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The Evolutionary Robustness of Forgiveness and

Cooperation

Pedro Dal Bó∗ Enrique R. Pujals†

April 24, 2013

Abstract

We study the evolutionary robustness of strategies in in�nitely repeated pris-

oners' dilemma games in which players make mistakes with a small probability

and are patient. The evolutionary process we consider is given by the replicator

dynamics. We show that there are strategies with a uniformly large basin of

attraction independent of the size of the population. Moreover, we show that

those strategies forgive defections and, assuming that they are symmetric, they

cooperate. We provide partial e�ciency results for asymmetric strategies.

1 Introduction

The theory of in�nitely repeated games has been very in�uential in the social sciences

showing how repeated interaction can provide agents with incentives to overcome

opportunistic behavior. However, a usual criticism of this theory is that there may

∗Department of Economics, Brown University and NBER.
†Instituto de Matemática Pura e Aplicada.
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be a multiplicity of equilibria. While cooperation can be supported in equilibrium

when agents are su�ciently patient, there are also equilibria with no cooperation.

Moreover, a variety of di�erent punishments can be used to support cooperation.

To solve this multiplicity problem, we study what types of strategies will have

a large basin of attraction regardless of what other strategies are considered in the

evolutionary dynamic. More precisely, we study the replicator dynamic over arbitrary

�nite set of strategies in which the strategy makes a mistake with a small probability

1 − p in every round of the game, following Fudenberg and Maskin [FM2]. We

study which strategies have a non-vanishing basin of attraction with a uniform size

regardless of the set of strategies being considered in the population. We say that

a strategy has a uniformly large basin of attraction if it repels invasions of a given

size for arbitrarily patient players and small probability of errors and for any possible

combination of alternative strategies (see de�nition 2 for details).

We �nd that two well known strategies, "always defect" and "grim," do not have

uniformly large basins of attraction. Moreover, any strategy that does not forgive

cannot have a uniformly large basin either. The reason is that, as players become

arbitrarily patient and the probability of errors becomes small, unforgiving strategies

lose in payo�s relative to strategies that forgive and the size of the basins of attraction

between these two strategies will favor the forgiving one. This is the case even when

the ine�ciencies happen o� the equilibrium path (as it is the case for grim).

Also, we show that symmetric strategies leading to ine�cient payo�s (on or o�

the path) cannot have uniformly large basins of attractions. We also provide some

e�ciency results for asymmetric strategies. First, we show that there is a relationship

between the size of the basin of attraction and the frequency of cooperation. Second,

we show that there is a relationship between the degree of asymmetry of a strategy

and its e�ciency. Third, we show that strategies with a uniformly large basin of
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attraction cannot have ine�cient payo�s in all histories.

It could be the case that ine�cient and unforgiving strategies do not have uni-

formly large basins since actually there may be no strategies with that property! We

prove that that is not the case by showing that the strategy "win-stay-lose-shift" has

a uniformly large basin of attraction, provided a probability of mistakes smaller than

a large discount factor. As this strategy is e�cient (and symmetric), we show that

the concept of uniformly large basins of attraction provides a (partial) solution to

the long studied problem of equilibrium selection in in�nitely repeated games: only

e�cient equilibria survive for patient players if we focus on symmetric strategies.

Note that we not only provide equilibrium selection at the level of payo�s but also

at the level of the type of strategies used to support those payo�s: the payo�s from

mutual cooperation can only be supported by strategies that do not involve asymp-

totically ine�cient punishments. This provides theoretical support to the claims of

Axelrod [Ax], that successful strategies should be cooperative and forgiving.

In addition, we prove that our results are also valid in a general class of dynamics

provided that it is still the case that the only growing strategies are those that perform

better than the average.

In our study of the replicator dynamics (and its perturbations and generalizations)

we develop tools that can be used to analyze the basins of attractions outside of the

particular case of in�nitely repeated games. In fact the results are based in a series of

theorems about general replicator dynamics which can be used to study the robustness

of steady states for games in general.

An extensive previous literature has addressed the multiplicity problem in in-

�nitely repeated games. Part of this literature focuses on strategies of �nite complex-

ity with costs of complexity to select a subset of equilibria (see Rubinstein [R], Abreu

and Rubinstein [AR], Binmore and Samuelson [BiS], Cooper [C] and Volij [V]). This
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literature �nds that the selection varies with the equilibrium concept being used and

the type of cost of complexity. Another literature appealed to ideas of evolutionary

stability as a way to select equilibria and found that no strategy is evolutionary sta-

ble in the in�nitely repeated prisoners' dilemma (Boyd and Lorberbaum [BL]). The

reason is that for any strategy there exists another strategy that di�ers only after

events that are not reached by this pair of strategies. As such, the payo� from both

strategies is equal when playing with each other and the original strategy cannot be

an attractor of an evolutionary dynamic. Bendor and Swistak [BeS] circumvent the

problem of ties by weakening the stability concept and show that cooperative and

retaliatory strategies are the most robust to invasions.

In a di�erent approach to ties, Boyd [B] introduced the idea of errors in decision

making. If there is a small probability of errors in every round, then all events in a

game occur with positive probability destroying the certainty of ties allowing for some

strategies to be evolutionary stable. However, as shown by Boyd [B] and Kim [Ki],

many strategies that are sub-game perfect for a given level of patience and errors can

also be evolutionary stable.

Fudenberg and Maskin [FM2] (see also Fudenberg and Maskin [FM]) show that

evolutionary stability can have equilibrium selection implications if we ask that the

size of invasions that the strategy can repel to be uniformly large with respect to any

alternative strategy and for large discount factors and small probabilities of mistakes.

They show that the only strategies with this characteristic must be cooperative. There

are three main di�erences with our results. First, Fudenberg and Maskin [FM2] focus

on strategies of �nite complexity while we do not have that restriction. Second,

our robustness concept does not only consider the robustness to invasion by a single

alternative strategy but also robustness to invasion by any arbitrary combination

of alternative strategies. In other words, we also look at the size of the basin of
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attraction inside the simplex. Third, our full e�ciency result only applies to the case

of symmetric strategies and we only provide partial e�ciency results for the general

case. We want to point out that to prove e�ciency we use a similar approach to the

one used in [FM2].

Our results also relate to Johnson, Levine and Pesendorfer [JLP], Volij [V] and

Levine and Pesendorfer [LP] who use stochastic stability (Kandori, Mailath and Rob

[KMR] and Young [YP]) to select equilibria in in�nitely repeated games. As having

large basin of attraction is a necessary condition (but not su�cient) for stochastic

stability, the present results could help characterize strategies that are stochastically

stable in any �nite population.

There is a previous theoretical literature providing evolutionary support for the

strategy win-stay-lose-shift (see Nowak and Sigmund [NS] and Imhof, Fudenberg and

Nowak [IFN]). This strategy has received little support from experiments on in�nitely

repeated games (see Dal Bó and Fréchette [DBF], Fudenberg, Rand and Dreber [FRD]

and Dal Bó and Fréchette [DBF2]). We hope that new experiments can be designed

to test this strategy's robustness to invasions when it is already highly prevalent in

the population.

Finally, our result linking the size of the basin of attraction and the frequency of

cooperation relates to other experimental evidence provided by Dal Bó and Fréchette

[DBF]. They �nd that the frequency of cooperation is increasing in the size of the

basin of attraction of Grim versus the strategy Always Defect.

In section 2 we describe the model, the main concepts and results. Sections 3

to 5 present the main results and proofs are given in section 6. We provide some

generalizations in the appendix.
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2 Model, de�nitions and preliminary results

2.1 In�nitely repeated prisoners' dilemma with trembles

We state the de�nitions of the game �rst without trembles and later with trembles

as in [FM2].

In each period t = 0, 1, 2, ... the 2 agents play a symmetric stage game with

action space A = {C,D}. At each period t player one chooses action at ∈ A and

player two chooses action bt ∈ A. We denote the vector of actions until time t as

at = (a0, a1, . . . , at) for player one and bt = (b0, b1, . . . , bt) for player two. The payo�

from the stage game at time t is given by utility function u(at, bt) : A × A → <

for player one and u(bt, at) : A × A → < for player two such that u(D,C) = T ,

u(C,C) = R, u(D,D) = P , u(C,D) = S, with T > R > P > S and 2R > T + S.

Agents observe previous actions and this knowledge is summarized by histo-

ries. When the game begins we have the null history h0 = (a0, b0), afterwards

ht = (at−1, bt−1) = ((a0, b0), . . . (at−1, bt−1)) and Ht is the space of all possible t his-

tories. Let H∞ be the set of all possible histories. A pure strategy is a function

s : ∪t>0Ht → A.

It is important to remark, that given two strategies s1, s2 and a �nite path ht =

(at−1, bt−1), if s1 encounter s2 then ht = (s1(ht), s2(ĥt)), where ĥt := (bt−1, at−1).

Given a pair of strategies (s1, s2) we denote the history that they generate as hs1,s2 .

We denote with hs1,s2 t the path up to period t−1. Given a �nite path ht, with hs1,s2/ht

we denote the path between s1 and s2 with seed ht.

For the case of trembles, we have the probability of making a mistake, more

precisely, with a positive p < 1 we denote the probability that a strategy perform what

intends. Now, given two strategies s1, s2 (they can be the same strategy) we de�ne

Uδ,p(s1, s2) = (1− δ)
∑

t>0,at,bt
δtps1,s2(at, bt)u(a

t, bt) where u(at, bt) denotes the usual
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payo� of the pair (at, bt) and ps1,s2(at, bt) denote the probability that the strategies

s1 and s2 go through the path ht = (at, bt) when they are playing one to each other.

Observe that ps1,s2(at, bt) = ps1,s2(at−1, bt−1)p
it+jt(1− p)1−it+1−jt where it = 1 if at =

s1(ht), it = 0 otherwise, and jt = 1 if bt = s2(ĥt−1), jt = 0 otherwise. Therefore,

ps1,s2(at, bt) = pmt+nt(1− p)2t+2−mt−nt where mt = Cardinal{0 6 i 6 t : s1(hi) = ai}

and nt = Cardinal{0 6 i 6 t : s2(ĥi) = bi}. Observe that ps1,s2(hs1,s2 t) = p2t+2.

2.2 Replicator dynamics

In this section we introduce the notion of replicator dynamics and attractors. Let the

payo� matrix A = (aij)16i6n,16j6n and ∆ be the n−dimensional simplex ∆ = {x =

(x1 . . . xn) ∈ Rn : x1 + · · · + xn = 1, xi > 0, ∀i} where xi > denotes the prevalence

of strategy i in the population. We consider the replicator dynamics X associated

to the payo� matrix A on the n dimensional simplex given by the equations ẋj =

Xj(x) := xjFj(x) = xj(fj − f̄)(x) where fj(x) = (Ax)j, f̄(x) =
∑n

l=1 xlfl(x), and

(AX)j denotes the j−th coordinate of the vector Ax.We denote with ϕ the associated

�ow that provides the solution of the replicator equation: ϕ : R ×∆ → ∆. Observe

that any vertex is a singularity of the replicator equation, therefore, any vertex is a

�xed point of the �ow. Given a vertex ei and ε > 0, ∆ε(ei) = {x :
∑n

l=1,l 6=i xl < ε}

denotes the ball of radius ε and center e.

De�nition 1. Attracting �xed point and local basin of attraction. The �xed

point e is an attractor if there exists an open neighborhood U of e such that for any

x ∈ U follows that ϕt(x) → e as t → +∞. The global basin of attraction Bs(e) is the

set of points with forward trajectories converging to e. Moreover, given ε > 0 and a

vertex ei, we say that ∆ε(ei) is contained in the local basin of attraction of ei if ∆ε(ei)

is contained in the global basin of attraction and any forward trajectory starting in
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∆ε(ei) remains inside ∆ε(ei). This is denoted with ∆ε(ei) ⊂ Bs
loc(ei).

We are interested in the size of the basin of attraction of strategies as this measures

their robustness to invasion by other strategies. If a strategy can be invaded by one

alternative strategy at a time, then it is easy to calculate the size of the basin of

attraction of the original strategy relative to the alternative strategy under replicator

dynamics. This size depends on the payo� matrix of the 2x2 game formed by these two

strategies, strategy 1 is the original strategy and strategy 2 is the invading one. In this

case the size of the basin of attraction of strategy 1 is p12 =
1

1+
a22−a12
a11−a21

if one strategy

does not dominate the other in the 2x2 game. Note that the size of the invasion by

strategy 2 that strategy 1 can resist is decreasing in the cost of miscoordinating when

the other plays strategy 2, and increasing in the cost of miscoordinating when the

other plays strategy 1.

However, strategies may not invade one at a time and calculations of the size of

a basin of attraction need to consider invasions by any combination of alternative

strategies. In other words, we need to consider the size of the basin of attraction also

inside the simplex, not only on its sides. It is important to realize that the robustness

to invasion by combination of strategies may be quite di�erent to robustness to inva-

sion by single strategies. It could well be that the border of the basin of attraction

bends inward in the interior of the simplex, with the degree of bending depending

on the payo�s that the invading strategies earn while interacting with each other.

As such, calculating the size of the basin of attraction of a strategy would involve

considering all the possible combinations of invading strategies what could be quite

consuming if the number of possible strategies is large. In the next subsection we

show that a simpler approach is possible under replicator dynamics.
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2.3 Main theorem for replicator equations

In this subsection we show that it is enough to consider all invading pair of strategies

to calculate the size of the basin of attraction of a given strategy.

Given matrix A, we de�ne a matrix M and the vector N given by

Ni = ai1 − a11, Mij = aji − a1i + a11 − aj1, Mji = aij − a1j + a11 − ai1.

