” in the first place.53

More formally, for any move from x to y, let M(x, y) denote the set of individuals
whose coalitional membership is altered by the move, and W (x, y) the set of indi-
viduals j whose one-period payoffs are altered by the move: uj(x) 6= uj(y). Say
that agreements are binding but renegotiable if the following restrictions are met:

[B.1] For every state x and proposed move y, M(x, y) ⊆ S whenever S ∈ E(x, y).

[B.2] Suppose that T ∩W (x, y) is nonempty for some existing coalition T . Then
if the proposed move involves no change in coalition structure, or if payoffs are
described by a characteristic function, T ∩W (x, y) ⊆ S whenever S ∈ E(x, y).

[B.1] is obvious. To understand [B.2], note that the payoffs in coalition T have
been affected. But if there has been no change in the coalition structure, or if
the situation is describable by a characteristic function to begin with, how could
that happen? It can only happen if there is a deliberate reallocation within that
coalition, and then [B.2] demands that all individuals affected by that reallocation
must approve it. It is in this sense that [B.1] and [B.2] together formalize the notion
of binding yet renegotiable agreements.

Restrictions such as [B.1] and [B.2] placed on the effectivity correspondence per-
mit us to explore all sorts of other variants. For instance, a theory of “temporary

53Notice that we wouldn’t insist that our player should not be on that approval committee; it’s
just that our definition is silent on the matter.
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agreements” can characterized as follows: a coalition that’s effective for moving
x to y must contain all members of at least m − 1 of the m new coalitions that
form, and the coalition not included must be a subset of an erstwhile coalition.54

As a second variant, allow a coalition to break up or change if some given frac-
tion (say a majority) of the members in that coalition permit that change. Some
political voting games or legislative bargaining would come under this category.
Now any effective coalition must consist of at least a majority from every coalition
affected by the move from one state to another. In the reverse direction, [B.1] and
[B.2] could be further strengthened: for instance, one might require that a coalition
once formed can never break up again. This would lead us back to the model with
irreversible commitments.

We return to the efficiency properties of models with reversible agreements in Sec-
tion 5 below.

5. THE WELFARE ECONOMICS OF COALITION FORMATION

A central question in the theory of coalition formation has to do with the attain-
ment of efficiency. The Coaseian idea that efficiency is inevitable in the absence
of informational frictions and full contracting is deeply ingrained in the econom-
ics literature. Indeed, if there are no restrictions on contracting, the fundamental
impediments to efficiency are generally seen as arising from adverse selection or
moral hazard, these stemming from deeper asymmetries of information. That in-
centive compatibility constraints may rule out first-best efficiency is, of course,
well understood, and points to the importance of second-best efficiency, as in the
notion of incentive efficiency of Holmström and Myerson (1984).55 First-best ef-
ficiency can sometimes be restored by cleverly designing mechanisms, or rules of
the game, that align individual incentives with the social goal of efficiency.56 In our
complete information framework, of course, these complications do not arise; it is
trivial to design an efficient mechanism. On the other hand, by granting agents full
freedom to form coalitions of their choice we implicitly rule out certain kinds of
mechanisms. In effect, every coalition is permitted to adopt an efficient mechanism
of its own.57

As we shall seek to explain in this Section, there are many situations in which the
very possibility that groups can form serves as an impediment to efficiency. It isn’t

54It is to be interpreted as a “residual” left by the other “perpetrating coalitions”.
55For cooperative theory, though, the problem runs even deeper. Restricting all coalitions to

incentive compatible contracts does not necessarily yield core stability. Even in otherwise classical
environments without externalities, such as exchange economies, the incentive compatible core may
be empty; see for example, Vohra (1999) and Forges, Mertens and Vohra (2002). For reviews of this
literature we refer the reader to Forges, Minelli and Vohra (2002) and Forges and Serrano (2013).

56See, for example, Palfrey (2002) for a review of the implementation literature.
57Recall the discussion in Section 4.1.1. See also Ray and Vohra (2001) for further elaboration

on this point in the context of the free-riding problem.
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a question of incomplete information, though of course there must be some limits
to contracting. But what are these limits, and how precisely do these manifest
themselves?

5.1. Two Sources of Inefficiency. There are actually two sources of inefficiency
that we seek to make explicit in this Section. The first can cause inefficiency even
when there are no externalities across coalitions. The second is fundamental to
situations with inter-coalitional externalities, those typically captured by partition
functions. The heart of the first inefficiency is that the “correct” coalition is often
not formed, because the active set of players responsible for forming the group
seeks to maximize its own payoff (or more accurately, to find a maximal payoff
vector for itself), but in doing so it will generally need to enlist partners who have
to be suitably compensated. The nature and amount of that compensation depends
crucially on the protocol that governs the process of coalition formation. At the
heart of the second inefficiency is a more classical concept: that of externalities.
In a typical coalition formation problem, the two effects are often intertwined, but
it is instructive to see them separately. We shall begin this discussion by assuming
that agreements are irreversible.

EXAMPLE 12. Consider a three-player TU characteristic function with v(123) =
1 + ε, where ε ∈ (0, 0.5), v(ij) = 1 for all i, j, and v(i) = 0 for all i.

