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Abstract

We analyze a market where (i) trade proceeds by random and anonymous pairwise
meetings with bargaining; (ii) agents are asymmetrically informed about the value of the
traded good; and (iii) no new entrants are allowed once the market is open. We depict
this infinite-horizon market as a strategic-form game and, adapting existence theorems from
the literature on anonymous games, we prove the existence of a Nash equilibrium for every
value of the discount factor. The main questions are whether information revelation and
efficiency obtain as the economy becomes approximately frictionless (i.e. as discounting is
gradually removed). We show that this is not the case. This negative result holds whether
the asymmetry is two-sided or restricted to one side of the market. This contrasts with the
earlier literature, which was based on steady-state equilibria.

keywords: information revelation, interim incentive efficiency, decentralized markets, non-
steady states.

JEL classification numbers: C72, C78, D82, D83.

1 Introduction

In the Walrasian model of competitive market equilibrium, trade is centralized: all
sellers and buyers of a particular commodity meet in the same location, and all trade
takes place simultaneously at the same price. This price is chosen by an auctioneer
to equate demand with supply, and no trade takes place until it has been made
public. The model is frictionless, in that there are no impediments to trade.

∗Blouin thanks the Morgan Stanley Corporation for financial support and Serrano acknowledges
a Salomon research award from Brown University.
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A variation of this setup allows for asymmetric information about the value of
the good being traded, an example of a problem with common values uncertainty.
In such a market, the auctioneer plays a key informational role. Suppose the value
of the good being traded depends on the state of the world. If the equilibrium price
is known to vary with the state, then inference about the state (and hence about
the value of the good) can be drawn as soon as the price is announced. The rational
expectations equilibrium (REE) is an equilibrium concept used in this framework.
In a centralized analog of the case we study, it exhibits full information revelation
and is an interim incentive efficient mechanism, a sort of first welfare theorem.1

Our main goal in this paper is to study the information revelation and efficiency
properties of a decentralized market, where there is no auctioneer and transactions
take place in pairwise meetings of agents. In this context, information about the
state of the world cannot be aggregated in a centrally called price. Any information
revelation must be carried out by the trading mechanism itself.

A recent line of research, begun by Wolinsky (1990), has looked at the extent
to which this is possible.2 Wolinsky (1990), and Serrano and Yosha (1993) after
him, perform the analysis under a very strong steady-state restriction: each period
a constant population of agents enters the market, and an equal population must
trade and exit the market. We depart in this paper from the steady state analysis by
studying a one-time entry market. A different approach is required both to establish
existence of equilibrium and to answer our basic questions. In particular, we employ
machinery for infinite-dimensional sequences. We describe our model presently.

The market consists of a continuum of buyers and a continuum of sellers, all
present from the outset. No new traders beyond these initial populations partic-
ipate in the market. Trade is decentralized: buyers and sellers do not all meet
simultaneously in a central market. Rather, each seller meets one buyer at a time,
and vice versa. When a buyer and seller meet, they bargain. If they agree on a price,
they transact and leave the market. If they disagree, they remain in the market:
the following period, the seller meets another buyer, and the buyer meets another
seller. These meetings are random and anonymous. The good for sale is indivisible.
Each seller has one unit, and each buyer wants at most one unit. Its value is either
high (H) or low (L), and it is the same for all units of the good in all periods. That
is, only one state (value) prevails throughout the game. However, some agents do
not know whether it is H or L.

1See Holmström and Myerson (1983) for this efficiency concept, and Laffont (1985) and Serrano
and Yosha (1996) for two uses of it.

2His paper continues a literature of decentralized strategic markets that started with Rubinstein
and Wolinsky (1985) and Gale (1986a, 1986b). These papers, though, deal with economies without
asymmetric information. See also Osborne and Rubinstein (1990, chapters 7-8) and the references
therein.
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The bargaining process, taken from Wolinsky (1990), is simple. When a buyer
and seller meet, they simultaneously announce bargaining positions: either tough or
soft. For a seller, playing tough means insisting that the value is high and asking for
an accordingly high price; playing soft means agreeing to a low price. For a buyer,
it is the reverse. If both play tough, the meeting ends in disagreement. Agreement
results in all other cases, and the price of the transaction depends on who played
soft. There is a cost to delay (through disagreement), represented by a discount
factor δ < 1 common to all agents.

By playing tough for a number of periods, an agent effectively searches for a
trading partner who will agree to his conditions. Search is costly, however, and the
agent may eventually give in and agree to his next partner’s conditions. In this
sense, the market is a vast war of attrition.3 We can imagine: (i) a buyer shopping
for an item, going from store to store until either he finds a low enough price or
he gets tired of shopping and buys at a high price; and (ii) a merchant seeing a
succession of customers walk in, look at the price tag, and leave, until either one of
them buys the item or he (the merchant) gets tired of waiting and lowers the price.

If any information is conveyed to uninformed agents about the value of the
good, it is through this process of repeated bargaining. For example, an uninformed
buyer might expect all sellers to play soft if the value is L. If he meets a seller
playing tough, he deduces that the value is actually H. Typically, though, the
buyer’s problem will not be that easy. He will expect to meet tough or soft sellers
whatever the value of the good, albeit with different probabilities. His inference will
be based on these probabilities and will be drawn over several periods. The question
is whether discounting will wear him out before he can draw the correct inference.

Discounting is in fact the only friction in this model. Therefore, if we make the
discount factor arbitrarily close to 1, we can make a legitimate comparison between
our results and the centralized benchmark. We ask whether (as δ → 1) the economy
moves towards a situation of (i) ex-post individually rational (EPIR) trade in both
states of the world, and (ii) efficiency in both states.

We distinguish between two-sided and one-sided uncertainty. Two-sided uncer-
tainty refers to the case where both sellers and buyers can be uninformed; one-sided
uncertainty is the case where only some buyers (or only some sellers) can be. In the
two-sided case, we find that (as δ → 1) a sizeable fraction of agents either does not
trade or does so at non-EPIR prices. In the one-sided version, all agents trade, but
(again as δ → 1) a non-negligible fraction does so at the wrong prices. Also, in both
cases, there is asymptotic inefficiency. That is, the lack of information revelation

3To our knowledge, our paper is the first study of the war of attrition in a pure common values
setting. See, for example, Krishna and Morgan (1997) for a model that combines the war of attrition
and private values.
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does not merely cause a pure transfer from the uninformed to the informed: society
as a whole loses out, due to excessive delay in learning.

Wolinsky (1990) solved for equilibria with two-sided uncertainty. He found that
in such a configuration a sizeable fraction of those agents who trade do so at prices
which are not EPIR, even as the discount factor is made arbitrarily close to 1.
Serrano and Yosha (1993) performed the same test for one-sided uncertainty and
found a quite different result: typically all agents who trade do so at EPIR prices.

It is instructive to examine the forces at work in order to understand the results.
We detect four economic forces. The first is cost of learning (CL): as the discount
factor δ approaches 1, search becomes less costly for uninformed agents. The second
is misrepresentation of information (MI): as δ → 1, it is cheaper for an informed
agent to lie in his favor about the value of the good. These first two forces are
present in both versions of the model. The next two appear only in the two-sided
version. The third force is noise (N): as δ → 1, meetings between two uninformed
agents may become more and more common, due to force CL. Meetings of this sort
are not conducive to learning: in the extreme, if all agents were uninformed, the set
of equilibria would not depend on the state the world at all. Finally, there is fear
(F): for some parameter values, uninformed agents may play tough indefinitely in
order to avoid a loss which they believe likely. Such pessimism feeds upon itself:
uninformed sellers are afraid only if they know a good number of uninformed buyers
to be afraid, and vice versa. Force CL works in favor of information revelation,
while forces MI and N work against it. Force F, when present, works to prevent
trade from taking place.