Moreover, we assume that the vertex {e2 . . . en} are ordered in such a way that a11 −

ai1 > a11 − aj1 for any 2 6 i < j.

Theorem 1. Let A ∈ Rn×n (n arbitrary) such that aj1 < a11. Let

M0 = max
i,j>i

{Mij +Mji

−Ni

, 0}. (1)

Then, ∆ 1
M0

= {x :
∑

i>2 xi 6 1
M0

} ⊂ Bs
loc(e1).

The proof of the theorem is given in section 6.1. The intuition behind this result

is that the replicator dynamic is a quadratic equation and therefore only pairs of

alternative strategies matter in calculating the di�erences in payo�s. In the appendix

we show that this result also holds for more general evolutionary dynamics.

2.4 Uniformly large basin of attraction in in�nitely repeated

games

In the present section we recast the replicator dynamics when the matrix of payo�s is

given by an in�nitely repeated prisoners' dilemma game with discount factor δ and er-

ror probability 1−p for a �nite set of strategies S = {s1, . . . , sn}. With Bloc(s, δ, p,S)

we denote the local basin of attraction of s in any set of strategies S and identifying
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s with s1. It is well known that any strict equilibrium strategy is an attractor in

any population containing it. However, the size of the basin of attraction of such a

strategy could in principle be made arbitrarily small by appropriately choosing the

set of alternative strategies. Moreover, note that there is an in�nite and uncountable

number of alternative strategies in in�nitely repeated games. To capture the idea of

evolutionary robustness, in this paper we ask that a strategy have a "large" basin

of attraction independently of the �nite set of other participating strategies. See

de�nition below.

De�nition 2. We say that a strategy s has a uniformly large basin if there exists K

verifying that for any �nite set of strategies S containing s and any δ and p close

to one, it holds that {(x1, . . . , xn) : x2 + · · · + xn 6 K} ⊂ Bloc(s, p, δ,S) where

n = cardinal(S).

2.5 Having a large basin for populations of two strategies is

not enough

In this section we give an example that shows that when a population of three strate-

gies is considered it can happen that one of them has a uniformly large basin when we

consider the subset of two strategies but it does not have a large basin when the three

strategies are considered simultaneously. In what follows, given a population of three

strategies S = {s, s∗, s′} and its replicator equation, the �rst strategy is identi�ed

with the point (1, 0, 0).

Theorem 2. For any λ small, there exists a population of three strategies S =

{s, s∗, s′} such that

(i) s is an attractor in S and it always cooperate with itself;
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(ii) in the population {s, s∗} and in the population {s, s′}, s is a global attractor (in

the terminology of the replicator equation, the interior of the one dimensional

simplex is in the basin of attraction of s);

(iii) the point (1, λ, λ) is not contained in the basin of attraction of s.

3 Strategies with a uniformly large basin

In the present section we consider the problem of existence of strategies with uniformly

large basin. Unfortunately, for technical reason that are clari�ed in section 6.3, we

have to restrict the probabilities of mistakes in relation with the discount factor. In

fact, we are going to consider δ > 1
2
and p > p(δ) where

p(δ) :=
√

1−K(1− δ)2, (2)

for some positive K that depends on the payo� matrix of the stage game. Following

that, we show that strategies like win-stay-lose-shift satisfy the conditions introduced

in subsection 3.1 and hence has a uniformly large basin of attraction with the restric-

tion that p > p(δ).

3.1 Su�cient conditions to have a uniformly large basin

In this section we provide general su�cient conditions to guarantee that a strategy

has a uniformly large basin. The condition provided in this subsection is based on

theorem 1. In subsection 6.5 we introduce an alternative su�cient condition. Given

two strategies s and s∗, we write Nδ,p(s, s
∗) := Uδ,p(s, s) − Uδ,p(s

∗, s). Let s be a

strict perfect public equilibrium strategy for δ and p large. Given s′ and s∗ with

Nδ,p(s, s
∗) > Nδ,p(s, s

′) we consider the following numbers
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Mδ,p(s, s
∗, s′) :=

Nδ,p(s,s
∗)+Nδ,p(s,s

′)+Uδ,p(s
′,s∗)−Uδ,p(s,s

∗)+Uδ,p(s
∗,s′)−Uδ,p(s,s

′),

Nδ,p(s,s∗)
,

Mδ,p(s) := supNδ,p(s,s∗)>Nδ,p(s,s′)
{Mδ,p(s, s

∗, s′), 0}.

We also de�ne M(s) := lim supδ,p→1Mδ,p(δ)(s) and observe that if M(s) < ∞ then s

has a large basin of attraction.

De�nition 3. We say that a strategy s satis�es the �uniformly Large Basin condition�

if it is a strict perfect public equilibrium strategy and M(s) < ∞.

Theorem 3. If s satis�es the �uniformly Large Basin condition�, then s has a uni-

formly large basin. More precisely, let β be small. Then, there exists δ0 such that

for any δ > δ0 (p > p(δ)) and any �nite set of strategies S containing s, follows

that s is an attracting point such that B(s) ⊂ Bs
loc(s) where B(s) = {(x1, . . . , xn) :

x2 + · · ·+ xn 6 1
M(s)+β

} and n = cardinal(S).

3.2 Win-stay-lose-shift has a uniformly large basin of attrac-

tion

De�nition 4. win-stay-lose-shift The strategy that stays if it gets either T or R

and shifts if not, is called win-stay-lose-shift. From now on, we denote it as w.

Theorem 4. If 2R > T + P then w has a uniformly large basin provided that δ is

large and p > p(δ) as de�ned in equality (2).

For win-stay-lose-shift to be an equilibrium strategy it is required that 2R > T+P

(see [NS]) and δ and p large. This theorem shows that the set of strategies with a

uniformly large basin of attraction is not empty.

To prove theorem 4 we use the su�cient conditions introduced in 6.5 and to

calculate the quantities involved we develop a technical approach that is introduced

in section 6.3.
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4 The importance of forgiveness

In this section we show the importance of forgiveness for the evolutionary robustness

of strategies. First we prove that neither the strategy Grim nor Always Defect has a

uniformly large basin of attraction. Recall that Grim is the strategy that cooperates

in the �rst period and then cooperates if there has been no defection before. We

provide the proof for Grim and we observe that this proof is obviously adapted for

Always Defect.

Theorem 5. Grim does not have a uniformly large basin of attraction. More pre-

cisely, there exists a strategy s such that for any population S = {s, g} and ε > 0

small, there exist p0, δ0 such that for any p > p0, δ > δ0, the size of the basin of

attraction of grim is smaller than ε.

Theorem 5 shows that the well known strategy Grim does not have a uniformly

large basin of attraction given that after a defection it behaves like always defect,

which does not a uniformly large basin of attraction either. In a world with trembles

unforgivingness is evolutionary costly. Relatedly, Myerson [M] proved that whenever

the strategy Always Defect is compared with Grim (without tremble), its basin of

attraction collapses as the discount factor converges to one.

We formalize next the idea of unforgivingness and provide a general result regard-

ing the basin of attraction of unforgiving strategies.

De�nition 5. We say that a strategy s is unforgiving if there exists a history ht such

that s(ht+τ/ht) = D for all ht+τ with τ = 0, 1, 2....

Theorem 6. Unforgiving strategies do not have a uniformly large basin of attraction.
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5 E�ciency and size of the basin of attraction

In the present section we study the relationship between e�ciency of a strategy and

the size of its basin of attraction. Given a history ht, and a pair of strategies s, s∗ we

de�ne U(s, s/ht) = limδ→1 limp→1 Uδ,p(s, s/ht).

De�nition 6. We say that a strategy s is asymptotically e�cient if for any �nite

path ht it follows that U(s, s/ht) = R.

In next subsection we prove that strategies having a uniformly large basin of

attraction are assymptotically e�cient provided that the strategies are symmetric.

In subsection 5.2 we discuss the case of non-symmetric strategy proving some form

of weak e�ciency.

5.1 The symmetric case

De�nition 7. We say that a strategy s is symmetric if for any �nite path ht it follows

that s(ht) = s(ĥt).

If the strategy s is symmetric, the pair (s, s) would be a strongly symmetric pro�le

as it is usually de�ned in the literature (see Fudenberg and Tirole [FT]). We drop

the use of the word �strongly" for simplicity.

Theorem 7. If s has a uniformly large basin of attraction and is symmetric, then it

is asymptotically e�cient.

The proof for this theorem makes the most out of the large number of alternative

strategies. While the large number of strategies was a usual hurdle for the study

of evolutionary stability in in�nitely repeated games, we make the most of it in the

proof of e�ciency. We construct a sequence of alternative strategies against which an
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ine�cient and symmetric strategy cannot have a uniformly large basin of attraction.

For a strategy s to have a uniformly large basin of attraction, it must be that the

ratio of cost of miscoordination
Uδp(s

′,s′)−Uδp(s,s
′)

Uδp(s,s)−Uδp(s′,s)
is uniformly bounded for large δ and

p for any alternative strategy s′. We construct the alternative strategy s′ by making

it cooperate forever against itself starting from a history ht in which s is ine�cient

but imitates s in other histories. Then, the ratio of miscoordination costs that must

be bounded is
Uδp(s

′,s′|ht)+Uδp(s′,s′|ĥt)−Uδp(s,s
′|ht)−Uδp(s,s′|ĥt)

Uδp(s,s|ht)+Uδp(s,s|ĥt)−Uδp(s′,s|ht)−Uδp(s′,s|ĥt)
. The di�erence in payo�s

must include the history ĥt as di�erence of the two strategies for the other player

also a�ects payo�s. The symmetry of s implies that Uδp (s, s
′|ht) + Uδp

(
s, s′|ĥt

)
=

Uδp (s
′, s|ht)+Uδp

(
s′, s|ĥt

)
. For the ration of miscoordination cost to be bounded we

must have that the subtracting terms must be even lower than the ine�cient payo� of

s at history ht. Since s
′ imitates s outside of ht, this implies that there exists another

history h′
t in which s obtains even lower payo�s than in the original history. Repeating

the previous reasoning across a sequence of histories and alternative strategies, we

�nd that s should be increasingly ine�cient up to an impossibly low continuation

payo�, reaching a contradiction.

An easy corollary is the following:

Corollary 1. If s has a uniformly large basin of attraction and is symmetric, then

for any R0 < R there exists δ0 := δ0(s) such that for any δ > δ0 there exists p0(δ)

verifying that if δ > δ0, p > p0(δ) then Uδ,p(s, s/ht) > R0 for any history ht.

Here it is important to compare theorem 5 with corollary 1. First, observe that

the conclusion of theorem 5 is obtained for any δ > δ0 and p > p0; instead, in corollary

1 the result is for δ > δ0 but p > p(δ) with p(δ) strongly depending of δ. Second, a

weaker version of theorem 5 can be concluded from corollary 1.
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5.2 Non-symmetric strategies

We provide a series of results about weak forms of e�ciency for strategies having a

uniformly large basin of attraction without assuming that the strategies are symmet-

ric. The �rst result (theorem 8) gives a lower estimate of the size of the basin related

to a quantity that measure the non-symmetry of a strategy

The next de�nition is related to the asymmetry of a strategy. In few words, it

measures how frequent s(ht) 6= s(ĥt) is along a path.

De�nition 8. A strategy s is c−asymmetric if for any ht holds
∑

j:uj(s,s/ht)=T δj +∑
j′:uj′ (s,s/ht)=S δ

j 6 c and there are paths such that
∑

j:uj(s,s/ht)=T δj

+
∑

j′:uj′ (s,s/ht)=S δ
j is arbitrary close to c. In particular, if s is 0−asymmetric, then

it follows that it is symmetric.

Theorem 8. If s has a uniformly large basin of attraction is c−asymmetric, then for

any ht follows that U(s, s/ht) > R− 2c(T − S).

In the next theorem we show that if there is a history such that a strategy is not

fully e�cient for any subsequent path, then it cannot have a uniformly large basin

of attraction. The proof is based on theorem 10 where we analyze the dynamics of a

population of three strategies, while in the proof of theorem 8 only pairs of strategies

are used.

Theorem 9. Given a strategy s, if there exists ht such that U(s, s/hk) < R1 for some

R1 < R for any hk containing either ht or ĥt (either ht ⊂ hk or ĥt ⊂ hk), then s does

not have a uniformly large basin of attraction.
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6 Proofs

6.1 Replicator equation: Proof of theorem 1

We consider an a�ne change of coordinates to de�ne the dynamics in the positive

quadrant of Rn−1 instead of the simplex ∆. The a�ne change of coordinates is given

by x̄1 = 1 −
∑

j>2 xj, x̄j = xj ∀ j > 2 and so, the replicator equation is de�ned as

ẋj = Fj(x̄)xj for j = 2, . . . , n where x̄ = (x̄1, x̄2 . . . , x̄n) with xi > 0, x2 + · · ·+ xn 6 1

and Fj(x̄) = (fj − f̄)(1−
∑

i>2 xi, x2, . . . , xn). Observe that in these coordinates the

point e1 = (1, 0, .., 0) corresponds to (0, .., 0) and in these coordinates the simplex ∆

is {(x2, .., xn) : xi > 0,
∑n

i=2 xi 6 1}.

We can rewrite Fj in the following way:

Fj(x̄) =
∑

l 6=j,l>1

(fj − fl)(x̄)x̄l = fj − f1)(x̄) +
∑
l>2

(f1 − fl)(x̄)xl.

Denoting R(x̄) :=
∑

l>2 (f1 − fl)(x̄)xl, it follows that Fj(x̄) = (fj − f1)(x̄) + R(x̄)

where

(fj − fl)(x̄) =
∑
k>1

(ajk − alk)x̄k = (aj1 − al1)x̄1 +
∑
k>2

(ajk − alk)x̄k

= aj1 − al1 +
∑
k>2

(ajk − alk − aj1 + al1)xk.