While efficiency requires that the grand coalition be formed, as is well know, the
blocking approach does not yield this an equilibrium outcome. This is not a bal-
anced game and its core is empty; for any division of v(N) among the three play-
ers there is a two-player coalition with an objection. If only internal objections are
permitted, the coarsest coalition structure that is an EBA consists of a two-player
coalition and a singleton. One way to explain why no player will try to form the
grand coalition and capture the additional ε is that this is too small relative to the
power of any one player to prevent the other two from forming a two-person coali-
tion of their own. Presumably, efficiency could be restored if ε is high enough (at
least 0.5), or if some player were given more power. To examine the latter pos-
sibility, suppose coalitions form as follows: a person is chosen at random to be
the “ringleader”, and she chooses any coalition she pleases. Once the coalition
forms, a fraction k of its worth must be equally divided among the members. The
ringleader gets to keep the rest. At one extreme, k = 1 and all worths must be
equally divided, a case emphasized by Farrell and Scotchmer (1988) and Bloch
(1996). At the other extreme, k = 0 and the ringleader is a perfect dictator.

It is easy to see in this example that efficiency obtains if and only if k is below a
certain threshold k∗, given by

k∗ =
6ε

1 + 4ε
< 1.

The intuition is straightforward. When k is small, the ringleader picks up almost
the entire worth and will therefore seek to maximize coalitional worth. The division
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of payoffs may be distasteful, but the outcome is efficient in the Pareto sense. On
the other hand, when k exceeds the threshold k∗, the amount that the ringleader
has to share with her chosen compatriots becomes an obstacle to efficiency. It is
easy to see that in the equal division limit with k = 1, the ringleader will seek to
maximize average worth, which results in a two-player coalition being formed.

To see how the presence of externalities creates a distinct source of inefficiency,
we consider a partition function version of the ringleader example.

EXAMPLE 13. There are six players in a symmetric TU partition function game.
The only (numerical) coalition structures that matter (all others result in 0 to each
player) are π(a) = (3, 3), π(b) = (3, 2, 1) and π(c) = (2, 2, 1, 1), corresponding
to three kinds of states, described as follows.

a : π(a) = (3, 3), v(3, π(a)) = 4
b : π(b) = (3, 2, 1), v(3, π(b)) = 2, v(2, π(b)) = 5, v(1, π(b)) = 0.5
c : π(c) = (2, 2, 1, 1), v(2, π(c)) = 3, v(1, π(c)) = 0.5

Suppose the player with the lowest index in any coalition is the ringleader who
can capture the entire worth of the coalition (k = 0). Although (3, 3) is the only
efficient coalition structure, it is not an ‘equilibrium’. If a three-person coalition
were to form, the next ringleader will form a two-player coalition rather than three.
But this results in the first ringleader receiving only 2. The equilibrium strategy for
the first ringleader will therefore be to form a two-player coalition, which leads to
state c, an inefficient outcome.

In summary, we have shown two things so far. First, the ability to internalize the
marginal gains from coalition formation is crucial to the formation of the “right”
coalitions. Second, when there are externalities, even that may not be enough.
We proceed now to examine a variety of models of coalition formation and their
associated implications for efficiency.

5.2. Irreversible Agreements and Efficiency. We begin by studying irreversible
agreements, and we draw on both the bargaining and blocking approaches as needed.
We address both sources of inefficiency. For the first, it suffices to study character-
istic functions.

We have already seen that the stationary equilibria of any reasonable bargaining
game will impose some restrictions on how far the payoff to the proposer can di-
verge from the average worth of the coalition she seeks to form.58 If this divergence
is small enough (effectively giving very little extra power to the ‘ringleader’ of Ex-
ample 12), the first coalition to form in equilibrium will be the one which maxi-
mizes average worth among all coalitions. (In Example 12, a two-player coalition

58Implicitly, the blocking approach also imposes similar restrictions.
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will form.) Indeed, as we saw in Section 4.3.3, for a wide variety of protocols the
unique equilibrium coalition structure in symmetric games is given by an applica-
tion of the algorithm that recursively maximizes average worth. In Example 12 we
can say more. For any general protocol in which µ, the probability of the first re-
jector being the next proposer, is greater than ε there is a unique equilibrium which
results in the formation of a two-player coalition;59 see Ray (2007), page 143 for
details.

As the next proposition shows, inefficiency is even more pervasive than this sim-
ple example would suggest. The formation of the grand coalition in equilibrium
implies that no other coalition has higher average worth, a condition that may not
hold even in a balanced (but non-symmetric) game.

PROPOSITION 12. Suppose (N,V ) is a characteristic function game and the first
rejector of a proposal is chosen to be the next proposer with probability µ ∈ (0, 1].
If, for all discount factors sufficiently close to one, there is an equilibrium in which
grand coalition forms immediately, regardless of the identity of the first proposer,
then v(N)

|N | ≥
v(S)
|S| for all S ⊆ N .

Proof. Suppose in equilibrium each proposer makes an acceptable proposal to the
grand coalition. This must mean that the proposer cannot do better by making
an acceptable proposal to a subcoalition of N . Letting mi denote the minimum
amount that i will accept from a proposer, provided all remaining responders plan
to accept, this implies

(15) v(N)−
∑

j∈N,j 6=i
mj ≥ v(S)−

∑
j∈S,j 6=i

mj , for all S ⊆ N.