Our investigation shows that in the one-sided model, force MI overcomes force
CL. This is in sharp contrast with the steady-state result of Serrano and Yosha
(1993), where the opposite happens. Here informed agents who misrepresent their
information are not competing with new learners who arrive fresh every period, but
rather with learners who have been worn out by discounting since the beginning of
the game. The informed agents end up capitalizing on their information.

In the two-sided model, noise is the dominant factor. Although force MI is
present, our proof shows clearly that the problem reduces to solving the tension
between forces CL and N. That is, what informed agents do is secondary to obtaining
the result. And force N takes over.4 This echoes Wolinsky’s (1990) steady-state
result.

In Wolinsky (1990) and Serrano and Yosha (1993), much of the analysis focuses
on limiting agents’ behavior so that in each period as many leave the market as

4Because it prevents uninformed agents from trading, force F can overpower the other three.
However, its presence signals rather extreme parameter values. We find weak sufficient conditions
which guarantee that all agents trade, i.e. that force F vanishes. These are weaker than the
conditions needed by Wolinsky (1990) to show existence of equilibrium.
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enter it. In our one-time entry model, the market opens with a certain population of
agents, no new entrants are allowed, and agents’ behavior is not artificially restricted.
Thus we can proceed directly from the definition of Nash equilibrium.

Another difficulty which we avoid by dropping the steady-state assumption is re-
lated to the feasibility constraints of the economy. When the steady state restriction
is imposed, it is not clear what is the right notion of feasibility in the economy. It
is often the case that, whatever this notion is, it will be satisfied on the equilibrium
path, but violated as soon as we abandon it, due to the unbounded accumulation of
agents in the market. For other criticisms of steady state models, see Gale (1987).

At a technical level, we show existence of equilibrium by adapting to our en-
vironment theorems from the literature on anonymous games [Mas-Colell (1984),
Khan (1989)]. This turns out to be an exercise of interest in its own right. In those
papers, payoffs depend on the total measure of players playing a given strategy, not
distinguishing among types of players. We allow for a finite number of types in the
payoff functions. In our treatment, the anonymity assumed in the procedure is the
key, as it allows a simple strategic-form representation of an infinite-horizon game.

In a common values auction context, Pesendorfer and Swinkels (1997) show a
remarkable positive result of information aggregation: the symmetric equilibrium
price converges in probability to the true value of the object if and only if both
supply and excess demand grow unbounded. In their result, an ingenious loser’s
curse argument replaces the strong conditions on the signal structure found in Wil-
son (1977) and Milgrom (1979, 1981). Investigating the connections between the
auctions and matching and bargaining literatures seems to be an important unex-
plored area of research. On the other hand, the strategy adopted by the uninformed
agents in our model can be interpreted as the experimentation of optimizing agents
before a bandit problem [see Rothschild (1974)]. To play soft is to opt for the arm
with an immediate payoff, while to play tough is to keep experimenting in order to
increase learning. Bergemann and Välimäki (1996) show that, in a bandit problem
between a single buyer and several sellers, the experimentation that goes on in every
Markov perfect equilibrium of their model does not cause a loss in efficiency. As in
their framework, the prizes associated with the two arms in our model are endoge-
nous, since they are a function of the strategies employed by the other traders in
the market. One way to interpret our results is based on the externalities caused
by many buyers and many sellers trying to learn at the same time. Finally, in the
literature on matching and bargaining with private values uncertainty, the positive
result of connecting with the Walrasian outcome arises [see Gale (1986a, section 5)].
Our findings show that the same positive results in the common values framework
are for now elusive.

The paper is organized as follows. Sections 2-5 deal specifically with the two-
sided model. Section 2 gives the particulars of the model. Section 3 proves existence
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of equilibrium and shows conditions under which all agents trade in finite time.
Section 4 provides the information revelation result, and Section 5 the efficiency
result. Section 6 contains the analysis for the one-sided version of the model. This
requires separate study, as different forces are at work. Section 7 concludes with a
brief discussion.

2 The Model

There are two populations of agents in the economy: sellers and buyers. There is
a single indivisible good. Each seller has one unit of the good for sale, and each
buyer is interested in buying one unit. Each population is an atomless continuum
of measure 1.5

Time elapses discretely according to t = 0, 1, 2, . . .. All agents enter the market
at the beginning of period 0. There is no entry of new agents in subsequent periods.

In period 0, each agent is randomly matched with one agent of the other pop-
ulation. The pair then tries to agree on a price at which to transact the good. If
there is agreement, the transaction takes place, the two agents receive their payoffs
and exit the market forever. If there is disagreement, no transaction takes place and
the two agents remain in the market. In period 1, each of the remaining agents is
again randomly matched with an agent of the other population. The pair tries to
agree on a price, etc. This cycle is repeated infinitely many times, or until all agents
have transacted and left the market. Note that there is always an equal measure of
sellers and buyers remaining in the market.

The payoffs to two agents reaching agreement depend on the price at which they
transact and on the state of the world. The state of the world is either H or L,
and it never changes. If the state is H, all units of the good have high value in all
periods; payoffs to seller and buyer are p − cH and uH − p, respectively, where p is
the price they agree upon. If the state is L, all units of the good have low value in
all periods; payoffs to seller and buyer are p− cL and uL − p, respectively.

A fraction xS of the initial population of sellers and a fraction xB of the initial
population of buyers know the state of the world. The rest do not know the state
but enter the market believing that with probability α the state is H. We assume
α ∈ (0, 1), and xS, xB ∈ [0, 1). That is, we first consider a two-sided information
structure, where there are uninformed traders on both sides of the market. We shall
consider the one-sided information case (xS = 1) in section 6.

In each period, bargaining between a seller and buyer proceeds as follows. The
two agents simultaneously take bargaining positions: each agent can play soft or

5We avoid the additional friction of having unmatched agents in every period. We discuss this
assumption in our last section.
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tough. If the seller plays soft and the buyer plays tough, they transact at price pL.
If the seller plays tough and the buyer plays soft, they transact at price pH. If the
seller and buyer both play soft, they transact at price pM . Finally, if the seller and
buyer both play tough, there is disagreement and no transaction takes place: both
agents remain in the market until next period, at which point they will be matched
with new opponents. The process is summarized in Figure 1.

BUYER

soft tough

SELLER

soft

tough

pM − cv , uv − pM pL − cv , uv − pL

pH − cv , uv − pH disagreement

Figure 1. Bargaining process and outcomes; v = H,L.

The parameters are related as follows:

uH > pH > cH > pM > uL > pL > cL ≥ 0. (1)

It can be seen that if the state is H, then pH is the only price which is EPIR for
both sellers and buyers; likewise, pL is the only EPIR price for state L. For this
reason we will sometimes call pH the “right” price for state H and pL the “right”
price for state L. These are the prices which would prevail in a perfect-information
setting.

The cost of delay (through disagreement) is embodied in the discount factor
δ ∈ (0, 1), common to all agents. Perpetual disagreement entails a payoff of zero.