Observe that if we take the matrix M ∈ R(n−1)×(n−1) and the vector N ∈ Rn−1 such

that Mjk = akj − a1j + a11− ak1, Nj = aj1− a11 then the replicator equation on a�ne

coordinates is given by ẋj = xj[(N +Mx)j − xt(N +Mx)], for j = 2, . . . , n, where

(v +Mx)j is the j − th coordinate of v +Mx.

The proof of theorem 1 is based on the next lemma about quadratic polynomials.
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Lemma 1. Let Q : Rn → R given by Q(x) = Nx+ xtMx with x ∈ Rn, N ∈ Rn and

M ∈ Rn×n. Let us assume that Ni < 0 for any i and for any j > i, |Ni| > |Nj|. Let

M0 = maxi, j>i{Mij+Mji

−Ni
, 0}. Then, the set ∆ 1

M0

= {x ∈ Rn : xi > 0,
∑n

i=1 xi <
1

M0
}

is contained in {x : Q(x) < 0}. In particular, if M0 = 0 then 1
M0

is treated as ∞ and

this means that {x ∈ Rn : xi > 0} ⊂ {x : Q(x) 6 0}.

Proof. For any v ∈ Rn such that vi > 0 and
∑

i vi = 1, we consider the following

one dimensional quadratic polynomial, Qv : R → R given by Qv(s) := Q(sv) =

sNv + s2vtMv. To prove the thesis of the lemma is enough to show the following

claim: for any positive vector v with norm equal to 1, if 0 < s < 1
M0

then Qv(s) < 0;

in fact, the claim implies the lemma, otherwise, arguing by contradiction, if there is

a point x0 ∈ ∆ 1
M0

di�erent than zero (i.e.: 0 < |x0| < 1
M0

) such that Q(x0) = 0,

then taking v = x0

|x0| and s = |x0| follows that Qv(s) = Nx0 + xt
0Mx0 = 0, but

|v| = 1, s < 1
M0

, a contradiction.

Now we proceed to show the above claim. Observe that the roots of Qv(s) are

given by s = 0 and s = −Nv
vtMv

. Observe that −Nv =
∑

(−Ni)vi > 0. If vtMv < 0 then

it follows that Qv is a one dimensional quadratic polynomial with negative quadratic

term and two non-positive roots, so for any s > 0 holds that Qv(s) < 0 and therefore

proving the claim in this case. So, it remains to consider the case that vtMv > 0. In

this case, since Qv is a one dimensional quadratic polynomial with positive quadratic

term (vtMv), therefore for any s between both roots (0, −Nv
vtMv

) follows that Q < 0 so
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to �nish we have to prove that −Nv
vtMv

> 1
M0

which follows from the next inequalities:

vtMv =
∑
ij

vivjMij =
∑
i

[v2iMii +
∑
j>i

vivj(Mij +Mji)]

6
∑
i

[v2i (−Ni)M0 +
∑
j>i

vivj(−Ni)M0] = M0

∑
i

(−Ni)vi[
∑
j>i

vj]

6 M0

∑
i

(−Ni)vi = M0(−Nv).

Proof of theorem 1: We consider the change of coordinates: x̄1 = 1 −
∑

j>2 xj, x̄j =

xj, j = 2, . . . , n introduced before. Let X = (X2, . . . , Xn) the vector �eld in these

coordinates, where Xj = x̄jFj(x̄). For any k < 1 we denote ∆k := {x̄ :
∑

i>2 xi 6 k}

and ∂∆k = {x̄ :
∑

i>2 xi = k}. We want to show that for any initial condition x̄ in

the region ∆ 1
M0

follows that the map t → x̄(t) =
∑

i>2 x̄k(t) is a strictly decreasing

function and so the trajectories remains inside ∆ 1
M0

and since it can not escape ∆ it

follows that x̄(t) → 0. To do that, we prove ˙̄x < 0. Therefore, we have to show

Q(x̄) := ˙̄x =
∑
j>2

Xj =
∑
j>2

xjFj(x̄) < 0. (3)

Recall that Fj = (fj − f1)(x̄) +R(x̄) where R(x̄) =
∑

l>2 (f1 − fl)(x̄)xl. Therefore,

Q(x̄) =
∑
j>2

(fj − f1)(x̄)xj +
∑
j>2

R(x̄)xj =
∑
j>2

(fj − f1)(x̄)xj +R(x̄)
∑
j>2

xj.

Since
∑

j>2 xj = k (with k < 1) follows that Q(x̄) =
∑

j>2 (fj − f1)(x̄)xj + R(x̄)k.

Recalling the expression of R we get that Q(x̄) = (1− k)
∑

j>2 (fj − f1)(x̄)xj. So, to

prove inequality (3) is enough to show that Q(x̄) = (1− k)
∑

j xj(fj − f1)(x̄) < 0 for
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any x̄ ∈ ∆k and k < 1
M0

. First we rewrite Q. Observe that

(fj − f1)(x̄) =
∑
i

(aji − a1i)x̄i = aj1 − a11 +
∑
i>2

(aji − a1i + a11 − aj1) xi.

If we note the vectorN := (aj1−a11)j and the matrixM := (Mij) = aji−a1i+a11−aj1.

Therefore, Q(x̄) = Nx̄+ x̄tMx̄. So we have to �nd the region given by {x̄ : Q(x̄) < 0}.

To deal with it, we apply lemma 1 and we use equation (1) and the theorem is

concluded.

Remark 1. If we apply the proof of lemma 1 to the particular case that v = ej, we

are considering the map Qv(s) = s[aj1 − a11 + (ajj − a1j + a11 − aj1) s] and Q(s) = 0

if and only if s = 0 or s =
a11−aj1

a11−aj1+ajj−a1j
= 1

1+
ajj−a1j
a11−aj1

= p1j and so Q(s) < 0, for

any 0 < s < p1j. In particular, if we apply this to theorem 1, it follows that the whole

segment [0, p1j) is in the basin of attraction of e1.

6.2 Comparing strategies by pairs is not enough

In this section we show that to guarantee that a strategy has a uniformly large basin

of attraction is not enough to compare it with every other single strategy one at the

time. In other words, it is not enough to bound by below the size of the basin of

attraction when only considering populations of two strategies. More precisely, we

provide an example of a set of three strategies where only one is an attractor (and

therefore its basin is large in each one dimensional simplex) but it has a small local

basin.

We consider a replicator dynamics in dimension two and we write the equation

in a�ne coordinates {(x1, x2) : 0 > x2 6 1, 0 > x3 6 1, x2 + x3 6 1}. Given

λ > 0 and close to zero, we consider the almost horizontal and vertical lines given by
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Hλ(x2) = (x2, λ(1− x2)), and Vλ(x3) = (λ(1− x3), x3).

Theorem 10. Given λ > 0 close to zero and a > 0, there exist A ∈ R3×3 such that

0 < aij < a, satisfying that

(i) (0, 0) is an attractor and the horizontal line (x1, 0), 0 6 x1 < 1 and vertical line

(0, x2), 0 6 x2 < 1 are contained in the basin of attraction of (0, 0);

(ii) there are no points in the region bounded by Hλ, Vλ and x1 + x2 = 1 contained

in the basin of attraction of (0, 0).

Proof. To prove the result, we choose A ∈ R3×3 such that for any (x2, x3) ∈ Hλ and

(x2, x3) ∈ Vλ follows that X(x2, x3) points towards the region bounded by Hλ, Vλ and

x1 + x2 = 1. For that, it is enough to show that

X3(Hλ(x2))

X2(Hλ(x2))
=

λ(1− x2)F3(H(x2))

|x2F2(H(x2))|
>

1

4
, F3(H(x2)) > 0 for

λ

1− λ
< x2 < 1, (4)

X2(Vλ(x3))

X3(Vλ(x3))
=

λ(1− x3)F2(V (x3))

|x3F3(V (x3))|
>

1

4
, F2(V (x3)) > 0 for

λ

1− λ
< x3 < 1, (5)

where ( λ
1−λ

, λ
1−λ

) is the intersection point of Hλ and Vλ. Recall the de�nition of N ∈

R2,M ∈ R2×2 that induce the replicator dynamics in a�ne coordinates. Given λ we

assume that N2 = N3,
M32

N3
= M23

N3
= 1

λ
, and M22

N2
= M33

N2
= 2. To get that, and recalling

the relation between the coordinates of M and A, we choose the matrix A such that

a33−a13
N3

= 3, a22−a12
N2

= 3, a32 > a22, a23 > a33 and
a32−a22

N2
= a23−a33

N2
= 1

λ
− 2. With this

assumption, now we prove that inequality (4) is satis�ed: Let us denote x := x2 and

we �rst calculate F3(x, λ(x− 1)) and F2(x, λ(x− 1)) and its quotient with N3 and N2
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respectively:

F3(x, λ(1− x)) = N3 +M32x+M33λ(1− x)−

[x(N2 +M22x+M23λ(1− x)) + λ(1− x)(N3 +M32x+M33λ(1− x))],

F3(x, λ(1− x))

N3

= 1 +
M32

N3

x+
M33

N3

λ(1− x)−

[x(
N2

N3

+
M22

N3

x+
M23

N3

λ(1− x)) + λ(1− x)(1 +
M32

N3

x+
M33

N3

λ(1− x))]

= 1 + λ− 2λ2 + (
1

λ
− λ+ 4λ2 − 3)x− 2λ2x2,

F2(x, λ(1− x)) = N2 +M22x+M23λ(1− x)−

[x(N2 +M22x+M23λ(1− x)) + λ(1− x)(N3 +M32x+M33λ(1− x))]

F2(x, λ(1− x))

N2

= 1 +
M22

N2

x+
M23

N2

λ(1− x)−

[x(1 +
M22

N2

x+
M23

N2

λ(1− x)) + λ(1− x)(1 +
M32

N2

x+
M33

N2

λ(1− x))]

= (1− x)[1− λ− 2λ2 + (1 + 2λ2)x].

Therefore, on one hand observe that 1+λ−2λ2+( 1
λ
−λ+4λ2−3)x−2λ2x2 is a quadratic

polynomial with negative leading term that is positive at 1 and λ
1−λ

(provided that |λ|

is small) so is positive for λ
λ−1

< x < 1, on the other hand (1−x)[1−λ−2λ2+(1+2λ2)x]

is positive in the same range, so

λ(x− 1)F3(x, λ(x− 1))

|xF2(x, λ(x− 1))|
=

λ[1 + λ− 2λ2 + ( 1
λ
− λ+ 4λ2 − 3)x− 2λ2x2]

x[1− λ− 2λ2 + (1 + 2λ2)x]
;

since the minimum of the numerator is attained at λ
1−λ

getting a value close to 1 and

the maximum of the denominator is attained at 1 getting a value close to 2, follows

that in the range λ
λ−1

< x < 1 holds λ(x−1)F3(x,λ(x−1))
|xF2(x,λ(x−1))| > 1

3
, and therefore the inequality

(4) is proved. The proof of inequality (5) is similar and left for the reader.

Remark 2. Observe that under the hypothesis of theorem 10 the point ( λ
λ+1

, λ
λ+1

) is
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not in the basin of attraction of e1.

Proof of theorem 2. Given any small λ > 0, we build three strategies such that

identifying s with (0, 0), s∗ with (1, 0) and s′ with (0, 1) satisfy the hypothesis of

theorem 10. This is done as it follows: First, we assume that the strategies s′ and s∗

deviate from s at the 0−history, s plays always cooperate with itself and so s′(0) =

s∗(0) = D. We �x γ > 0 and we take ε small. Observe that provided any ε > 0

small, taking δ large, follows that there exist di�erent b′1, b
′
2, b

′
3, b

′
4 and b∗1, b

∗
2, b

∗
3, b

∗
4

such that 0 < R − (b′1R + b′2T + b′3S + b′4P ) = R − (b∗1R + b∗2T + b∗3S + b∗4P ) = ε but

R− (b′1R+ b′2S+ b′3T + b′4P ) = R− (b∗1R+ b∗2S+ b∗3T + b∗4P ) > γ. Now, from (C,D) we

choose s, s′, s∗ such that Uδ(s, s
∗) = Uδ(s, s

′) = b′1R + b′2T + b′3S + b′4P but in such a

way that s′ 6= s∗. To show that it is possible to choose s′ independently of s∗ against s

is enough to take s′(C,D) 6= s∗(C,D). Now, we take s∗ and s′ from (D,D) such that

s∗(D,D) 6= s′(D,D) and Uδ(s
∗, s∗)−Uδ(s, s

∗) = Uδ(s
∗, s∗)−(b∗1R+b∗2S+b∗3T+b∗4P ) =

−ε, Uδ(s
′, s′) − Uδ(s, s

′) = Uδ(s
′, s′) − (b′1R + b′2S + b′3T + b′4P ) = −ε. Moreover, we

can take s′, s∗ such that Uδ(s
′, s∗) = Uδ(s

′, s∗) = R therefore, Uδ(s
′, s∗)−Uδ(s

∗, s∗) =

Uδ(s
′, s∗)− Uδ(s

′, s′) > γ. So, Uδ(s
′,s∗)−Uδ(s

∗,s∗)
Uδ(s,s)−Uδ(s∗,s)

> γ
ε
and so choosing ε properly we can

assume that the quotient is equal to 1
λ
.