Since the grand coalition forms immediately in equilibrium, regardless of the proper’s
identity, we can apply the same argument used in Section 4.3.1 to show that mi =
m for all i, where

m =
µv(N)

(1− δ) + δµ|N |
,

and rewrite (15) as:

v(N)− (|N | − 1)m ≥ v(S)− (|S| − 1)m,

or
v(N)− (|N | − |S|)m ≥ v(S).

59The division of the surplus between the proposer and her partner will, however, depend on
the precise form of the protocol. In the rejector-proses protocol the proposer receives a little more
than 1/2 whereas in the random proposer protocol she receives a little more than 2/3, exactly as in
Example 11. The difference, of course, is that in the present example the equilibrium outcome is
inefficient.
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Substitutiing for m, this is equivalent to

v(N)
(1− δ) + δµ|S|
(1− δ) + δµ|N |

≥ v(S),

or
v(N)

(1− δ) + δµ|N |
≥ v(S)

(1− δ) + δµ|S|
.

As δ converges to 1, this yields v(N)
|N | ≥

v(S)
|S| .

Thus, if agreements are irreversible, inefficiency cannot be ruled out even in simple
characteristic function games for any reasonable bargaining process that doesn’t
artificially restrict the coalitions that can form.60 61 A converse of Proposition
12 holds for the rejector-proposer protocol (Chatterjee et al. (1993)) as well as
the random proposer protocol (Okada (1996, 2011)). Since we are focusing on
inefficiency, we refrain from trying to establish the converse for the more general
protocol, but settling this remains an interesting open question.

We now turn to the question of externalities across coalitions. As we observed in
the Section 4.3.3, both the Cournot oligopoly and the public goods model typically
yield inefficient equilibria. To explain the nature of the problem we consider a
simple three-player special case of the public goods model. The highest social
surplus requires full cooperation, and the complete breakdown of cooperation, with
each player acting as a singleton, is the worst outcome. However, it is highly
profitable for a single player to break away from the grand coalition if the other
two stay together. In this example, unlike the three-player Cournot oligopoly of
Example 5, the coalition of two players would be worse off at the Nash outcome
and so the expectation that the remaining two players will indeed stay together
seems reasonable.

60Bargaining games that implement the Shapley value deliver efficiency a fortiori, but they do
not allow a proposal to be made to any coalition of the proposer’s choosing. For example, Hart and
Mas-Colell (1996) require proposals to be made to the full set of available players, and Gul (1989)
considers a process of pairwise meetings in which one player buys out the other’s resources and
continues to bargaining with the remaining players. In this respect Gul’s model is similar in spirit
to the models of renegotiation such as Okada (2000) and Seidmann and Winter (1998) in which
coalitions form gradually.

61Xue and Zhang (2011) suggest another modification of the bargaining model to establish the ex-
istence of an efficient equilibrium for a partition function game with irreversible agreements. In their
model, the choice of an individual proposer through a protocol is replaced by a bidding mechanism
as in Perez-Castrillo and Wettstein (2002). All players bid simultaneously on each of the feasible
moves from a given state, with the ‘winning move’ being one that attracts the maximum aggregate
bid. In particular, player i has an influence on the move, even if the move involves a change in the
coalition structure that leaves i’s coalition unchanged. As they show, there is at least one stationary
equilibrium in which this turns out to be sufficient to internalize the gains from forming the ‘correct’
coalition structure.
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EXAMPLE 14 (Public goods revisited). The three-player partition function is de-
fined as follows.

xN : πN = {123}, u(xN ) = (12, 12, 12)
x1 : π1 = {1, 23}, u(x1) = (16, 7, 7)
x2 : π2 = {2, 13}, u(x2) = (7, 16, 7)
x3 : π3 = {12, 3}, u(x3) = (7, 7, 16)
x0 : π0 = {1, 2, 3}, u(x0) = (6, 6, 6)

The effectivity relations for a three-player hedonic game are as follows. For inter-
nal blocking, where i 6= j 6= k:

πN →i πi, πN →jk πi, πi →j π0.

When external blocking is permitted we also have:

π0 →N πN , π0 →jk πi.

With internal blocking it is easy to see that each πi is an EBA since none of the two
players in the larger coalition would gain by precipitating π0. In fact, these are the
coarsest coalition structures corresponding to EBA. The grand coalition is not an
EBA because player i gains by moving to πi and taking a ‘free-ride’.62 Of course,
this conclusion depends critically on the restriction to internal blocking. Indeed,
with internal blocking the absorbing states of an EPCF yield precisely the same set
of outcomes (Proposition 7). Which player is able to gain the free-riding advantage
starting from the grand coalition depends on the protocol: the first player given an
opportunity to move will decide to stand alone. It is natural now to ask how this
may change if we depart from the assumption of internal blocking.