We turn now to individual agents’ strategies. There are three things to consider.
The first is anonymity. An agent never knows the identity of his opponent and can
never tell whether his opponent is informed (i.e. knows the state of the world) or
uninformed. He must treat all opponents the same way. Second, we note that an
agent leaves the market as soon as he (or an opponent) plays soft. Thus if he is still
active in period t, this means he has played tough in periods 0, 1, ..., t− 1 (and met
a tough-playing opponent each time). Third, it is assumed that during his stay in
the market, an agent observes only the results of his own meetings. That is to say,
he obtains no useful information along the way, other than the very fact that he is
still in the market.
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It follows from these considerations that an agent’s strategy for the game is
simply the number of periods he is prepared to play tough. His history at the
beginning of any period t (if he is still active) can be summarized by the number t
itself. He can therefore calculate right at the start of the game how long it will be
optimal to play tough and when it will be optimal to play soft. In other words, he
can decide from the outset how long to hold out for the most advantageous price,
and when to give in. Thus the strategy space is A ≡ IN ∪ {∞}, where IN is the set
of non-negative integers. An agent playing ∞ plays tough all the time.

Within this framework we seek a Nash equilibrium, a profile of strategies where
each agent is maximizing his expected payoff, given the strategies of the other agents.
All parameters (δ, xS, xB, α, pH , pM , pL, cH , cL, uH , uL) are common knowledge, as
are all equilibrium strategies.

To summarize, a game G consists of (δ, xS, xB, α, pH , pM , pL, cH , cL, uH , uL)
satisfying α, δ ∈ (0, 1); xS, xB ∈ [0, 1); pH, pM , pL, cH , cL, uH , uL ∈ IR; inequality
(1); and proceeding as described.

3 Equilibrium

An informed agent will in general act differently in the two states, whereas an unin-
formed agent cannot. There are thus six types of behavior to account for: informed
sellers in state H (sh), informed sellers in state L (sl), uninformed sellers (s), in-
formed buyers in state H (bh), informed buyers in state L (bl), and uninformed
buyers (b). Let K={sh, sl, s, bh, bl, b} denote the set of possible types.

Agents belonging to the same type solve the same problem. However, they will
not necessarily adopt the same strategy, as several strategies may be equally optimal.
For any subset of possible strategies X ⊂ A, we denote by φk(X) the fraction of
the initial population of type-k agents who in equilibrium play strategies contained
in X. For simplicity we write φk(a) ≡ φk({a}) and φk(a, b) ≡ φk({a, . . . , b}), for all
a, b ∈ A. In particular, φk(a,∞) will signify φk({a, a + 1, . . .} ∪ {∞}).

The set function φk has all the features of a probability measure, and we will treat
it as such.6 The set of probability measures on A will be denoted Φ. Candidates for
equilibrium will take the form φ = (φSH , φSL, φS, φBH , φBL, φB) ∈ Φ6.

The function πk(a;φ) will be the expected payoff to a type-k agent from playing
strategy a (i.e. playing tough a times and playing soft in period a), given that other
agents’ strategies conform to φ. Often we will omit strategies from the argument
and write simply πk(a).

6We will see in the proof of Theorem 1 that the Borel σ-algebra of A (call it B) coincides with
the set of subsets of A. Hence, for every k ∈ K, φk : B → IR is a Borel probability measure.
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Definition 1. A Nash equilibrium of a game G consists of φ = (φSH, φSL, φS,
φBH, φBL, φB) ∈ Φ6 such that, for all a ∈ A and for all k ∈ K,

φk(a) > 0 implies a ∈ arg max
b∈A

πk(b;φ). (2)

3.1 Expected Payoffs

We now calculate expected payoffs for each type of agent. Agents know the distri-
butions of equilibrium strategies for the types they are likely to be paired with, and
use these to calculate the probability of meeting a tough or soft opponent in any
given period.

Define σH(t) ≡ xSφSH(t) + (1−xS)φS(t) and βH(t) ≡ xBφBH(t) + (1−xB)φB(t).
These are the measures of sellers and buyers, respectively, who play strategy t in
state H. σH(t,∞) and the like are defined analogously. Consider a type-sh agent
playing strategy a. In any period t, a fraction βH(t)/βH(t,∞) of the remaining
buyers (if there are any) plays soft. Thus, for any t ≤ a, the probability of meeting
a soft buyer in period t is equal to this fraction multiplied by the probability of
reaching t. The result is, quite simply, βH(t). With this in hand, we compute7

πSH(a) = (pH − cH)
a−1∑
t=0

δt [xBφ
BH(t) + (1− xB)φB(t)] (3)

+ (pM − cH)δa [xBφ
BH(a) + (1− xB)φB(a)]

+ (pL − cH)δa [xBφ
BH(a+ 1,∞) + (1− xB)φB(a+ 1,∞)] .

In a similar fashion we calculate, for all a ∈ A,

πSL(a) = (pH − cL)
a−1∑
t=0

δt [xBφ
BL(t) + (1− xB)φB(t)] (4)

+ (pM − cL)δa [xBφ
BL(a) + (1− xB)φB(a)]

+ (pL − cL)δa [xBφ
BL(a+ 1,∞) + (1− xB)φB(a+ 1,∞)] ;

πBH(a) = (uH − pL)
a−1∑
t=0

δt [xSφ
SH(t) + (1− xS)φS(t)] (5)

+ (uH − pM)δa [xSφ
SH(a) + (1− xS)φS(a)]

+ (uH − pH)δa [xSφ
SH(a+ 1,∞) + (1− xS)φS(a+ 1,∞)] ;

7Throughout the paper, we adopt the convention that
∑−1
t=0(·) = 0.
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πBL(a) = (uL − pL)
a−1∑
t=0

δt [xSφ
SL(t) + (1− xS)φS(t)] (6)

+ (uL − pM)δa [xSφ
SL(a) + (1− xS)φS(a)]

+ (uL − pH)δa [xSφ
SL(a+ 1,∞) + (1− xS)φS(a+ 1,∞)] ;

πS(a) = απSH(a) + (1− α)πSL(a); (7)

πB(a) = απBH(a) + (1− α)πBL(a). (8)

We can also determine the profile of trade. In each period t ∈ IN, in state v:
(i) a measure σv(t + 1,∞)βv(t) of the commodity is traded at pH; (ii) a measure
σv(t)βv(t) is traded at pM ; (iii) a measure σv(t)βv(t + 1,∞) is traded at pL. The
rest is carried into period t+ 1. A measure σv(∞)βv(∞) will never be traded.

3.2 Existence

Theorem 1. For any game G, there exists a Nash equilibrium φ ∈ Φ6.

Proof. The proof is a variation of Mas-Colell (1984), itself a reformulation of
Schmeidler (1973).8 The proof is non-trivial, however, in that it resolves some of
the difficulties attendant to including ∞ as a possible strategy. Also, we proceed
in a slightly different manner, since here expected payoffs depend explicitly on the
distribution of types (embodied in xS and xB), whereas in Mas-Colell they do not.

Recall that A ≡ IN ∪ {∞}, where IN={0, 1, 2, . . .}. We define the following
metric d on A.

d(x, y) =
|x− y|

(1 + x)(1 + y)
for x, y ∈ IN;

d(x,∞) = d(∞, x) =
1

1 + x
for x ∈ IN; (9)

d(∞,∞) = 0.