6.3 Recalculating payo� with trembles

With Uδ,p,hs1,s2
(s1, s2) we denote the utility along the path hs1,s2 . With Uδ,p,hc

s1,s2
(s1, s2)

we denote the di�erence, i.e., Uδ,p(s1, s2) − Uδ,p,hs1,s2
(s1, s2). With Uδ,p(s1, s2/ht) we

denote the utility with seed ht and with Uδ,p(hs1,s2/ht) we denote the utility only along

the path with seed ht for the pair s1, s2. In the same way, with Uδ,p(h
c
s1,s2/ht

) we denote

Uδ,p(s1, s2/ht) − Uδ,p(hs1,s2/ht). Also, with NE we denote the set of path which are

not hs1,s2−paths; usually those paths are called second order paths.
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De�nition 9. We say that s is a perfect public equilibrium strategy if for any s′

di�erent than s it follows that Uδ,p(s, s/ht) − Uδ,p(s
′, s/ht) > 0. It is also said that s

is a strict perfect public equilibrium strategy if Uδ,p(s, s/ht)− Uδ,p(s
′, s/ht) > 0.

Let us consider two strategies s1 and s2 and let

Rs1,s2 := {h ∈ H0 : ∃ k > 0, s1(ht) = s2(ht) ∀ t < k; s1(hk) 6= s2(hk)}.

Observe that if s1(h0) 6= s2(h0) then any path h ∈ H∞ belongs to Rs1,s2 . In other

words, we consider all the paths where s1 and s2 di�er at some moment, including

the �rst move. Observe that k depends on h, and it is de�ned as the �rst time that

s1 di�ers with s2 along h, i.e. kh(s1, s2) = min{t > 0 : s1(ht) 6= s2(ht)}. From now

on, to avoid notation we drop the dependence on the path, and with hk we denote

the k−�nite truncation of h where k is the �rst time that s1 and s2 deviate along

h. Observe that for h ∈ Rs1,s2 , the fact that s1(ht) = s2(ht) for any t < k does not

imply that ht = s1(ht). Moreover, observe also that if s1 6= s2 then Rs1,s2 6= ∅.

Lemma 2. It follows that

Uδ,p(s1, s1)− Uδ,p(s2, s1) =
∑

h∈Rs1,s2

δkps1,s1(hk)(Uδ,p(s1, s1/hk)− Uδ,p(s2, s1/hk)). (6)

Proof. If s1(h0) 6= s2(h0) then Rs1,s2 = H∞, hk = h0 and in this case there is nothing

to prove. If s1(0) = s2(0), the result follows from the next claim that states that

given a history path h then

ps1,s1(ht) =

 ps2,s1(ht) if t 6 k

ps2,s1(hk)ps2,s1/hk
(σk(h)t−k) = ps1,s1(hk)ps2,s1/hk

(σk(h)t−k) if t > k

24



(where σk(h) is a history path that veri�es σk(h)j = hj+k). To prove the claim

in the case that t 6 k we proceed by induction: it follows that ps1,s1(at, bt) =

ps1,s1(at−1, bt−1)p
i1t+j1t (1 − p)2−i1t−j1t where i1t = 1 if at = s1(ht−1) = s1(at−1, bt−1),

i1t = 0 otherwise, and j1t = 1 if bt = s1(ĥt−1) = s1(bt−1, at−1), j
1
t = 0 otherwise; in

the same way ps2,s1(at, bt) = ps2,s1(at−1, bt−1)p
i2t+j2t (1 − p)2−i2t−j2t where i2t = 1 if at =

s2(ht−1) = s2(at−1, bt−1), i
2
t = 0 otherwise, and j2t = 1 if bt = s1(ĥt−1) = s1(bt−1, at−1),

j2t = 0 otherwise. Now, by induction follows that ps1,s1(at−1, bt−1) = ps2,s1(at−1, bt−1)

and from s1(ht−1) = s2(ht−1) follows that i
1
t = i2t , j

1
t = j2t .

Lemma 3. For any pair of strategies s1, s2 it follows that |Uδ,p(h
c
s2,s1/ht

)| < 1−p2

p2(1−δ)
M

where M = max{T, |S|}.

Proof. Observe that �xed t then
∑

ht∈Ht
ps1,s2(ht) = 1, since in the equilibrium path

at time t the probability is p2t+2 it follows that
∑

ht /∈Ht∩NE ps1,s2(ht) = 1 − p2t+2.

Therefore, and recalling that u(ht) 6 M,

|Uδ,p(h
c
s2,s1/ht

)| = |1− p2δ

p2

∑
t>0,ht /∈NE

δtps1,s2(ht)u(h
t)|

6 (1− δ)
∑
t>0

δt
∑

ht /∈NE

ps1,s2(ht)|u(ht)| 6 (1− δ)M
∑
t>0

δt(1− p2t+2)

= M [(1− δ)
∑
t>0

δt − (1− δ)
∑
t>0

δtp2t+2] = M [1− p2
1− δ

1− p2δ
] =

1− p2

(1− p2δ)
M.

From previous lemma, we can conclude the next two lemmas:

Lemma 4. Given two strategies s1 and s2 limp→1

∑
ht∈NE Uδ,p(s1, s2/ht) = 0.

Lemma 5. Given two strategies s1 and s2 then

limp→1Uδ,p(s2, s2)− Uδ,p(s1, s2) =
∑

hk,h∈Rs1,s2

δk[Uδ(hs2,s2/hk
)− Uδ(hs1,s2/hk

)].

25



Now, we are going to rewrite the equation (6) considering at the same time the

paths h and ĥ.

Remark 3. Observe that given a strategy s if ĥt 6= ht it could hold that s(ĥt) 6= s(ht).

Also, given two strategies s1, s2 it also could hold that kh(s1, s2) 6= kĥ(s1, s2). However,

it follows that if kh(s1, s2) 6 kĥ(s1, s2) then ps1,s1(hk) = ps1,s1(ĥk) = ps1,s2(hk) =

ps1,s2(ĥk) = ps2,s1(hk) = ps2,s1(ĥk) = ps2,s2(hk) = ps2,s2(ĥk)

Using the previous remark, we de�ne the set R∗
s1,s2

as the set

R∗
s1,s2

= {h ∈ Rs1,s2 : kh(s1, s2) 6 kĥ(s1, s2)}

and therefore the di�erences Uδ,p(s2, s2)− Uδ,p(s1, s2) can be written in the following

way (denoting k as kh(s1, s2))

Uδ,p(s1, s1)− Uδ,p(s2, s1) =
∑

hk,h∈R∗
s1,s2

δkps1,s1(hk)[Uδ,p(s1, s1/hk)− Uδ,p(s2, s1/hk)]

+
∑

hk,h∈R∗
s1,s2

δkps1,s1(hk)[Uδ,p(s1, s1/ĥk)− Uδ,p(s2, s1/ĥk)].

We give now a lemma that compares equilibrium paths with seeds ht and ĥt; later, we

also compare the payo� along those paths. The proofs of the next two next lemmas

are straightforward and left to the reader.

Lemma 6. Given two strategies s1 and s2 and a path ht follows that ĥs2,s1/ht =

hs1,s2/ĥt
.

Now, we compare the payo�s. Given two strategies s1 and s2 and a path hk,

we take b1 = (1 − δ)
∑

j:uj(s2,s1/hk)=R δj, b2 = (1 − δ)
∑

j:uj(s2,s1/hk)=S δj, b3 = (1 −

δ)
∑

j:uj(s2,s1/hk)=T δj, b4 = (1 − δ)
∑

j:uj(s2,s1/hk)=P δj. Observe that b1 + b2 + b3 +
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b4 = 1 and U(s2, s1) = b1R + b2S + b3T + b4P. In the same way, for ĥk we de�ne

b̂1, b̂2, b̂3, b̂4, b̂1 = (1− δ)
∑

j:uj(s2,s1/ĥk)=R δj, b̂2 = (1− δ)
∑

j:uj(s2,s1/ĥk)=S δj, b̂3 = (1−

δ)
∑

j:uj(s2,s1/ĥk)=T δj, b4 = (1−δ)
∑

j:uj(s2,s1/ĥk)=P δj. Observe that b̂1+b̂2+b̂3+b̂4 = 1.

Now we de�ne B1 = b1 + b̂1, B2 = b2 + b̂2, B3 = b3 + b̂3, B4 = b4 + b̂4.

The next two lemmas are trivial and left for the reader.

Lemma 7. Given two strategies s1 and s2 and a path hk, if Uδ(hs2,s1/hk
) = b1R+b2S+

b3T + b4PS then Uδ(hs1,s2/ĥk
) = b1R + b2T + b3S + b4P. Moreover, if Uδ(hs2,s1/hk

) +

Uδ(hs2,s1/ĥk
) = B1R + B2T + B3S + B4P, then Uδ(hs1,s2/hk

) + Uδ(hs1,s2/ĥk
) = B1R +

B2S +B3T +B4P.

Lemma 8. Provided that T + S 6 2R, given two strategies s and s2 and a path hk,

follows that Uδ(hs1,s2/hk
) + Uδ(hs2,s1/ĥk

) 6 2R.

From now one, given a pair of strategies s1 and s2 (s2 could be equal to s1) we

use the following notations,

Uδ,p(s1, s2/h̃k) := Uδ,p(s1, s2/hk) + Uδ,p(s1, s2/ĥk), (7)

Uδ,p(hs1,s2/h̃k
) := Uδ,p(hs1,s2/hk

) + Uδ,p(hs1,s2/ĥk
). (8)

6.4 Recalculating payo�s with trembles for small probability

of mistakes

Now, we develop a way to calculate payo�s for strategies by, roughly speaking, ap-

proximating the payo� using equilibrium paths, when the probability of mistake is

small. This �rst order approximation allows to prove that the asymptotic bounded

condition (see inequalities (15) and (16)) for certain types of strategies (namely strict

perfect public equilibrium strategies, see de�nition 10). In few words, the di�er-
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ence in utility between two strategies can be estimated in the following way (pro-

vided that p is su�ciently close to 1): �rst, we consider all the paths up to its

�rst node of divergence between two strategies, hk, ĥk (see equalities (9, 10, 12));

secondly, from the node of divergence we consider equilibrium payo�s (lemma 10).

If s(h0) 6= s∗(h0), Uδ,p(s, s) − Uδ,p(s
∗, s) is close to Uδ,p,hs,s(s, s) − Uδ,p,hs∗,s(s

∗, s).

From now on, we denote N̄δ,p(s, s
∗) := Uδ,p(s, s) − Uδ,p(s, s

∗) and Bδ,p(s, s
∗, s′) :=

Uδ,p(s
′, s∗) + Uδ,p(s

∗, s′)− 2Uδ,p(s, s). Recall that (and recall notation (7) and (8))

Nδ,p(s, s
∗) =

∑
hk,h∈R∗

s,s∗

δkps,s(hk)[Uδ,p(s, s/h̃k)− Uδ,p(s
∗, s/h̃k)], (9)

N̄δ,p(s, s
∗) =

∑
hk,h∈R∗

s,s∗

δkps,s(hk)[Uδ,p(s, s/h̃k)− Uδ,p(s, s
∗/h̃k)]. (10)

We de�ne N e
δ,p(s, s

∗) :=
∑

hk,h∈R∗
s,s∗

δkps,s(hk)[Uδ,p(hs,s/h̃k
) − Uδ,p(hs∗,s/h̃k

)] and

N̄ e
δ,p(s, s

∗) :=
∑

hk,h∈R∗
s,s∗

δkps,s(hk)[Uδ,p(hs,s/h̃k
)− Uδ,p(hs,s∗/h̃k

)] where

Uδ,p(hs,s∗/h̃k
) := Uδ,p(hs,s∗/hk

) + Uδ,p(hs,s∗/ĥk
).

We look for conditions such that there exists a uniform constant C satisfying that

N̄δ,p(s, s
∗)

Nδ,p(s, s∗)
6

N̄ e
δ,p(s, s

∗)

N e
δ,p(s, s

∗)
+ C. (11)

We develop a similar approach for Bδ,p(s, s
′, s∗) that consists in comparing di�erent

paths for three strategies s, s∗, s′. Given any pair of paths h, ĥ where s, s′, s∗ di�er

(meaning that at least two of the strategies di�er at some �nite paths contained either

in h or ĥ), there exist k′ = k(s, s′, h), k̂′ = k̂(s, s′, ĥ), k∗ = k(s, s∗, h), k̂∗ = k̂(s, s∗, ĥ),

such that s(hk′) 6= s′(hk′), s(ĥk′) 6= s′(ĥk′) and s(ĥk∗) 6= s∗(ĥk∗). Observe that some

of them could be in�nity.

We take k(s, s′, s∗) := min{k′, k̂′, k∗, k̂∗} which is �nite and observe that pss(hk) =
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ps′s∗(hk) = ps∗s′(hk) = ps∗s(hk) = ps′s(hk) and pss(ĥk) = ps′s∗(ĥk) = ps∗s′(ĥk) =

ps∗s(ĥk) = ps′s(ĥk), so

Bδ,p(s, s
∗, s′) =

∑
k(s,s′,s∗)

δkpss(hk)[Uδ,p(s
′, s∗/h̃k) + Uδ,p(s

∗, s′/h̃k)− 2Uδ,p(s, s/h̃k)] (12)

Now we de�ne

Be
δ,p(s, s

∗, s′) =
∑

h:k(s,s′,s∗)

δkpss(hk)[Uδ,p(hs′,s∗/h̃k
) + Uδ,p(hs∗,s′/h̃k

)− 2Uδ,p(hs,s/h̃k
)].

So, we look for conditions such that there exists a uniform constant C such that

Bδ,p(s, s
∗, s′)

Nδ,p(s, s∗)
6

Be
δ,p(s, s

∗, s′)

N e
δ,p(s, s

∗)
+ C. (13)

We are going to restrict a relation between p and δ. From now on we take p >
√
δ. To

simplify calculations we change the usual renormalization factor 1 − δ by 1−p2δ
p2

and

we calculate the payo� as follows: Uδ,p(s1, s2) =
1−p2δ
p2

∑
t>0,at,bt

δtps1,s2(at, bt)u(a
t, bt).