Consider the notion of farsighted blocking as embodied in the notion of EEBA
introduced by Diamantoudi and Xue (2007). Recall that this is the set of farsighted
stable sets in the present context. It is not difficult to see that in Example 14 πN
is an EEBA. Since it is a singleton set it obviously satisfies internal stability. All
other coalition structures have farsighted objections culminating in πN : π0 →N

πN and πi →j π0 →N πN . Each πi also constitutes an EEBA. Clearly, πN →i πi
and π0 →N πN →i πi. Moreover, for j 6= i, πj →i π0 →N πN →i πi. Note that
in the last step the (optimistic) presumption is that player iwill have the opportunity
to move from πN to πi. In our dynamic model this presumption will be justified
only if the protocol selects player i to be the first potential mover from πN .

The observation in Example 14, that (strong) efficiency can be supported through
EEBA even when it’s not possible to do so through EBA, can be extended to a
class of hedonic partition function games in which πN dominates π0 and every

62In this simple example each πi is Pareto efficient but not strongly Pareto efficient in the sense
that the aggregate payoff to all three players is higher in the grand coalition. If transfers are possible,
then only the grand coalition is efficient and it can be shown (Ray and Vohra (1997)) that the coarsest
EBAs correspond to the intermediate coalition structures, which are inefficient.
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other coalition structure π contains a player in a non-singleton coalition for whom
πN dominates π.

PROPOSITION 13. (Diamantoudi and Xue (2007)). Suppose πN is a Pareto effi-
cient coalition and Pareto dominates π0. Then πN is an EEBA if for all π 6= πN
and π 6= π0 there is a coalition S ∈ π such that |S| ≥ 2 and ui(πN ) > ui(π) for
some i ∈ S.

This is an important positive result because its assumptions are satisfied in sym-
metric games with positive externalities, e.g. pure public goods economies and the
Cournot oligopoly. Thus, efficiency can be restored in such games if we remove
the restriction to internal blocking and adopt EEBA as the equilibrium concept. As
Diamantoudi and Xue (2007) show, if the assumptions of Proposition 13 are not
satisfied all EEBAs may be inefficient.

The intuition for Proposition 13 should be clear from our discussion of Example 14.
If πN Pareto dominates π0 a coalition seeking to reach πN only needs to engineer
a chain of moves that lead to π0 as the penultimate step in a far-sighted objection
terminating in πN . This argument relies of course on an optimistic view of the
world which, as we saw in Example 8, can be problematic. Moreover, matters
can be more complicated if we properly take account of payoffs on the path to
equilibrium. This will be become clear from our continued discussion of Example
14 in the next Section.

5.3. Reversible Agreements and Efficiency. Agreements may be reversible ei-
ther because they are temporary or because they can, in principle, be renegotiated.
We consider each of these cases in turn.

5.3.1. Temporary Agreements. Suppose are agreements are only valid for one pe-
riod of time (assuming them to last for some other fixed period of time would
make no difference to the analysis). We shall illustrate the efficiency issue by re-
examining Example 14 through our dynamic model. In doing so we assume that
the protocol has the form described in Section 3.6. In particular, at each state a
coalition is given at most one chance to make a move. For simplicity we also as-
sume that when the state is πN each of the singletons who have not yet been given
a chance to move are chosen with equal probability. Also assume that at state π0
the first coalition chosen to make a potential move is N .

For δ sufficiently high, there does exist an EPCF with πN as the unique absorbing
state. This EPCF has the grand coalition moving from π0 to πN and a player j 6= i
moving from πi to π0. The grand coalition represents an absorbing state because
the only coalition that could possible gain by moving away from this is state is a
singleton, say i, hoping to obtain 16 by moving to πi. However, this is immediately
followed by a payoff of 6 and then a return to 12 forever. For δ > 2/3 this is not
profitable since 12 + δ12 > 16 + δ6. In fact, it can be shown that πN is the only
possible absorbing state for any EPCF in this example. In particular, πi cannot be
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an absorbing state. Suppose it is. This means of course that π0 is not an absorbing
state because jk would then have a profitable move to the absorbing state πi. Nor
can πN be an absorbing state because then jk has an efficient and profitable move
to πN via π0. (Note that from π0 player i cannot move to πi). Now consider a
move by player j from πi to π0 followed by a move by N to πN . From here the
process will either get absorbed into πi or, move to πj or πk. The worst possible
outcome for player j is that it moves immediately to πi. Thus the worst that this
yields to player j for these steps is 6 + 12δ + δ27 compared to 7 + δ7 + δ27.
For δ > 1/5 this is a profitable move, contradicting the hypothesis that πi is an
absorbing state. Thus, for δ > 2/3, the unique absorbing state is πN . In particular,
unlike EEBA, it is no longer possible to sustain πi as an absorbing state of an EPCF.
This difference results from the explicit accounting of temporary gains which can
make it worthwhile for players to move even if there is an eventual return to the
status quo. As we shall next show, this reasoning can make it impossible to achieve
efficiency through the dynamic process even under the assumptions of Proposition
13

Now change Example 14 so that in the intermediate coalition structure π, the sin-
gleton, i, receives 19 rather than 16 (all other payoffs remain unchanged). Propo-
sition 13 continues to apply and πN therefore remains an EEBA. However, we will
now show that πN cannot be an absorbing state of an EPCF. In fact, there are no
absorbing states and it is impossible to achieve Pareto efficiency in any EPCF.63

We claim that πN cannot be an absorbing state. Consider the case in which player
1 is selected to make a move at πN and she moves to π1. The worst that can happen
for player 1 from that state is a move to π0 followed by a move to πN . This yields
player 1 the payoff 19 + δ6 compared to 12 + δ12 in the next two periods (with no
change in future periods). Since δ < 1, this is a profitable move, contradicting the
hypothesis that πN is an absorbing state. In fact, the unique EPCF is one in which
there is no absorbing state and the transitions between states are the following:

π0 →N πN ,
πi →j π0 whenever j is selected to move,
πN →i πi whenever i is selected to move.