8See Khan (1989) for an extension of Mas-Colell’s result to nonmetrizable action spaces and
upper-semicontinuous (rather than continuous) payoffs. Khan provides detailed proofs for both his
and Mas-Colell’s results.
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This metric generates the following topology T for A.

T ≡ {X ⊂ A | if ∞ ∈ X then {t, t+ 1, . . .} ⊂ X for some t ∈ IN}.

Note that all subsets of IN are elements of T . As its definition states, T also contains
all sets which contain both ∞ and the numbers t, t + 1, . . ., for any t ∈ IN. We
assume throughout that A is endowed with this topology. Since every subset of A
is either open or closed, the Borel σ-algebra of A simply consists of all subsets of A.
Since A is a metric space, it is normal.

Claim 1. A is compact.

Proof. Consider any open cover of A. One of the sets in the cover must include
∞ and therefore must also include the points t, t + 1, . . . for some t ∈ IN. So the
other sets in the cover need only cover a finite number of points in A. Hence the
open cover has a finite subcover, and A is compact. 2

The set Φ is the set of (Borel) probability measures on A. Since A is metric and
compact, Φ is metrizable and weakly compact [see Hildenbrand (1974, p.49)]. Note
that Φ is a subset of `1, a Hausdorff topological linear space. It is straightforward
to show that Φ is convex. Of course Φ6 shares all these properties.

Claim 2. For any k ∈ K, the mapping πk : A× Φ6 → IR is continuous over A.

Proof. Consider type-sh agents. Fix any φ ∈ Φ6. Let C be any open subset of
IR. If πSH(∞;φ) /∈ C then the inverse image of C (projected onto A) is a subset
of IN, hence an element of T , hence open. Now suppose πSH(∞;φ) ∈ C. A glance
at (3) shows that lima→∞ π

SH(a) = πSH(∞). It follows that for t large enough,
πSH(a;φ) ∈ C for all a ≥ t. Consequently the inverse image of C (projected onto
A) contains the points t, t + 1, . . . as well as ∞, and therefore is an element of T
and an open set. The same holds for the other types. This establishes continuity
over A. 2

For all k ∈ K, define the best-response correspondence ψk : Φ6 ⇒ A as ψk(φ) =
arg maxb∈A π

k(b;φ). Since A is compact and πk is continuous over A, we have by
Weierstrass’ theorem that for any φ ∈ Φ6, ψk(φ) is nonempty. For all k ∈ K, define
θk : Φ6 ⇒ Φ as θk(φ) = {µ ∈ Φ | µ(ψk(φ)) = 1}. To be an element of θk(φ), a
probability measure µ must put positive mass only on best-response strategies. θk(φ)
is in a sense a set of optimal mixed strategies (which also includes pure strategies).
We must keep in mind, however, that these “probabilities” are really fractions of
the initial type-k population. Since ψk(φ) is nonempty for any φ ∈ Φ6, so is θk(φ).
It is straightforward to show that θk(φ) is also convex-valued.
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Claim 3. For all k ∈ K, the correspondence θk(φ) is upper-hemicontinuous.

Proof. Consider a sequence {φn}∞n=1 such that φn ∈ Φ6 for all n and φn
w
−→ φ̄

(where
w
−→ signifies weak convergence). Consider another sequence {µn}∞n=1 such

that µn ∈ θk(φn) for all n and µn
w
−→ µ̄. Since Φ is weakly compact, we know

µ̄ ∈ Φ. We need to show µ̄ ∈ θk(φ̄), i.e. µ̄(ψk(φ̄)) = 1.
Since A is normal and µn(ψk(φn)) = 1 for all n, we have µ̄(lim supn ψ

k(φn)) = 1
[see Khan (1989, Lemma 2)].

If we fix a and let φ vary, πk(a;φ) becomes a bounded linear functional on Φ6,
hence an element of the dual space (Φ6)′. Since φn

w
−→ φ̄, we have πk(a;φn) →

πk(a; φ̄) for all a ∈ A.
Suppose a ∈ A\ψk(φ̄). Then πk(a; φ̄) < πk(b; φ̄) for some b ∈ A. There

must be m such that πk(a;φn) < πk(b;φn) for all n > m. This means that
a ∈ lim infn(A\ψk(φn)), and thus (A\ψk(φ̄)) ⊂ lim infn(A\ψk(φn)). And since
lim infn(A\ψk(φn)) ∩ lim supn ψ

k(φn) = ∅, it follows that lim supn ψ
k(φn) ⊂ ψk(φ̄).

By monotonicity of probability measures, µ̄(lim supn ψ
k(φn)) ≤ µ̄(ψk(φ̄)). Con-

sequently µ̄(ψk(φ̄)) = 1. 2

Finally, define θ : Φ6 ⇒ Φ6 as θ(φ) = ×k∈Kθ
k(φ). We know that θk is upper-

hemicontinuous, convex-valued and nonempty-valued, for all k ∈ K. These prop-
erties extend to θ. Also, Φ6 is a nonempty, weakly compact subset of a Hausdorff
topological linear space. Hence θ meets the conditions of the Fan-Glicksberg fixed
point theorem [Fan (1952), Glicksberg (1952)], and there exists φ ∈ Φ6 such that
φ ∈ θ(φ). Such a φ satisfies (2) and is therefore a Nash equilibrium of the game. 2

3.3 Characterization

In the rest of this section, we show that in equilibrium, under certain conditions,
the game ends in finite time, with all agents trading.

Claim 4. Suppose φ ∈ Φ6 is a Nash equilibrium of a game G. Then for all a ∈ IN,

(i) φSH(a) > 0 implies φBH(0, a− 1) = φB(0, a − 1) = 1;

(ii) φBL(a) > 0 implies φSL(0, a − 1) = φS(0, a − 1) = 1.

Proof. We prove the claim for type-sh agents. The proof for type-bl agents is
similar.

From (2), φSH(a) > 0 implies πSH(a) ≥ πSH(b) for all b ∈ A. From (3), we see
that πSH(∞) ≥ πSH(b) for all b ∈ A, and that for any a ∈ IN, πSH(a) = πSH(∞) if
and only if φBH(0, a− 1) = φB(0, a − 1) = 1. 2
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The claim states that no one ever meets a type-sh or type-bl agent playing soft.
A type-sh or type-bl agent knows he will get a negative payoff if ever he plays
soft in a meeting, so he plays tough for as long as his potential opponents are in
the market. If his strategy is a ∈ IN, then it must yield him the same payoff as
playing ∞ would, and moreover it must be a number large enough that it does not
provide any of his potential opponents with an incentive to deviate from their own
strategies. In other words, it must be outcome-equivalent to playing∞. There is no
loss of generality, therefore, in assuming that all type-sh and type-bl agents play
∞ in equilibrium, and we shall do so henceforth.

Claim 5. Suppose φ ∈ Φ6 is a Nash equilibrium of a game G. Then φSL and φBH

have finite support and φSL(∞) = φBH(∞) = 0.

Proof. We prove the claim for type-sl agents. The proof for type-bh agents is
similar.