Both ways calculating the payo� (either with renormalization 1−δ or 1−p2δ
p2

) are equiv-

alent as they rank histories in the same way. In addition it holds that: 1
2
< 1−δ

1−δp2
< 1.

If s1 = s2 along the equilibrium then Uδ,p(hs,s) =
1−δp2

p2

∑
t>0 p

2t+2δtu(at, at) 6 R.

Lemma 9. It holds Nδ,p(s, s
∗) 6 N e

δ,p(s, s
∗) + 2 1−p2

p2(1−δ)
M ; N̄δ,p(s, s

∗) 6 N̄ e
δ,p(s, s

∗) +

2 1−p2

p2(1−δ)
M ; Bδ,p(s, s

∗, s′) 6 Be
δ,p(s, s

∗, s′) + 3 1−p2

p2(1−δ)
M.

The next de�nition is an extension of the de�nition of perfect public equilibrium

strategies.

De�nition 10. We say that s is a uniformly strict sub game perfect if for any s∗ and

h ∈ Rs,s∗ , it follows that (1− p2δ)C0 < Uδ,p(hs,s/hk
)−Uδ,p(hs∗,s/hk

), for p > p0, δ > δ0

where C0, δ0, p0 are positive constants that only depend on T,R, P, S.
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Given δ we take p such that 3 1−p2

p2(1−δ)
M

C0(1−p2δ)
< 1. Since p < 1 it follows that

1 − p2δ > 1 − δ and taking p > 1
2
then to satisfy above equation we require that

3
4

1−p2

(1−δ)2
M
C0

< 1. Therefore, we take

p(δ) =

√
1− 4

3

C0

M
(1− δ)2 (14)

and observe that it is a function smaller than 1 for δ < 1 and larger than
√
δ.

Lemma 10. If s∗ is strict perfect public equilibrium and p > p(δ) (giving by equality

14) then
N̄δ,p(s,s

∗)

Nδ,p(s,s∗)
6 N̄e

δ,p(s,s
∗)

Ne
δ,p(s,s

∗)
+ 1 and

Bδ,p(s,s
∗,s′)

Nδ,p(s,s∗)
6 Be

δ,p(s,s
∗,s′)

Ne
δ,p(s,s

∗)
+ 1.

Proof. From lemma 9, s being a perfect public equilibrium and equality (14), we have

N̄δ,p(s, s
∗)

Nδ,p(s, s∗)
6

N̄ e
δ,p(s, s

∗) + 2 1−p2

p2(1−δ)
M

N e
δ,p(s, s

∗)(1 + 2 1−p2

p2(1−δ)
M 1

Ne
δp(s,s

∗)
)
6

N̄ e
δ,p(s, s

∗)

N e
δ,p(s, s

∗)(1 + 2M 1−p2

(1−δ)p2C0(1−p2δ)
)
+ 2M

1− p2

(1− δ)p2C0(1− p2δ)
) 6

N̄ e
δ,p(s, s

∗)

N e
δ,p(s, s

∗)
+ 1.

The result for
Bδ,p(s,s

∗,s′)

Nδ,p(s,s∗)
can be shown in a similar way.

Now we will bound
Uδ,p(s,s)−Uδ,p(s,s

∗)

Uδ,p(s,s)−Uδ,p(s∗,s)
based on lemma 10.

Lemma 11. If p > p(δ) (giving by equality 14) and s is a uniform strict and

there exists D such that for any h ∈ R∗
s,s∗ it holds

Uδ,p(hs,s/h̃k
)−Uδ,p(hs,s∗/h̃k

)

Uδ,p(hs,s/h̃k
)−Uδ,p(hs∗,s/h̃k

)
< D then

Uδ,p(s,s)−Uδ,p(s,s
∗)

Uδ,p(s,s)−Uδ,p(s∗,s)
< D + 1.
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Proof. It is enough to estimate
N̄δ,p(s,s

∗)

Nδ,p(s,s∗)

N̄δ,p(s, s
∗)

Nδ,p(s, s∗)
=

∑
h∈Rs,s∗δ,p

δkps,s(hk)(Uδ,p(hs,s/h̃k
)− Uδ,p(hs,s∗/h̃k

))∑
h∈Rs,s∗ ,δ,p

δkps,s(hk)(Uδ,p(hs,s/h̃k
)− Uδ,p(hs∗,s/h̃k

))

=

∑
k,hk

δkps,s(hk)
Uδ,p(hs,s/h̃k

)−Uδ,p(hs,s∗/h̃k
)

Uδ,p(s,s/h̃k)−Uδ,p(s∗,s/h̃k)
(Uδ,p(hs,s/h̃k

)− Uδ,p(hs,s∗/h̃k
)∑

k,hk
δkps,s(hk)(Uδ,p(hs,s/h̃k

)− Uδ,p(hs∗,s/h̃k
)

) 6

D

∑
h∈Rs,s∗δ,p

δkps,s(hk)(Uδ,p(hs,s/h̃k
)− Uδ,p(hs∗,s/h̃k

))∑
h∈Rs,s∗ ,δ,p

δkps,s(hk)(Uδ,p(hs,s/h̃k
)− Uδ,p(hs∗,s/h̃k

))
= D.

6.5 Proof of theorem 3 and new conditions to have a uniformly

large basin

Proof of theorem 3. The proof follows immediately from theorem 1 and the de�nition

of M(s). In fact, ordering the strategies in such a way that s corresponds to the �rst

one and N(s, si) > N(s, sj) if j > i then it follows that for δ large, then the constant

M0 = sup{Mij+Mji

−Nii
, 0} < M(s) + β and therefore B(s) is contained in the basin of

attraction of e1.

We provide now a condition that implies that s is has a uniformly Large Basin of

attraction. This new conditions is based on the conditions de�ned in subsection 3.1

but it is easier to calculate.

De�nition 11. We say that a strict perfect public equilibrium strategy s satis�es the

asymptotic bounded condition if

� there exists R0 such that for any s∗ holds

lim sup
δ→1,p→1,p>p(δ)

sup
s∗:Nδ,p(s,s∗)>0

Uδ,p(s, s)− Uδ(s, s
∗)

Nδ,p(s, s∗)
< R0, (15)
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� there exists R1 such that for any s∗, s′ for which Nδ,p(s, s
∗) > Nδ,p(s, s

∗) holds,

then

lim sup
δ→1,p→1,p>p(δ)

sup
s∗:Nδ(s,s∗)>0

Uδ,p(s
′, s∗) + Uδ,p(s

∗, s′)− 2Uδ,p(s, s)

Nδ,p(s, s∗)
< R1. (16)

Theorem 11. Let s be a strict perfect public equilibrium strategy satisfying the asymp-

totic bounded condition. Then, s satis�es the � uniformly Large Basin condition� and

therefore has a uniformly large basin of attraction.

Remark 4. From the proof of theorem 11, it follows that M(s) 6 2 + 2R0 +R1.

Proof of theorem 11. To prove the theorem we need to show that Mδ,p(s) < +∞.

Mδ,p(s, s
∗, s′) =

=
Nδ,p(s, s

∗) +Nδ,p(s, s
′) + Uδ,p(s

′, s∗)− Uδ,p(s, s
∗) + Uδ,p(s

∗, s′)− Uδ,p(s, s
′)

Nδ,p(s, s∗)

= 1 +
Nδ,p(s, s

′)

Nδ,p(s, s∗)
+

Uδ,p(s
′, s∗)− Uδ,p(s, s

∗) + Uδ,p(s
∗, s′)− Uδ,p(s, s

′)

Nδ,p(s, s∗)
.

Recalling that Nδ,p(s, s
′) 6 Nδ,p(s, s

∗) we need to bound by above the following ex-

pression
Uδ,p(s

′,s∗)−Uδ,p(s,s
∗)+Uδ,p(s

∗,s′)−Uδ,p(s,s
′)

Nδ,p(s,s∗)
. So,

Uδ,p(s
′, s∗)− Uδ,p(s, s

∗) + Uδ,p(s
∗, s′)− Uδ,p(s, s

′)

Nδ,p(s, s∗)
=

=
Uδ,p(s

′, s∗) + Uδ,p(s
∗, s′)− 2Uδ,p(s, s)

Nδ,p(s, s∗)
+

+
Uδ,p(s, s)− Uδ,p(s, s

∗)

Nδ,p(s, s∗)
+

Uδ,p(s, s)− Uδ,p(s, s
′)

Nδ,p(s, s∗)
6

6 R1 +
Uδ,p(s, s)− Uδ,p(s, s

∗)

Nδ,p(s, s∗)
+

Uδ,p(s, s)− Uδ,p(s, s
′)

Nδ,p(s, s′)

Nδ,p(s, s
′)

Nδ,p(s, s∗)
6 R1 + 2R0.
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6.6 w has a uniformly large basin of attraction: proof of the-

orem 4

First we prove that w is a uniformly strict perfect public equilibrium (this is done

in subsection 6.6.1), and later we show that w satis�es the �Asymptotic bounded

condition�. For the latter we need to bound

N̄δ,p(s, s
∗)

Nδ,p(s, s∗)
, (17)

Bδ,p(s, s
∗, s′)

Nδ,p(s, s∗)
(18)

which is done in subsection 6.6.2 and 6.6.3, respectively.

6.6.1 The pro�le (w,w) is a uniformly strict perfect public equilibrium

Given hk we have to estimate Uδ,p(hw,w/hk
) − Uδ,p(hs,w/hk

) where hw,w/hk
is the equi-

librium path for w,w starting with hk and hs,w/hk
is the equilibrium path for s, w

starting with hk.

In what follows, to avoid notation, with U(., .) we denote Uδ,p(h.,./hk
). Following

that, we take b1 = 1−p2δ
p2

∑
j:uj(s,w/hk)=R p2j+2δj, b2 = 1−p2δ

p2

∑
j:uj(s,w/hk)=S p2j+2δj,

b3 =
1−p2δ
p2

∑
j:uj(s,w/hk)=T p2j+2δj, and b4 =

1−p2δ
p2

∑
j:uj(s,w/hk)=P p2j+2δj. Observe that

b1+ b2+ b3+ b4 = 1 and U(s, w) = b1R+ b2S+ b3T + b4P. If for each T in a period (s

plays D and w plays C), in the next period s earns either S or P given that w will

play D. Therefore,

b2 + b4 > p2δb3. (19)

To calculate U(w,w) we have to consider either s(hk) = C, w(hk) = D or s(hk) = D,
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w(hk) = C. So, from the fact that w is symetric (i.e. w(ht) = w(ĥt)) follows that

U(w,w) =

 R if w(hk) = C

1−p2δ
p2

P + p2δR if w(hk) = D

To calculate U(w,w) − U(s, w) in case that s(hk) = D,w(hk) = C, we write R =

b1R + b2R + b3R + b4R by inequality (19) it follows that

U(w,w)− U(s, w) = b2(R− S) + b3(R− T ) + b4(R− P )

> (b2 + b4)(R− P ) + b3(R− T ) > δp2b3(R− P ) + b3(R− T )

> b3[(1 + p2δ)R− (T + P )].

Observing that if s(hk) = D,w(hk) = C, then b3 > 1−p2δ, and since 2R−(T+P ) > 0

it follows that, for δ and p large, [(1 + p2δ)R− (T + P )] > C0 for a positive constant

smaller than 2R−(T+P ). Therefore, it follows that U(w,w)−U(s, w) > (1−p2δ)C0,

(provided that δ and p large are large) concluding that (w,w) is a uniformly strict

perfect public equilibrium if 2R > T + S.

In the case that s(hk) = C,w(hk) = D, observe that b2 > 1 − δ and calculating

again the quantities b1, b2, b3, b4 but starting from j > 1, we get that U(s, w) = (1−

p2δ)S+p2δ[b1R+b2S+b3T+b4P ]. Therefore, writing p2δR = p2δ[b1R+b2R+b3R+b4R]

and arguing as before,

U(w,w)− U(s, w) = (1− p2δ)(P − S) + δ[b2(R− S) + b3(R− T ) + b4(R− P )]

> (1− p2δ)(P − S) + δ[(b2 + b4)(R− P ) + b3(R− T )]

> (1− p2δ)(P − S) + δ[δb3(R− P ) + b3(R− T )]

> (1− p2δ)(P − S) + δb3[(1 + δ)R− (T + P )].
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Since 2R − (T + P ) > 0, it follows that for δ large (b3 now can be zero) U(w,w) −

U(s, w) > (1 − p2δ)(P − S), proving that (w,w) is a uniformly strict perfect public

equilibrium in this case.

Remark 5. For ε small and δ large then C0 = min{P − S, 2R− (T + S)− ε}.

Remark 6. To prove that w is a uniformly strict perfect public perfect, the main two

properties of w used are: it cooperates after seeing cooperation and so U(w,w) = R

after w(hk) = C, after getting P it goes back to cooperate, so U(w,w) = (1− δp2)P +

δp2R after w(hk) = D, it punishes after getting S,2R > T + P . Observe, that the

previous calculation does not use the fact that w keeps defecting after obtaining T.

6.6.2 Bounding (17)

First we estimate Uδ,p(w,w)−Uδ,p(s, w) and Uδ,p(w,w)−Uδ,p(w, s). Recall that from

lemma 11 is enough to bound for any h ∈ R∗
w,s :

Uδ,p(hw,w/h̃k
)−Uδ,p(hw,s/h̃k

)

Uδ,p(hw,w/h̃k
)−Uδ,p(hs,w/h̃k

)
. To avoid

notation, we denote U(s, s′) := Uδ,p(hs,s′/hkĥh
) = Uδ,p(hs,s′/hk

) + U(hs,s′/ĥk
). Observe

that if U(w,w)−U(s, w) = b2(R−S)+b3(R−T )+b4(R−P ), then U(w,w)−U(w, s) =

b2(R− T ) + b3(R− S) + b4(R− P ). To avoid notation, let us denote L = U(w,w)−

U(s, w) = b2(R−S)+b3(R−T )+b4(R−P ) so, b4(R−P ) = L−[b2(R−S)+b3(R−T )]

and therefore

U(w,w)− U(w, s) = b2(R− T ) + b3(R− S) + L− [b2(R− S) + b3(R− T )]

= L+ b2(S − T ) + b3(T − S) = L+ (b3 − b2)(T − S) 6 L+ b3(T − S).