The equilibrium process immediately moves from π0 to πN ; from πN to each of
the intermediate coalition structures with probability 1/3 and then immediately to
π0. Thus, the process visits π0 and πN one-third of the time and the remainder is
equally divided between the other three intermediate states. The expected payoff to
each player, ignore discounting, is therefore (1/3)12+(1/3)(11)+(1/3)6 = 9.67
which is clearly inefficient.

5.3.2. Renegotiation. We’ve seen that proposer incentives are often distorted by
the potential loss of control that accompanies a rejected proposal. In short, a pro-
poser must always give some fraction of the surplus away, and a wedge is driven

63Konishi and Ray (2003) provide other examples of abstract games with similar features in their
model.
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between socially and privately optimal actions. On the other hand, intuition sug-
gests that if outcomes can be renegotiated, then the already-agreed-upon arrange-
ments safeguard existing payoffs against any loss of control from making a fresh
proposal. This suggests two things. First, if there is surplus left on the table, then
that surplus should eventually be seized and divided in some way among all parties.
Second — and somewhat in contrast to the first point — the seizure of that surplus
won’t generally happen at the very first round. The safeguards may have to be put
in place in earlier rounds, necessitating step-by-step progress towards efficiency
(and hence a sacrifice of full dynamic efficiency). These ideas lie at the heart of
contributions by Seidmann and Winter (1998), Okada (2000), Gomes and Jehiel
(2005), Gomes (2005) and Hyndman and Ray (2007).

To make the point about gradualism completely explicit, recall Example 8. It de-
scribes a three-player symmetric characteristic function with v(123) = 1+ε, where
ε ∈ (0, 0.5), v(ij) = 1 for all i, j, and v(i) = 0 for all i. Apply to this the rejector-
proposes protocol. Then, if only irreversible arrangements are possible, and the
discount factor is close enough to unity, an (inefficient) two-person coalition forms
and a valuable third player is omitted, for reasons already discussed. With renego-
tiation, matters are different. A two-person coalition will still form at first, but the
eventual outcome is efficient, as the third person can be taken in without any fear
of dilution to the already committed players in the two-person coalition. The for-
mation of an “intermediate coalition” essentially protects the parties to that agree-
ment. The agents included in the intermediate coalition can block any attempt by
the excluded agent to undercut them, because they are already signatory to a bind-
ing agreement that can only be abolished with the consent of both players. That
reduces the power of the excluded agent to extract surplus, and the grand coalition
can finally form.

One feature of this example is that ultimately all renegotiation ceases and the econ-
omy “settles down”. More importantly, are those limit payoffs efficient? Consider
the following example of a four-person characteristic function, with v(S) = 3, if
S = N , v(12) = v(34) = 1 and v(S) = 0 otherwise. Suppose that the pro-
tocol is “rejector proposes”. Provided that the discount factor is close enough to
unity, there is an equilibrium in which the coalition structure {12, 34} forms but
no further progress is made: all proposals to the grand coalition are rebuffed and
the rejector demands the entire surplus net of existing payoffs to the other three
agents).

Notice, however, that the failure to achieve efficiency is based on rather knife-
edge considerations. An efficiency-enhancing proposal may be rejected, true, but
events post-rejection cannot hurt our existing players by too much, because ongo-
ing agreements are binding. If a proposer does not mind being rejected as long as
subsequent play benefits others and does not hurt her, such history-dependent inef-
ficiencies can be broken provided that the status quo agreements are binding.That
motivates the following concept: say that an individual is benign if she prefers
an outcome in which some other individuals are better off, provided that she (and
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every individual) is just as well off. The benignness “refinement” is of a lexico-
graphic nature. Our individual first and foremost maximizes her own payoff, and
benignness only kicks in when comparisons are made over outcomes in which her
payoff is unaffected. There is no danger to the payoff of the individual concerned.

Benignness has found support in a number of different experimental settings (in-
cluding bargaining); see, e.g., Andreoni and Miller (2002), Charness and Grosskopf
(2001) and Charness and Rabin (2002), among others. Indeed, these studies sug-
gest something stronger: people are sometimes willing to sacrifice their own payoff
in order to achieve a socially efficient outcome. Given its lexicographic insistence
on maximizing one’s own payoff, benignness certainly doesn’t go that far.

Under benignness, asymptotic efficiency must be attained under every possible
equilibrium:

PROPOSITION 14. Assume [B.1] and [B.2]. In characteristic function games all
equilibria are absorbing. Moreover, if the set of states is finite, every pure strategy
benign equilibrium is asymptotically efficient: every limit payoff is static efficient.