Suppose φSL has infinite support and/or φSL(∞) > 0. This means that πSL is
maximized at ∞ (or at infinitely many points, which amounts to the same thing,
since the payoff function is continuous at ∞). So πSL(∞) ≥ πSL(a) for all a ∈ IN.
By Claim 4 we set φBL(∞) = 1. From (4) we calculate

[πSL(∞)− πSL(a)]/δa = (pH − pM)(1 − xB)φB(a) (10)

+ (pH − cL)(1− xB)
∞∑

t=a+1
δt−aφB(t)

− (pL − cL)(1− xB)φB(a+ 1,∞)

− (pL − cL)xB.

The first two terms on the right-hand side of (10) necessarily approach zero as a
becomes large, since limt φ

B(t) = 0 (even if φB(∞) > 0). The rest of the expression
is negative, and the fourth term does not approach zero as a increases. Thus the
entire expression becomes negative for a ∈ IN large enough, which contradicts the
supposition. 2

Claim 5 states that there is a finite period in which all remaining informed buyers
leave the market if the state is H, and all remaining informed sellers leave the market
if the state is L. Roughly, the explanation is as follows. A type-sl agent knows that
his opposition consists of: (i) some buyers who play tough all the time (all type-bl

agents and possibly some type-b agents as well); and (ii) [as long as φB(∞) < 1]
some who eventually play soft. By a large-numbers reasoning, the members of the
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latter group drop out of the market at a faster rate than do those of the former. The
probability of meeting a buyer playing soft eventually becomes small enough that it
is no longer worthwhile for the type-sl agent to stay in the market. The reasoning
for type-bh agents is parallel.

Claim 6. Suppose φ ∈ Φ6 is a Nash equilibrium of a game G. Define cHL ≡ αcH +
(1− α)cL and uHL ≡ αuH + (1− α)uL, and consider the following two inequalities:

(pL − cHL)(1− xB) + (1− α)(pL − cL)xB > 0; (11)

(uHL − pH)(1− xS) + α(uH − pH)xS > 0. (12)

If (11) and/or (12) is satisfied, then φS and φB have finite support and φS(∞) =
φB(∞) = 0.

Proof. The proof consists of the following two symmetric arguments: (i) if φS has
infinite support and/or φS(∞) > 0, then (11) cannot hold and φB(∞) > 0; (ii) if φB

has infinite support and/or φB(∞) > 0, then (12) cannot hold and φS(∞) > 0.
Suppose φS has infinite support and/or φS(∞) > 0. Then πS(∞) ≥ πS(a) for all

a ∈ IN. From Claim 4 we set φBL(∞) = 1. Let a be large enough that all type-bh

agents have left the market (see Claim 5). From (3), (4) and (7) we then calculate

[πS(∞)− πS(a)]/δa = (pH − pM)(1− xB)φB(a) (13)

+ (pH − cHL)(1 − xB)
∞∑

t=a+1
δt−aφB(t)

− (pL − cHL)(1− xB)φB(a+ 1,∞)

− (1− α)(pL − cL)xB.

As a becomes large, the first two terms on the right-hand side of (13) necessarily
approach zero. The rest of the expression approaches −[(pL− cHL)(1−xB)φB(∞) +
(1− α)(pL − cL)xB]. So for πS(∞)− πS(a) ≥ 0 to hold for all a ∈ IN we must have

(pL − cHL)(1− xB)φB(∞) + (1− α)(pL − cL)xB ≤ 0. (14)

This means φB(∞) must be positive. It also means (11) cannot hold. This estab-
lishes part (i). Now suppose φB has infinite support and/or φB(∞) > 0. By a
similar argument, this requires

(uHL − pH)(1− xS)φS(∞) + α(uH − pH)xS ≤ 0. (15)
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This means that φS(∞) must be positive, and also that (12) cannot hold, and part
(ii) is established. The two arguments together prove the claim. 2

Claim 6 states that if either (11) or (12) is met (or both), then there is a finite
period in which all remaining uninformed agents leave the market. What might
drive a type-s agent to play tough indefinitely is not the hope of meeting a buyer
playing soft: this may be a motivation at first, but eventually it disappears (the
argument is similar to that for type-sl agents above). Rather, it is the fear of
state H, where playing soft means getting a negative payoff. Consider (14). For
the inequality to hold, (pL − cHL) must be negative, φB(∞) must be positive, and
their product must be of sufficient magnitude. If pL − cHL < 0, the parameters are
unfavorable: low price, high costs, and a high prior probability that the state is H.
If φB(∞) is small or zero, then eventually the type-b population (in either state)
becomes small relative to the type-bl population (in state L): an uninformed seller
reasons that if he is still meeting tough buyers at such a time, then the state is
probably L.9 If φB(∞) is large enough, on the other hand, the fear that the state
might be H will persist. The reasoning for type-b agents is parallel.

It now becomes clear that if at least one of (11) or (12) holds, then the game
must end in finite time, with all agents having traded. If the state is H, there is a
period in which all remaining buyers play soft; if the state is L, there is a period in
which all remaining sellers play soft. We state this formally in Theorem 2.

Theorem 2. Suppose (11) and/or (12) holds. Then the game G must end in finite
time.

Proof. Define T k ≡ min{a ∈ IN|φk(0, a) = 1}. By Claims 5 and 6, the periods
T SL, TBH , T S and TB are well-defined. In state H the game ends in period TH ≡
max{TBH , TB}, since all remaining buyers play soft in that period; in state L it ends
in period TL ≡ max{T SL, T S}, since all remaining sellers play soft then. 2

If neither (11) nor (12) is met, there are equilibria in which some agents do not
trade. We show here an example.

Example 1. Suppose neither (11) nor (12) holds. Then the following is an equi-
librium: agents of types sh, s, bl, and b all play ∞; agents of types sl and bh all
play 0.

9From a type-s agent’s perspective, the probability of the state being H conditional on period
t being reached is αβH(t,∞)/ [αβH(t,∞) + (1− α)βL(t,∞)]. This is all foreseeable from the start
and is already incorporated in the derivation of πS .
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In this example, all trade takes place in period 0. Afterwards, all remaining agents
play tough forever. The fraction of agents not trading is 1−xB in state H and 1−xS
in state L. These are upper bounds: in any equilibrium, the amount untraded never
exceeds 1− xB in state H and 1− xS in state L.

4 Information Revelation

In this section, we analyze the degree of information revelation in Nash equilibria of
the game as the economy becomes nearly frictionless. As noted in the introduction,
the only friction in this model is discounting. So we examine this property of
equilibria as discounting is gradually removed.

Formally, we have in mind the following. Fix all parameters except δ, and
consider any sequence {δn}∞n=1 satisfying δn ∈ (0, 1) for all n and limn δn = 1. Let
Gn be the game consisting of δn and the fixed parameters. Finally, consider any
sequence {φn}∞n=1 such that φn ∈ Φ6 is a Nash equilibrium of Gn for all n. We
will show that any such sequence fails to exhibit full revelation of information as
n → ∞. For ease of exposition, we will sometimes speak of limits as δ → 1 rather
than as n→∞.

Consider an uninformed agent who is still in the market in period t > 0. This
agent has learned no “hard facts” (e.g. opponent’s type, outcomes of other meet-
ings), and he never will. Nonetheless, the fact that he is still active in period t,
combined with his knowledge of other agents’ equilibrium strategies, may convey
some information to him: given φ, meeting t successive tough opponents may be
more consistent with the state being H than with the state being L, or vice versa.
This information erodes the disadvantage he has vis-à-vis informed agents. The
longer he remains in the market, the more accurate the information; and the closer
δ is to 1, the longer he can afford to play tough and remain in the market. So it
is natural to ask how far this information revelation can go. In the limit, as δ goes
to 1, does enough information get revealed to uninformed agents that they end up
trading at EPIR prices, i.e. at prices they would have agreed to had they known
the state of the world with certainty?