35



Recalling that in case that b3 6= 0, L = U(w,w) − U(s, w) > b3[(1 + δ)R − (T + P )]

(if b3 = 0 then U(w,w)−U(w,s)
U(w,w)−U(s,w)

6 1) it follows that

U(w,w)− U(w, s)

U(w,w)− U(s, w)
6 L+ b3(T − S)

L
6 1 +

b3(T − S)

b3[(1 + δ)R− (T + P )]

= 1 +
T − S

(1 + δ)R− (T + P )
.

Therefore,
Uδ,p(hw,w/h̃k

)−Uδ,p(hw,s/h̃k
)

Uδ,p(hw,w/h̃k
)−Uδ,p(hs,w/h̃k

)
6 1 + T−S

(1+δ)R−(T+P )
, and applying lemma 11 it fol-

lows that
Uδ,p(w,w)−Uδ,p(w,s)

Uδ,p(w,w)−Uδ,p(s,w)
6 2 + T−S

(1+δ)R−(T+P )
.

Remark 7. The main property of w used to bound (17) is that if b3 6= 0 then

U(w,w) − U(s, w) > b3[(1 + δ)R − (T + P )] and this follows from the properties

listed in remark 6.

6.6.3 Bounding (18)

By lemma 10 we need to bound
Be

δ,p(s,s
∗,s′)

Ne
δ,p(s,s

∗)
. Recall that

Be
δ,p(s, s

∗, s′) =
∑

h:k(s,s′,s∗)

δkpss(hk)[Uδ,p(hs′,s∗/h̃k
) + Uδ,p(hs∗,s′/h̃k

)− 2Uδ,p(hs,s/h̃k
)].

If s = w we divide the paths in two cases: either w(hk) = C or w(hk) = D. For

the �rst case, we claim Uδ,p(hs′,s∗/h̃k
) + Uδ,p(hs∗,s′/h̃k

) − 2Uδ,p(hw,w/h̃k
) 6 0 : since

Uδ,p(hw,w/h̃k
) = 2R and by lemma 8 follows the assertion above. Therefore,

Be
δ,p(s, s

∗, s′) 6
∑

h:k(s,s′,s∗),w(hk)=D

Uδ,p(hs′,s∗/h̃k
) + Uδ,p(hs∗,s′/h̃k

)− 2Uδ,p(hw,w/h̃k
).

In the second, observe that U(hw,w/h̃k
) = 21−p2δ

p2
P+2Rδ. To deal with this situation we

consider two subcases: i) s′(hk) = C or s′(ĥk) = C, and ii) s∗(hk) = C or s∗(ĥk) = C.
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So,

Be
δ,p(s, s

∗, s′) 6
∑

h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs′,s∗/h̃k
) + Uδ,p(hs∗,s′/h̃k

)− 2Uhδ,p(w,w/h̃k
) +

∑
h:s∗(hk)=C ors∗(ĥk)=C

Uδ,p(hs′,s∗/h̃k
) + Uδ,p(hs∗,s′/h̃k

)− 2Uδ,p(hw,w/h̃k
).

Subcase i) s′(hk) = C or s′(ĥk) = C: In this situation follows that h ∈ R∗(s′, w).

We rewrite

∑
h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs′,s∗/h̃k
) + Uδ,p(hs∗,s′/h̃k

)− 2Uδ,p(hw,w/h̃k
) =

∑
h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs′,s∗/hk
) + Uδ,p(hs∗,s′/ĥk

)− Uδ,p(hw,w/h̃k
) +

∑
h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs∗,s′/hk
) + Uδ,p(hs′,s∗/ĥk

)− Uδ,p(hw,w/h̃k
).

From h ∈ R∗(s′, w), and lemma 8 we have that

∑
h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs′,s∗/hk
) + Uδ,p(hs∗,s′/ĥk

)− Uδ,p(hw,w/h̃k
) 6

1− p2δ

p2

∑
h:h∈R∗(s′,w)

pws′(hk)δ
k[S + T − 2P ]

and

∑
h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs∗,s′/hk
) + Uδ,p(hs′,s∗/ĥk

)− Uδ,p(hw,w/h̃k
) 6

1− p2δ

p2

∑
h:h∈R∗(s′,w)

pws′(hk)δ
k[S + T − 2P ].
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Since

Uδ,p(w,w)− Uδ,p(s
′, w) > 1− p2δ

p2

∑
h:h∈R∗(s′,w)

pws′(hk)δ
k[2P − (S + P )]

it follows that

∑
h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs′,s∗/hk
) + Uδ,p(hs∗,s′/ĥk

)− Uδ,p(hw,w/h̃k
) 6

Uδp(w,w)− Uδp(s
′, w),∑

h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs∗,s′/hk
) + Uδ,p(hs′,s∗/ĥk

)− Uδ,p(hw,w/h̃k
) 6

Uδ,p(w,w)− Uδ,p(s
′, w).

Subcase ii) s∗(hk) = C or s∗(ĥk) = C: From h ∈ R∗(s∗, w), and in a similar

fashion to subcase i) we have that

∑
h:s∗(hk)=C ors∗(ĥk)=C

Uδ,p(hs∗,s′/hk
) + Uδ,p(hs∗,s′/ĥk

)− Uδ,p(hw,w/h̃k
) 6

Uδ,p(w,w)− Uδ,p(s
∗, w)∑

h:s∗(hk)=C ors∗(ĥk)=C

Uδ,p(hs∗,s′/hk
) + Uδ,p(hs′,s∗/ĥk

)− Uδ,p(hw,w/h̃k
) 6

6 Uδ,p(w,w)− Uδ,p(s
∗, w).

Therefore, recalling that Uδ,p(w,w)−Uδ,p(s
∗, w) > Uδ,p(w,w)−Uδ,p(s

′, w) we con-

clude that
Bδ,p(s,s

∗,s′)

Uδ,p(w,w)−Uδ,p(s∗,w)
is uniformly bounded and therefore bounding (18). This

proof that w has a uniformly large basin of attraction.
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6.7 Forgiveness: proof of theorems 5 and 6

To prove that Grim (g from now on) does not have a uniformly large basin of at-

traction, we are going to �nd a strategy s such that the basin of attraction of g is

arbitrary small provided that δ and p are close to 1. In fact, we use the equation

provided in remark 1 to determine the boundary point pg,s =
1

1+
Uδ,p(s,s)−Uδ,p(g,s)

Uδ,p(g,g)−Uδ,p(s,g)

of the

basin of attraction of g (the smaller pg,s is, the smaller the basin of attraction of g is).

Proof of theorem 5. We consider the strategy s that behaves like g but forgives mutual

defections in the �rst period (t = 0). We need to show that for any ε > 0 small, there

exist p0, δ0 such that for any p > p0, δ > δ0, follows that
1

1+
Uδ,p(s,s)−Uδ,p(g,s)

Uδ,p(g,g)−Uδ,p(s,g)

< ε. From

the de�nition of s, for any h verifying that h0 6= (D,D) and any t it follows that

pg,g(ht) = ps,g(ht) = pg,s(ht) = ps,s(ht). Therefore,

Uδ,p(s, s/(C,C)) = Uδ,p(s, g/(C,C)) = Uδ,p(g, g/(C,C)) = Uδ,p(g, s/(C,C)),

Uδ,p(s, s/(D,C)) = Uδ,p(s, g/(D,C)) = Uδ,p(g, g/(D,C)) = Uδ,p(g, s/(D,C)),

Uδ,p(s, s/(C,D)) = Uδ,p(s, g/(C,D)) = Uδ,p(g, g/(C,D)) = Uδ,p(g, s/(C,D)), so

Uδ,p(s, s)− Uδ,p(g, s) = Uδ,p(s, s/(D,D))ps,s(D,D)− Uδ,p(g, s/(D,D))pg,s(D,D),

Uδ,p(g, g)− Uδ,p(s, g) = Uδ,p(g, g/(D,D))pg,g(D,D)− Uδ,p(s, g/(D,D))ps,g(D,D).

Recalling that s after (D,D) behaves as g and g after (D,D) behaves as the

strategy always defect (denoted as a) and ps,s(D,D) = ps,g(D,D) = pg,s(D,D) =

pg,g(D,D) = (1 − p)2, then Uδ,p(s, s) − Uδ,p(g, s) = (1 − p)2δ[Uδ,p(g, g) − Uδ,p(a, g)]

and Uδ,p(g, g) − Uδ,p(s, g) = (1 − p)2δ[Uδ,p(a, a) − Uδ,p(g, a)]. Therefore, it remains to

calculate the payo�s involving a and g. Also observe that for any path h if we take k

as the �rst non-negative integer such that hk 6= (C,C) then for any t > k ps1,s2(ht) =

ps1,s2(hk)pa,a(σ
k(h)t−k) where s1 and s2 is either g or a and σk(h) is a history path

that veri�es σk(h)j = hj+k. Therefore Uδ,p(g, g/hk) = Uδ,p/hk
(a, g) = Uδ,p(g, a/hk) =

Uδ,p/hk
(a, a). So, noting with (C,C)t a path of t consecutive simultaneous cooperation
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and L =
∑

t>0,ht
δtpa,a(ht)u(ht) =

1
1−δ

[(1−p)2R+(S+T )(1−p)p+p2P ], follows that

Uδ,p(g, g)− Uδ,p(a, g) = (1− δ){
∑
t>0

δtu(C,C)[pg,g((C,C)t)− pa,g((C,C)t)] +∑
t>0

δt[u(C,D) + δL][pg,g((C,C)t(C,D)− pa,g((C,C)t(C,D))] +∑
t>0

δt[u(D,C) + δL][pg,g((C,C)t(D,C))− pa,g((C,C)t(D,C))] +∑
t>0

δt[u(D,D) + δL][pg,g((C,C)t(D,D))− pa,g((C,C)t(D,D))]}

Therefore Uδ,p(g, g)− Uδ,p(a, g) = (1− δ)GA(δ, p) where

GA(δ, p) = R[
p2

1− p2δ
− p(1− p)

1− p(1− p)δ
] + [S + δL][

p(1− p)

1− p2δ
− (1− p)2

1− p(1− p)δ
] +

[T + δL][
(1− p)p

1− p2δ
− p2

1− p(1− p)δ
] + [P + δL][

(1− p)2

1− p2δ
− (1− p)p

1− p(1− p)δ
].

and we write GA(δ, p) = GA0(δ, p) +GA1(δ, p) where

GA0(δ, p) = R[
p2

1− p2δ
− p(1− p)

1− p(1− p)δ
] + S[

p(1− p)

1− p2δ
− (1− p)2

1− p(1− p)δ
] +

T [
(1− p)p

1− p2δ
− p2

1− p(1− p)δ
] + P [

(1− p)2

1− p2δ
− (1− p)p

1− p(1− p)δ
] =

[Rp2 + (S + T )p(1− p) + P (1− p)2][
1

1− p2δ
− 1

1− p(1− p)δ
],

GA1(δ, p) = δL[
p(1− p)

1− p2δ
− (1− p)2

1− p(1− p)δ
] +

δL[
(1− p)p

1− p2δ
− p2

1− p(1− p)δ
] + δL[

(1− p)2

1− p2δ
− (1− p)p

1− p(1− p)δ
] =

δL[
1− p2

1− p2δ
− 1− (1− p)p

1− p(1− p)δ
].

Observe that when p, δ → 1 then Rp2+(S+T )p(1−p)+P (1−p)2 → R, 1
1−p(1−p)δ

→ 1,
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1−(1−p)p
1−p(1−p)δ

→ 1 and recalling that (1− δ)L = P̂ = (1− p)2R + (S + T )(1− p)p + p2P

then for δ, p large follows that

(1− δ)GA0(δ, p) > R

2

1− δ

(1− p2δ)
, (1− δ)GA1(δ, p) > P̂

2

1− p2

(1− p2δ)
.