This proposition, taken from Hyndman and Ray (2007), is to be contrasted with the
folk-theorem-like results obtained in Herrero (1985) and Chatterjee et al. (1993)
for the case of irreversible agreements. With repeated negotiation, no amount of
history-dependence in strategies can hold players away from an (ultimately) effi-
cient outcome. In this sense, Proposition 14 represents a substantial extension of
Okada (2000) and Seidmann and Winter (1998), who showed that renegotiation
achieves efficiency in superadditive characteristic functions when equilibria are re-
stricted to be Markovian. (Neither superadditivity nor the Markovian assumption
is needed here.) The issue of how far these results can be pushed by restricting
attention to Markovian equilibria is addressed by Proposition 15 below.

While we omit a formal proof, it is easy to see the intuition behind this result. Sup-
pose, contrary to our assertion, that convergence occurs to an inefficient limit. Then
a proposer will have the incentive to propose a payoff vector that Pareto-dominates
this payoff. This follows from two observations. First, because agreements are
binding, the proposer cannot be hurt by making such a proposal. She can always
continue to enjoy her going payoff.64 Second, the proposer is benign. She certainly
gains from the proposal if it is accepted, and there is no reason to invoke benign-
ness. But the point is that she prefers to make the proposal even if it is rejected.
For rejection must entail that all the rejectors are better off by not accepting the
proposal, while the assumption that agreements are binding ensures that no one
is strictly hurt (see previous paragraph). A benign proposer would therefore pre-
fer the resulting outcome to the presumed equilibrium play, which is continued
stagnation at the inefficient payoff vector.

64To make this argument work, we must “already” be at the limit payoff, otherwise the pro-
poser may do some (small, but positive) damage to her own prospects by the very act of making the
proposal. This is why we assume a finite set of states, though the finiteness can be dropped; see
Hyndman and Ray (2007).
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It must be reiterated, though, that the ability to write binding agreements cannot
guarantee full efficiency in the dynamic sense. As we’ve seen, absorption will
generally require time — i.e., the formation of intermediate coalition structures —
before a final outcome is finally settled upon. These intermediate outcomes may
well be inefficient. So the path taken as a whole cannot be dynamically efficient.65

Most importantly, with externalities across coalitions, matters can be very different.
To be sure, renegotiation might restore efficiency, as is easily illustrated by allow-
ing for renegotiation in Example 14. Once the two partners j and k in πi willingly
break up to precipitate π0, and all three join forces to go to πN , no further changes
can occur because player i can no longer trigger πi without the consent of the other
two. Thus, renegotiation yields efficiency in this Example. Unfortunately, this is
not generally the case. The ubiquitous absorption results reported for characteris-
tic functions break down when externalities are present. Equilibrium payoffs may
cycle, and even if they don’t, inefficient outcomes may arise and persist. Finally —
and in sharp contrast to characteristic functions — such outcomes are not driven
by the self-fulfilling contortions of history-dependence. They occur even for Mar-
kovian equilibria.

It is tempting to think of inefficiencies as entirely “natural” equilibrium outcomes
when externalities exist. Such an observation is generally true, of course, for games
in which there are no binding agreements. When agreements can be costlessly
written, however, no such presumption can and should be entertained. These are
models of binding agreements, a world in which the so-called “Coase theorem”
is relevant. For instance, all two-player games invariably yield efficiency, quite
irrespective of whether there are externalities across the two players. This is not
to say that the “usual intuition” plays no role here. It must, because the process of
negotiation is itself modeled as a noncooperative game. But that is a very different
object from the “stage game” over which agreements are sought to be written.

Consider a three-player example.

EXAMPLE 15 (The Failed Partnership). There are three agents, any two of whom
can become “partners”. The outsider to the partnership gets a “low” payoff: zero,
say. A three-player partnership is assumed not to be feasible (or has very low
payoffs).

xN : πN = {123}, u(xN ) = (0, 0, 0)
x1 : π1 = {1, 23}, u(x1) = (0, 10, 10)
x2 : π2 = {2, 13}, u(x2) = (5, 0, 5)
x3 : π3 = {12, 3}, u(x3) = (5, 5, 0)
x0 : π0 = {1, 2, 3}, u(x0) = (6, 6, 6)

and use any effectivity correspondence that satisfies (B.1) and (B.2), yet allows all
free players to get together without any further consultation or clearance.

65There is another reason for the failure of dynamic efficiency: such efficiency may necessitate
ongoing cycles across different states. See Hyndman and Ray (2007) for an extended discussion.
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The crucial feature of this example is that player 1 is a bad partner, or — for the
purposes of better interpretation — a failed partner. Partnerships between him and
any other individual are dominated — both for the partners themselves and for the
outsider — by all three standing alone. In contrast, the partnership between agents
2 and 3 is rewarding (for those agents).

In this example, and provided δ lies sufficiently close to 1, the outcomes x2 and x3
— which are inefficient — must be absorbing states in every equilibrium.

A formal proof of this observation isn’t needed; the discussion to follow will suf-
fice. Why might x2 and x3 be absorbing? The reason is very simple. Despite the
fact that x2 (or x3) is Pareto-dominated by x0, player 1 won’t accept a transition
to x0. If she did, players 2 and 3 would initiate a further transition to x1. Player
1 might accept such a transition if she is very myopic and prefers the short-term
payoff offered by x0, but if she is patient enough she will see ahead to the infinite
phase of “outsidership” that will surely follow the short-term gain. That is why it
is impossible — in the game as described — to negotiate one’s way out of x2 or
x3. This inefficiency persists in all equilibria, history-dependent or otherwise.