Alternatively, one can have as a benchmark for the analysis the fully revealing
rational expectations equilibrium (FRREE), a concept associated with centralized
trade where all information is revealed thanks to the auctioneer’s choice of the
equilibrium price function. We can then compare a sequence of equilibria of the
present model of decentralized trade with the FRREE of a model of centralized
trade under the same conditions of asymmetric information. It should be clear,
given the payoffs described above, that a rational expectations equilibrium of this
economy is necessarily a FRREE with a price function satisfying p(H) ∈ [cH , uH ],

16



p(L) ∈ [cL, uL], and where all agents trade.
Let us return now to the decentralized model. In answering the information

revelation question, we must verify whether or not the volume of trade taking place
at the non-EPIR prices converges to 0 as δ → 1.

In the rest of the paper we require several limits to exist. Since the various items
whose limits are taken are all defined on compact sets, every sequence {φn} has a
subsequence for which these limits exist. It should be understood that we restrict
our attention to such subsequences.10 We will index various quantities by n, since
they will generally take on different values with each equilibrium in the sequence.

Denote by VW v(t) the volume of trade taking place at the wrong (non-EPIR)
prices in period t in state v = H,L. Let VW v ≡

∑
t∈IN V W

v(t) be the total volume
of trade at those prices.11 In state H, trade at a wrong price (pM or pL) occurs if
and only if a seller plays soft. Therefore

V WH(t) = σH(t)βH(t,∞)

Summing over all t ∈ IN, and repeating for state L, we have

V WH =
∑
t∈IN

σH(t)βH(t,∞); (16)

V W L =
∑
t∈IN

σL(t,∞)βL(t). (17)

Let V Uv measure the untraded amount in the economy in state v. This is

V UH = σH(∞)βH(∞); (18)

V UL = σL(∞)βL(∞). (19)

Claim 7. Consider a sequence of games {Gn}∞n=1 for which all parameters except
δ are fixed, and where δn → 1, δn ∈ (0, 1) for all n; and consider a corresponding
sequence of Nash equilibria {φn}∞n=1 for which the relevant limits exist. Then we
cannot have limn V U

H
n = limn V U

L
n = limn VW

H
n = limn VW

L
n = 0.

10Note that a sequence {φn} does not necessarily converge pointwise to an element of Φ6. In
that respect, all we can guarantee is that it must have a subsequence which converges weakly to a
point φ̄ ∈ Φ6, since Φ6 is weakly compact (see proof of Theorem 1). This is irrelevant, however:
we are not interested in the properties of any limiting point φ̄, but in those of φn for n finite and
arbitrarily large.

11Here it is important to distinguish between
∑
t∈IN and

∑∞
t=0. To illustrate:

∑
t∈IN φ

k(t) +

φk(∞) =
∑∞
t=0 φ

k(t). For discounted sums there is no difference.

17



Proof. Suppose limn V U
H
n = 0. From (16), this means, among other things, that

lim
n

∑
t∈IN

φSn(t)φBn(t,∞) = 0. (20)

Similarly, limn VW
L
n = 0 implies, via (17), that

lim
n

∑
t∈IN

φSn(t,∞)φBn (t) = 0. (21)

And limn V U
H
n = 0 or limn V U

L
n = 0 implies, via (18) or (19), that

lim
n
φSn(∞)φBn(∞) = 0. (22)

But (20), (21) and (22) cannot all hold, since for any n

∑
t∈IN

φSn(t)φBn(t,∞) +
∑
t∈IN

φSn(t,∞)φBn (t) + φSn(∞)φBn(∞) (23)

= 1 +
∑
t∈IN

φSn(t)φBn (t) ≥ 1.

This proves the claim. 2

The proof is illustrated by means of Figure 2, where we have omitted the sub-
script n. The matrix carries all the products φS(a)φB(b), with a, b ∈ A. These
give an account of trade between uninformed agents: e.g. the volume of trade be-
tween type-s agents who play strategy 3 and type-b agents who play strategy 5 is
(1 − xS)(1 − xB)φS(3)φB(5); these trades take place in period 3 at price pL, since
3 < 5.12 All entries are of course non-negative. Region 1 represents trade at pH ,
region 2 represents trade at pM , region 3 represents trade at pL, and region 4 repre-
sents no trade. Essentially, limn VW

H
n = 0 requires the sum of all entries in regions

2 and 3 to go to 0 as n→∞; likewise limn VW
L
n = 0 requires the sum of all entries

in regions 1 and 2 to approach 0; and limn V U
H
n = 0 (or limn V U

L
n = 0) requires the

entry in region 4 to approach 0. But the sum of all entries is exactly 1, for any n.
The fact that region 2 is counted twice explains the second line of (23).

12Some of these agents meet in periods 0, 1 and 2, but those meetings do not result in trade.
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Figure 2. Trade between uninformed agents.
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Remark. Claim 7 follows from the structure of the model, not from equilibrium
considerations. In other words, it is impossible to construct a strategy profile, even
a non-equilibrium one, in which all agents trade at the right prices in both states
of the world. This results directly from the presence of uninformed agents on both
sides of the market, so the remark applies to the two-sided case only. Equilibrium
considerations are invoked in Theorem 3 below. 2

Our focus here is ex-post individual rationality. Under quite general conditions,
it it not attained in the limit as δ → 1.

Theorem 3. Consider a sequence of games {Gn}∞n=1 for which all parameters except
δ are fixed, and where δn → 1, δn ∈ (0, 1) for all n; and consider a corresponding
sequence of Nash equilibria {φn}∞n=1 for which the relevant limits exist. Suppose (11)
and/or (12) holds. Then we cannot have limn V W

H
n = limn V W

L
n = 0.

Proof. This follows directly from Theorem 2 and Claim 7. 2

The equilibrium results from the previous section (summarized in Theorem 2)
tell us when the entry in region 4 (Figure 2) is 0 for all n. That allows us to focus
the logic of Claim 7 on the other three regions, i.e. those where trade does occur. So
under either of these sufficient conditions, we can say that information is imperfectly
revealed in equilibrium.
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It is worth emphasizing that (11) and (12) are not overly restrictive. As men-
tioned in an earlier footnote, the condition “(11) and/or (12)” is weaker than what
Wolinsky (1990) requires for existence of a steady-state equilibrium.

5 Efficiency

We turn now to a full-fledged welfare analysis of our model. This is an important
question, quite independent of the information revelation issue. Even if the infor-
mation does not get revealed from the informed to the uninformed agents (as we
have shown), the outcome may result in a pure transfer of surplus from those who
lack information to those who have it. In such a scenario, one could not conclude
that society as a whole is worse off. We shall show that this is not the case. That
is, the lack of information revelation of our equilibrium sequences is accompanied
by their asymptotic (as δ → 1) interim incentive inefficiency.

Again we consider any sequence of discount factors {δn}∞n=1 converging to 1, and
any corresponding sequence of Nash equilibria {φn}∞n=1 for which all relevant limits
exist.