In the same way

Uδ,p(a, a)− Uδ,p(g, a) = (1− δ){
∑
t>0

δtu(C,C)[pa,a((C,C)t)− pg,a((C,C)t)] +∑
t>0

δt[u(C,D) + δL][pa,a((C,C)t(C,D)− pg,a((C,C)t(C,D))] +∑
t>0

δt[u(D,C) + δL][pa,a((C,C)t(D,C))− pg,a((C,C)t(D,C))] +∑
t>0

δt[u(D,D) + δL][pa,a((C,C)t(D,D))− pg,a((C,C)t(D,D))]}

Therefore Uδ,p(a, a)− Uδ,p(g, a) = (1− δ)AG(δ, p) where

AG(δ, p) = R[
(1− p)2

1− (1− p)2δ
− p(1− p)

1− p(1− p)δ
] +

[S + δL][
p(1− p)

1− (1− p)2δ
− p2

1− p(1− p)δ
] +

[T + δL][
(1− p)p

1− (1− p)2δ
− (1− p)2

1− p(1− p)δ
] +

[P + δL][
p2

1− (1− p)2δ
− (1− p)p

1− p(1− p)δ
]

and we write AG(δ, p) = AG0(δ, p) + AG1(δ, p) where

AG0(δ, p) = R[
(1− p)2

1− (1− p)2δ
− p(1− p)

1− p(1− p)δ
] +

S[
p(1− p)

1− (1− p)2δ
− p2

1− p(1− p)δ
] +

T [
(1− p)p

1− (1− p)2δ
− (1− p)2

1− p(1− p)δ
] + P [

p2

1− (1− p)2δ
− (1− p)p

1− p(1− p)δ
]
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AG1(δ, p) = δL[
p(1− p)

1− (1− p)2δ
− p2

1− p(1− p)δ
] +

δL[
(1− p)p

1− (1− p)2δ
− (1− p)2

1− p(1− p)δ
] + δL[

p2

1− (1− p)2δ
− (1− p)p

1− p(1− p)δ
] =

δL(1− p)[
2p

1− (1− p)2δ
− 1− p

1− p(1− p)δ
+

p2δ

(1− (1− p)2δ)(1− p(1− p)δ)
]

Observe that when p, δ → 1 then AG0(δ, p) → AG0(1, 1) = P − S,

2p

1− (1− p)2δ
− 1− p

1− p(1− p)δ
+

p2δ

(1− (1− p)2δ)(1− p(1− p)δ)
→ 3

and recalling that (1 − δ)L = P̂ = (1 − p)2R + (S + T )(1 − p)p + p2P then for δ, p

large follows that

(1− δ)AG0(δ, p) 6 2(1− δ)(P − S), (1− δ)AG1(δ, p) 6 4(1− p)P̂ .

Recall now that the size of the basin of attraction of a is given by E(δ, p) :=

1

1+
(1−δ)GA(δ,p)
(1−δ)AG(δ,p)

. Observe that for any ε > 0 for p, δ large then (1 − δ)AG0(δ, p) 6

ε(1 − δ)GA0(δ, p) and (1 − δ)AG1(δ, p) 6 ε(1 − δ)GA1(δ, p), therefore, for p, δ large

E(δ, p) 6 1
1+ 1

ε

= ε
1+ε

and so the theorem is concluded.

The proof of theorem 6 is similar to the proof of theorem 5 with the di�erence

that the �rst point of divergence may not be t = 1.

6.8 E�ciency: proofs of theorems 7, 8 and 9

6.8.1 The symmetric case

Before the proof of theorem 7 we need the next two easy lemmas.

Lemma 12. If s has a uniformly large basin then there exists C0 such that for any

strategy s∗ and for any p, δ large (independently of s∗) follows that
Uδ,p(s

∗,s∗)−Uδ,p(s,s
∗)

Uδ,p(s,s)−Uδ,p(s∗,s)
<

42



C0. In particular, limδ→1 limp→1
Uδ,p(s

∗,s∗)−Uδ,p(s,s
∗)

Uδ,p(s,s)−Uδ,p(s∗,s)
< C0.

Lemma 13. If s has a uniformly large basin of attraction, then there exists C0 such

that for any s∗ and ht follows that

lim
δ→1

lim
p→1

Uδ,p(s
∗, s∗/ht)− Uδ,p(s, s

∗/ht) + Uδ,p(s
∗, s∗/ĥt)− Uδ,p(s, s

∗/ĥt)

Uδ,p(s, s/ht)− Uδ,p(s∗, s/ht) + Uδ,p(s, s/ĥt)− Uδ,p(s∗, s/ĥt)
< C0.

Proof. It follows immediately from lemma 12 considering a strategy s∗ such that the

�rst deviation from s occurs at ht (and obviously also at ĥt).

Proof of theorem 7: Let us assume that there exists a path ht and λ0 < 1 such that

U(s, s/ht) = λ0R and (s, s) is a strict perfect public equilibrium. We start assuming

that ht is not symmetric. Then we show how to deal with the symmetric case using

the asymmetric one.

From the fact that s is symmetric, it follows that U(s, s/ht) = U(s, s/ĥt) and

therefore U(s, s/ht) + U(s, s/ĥt) = 2λ0R. Moreover, since U(s, s/ht) < R, we can

assume that s(ht) = D. We are going to build a strategy s∗ such that U(s∗, s∗/ht) =

U(s∗, s∗/ĥt) = R and s∗ acts like s after meeting s at ht and ĥt. To build that strategy

s∗, �rst we take s∗ such that s∗(ht) = s∗(ĥt) = C and then we consider all the paths

that follow after ht, ĥt for the pairs s, s; s∗, s; s, s∗; s∗, s∗, i.e.: ht(D,D), ĥt(D,D) for

s, s; ht(C,D), ĥt(C,D) for s∗, s; ht(D,C), ĥt(D,C) for s, s∗; ht(C,C), ĥt(C,C) for

s∗, s∗. Observe that the paths involving ht are all di�erent and the same holds for the

paths involving ĥt.

Now we make s∗ play C for ever after ht(C,C) and ĥt(C,C), so hs∗,s∗/ht =

(C,C)..(C,C).., hs∗,s∗/ĥt
= (C,C)..(C,C).., and so U(s∗, s∗/ht) = U(s∗, s∗/ĥt) = R.

We also make s∗(ht(C,D)) = s(ht(C,D)), s∗(ĥt(C,D)) = s(ĥt(C,D)), and observe

that both requirement can be satis�ed simultaneously and inductively we get that

43



hs∗,s/ht(C,D) = hs,s/ht(C,D), hs∗,s/ĥt(C,D) = hs,s/ĥt(C,D). From the fact that s is symmet-

ric, it follows that each entry of hs∗,s/ht(C,D) = hs,s/ht(C,D) and hs∗,s/ĥt(C,D) = hs,s/ĥt(C,D)

is (C,C) or (D,D) and, recalling lemma 6, it follows that U(s∗, s/h) = U(s, s∗/ĥ) and

U(s∗, s/ĥ) = U(s, s∗/h). Therefore, U(s∗, s/h)+U(s∗, s/ĥ) = U(s, s∗/h)+U(s, s∗/ĥ).

Since, (s, s) is a strict perfect public equilibrium (otherwise it would not have a

uniform large basin of attraction) then U(s∗, s/ht) + U(s∗, s/ĥt) < 2λ0R and there-

fore U(s, s∗/ht) + U(s, s∗/ht) < 2λ0R. By lemma 13 it follows that if we denote

U(s∗, s/ht) + U(s∗, s/ĥt) = 2λ1R, then 1−λ1

λ0−λ1
< C0, and taking a positive constant

C1 < 1 − λ0 < 1 − λ1 it follows that λ1 satis�es inequality C1

λ0−λ1
< C0. Therefore,

it follows that there exists γ > 0 such that λ1 < λ0 − γ. Now, we consider the path

ht(C,D) and we denote it as ht2 and as before we construct a new strategy s∗2 that

satis�es the same type of properties as the one satis�ed by s∗ respect to s but on the

path ht2 instead on the path ht. Inductively, we construct a sequences of paths hti ,

strategies s∗i and constants λi such that U(s∗i , s/hti) = λiR and they satisfy the fol-

lowing equation 1−λi+1

λi−λi+1
< C0, and since λi+1 < λi then also satisfy C1

λi−λi+1
< C0, and

therefore λi+1 < λi − iγ but this implies that λi → −∞ and so U(s∗, s/hti) → −∞,

a contradiction because utilities are bounded by S.

To �nish, we have to deal with the case that ht is symmetric and U(s, s/ht) < R.

Recall that we can assume that s(ht) = s(ĥt) = D. Now, let us consider the se-

quel path ht(C,D). We claim that if U(s, s/ht) < R then U(s, s/ht(C,D)) < R. In

fact, we can consider the strategy s∗ such that only di�ers on ht and after that plays

the same as s plays. Since s is a sub game perfect (otherwise it would not have a

uniform large basin of attraction), it follows that Uδ,p(s, s/ht) > Uδ,p(s
∗, s/ht) there-

fore, U(s, s/ht) = limδ→1 limp→1 Uδ,p(s, s/ht) > limδ→1 limp→1 Uδ,p(s
∗, s/ht), but since

limδ→1 limp→1 Uδ,p(s
∗, s/ht) = limδ→1 limp→1 Uδ,p(s, s/ht(C,D)) = U(s, s/ht(C,D))

the claim follows. Observe that the new path ht(C,D) now is not symmetric and since
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U(s, s/ht(C,D)) < R, to conclude the proof of theorem 7 we argue as above.

6.8.2 The non-symmetric case

Before entering in the proofs of theorems 8 and 9, we give a series of results involving

pairs of strategies.

Proposition 1. If s has a uniformly large basin of attraction, then there exists ε > 0

such that for any ht follows that U(s, s/ht) > P + ε.

Proof. Choosing s∗ such that s∗(ht) 6= s(ht) and for any hk containing ht(s
∗(ht), s(ĥt))

then s(hk) = D follows that U(s∗, s) > P and U(s, s∗) 6 P. Since also we can chose

s∗ such that hs∗,s∗/ht((s∗(ht),s∗(ĥt))
is a path of full cooperation, then by lemma 12 the

conclusion of the proposition follows.

Observe that previous result is stronger than theorem 6 (provided that p is much

closer to one than δ) since here it is shown that strategies with uniformly large basin

of attraction have a payo� uniformly away from P . Next result goes in the same

direction but relating payo� with the size of the basin of attraction.

Proposition 2. If s has a uniformly large basin of attraction and for any p and δ large

follows that there exists k verifying Bk(s) ⊂ Bs(s), then U(s, s/ht) > P + (R− P )k.

Proof. The proof is similar to the proof of proposition 1 and using remark 1 that

allow us to estimate the size of the basin of attraction when only two strategies are

involved.

The next lemmas relates the payo� of s with s starting at ht and starting at ĥt.

Lemma 14. For any s and a history ht then Uδ(s, s/ĥt) = Uδ(s, s/ht)+(x−y)(T−S),

where x =
∑

j:uj(s,s/ht)=S δ
j and y =

∑
j′:uj′ (s,s/ht)=T δj.
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Proof. If Uδ(s, s/ht) = aR + xS + yT + bP where a =
∑

j:uj(s,s/ht)=R δj and b =∑
j′:uj′ (s,s/ht)=P δj then Uδ(s, s/ĥt) = aR + xT + yS + bP = Uδ(s, s/ht) + xT + yS −

xS − yT = Uδ(s, s/ht) + (x− y)(T − S).

Lemma 15. Given a strategy s and a path ht it follows that if c = x + y then

Uδ(s, s/ĥt) 6 Uδ(s, s/ht)+c(T−S) if c < R−Uδ(s,s/ht)
R−S

and Uδ(s, s/ĥt) 6 −Uδ(s, s/ht)+

2R + c(T + S − 2R) otherwise.

Proof. From lemma 14 follow that Uδ(s, s/ĥt) = Uδ(s, s/ht) + (2x − c)(T − S). To

conclude, observe that under the restriction x + y = c, a + c + b = 1, a, b, x, y are in

[0, 1] and Uδ(s, s/ht) = aR + xS + yT + bP , the maximum of 2x − c is equal to c if

c < R−Uδ(s,s/ht)
R−S

and is equal to 2R−Uδ(s,s/ht)
T−S

+ cT+S−2R
T−S

otherwise.

Proof of theorem 8. Let us assume by contradiction that U(s, s/ht) < R1− 2c(T −S)

for some R1 < R. We can assume also that if ht+1 (or ĥt+1) is the deviation from

ht (or ĥt), i.e, the �rst coordinate of ht+1 (or ĥt+1) is di�erent to s(ht) (or s(ĥt))

but the second one is equal to s(ĥt) (or s(ht)) follows that U(s, s/ht)− U(s, s/ht+1)

(U(s, s/ĥt)−U(s, s/ĥt+1), respectively) is smaller than ε with ε chosen arbitrary small

(provided δ large and 1− p small). Now we take s∗ such that s∗(ht) 6= s(ht), s
∗(ĥt) 6=

s(ĥt) and after that deviation s∗ is like s (observe that at this point we are using

that s/ht is not symmetric; we can do that since in the symmetric case we can argue

as in the proof of theorem 7). Moreover, we also assume that U(s∗, s∗/ht) = R and

U(s∗, s∗/ĥt) = R. From the assumption, follows c < R−U(s,s/ht)
T−S

and so by lemma 15

U(s, s/ĥt) < R1−c(T−S). Therefore, U(s∗, s/ht) < R1−2c(T−S) and U(s∗, s/ĥt) <

R1 − c(T − S), so U(s, s∗/ht) < R1 − c(T − S) and U(s, s∗/ĥt) < R1 and therefore,

U(s∗, s∗/ĥt)+U(s∗, s∗/ht)− [U(s, s∗/ĥt)+U(s, s∗/ht)] > R−R1+c(T −S) > R−R1,

and since U(s, s/ht) + U(s, s/ĥt)− [U(s∗, s/ht) + U(s∗, s/ĥt)] is arbitrarily small, by

lemma 12 follows that s does not have a uniformly large basin of attraction.
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Proof of theorem 9. We are going to use theorem 10 which gives conditions, on group

of three strategies, that implies that one of the strategies is an attractor but has an

arbitrary small basin of attraction. More precisely, for s not to have a uniform large

basin of attraction, it has to be shown that there exists C0 > 0 such that for any

ε > 0, there is s∗ and s′ satisfying: 0 < U(s, s)− U(s∗, s) = U(s, s∗)− U(s∗, s∗) < ε;

0 < U(s, s)− U(s′, s) = U(s, s′)− U(s′, s′) < ε; U(s∗, s′)− U(s′, s′) > C0; U(s′, s∗)−

U(s∗, s∗) > C0. Observe that under that above conditions, it follows from theorem 10

and remark 2 that once we identify s with the vertex e1, the point ( ε
C0+2ε

, ε
C0+2ε

) is

not in the basin of e1.