This example raises four important points:

1. The Nature of Agreements. Notice that the players could negotiate themselves
out of x2 or x3 if 2 and 3 could credibly agree never to write an agreement while at
x0. Are such promises reasonable in their credibility? It may be difficult to imagine
that from a legal point of view, player 1, who has voluntarily relinquished all other
contractual agreements between 2 and 3, could actually hold 2 and 3 to such a
meta-agreement. Could one interpret the stand-alone option (x0) as an agreement
from which further deviations require universal permission? Or does “stand-alone”
mean freedom from all formal agreement, in which case further bilateral deals only
need the consent of the two parties involved? It is certainly possible to take the
latter view. One might even argue that this is the only compelling view. In that
case efficiency will need to be sacrificed.

But there are situations in which the former view might make sense. No-competition
clauses that require an ex-employee not to join a rival firm, at least for some length
of time, may be interpreted as an example. Such clauses allow a firm to let a
top-level executive or partner go when it is in the interest of both of them (and
therefore efficient) to do so, but at the same time prevent — perhaps temporarily
— another move in which the executive gets absorbed by a third party. While that
latter move is, in itself, also efficient, it might prevent the former move from even
being entertained.

2. The Efficiency Criterion: From Every State, or Some? Observe that the ineffi-
cient states x2 or x3 wouldn’t be reached starting from any other state. This is why
the interpretation, the “failed partnership”, is useful. The example makes sense in
a situation in which players have been locked in with 1 on a past deal, on expec-
tations which have failed since. The game “begins” with the failed partnership, so
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to speak. Nevertheless, that raises the question of whether there invariably exists
some initial condition for which efficiency obtains. (That answer is trivially yes in
the current example.)

For all three-player games, and provided we are willing to make some minimal
assumptions, the answer is in the affirmative. That is, for all δ close enough to
1, there exists an initial state and a stationary Markov equilibrium with efficient
absorbing payoff limit from that state (see Proposition 4 in Hyndman and Ray
(2007)). But it is also true that a general result in this direction is elusive: there is a
four-player partition function such that for δ sufficiently close to 1, every stationary
Markov equilibrium is inefficient starting from any initial state (see the four-player
example in Hyndman and Ray (2007)).

3. More on Transfers. Recall that upfront transfers are not permitted in the failed
partnership. Were they allowed in unlimited measure, players 2 and 3 could reim-
burse player 1 for the present discounted value of his losses in relinquishing his
partner. Depending on the discount factor, the amounts involved may be consid-
erable, and might strain the presumption of deep pockets or perfect credit markets
needed to carry such transfers out. But they would break the deadlock.

How does the ability to make transfers feed into efficiency? It is important to
distinguish between two kinds of transfers. Coalitional or partnership worth could
be freely transferred between the players within a coalition. Additionally, players
might be able to make large upfront payments in order to induce certain coalitions
to form. In all cases, of course, the definition of efficiency should match the transfer
environment.66

Within-coalition transferability often does nothing to remove inefficiency. For in-
stance, nothing changes in the failed partnership of Example 15. On the other hand,
upfront transfers across coalitions have an immediate and salubrious effect in that
example. Efficiency is restored from every initial state. The reason is simple. If
player 1 is offered any (discount-normalized) amount in excess of 5, he will “re-
lease” player 2. In view of the large payoffs that players 2 and 3 enjoy at state x1,
they will be only too pleased to make such a payment. The final outcome, then,
from any initial condition is the state x1, and we have asymptotic efficiency.

But transfers can be a double-edged sword. The discussion that follows is based
on Gomes and Jehiel (2005).

66For instance, if transfers are not permitted, it would be inappropriate to demand efficiency in
the sense of aggregate surplus maximization.
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EXAMPLE 16 (Ubiquitous Bad Partnerships). Consider the following three-player
game:

xN : πN = {123}, u(xN ) = (0, 0, 0)
x1 : π1 = {1, 23}, u(x1) = (0, a, a)
x2 : π2 = {2, 13}, u(x1) = (a, 0, a)
x3 : π3 = {12, 3}, u(x3) = (a, a, 0)
x0 : π0 = {1, 2, 3}, u(x0) = (b, b, b)

Assume that b > a > 0.

As in Example 15, use any effectivity correspondence that satisfies (B.1) and (B.2),
yet allows all free players to get together.

In this symmetric example, there is a unique efficient state by any criterion. It
is state x0. It Pareto-dominates every other state. In particular, every two-player
partnership is an unambiguous disaster. It is obvious that in any reasonable de-
scription of this game that precludes upfront transfers, there is a unique absorbing
state, which is the state x0. But the introduction of upfront transfers changes this
rather dramatically. Under the uniform proposer protocol, every stationary Markov
equilibrium is inefficient starting from any initial state: the state x0 can never be
absorbing.