First, it is obvious that those equilibrium sequences where limn V U
H
n > 0 or

limn V U
L
n > 0 exhibit an interim inefficiency, as a non-negligible fraction of the

available gains from trade is not realized. We concentrate, therefore, on those equi-
librium sequences for which limn V U

H
n = limn V U

L
n = 0.

Recall that T kn ≡ min{a ∈ IN|φkn(0, a) = 1}, where everything is now indexed by
n. Also let Tn ≡ max{T SL

n , T S
n , TBH

n , TB
n }.

Claim 8. Consider a sequence of games {Gn}∞n=1 for which all parameters except
δ are fixed, and where δn → 1, δn ∈ (0, 1) for all n; and consider a correspond-
ing sequence of Nash equilibria {φn}∞n=1 for which the relevant limits exist. Then
limn δ

Tn
n < 1.

Proof. Suppose limn δ
Tn
n = 1.

Step 1. We first show that limn φ
j
n(T kn ) = limn φ

j
n(T kn + 1) = 0 for (j, k) ∈ {(sl,b),

(s,bh), (s,b), (bh,s), (b,sl), (b,s)}. We calculate

lim
n

[πSLn (T SL
n + 1)− πSLn (T SL

n )] =

(1− xB)
[
(pH − pM) lim

n
φBn(T SL

n ) + (pM − pL) lim
n
φBn(T SL

n + 1)
]
.
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This must be non-positive for optimality of T SL
n . It follows that limn φ

B
n(T SL

n ) =
limn φ

B
n(T SL

n + 1) = 0 in equilibrium. The other cases are proved similarly.

Step 2. Let π̂kn(v) denote an uninformed agent’s equilibrium expected payoff for
state v = H,L; let π̂kn denote an informed agent’s equilibrium expected payoff. For
feasibility we must have, for all n,

xSπ̂
SH
n + (1− xS)π̂Sn(H) + xBπ̂

BH
n + (1− xB)π̂Bn (H) ≤ uH − cH ; (24)

xSπ̂
SL
n + (1− xS)π̂Sn(L) + xBπ̂

BL
n + (1− xB)π̂Bn (L) ≤ uL − cL; (25)

since uv − cv is the available surplus in state v = H,L.
Using our previous results (including Step 1), and continuing to suppose that

limn δ
Tn
n = 1, we calculate

lim
n
π̂SHn = lim

n
πSHn (∞) = (pH − cH);

lim
n
π̂BLn = lim

n
πBLn (∞) = (uL − pL);

lim
n
π̂SLn = lim

n
πSLn (T SL

n ) = (pL − cL) + (pH − pL)(1− xB) lim
n
φBn(0, T SL

n − 1);

lim
n
π̂BHn = lim

n
πBHn (TBH

n ) = (uH − pH) + (pH − pL)(1− xS) lim
n
φSn(0, TBH

n − 1);

lim
n
π̂Sn(L) = lim

n
πSLn (T S

n ) = (pL − cL) + (pH − pL)(1− xB) lim
n
φBn(0, T S

n − 1);

lim
n
π̂Bn (H) = lim

n
πBHn (TB

n ) = (uH − pH) + (pH − pL)(1 − xS) lim
n
φSn(0, TB

n − 1);

lim
n
π̂Sn(H) = lim

n
πSHn (T S

n ) = (pH − cH)

+ (pH − pL)
[
xB lim

n
φBHn (0, T S

n − 1) + (1− xB) lim
n
φBn(0, T S

n − 1)− 1
]

;

lim
n
π̂Bn (L) = lim

n
πBLn (TB

n ) = (uL − pL)

+ (pH − pL)
[
xS lim

n
φSLn (0, TB

n − 1) + (1− xS) lim
n
φSn(0, TB

n − 1) − 1
]
.

Substitution into (24) and (25) yields
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xB

[
lim
n
φBHn (0, T S

n − 1) + lim
n
φSn(0, TBH

n − 1)
]

(26)

+ (1− xB)
[
lim
n
φBn(0, T S

n − 1) + lim
n
φSn(0, TB

n − 1)
]
≤ 1;

xS

[
lim
n
φSLn (0, TB

n − 1) + lim
n
φBn(0, T SL

n − 1)
]

(27)

+ (1− xS)
[
lim
n
φSn(0, TB

n − 1) + lim
n
φBn(0, T S

n − 1)
]
≤ 1.

The values of the expressions in (26) and (27) depend in part on the ordering of the
four T kn ’s. Clearly each expression in brackets is at least 1. Observe also that, no
matter what the discount factor is, no agent will play tough when he knows that
his remaining opponents will all play tough forever. This allows us to say, for all n,
that T SL

n ≤ T
B
n + 1, TBH

n ≤ T S
n + 1, and |max{T SL

n , T S
n } −max{TBH

n , TB
n }| ≤ 1. The

reader can then verify that at least one of the expressions in brackets is equal to 2,
hence (26) and (27) cannot both hold. 2

The significance of this is that the uninformed agents’ learning strategy ends up
having a positive cost. The rate at which they increase their sampling of opponents
as δ → 1 overcomes the rate at which learning becomes cheaper. This is what
ultimately causes the inefficiency of the market, as we show presently.

Consider state L. As noted, the total surplus available in the economy is uL−cL:
each transaction is a split of this amount, and there is a measure 1 of possible
transactions. Let V L(t) denote the volume of trade in period t. In each period, then,
the departing agents take with them (uL − cL)V L(t) collectively. The discounted
sum of these payoffs is a measure of welfare for this state:

W L
n ≡ (uL − cL)

∞∑
t=0

δtnV
L
n (t). (28)

If this is less than uL−cL, then the outcome is Pareto dominated by a split in period
0, and we call the outcome inefficient. WH

n is defined analogously.

Theorem 4. Consider a sequence of games {Gn}∞n=1 for which all parameters except
δ are fixed, and where δn → 1, δn ∈ (0, 1) for all n; and consider a corresponding
sequence of Nash equilibria {φn}∞n=1 for which the relevant limits exist. Then we
cannot have both limnW

H
n = uH − cH and limnW

L
n = uL − cL.
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Proof. Suppose the statement is untrue. Then we must have limn

∑∞
t=0 δ

t
nV

H
n (t) =

limn

∑∞
t=0 δ

t
nV

L
n (t) = 1. In turn this requires the existence of a sequence {λn}∞n=1

such that limn δ
λn
n = 1 and limn

∑λn
t=0 V

H
n (t) = limn

∑λn
t=0 V

L
n (t) = 1. In state L we

have

λn∑
t=0

V L
n (t) = 1− σLn(λn + 1,∞)βLn(λn + 1,∞).

Hence we need

lim
n

[xSφ
SL
n (λn + 1,∞) + (1− xS)φSn(λn + 1,∞)]

× [xBφ
BL
n (λn + 1,∞) + (1− xB)φBn(λn + 1,∞)] = 0.

Using Claim 4 to simplify, and repeating the analysis for state H, we obtain

lim
n
φSLn (λn + 1,∞) = lim

n
φSn(λn + 1,∞) = 0; (29)

lim
n
φBHn (λn + 1,∞) = lim

n
φBn(λn + 1,∞) = 0. (30)

For one of these four types, T kn = Tn. Let us say sl is this type. Using our results
so far (and continuing to suppose limn δ

λn
n = 1), we have

lim
n

[πSLn (T SL
n )− πSLn (λn + 1)] = (pL − cL)

(
lim
n
δTnn − 1

)
, (31)

which must be non-negative by optimality of T SL
n at each n. This requires limn δ

Tn
n =

1, in contradiction to the result of Claim 8. The same thing happens if we try type
s, bh or b. 2

Basically, the market is asymptotically efficient only if (in the limit) all trade
takes place before discounting starts to “bite”. But someone is always willing to
play tough until Tn, at which point discounting does bite. This is not optimal, since
the agent is incurring a substantial delay cost while not significantly bettering his
chances of meeting a soft opponent.