Given ht such that for any hk that contains either ht or ĥt follows that U(s, s/hk) <

R1 for some R1 < R, we can also take ht such that for the deviation h′
t+1 from ht (i.e,

the �rst coordinate of ht+1 is di�erent to s(ht) but the second one is equal to s(ĥt))

follows that U(s, s/ht)−U(s, s/ht+1) is smaller than ε with ε chosen arbitrary small,

provided δ large and 1 − p small. Moreover, the election can be done in such a way

that the same holds for for ĥt.

Now we build two strategies s∗, s′, that upset s. The strategy s∗ deviate respect to s

at ht but coincide with s on ĥt. On the other hand, the strategy s′ deviate respect to s

at ĥt but coincide with s on ht. Both strategies coincide with s after the �rst deviation

with s. In other words: s∗(ht) 6= s(ht) and s∗(ĥt) = s(ĥt); s
′(ht) = s(ht) and s′(ĥt) 6=

s(ĥt); hs∗,s/ht(s∗(ht),s(ĥt))
= hs,s/ht(s∗(ht),s(ĥt))

and hs∗,s/ĥt(s∗(ĥt),s(ht))
= hs,s/ĥt(s∗(ĥt),s(ht))

;

hs′,s/ht(s′(ht),s(ĥt))
= hs,s/ht(s′(ht),s(ĥt))

and hs′,s/ĥt(s′(ĥt),s(ht))
= hs,s/ĥt(s′(ĥt),s(ht))

.

Observe that from that properties follows:

U(s, s∗/ht(s(ht), s
∗(ĥt))) = U(s, s/ht);

U(s∗, s∗/ht(s
∗(ht), s

∗(ĥt))) = U(s, s/ht(s
∗(ht), s(ĥt)));

U(s∗, s/ĥt) = U(s, s/ĥt), U(s, s∗/ĥt) = U(s∗, s∗/ĥt);

U(s, s′/ĥt(s(ĥt), s
′(ht))) = U(s, s/ĥt);
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U(s′, s′/ĥt(s
′(ĥt), s

′(ht))) = U(s, s/ht(s(ĥt), s(ht)));

U(s′, s/ht) = U(s, s/ht), U(s, s′/ht) = U(s′, s′/ht).

Therefore it follows that:

U(s, s/ht)− U(s∗, s/ht) < ε and U(s, s/ĥt)− U(s∗, s/ĥt) = 0;

U(s, s/ht)− U(s′, s/ĥt) < ε and U(s, s/ht)− U(s′, s/ht) = 0;

U(s∗, s∗/ht)−U(s, s∗/ht) = −[U(s, s/ht)−U(s∗, s/ht)] and U(s∗, s∗/ĥt) = U(s, s∗/ĥt);

U(s′, s′/ĥt)− U(s, s′/ĥt) = −[U(s, s/ĥt)− U(s′, s/ĥt)] and U(s, s/ht) = U(s, s/ht).

Now we have to compare s′ and s∗. Observe that:

hs′s∗/ht(s′(ht),s∗(ĥt))
= hss/ht(s(ht),s(ĥt))

so U(s′, s∗/ht) is close to U(s∗, s∗/ht),

hss′/ĥt(s∗(ht),s′(ht))
= hss/ĥt(s(ĥt),s(ht))

so U(s∗, s′/ĥt) is close to U(s′, s/ĥt).

Since s∗ and s′ deviate from s at ht and ĥt respectively and ht(s
∗(ht), s

′(ĥt)) is not

one of the paths previously listed, we can assume that U(s∗s′/ht(s
∗(ht), s

′(ĥt)) = R. In

the same way, U(s′s∗/ĥt(s
∗(ĥt), s

′(ht)) = R. Therefore, and from the assumption that

U(s, s/hk) < R1 follows that U(s′s∗/ht) + U(s′s∗/ĥt) − [U(s∗s∗/ht) + U(s∗s∗/ĥt)] >

R−R1 − ε and U(s∗s′/ht) +U(s∗s′/ĥt)− [U(s′s′/ht) +U(s′s′/ĥt)] > R−R1 − ε and

therefore the theorem is proved.
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7 Appendix A. Perturbed Replicator Dynamics

We consider more general equations than the replicator dynamics with the restric-

tions that individuals with low scores die o� and the ones with high ones �ourish.

More precisely, given a payo� matrix A we consider equations de�ned in the usual

n−dimensional simplex
∑

, of the form ẋi = xiGi(x) such that Gi(x) > 0 if and

only if(Ax)i − xtAx > 0 and Gi(x) < 0 if and only if (Ax)i − xtAx < 0. In this

case, it follows that Gi(x) = [(Ax)i − xtAx]Hi(x) where Hi :
∑

→ R. Moreover,

form previous assumption it holds that Hi is always positive in the simplex
∑

. We

require a slightly strong condition: C+ = max{Hi(x), x ∈
∑

, i = 1 . . .m} < +∞,

and C− = min{Hi(x), x ∈
∑

, i = 1 . . .m} > 0, therefore 0 < C− 6 Hi < C+. The

goal is to show that a version of theorem 1 can be obtained in the present case. More

precisely, provided the hypothesis of theorem 1 and assuming equations as above, it is

shown that ∆ 1
M0

∩∆ C−
2C+

is contained in the local basin of attraction of e1. The proof,

goes through the same strategy: we shows that for any k 6 min{ 1
M0

, C−

2C+}, re-writing

the equations in a�ne coordinates follows that
∑

i>2 xiGi =
∑

i>2 xiFiHi < 0 where

Fi is (Ax)i−xtAx in a�ne coordinates. From the inequalities 0 < C− 6 Hi < C+, it

follows that xiFi(x)Hi(x) < C+xiFi(x) if Fi(x) > 0 and xiFi(x)Hi(x) < C−xiFi(x) if

Fi(x) < 0. Recalling that Fj(x) = (fj − f1)(x) + R(x) with R(x) =
∑

l(f1 − fl)(x)xl

(the variable x is already assumed in a�ne coordinates) follows that

∑
i

xiFi(x)Hi(x) 6
∑

{i:Fi(x)>0}

C+xiFi(x) +
∑

{i:Fi(x)<0}

C−xiFi(x)

=
∑

{i:Fi(x)>0}

xiC
+(fi − f1)(x) +

∑
{i:Fi(x)<0}

xiC
−(fi − f1)(x)

+ R(x)[
∑

{i:Fi(x)>0}

C+xi +
∑

{i:Fi(x)<0}

C−xi].
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If x ∈ ∆k with k < C−

2C+ it follows that
∑

{i:Fi(x)>0} C+xi +
∑

{i:Fi(x)<0} C−xi] 6 C−

2

and recalling the de�nition of R0 follows that

∑
{i:Fi>0}

xiC
+(fi − f1)(x) +

∑
{i:Fi<0}

xiC
−(fi − f1) +R(x)[

∑
C+xi +

∑
C−xi]

6
∑

{i:Fi>0}

xiĈ
+(fi − f1)(x) +

∑
{i:Fi<0}

xiĈ
−(fi − f1)

where Ĉ+ = C+ − C−

2
, Ĉ− = C−

2
. Therefore, rewriting the equation as it was done in

the proof of theorem 1 to �nish we have to prove that N(cx) + xtM(cx) < 0 where

cx = (c1x1, c2x2, . . . , cnxn) and ci is either Ĉ+ or Ĉ− and N,M are the vector and

matrix induce by A and so. To prove above inequality, we need a more general version

of lemma 1. The proofs are similar.

Lemma 16. Let c = (c1, . . . , cm) ∈ Rm such that each coordinate is positive. Let

Qc : Rm → R given by Q(x) = N(cx) + xtM(cx) with x ∈ Rm, N ∈ Rm, M ∈ Rm×m

and cx := (c1x1, . . . , cmxm). Let us assume that Ni < 0 for any i and for any j > i,

|Ni| > |Nj|. Let M0 = maxi, j>i{Mij+Mji

−Ni
, 0}. Then, the set ∆ 1

M0

= {x ∈ Rm : xi >

0,
∑m

i=1 xi <
1

M0
}, is contained in {x : Qc(x) < 0}. In particular, if M0 = 0 then 1

M0

is treated as ∞ and this means that {x ∈ Rm : xi > 0} ⊂ {x : Qc(x) 6 0}.

8 Appendix B. Generalized w for any payo� system

Recall that w has uniformly large basin, provided that 2R > S+T . Now, we consider

w−type strategies that have a uniformly large basin for any payo� system.

De�nition 12. n-win-stay-lose-shift n−win-stay lose-shift. If it gets either T or

R stays; if it gets S, shifts to D and stays for n−period and then acts as w. We denote

it with wn.
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Theorem 12. For any payo� set there exists n such that wn is has a uniformly large

basin.

Proof. The proof follows the same steps that we used to prove that w has a uniformly

large basin of attraction when 2R− (T +P ) > 0 but using the fact that for any payo�

matrix there exists n such that nR > T + (n− 1)P.

To show that wn has a uniformly large basin of attraction, we calculate the

quantities b1, b2, b3, b4 for u(s, wn) as it was done for w in subsection 6.6.1. In

addition, observe that for wn it follows that b2 + b4 > δp2 1−(δp2)n

1−δp2
b3 and if n is

large enough then 1−(δp2)n

1−δp2
> n − 1 and therefore, b2 + b4 > (n − 1)b3. Repeat-

ing the same calculation done for w, in case wn(hk) = C, s(hk) = D follows that

U(wn, wn)−U(s, wn) > (n−1)b3(R−P )+ b3(R−T ) > (1− δp2)[nR−T − (n−1)P ].

In case wn(hk) = D, s(hk) = C, the calculation is similar.

To bound uniformly the quantities (17) and (18) for wn, we proceed in a same

way that was done for w and it is only changed the upper bound 2R − (T + S) by

nR− T − (n− 1)P .

Examples of strategies with low frequency of cooperation which have

large basin but they do not have uniformly large basin

In what follows, we give examples of strategies with arbitrary low frequency of

cooperation which have large basins (with size depending on δ and p), however, those

strategies do not have uniformly large basin of attraction. In other words, the lower

bounds of their basin shrinks to zero when δ, p → 0. More precisely, they can not

have uniformly large basin due to theorem 7. Those strategies are built combining w

with a. Moreover, we establish some relation between the frequency of cooperation

and the lower bounds of the size of their local basin (but depending on δ and p).

De�nition 13. We take n large and b0 < 1, we de�ne the strategy awn,b0 as the
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strategy that in blocks of times I lw = [l(n + m0n), l(n + m0n) + n − 1] behaves as w

and in the blocks of times I la = [l(n +m0n) + n, (l + 1)(n +m0n) − 1] behaves as a,

where m0 denotes the integer part of 1
b0

and l is a non-negative integer.

Theorem 13. For any n large, and any positive b0 the strategy awn,b0 has a large

basin of attraction, but not a uniformly large basin of attraction.

Proof. From now on, and to avoid notation, we denote awn,d0 with aw. First we are

going to prove that aw is a strict sub game perfect.

The strategy aw is a uniform strict subgame perfect: The proof is similar to the

one performed for w. Let s be another strategy and given a path h let k be the �rst

deviation (s(hh) 6= aw(hk)). Either k ∈ I lw or k ∈ I la] for some non-negative l. It

follows that Uδ,p(haw,aw/hk) = b0R + (1− b0)P where

b0 =
1− p2δ

p2

∑
j>0:uj(aw,aw/hk)=R

=
1− p2δ

p2

∑
j>0,Ilw

. (20)

Observe that provided δ large, then b0 is close to d0. Now we take s and assuming

that it di�ers in hk and aw(hk) = R, s(hk) = D. In what follows, to avoid notation,

with U(., .) we denote Uδ,p,h.,.(., ./hk). Following that, we take

b1 =
1− p2δ

p2

∑
j:uj(s,aw/hk)=R

p2j+2δj, b2 =
1− p2δ

p2

∑
j:uj(s,aw/hk)=S

p2j+2δj,

b3 =
1− p2δ

p2

∑
j:uj(s,aw/hk)=T

p2j+2δj, b4 =
1− p2δ

p2

∑
j:uj(s,aw/hk)=P

p2j+2δj.

Observe that b1 + b2 + b3 + b4 = 1 and U(s, w) = b1R + b2S + b3T + b4P. Moreover,

since in blocks I la aw behaves as a then

b4 > 1− b0 (21)

54



From the property that aw behaves as w in blocks of the form [l(n+m0n), (l+1)(n+

m0n)+n], for each T that s can get on those blocks (s plays D and w plays C) follows

that in the next move s may get either S or P because w plays D, so, noting

bw4 =
1− p2δ

p2

∑
j∈Ilw:uj(s,w/hk)=P

p2j+2δj

then

b4 > 1− b0 + bwu (22)

b2 + bw4 > p2δb3. (23)

Writing U(aw, aw) = b0R+(1− b0)P = [b0− (1− b4)]R+ b1R+ b2R+ b3R+(1− b0)R

by inequalities (21, 22, 23) it follows that

U(aw, aw)− U(s, aw) = [b0 − (1− b4)]R + b2(R− S) + b3(R− T )

+(1− b0 − b4)(R− P )

> (b0 + b4 − 1 + b2)(R− P ) + b3(R− T )

> (bw4 + b2)(R− P ) + b3(R− T )

> δp2b3(R− P ) + b3(R− T ) > b3[(1 + p2δ)R− (T + P )].

Observing that if s(hk) = D, aw(hk) = C, then b3 > 1−p2δ and since 2R−(T+P ) > 0

it follows that for δ and p large (meaning that they are close to one), then [(1 +

p2δ)R−(T +P )] > C0 for a positive constant smaller than 2R−(T +P ) and therefore

(provided that δ and p large are large) follows that U(aw, aw)−U(s, aw) > (1−p2δ)C0,
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