This remarkable observation highlights very cleanly the negative effects of upfront
transfers. The usefulness of a transfer is that it frees agents from inefficient out-
comes, as in the case of the failed partnership in Example 15. But its potential
danger lies in the possibility that individuals may deliberately generate inefficient
outcomes to seek such transfers. This notion of transfers as ransom turns out to
be particularly vivid in this example. Whenever it is the turn of an agent to move
at state x0, she creates a bad partnership with another agent and then waits for a
transfer to unlock the partnership. That situation recurs again and again. Can we
still be sure that transfers will actually be paid, and that all of these actions prop-
erly lock together as an equilibrium? The answer is yes; for details, see Gomes and
Jehiel (2005) and the detailed exposition in Ray (2007).

In short, the deviating players do suffer a loss in current payoff when they move
away from the efficient state. But the prospect of inflicting a still greater loss on
the outsider raises the possibility that the outsider will pay to have the state moved
back — albeit temporarily — to the efficient point. Thus the presumption that
unlimited transfers act to restore or maintain efficiency is wrong.

Notice how the example stands on the presumption (just as in the failed partnership)
that two players can always form a partnership starting from the situation in which
all three players stand alone. If this contractual right can be eliminated in the
act of making an upfront transfer, then efficiency can be restored: once state x0
is regained, there can be no further deviations from it. This line of discussion is
exactly the same as in the failed partnership and there is nothing further to add
here.
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More generally, the efficient state in this example has the property that a subset of
agents can move away from that state, leaving other agents worse off in terms of
current payoffs. Whenever this is possible, there is scope for collecting a ransom,
and the potential for a breakdown in efficiency. Gomes and Jehiel (2005) develop
this idea further.

4. What About Superadditive Games? Both the failed partnership, as well as the
four-player game mentioned above, involve situations that are not superadditive.
If, for instance, the grand coalition can realize the Pareto-improvement then player
1 can control any subsequent shenanigans by 2 and 3 (he will need to be part of
any coalition that is effective for further change), and he will therefore permit the
improvement, thereby restoring efficiency.

There are subtle issues that need to be addressed here. First, in games with exter-
nalities superadditivity is generally not to be expected. For instance, in Example 1
(the Cournot oligopoly), it is easy to see that if there are just three firms, firms 1
and 2 do worse together than apart, provided that firm 3 stands separately in both
cases. At the same time, this argument does not apply to the grand coalition of all
firms. Indeed, it is not hard to show that every partition function derived from a
game in strategic form must satisfy grand coalition superadditivity (GCS):

[GCS] For every state x = (u, π), there is x′ = (u′, {N}) such that u′ ≥ u.

Is GCS a reasonable assumption? It may or may not be. One possible interpretation
of GCS is that it is a “physical” phenomenon; e.g., larger groups organize transac-
tions more efficiently, or share the fixed costs of an enterprise such as a business
or public good provision. But such superadditivities are often the exception rather
than the rule. After all, the entire doctrine of healthy competition is based on the
notion that physical superadditivity, after a point, is not to be had. In general, too
many cooks do spoil the broth: competition among groups can lead to efficiency
gains not possible when there is a single, and perhaps larger, group attempting
to act cooperatively. To be sure, in all of the cases, the argument must be based
on some noncontractible factor, such as the creativity or productivity created by
the competitive urge, or ideological differences, or the possible presence of stand-
alone players who are outside the definition of our set of players but nevertheless
have an effect on their payoffs (such as the standalone third player in the Cournot
example).

But there is a different notion of GCS, summarized in the notion of the super-
additive cover. After all, the grand coalition can write a contract which exactly
replicates the payoffs obtainable in some other coalition structure. For instance,
companies do spin off certain divisions, and organizations do set up competing
R&D groups. In principle, the grand coalition can agree not to cooperate, if need
be, and yet write agreements that bind across all players. For instance, in the failed
partnership of Example 16, the ability to insert no-compete clauses at will effec-
tively converts the game into its superadditive cover. To the extent that such clauses
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cannot be enforced for an infinite duration, the model without grand-coalition su-
peradditivity can be viewed as a simplification of this, and other, real-world situa-
tions.

In fact, Gomes and Jehiel (2005) demonstrate that in many situations efficiency can
be restored if there exists an efficient state that is negative-externality free (ENF)
in the sense that no coalition, or collection of coalitions, can move away from it
and hurt a player who is not party to such a change.

[ENF] There exists an efficient state, x = (u, π), such that for all i ∈ N and
x→S1 x1 →S2 x2 . . .→Sk

y, such that i /∈ Sk for all k, ui(y) ≥ ui(x).

Note that ENF is not satisfied in Example 14. It is easy to see that ENF is weaker
than GCS since a move from the grand coalition requires unanimous consent. And
it holds trivially in characteristic function games since there are no externalities.

PROPOSITION 15. Consider a TU partition function. Every Markovian equilib-
rium is asymptotically efficient under either one of the following set of conditions:

(i) Upfront transfers are permitted, the set of states is finite (modulo transfers)
and there exists an ENF state; Gomes and Jehiel (2005).

(ii) There are no upfront transfers and GCS is satisfied; Hyndman and Ray
(2007).

Gomes (2005) establishes a related efficiency result under GCS, without assuming
a finite number of states but by assuming that coalitions once formed cannot be-
come smaller. He also provides an example to show that GCS cannot be weakened
to ENF without allowing upfront transfers across coalitions.
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