To summarize so far, this is a game of transferable utility, so the Pareto frontier
is completely characterized by payoffs that sum to uv − cv, for state v = H,L. Our
equilibria do not approach this frontier in the limit.
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A Pareto improving allocation can always be implemented by a planner, even
if the planner cannot distinguish between informed and uninformed agents.13 Each
agent is asked to signal his type, and either receives the payoff that the allocation
prescribes for the type he signals, or is punished, depending on whether his signal
makes sense or not. For example, suppose a type-s agent claims he is type-sh. If the
state turns out to be L, then he is caught lying, since no type-sh agent is present in
that state, and he is punished. If we make the punishments harsh enough, then the
mechanism will induce truth-telling. Our equilibria, therefore, are asymptotically
interim incentive inefficient.

6 The One-Sided Information Case

So far in the analysis, there have been both uninformed sellers and uninformed
buyers. This may be appropriate for some financial and real estate markets where
the value of all units traded may depend on some event outside the marketplace,
the outcome of which is known to some agents and unknown to others (or forecast
more accurately by some agents than by others).

In many economic situations, all agents on one side of the market are informed.
There can be uncertainty about the quality of the good itself. We usually think
of sellers of commodities as knowing the quality of their product, and of buyers as
perhaps lacking information in this regard. In this section, we reprise the analysis
of sections 3, 4 and 5, this time with xS = 1 and xB ∈ [0, 1). We call this one-sided
information.

6.1 Equilibrium

Most of the results of Section 3 are easily adaptable to this case. In the expected
payoff functions (3)-(8), we eliminate the φS(·) terms and set xS = 1. The existence
result (Theorem 1) still holds, since the expected payoff functions πk are still con-
tinuous over A in the new configuration. Claim 4 goes through as before, and again
we can say without loss of generality that φSH(∞) = φBL(∞) = 1 in equilibrium.

Type-bh agents know their opponents are all informed sellers who play tough
all the time. The payoff is πBH(a) = (pH − cH)δa, and the optimal strategy is 0: the
inevitable should not be delayed. So φBH(0) = 1 in equilibrium.

For type-sl agents, we appeal to Claim 5. It tells us that there is a finite period
T SL in which all remaining type-sl agents play soft.

After the last type-sl agents have left the market, any remaining type-b agents
know that the state is H and that there is no longer any chance of meeting a soft

13We assume the planner can distinguish between sellers and buyers.
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opponent. Hence φB(0, T SL + 1) = 1; that is, TB ≤ T SL + 1. [Likewise, after the
last type-b agents have left the market, any remaining type-sl agents know that the
opposition now consists exclusively of informed (tough) buyers; hence T SL ≤ TB+1.]

The game ends in finite time, with all agents trading. In state H it ends in period
TB; in state L it ends in period T SL. There are no sufficient conditions analogous
to (11) and (12). The statement is true for all parameter values consistent with the
definition of G (but with xS = 1).

6.2 Information Revelation

Just as in the two-sided case, information about the state of the world cannot be
fully revealed in both states. It will be fully revealed in state H, since all trade in
that state takes place at pH , the EPIR price. In state L, however, there will always
be a sizeable volume of trade occurring at one or the other of the wrong prices (pH
or pM). Below we provide a variation of Theorem 3.

Again we consider any sequence of discount factors {δn}∞n=1 converging to 1, and
a corresponding sequence of Nash equilibria {φn}∞n=1 for which all relevant limits
exist. Let Tn ≡ max{T SL

n , TB
n }. We can show, as we did for the two-sided case, that

limn δ
Tn
n < 1. The proof is similar, and much easier to carry out.

We can now ascertain whether or not information is fully revealed in state L.
The volume of wrong-price trade in that state is

V W L
n = (1− xB)

∑
t∈IN

φBn(t)φSLn (t,∞). (32)

Theorem 5. Consider a sequence of games {Gn}∞n=1 for which all parameters except
δ are fixed (with xS = 1), and where δn → 1, δn ∈ (0, 1) for all n; and consider
a corresponding sequence of Nash equilibria {φn}∞n=1 for which the relevant limits
exist. Then limn V W

L
n > 0.

Proof. Suppose limn V W
L
n = 0. From (32), this requires, for any sequence of

integers {τn}∞n=1,

lim
n
φBn(0, τn)φSLn (τn + 1,∞) = 0. (33)

This means there must be a sequence of integers {λn}∞n=1 such that limn φ
SL
n (0, λn) =

limn φ
B
n(λn + 1,∞) = 1. Otherwise there would be, for infinitely many n, an integer

τn such that φBn(0, τn) > ε and φSLn (τn + 1,∞) > ε for some ε > 0, in contradiction
to (33). See Figure 3.
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Figure 3. Densities of φBn and φSLn . The dark lines indicate the ranges where
the mass is concentrated. Full information revelation (limn VW

L

n = 0) requires
a situation like that in panel (a) for all n greater than some m. If the situation
is like that in panel (b) for infinitely many n, then limn VW

L

n > 0.
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Without loss of generality, φSLn (λn) > 0 for all n. [If an integer in the sequence
has zero mass, it can be replaced with the next lowest integer that has positive mass
without affecting the properties of the sequence.]14

Strategy λn must therefore be optimal for type-sl agents, for all n. In particular
we must have πSLn (λn) ≥ πSLn (0) for all n. Strategy TB

n must by definition be optimal
for type-b agents, and in particular we must have πBn (TB

n ) ≥ πBn (λn + 1) for all n.
We calculate

lim
n

[πSLn (λn)− πSLn (0)] = (pL − cL)
(

lim
n
δλnn − 1

)
; (34)

lim
n

[πBn (TB
n )− πBn (λn + 1)] = α(uH − pH)

(
lim
n
δTnn − lim

n
δλn+1
n

)
. (35)

From (34), optimality of λn for type-sl agents for all n requires limn δ
λn
n = 1. From

(35), optimality of TB
n for type-b agents for all n requires limn δ

λn
n = limn δ

Tn
n . But

we know that limn δ
Tn
n < 1. This is a contradiction. 2

In words, full information requires the masses of φSLn and φBn to separate as
n→∞, with the φBn mass accumulating to the right of the φSLn mass. The optimality

14It can be shown that λn ≡ min{arg maxτ φ
SL
n (0, τ )φBn (τ+1,∞)} forms an appropriate sequence.
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which is supposed to be reflected by these distributions comes into question. The
situation is optimal for type-sl agents only if waiting from 0 to λn becomes costless
as n→∞. It is optimal for type-b agents only if waiting from λn+1 to TB

n becomes
costless. Hence waiting from 0 to TB

n must become costless. But as we saw in Claim
8, this makes for an infeasible outcome.

6.3 Efficiency

The efficiency result is the same as in the two-sided case: the economy is asymptot-
ically interim incentive inefficient. The proof is very similar.

7 Concluding Remarks

Negative results emerge in both the two-sided and one-sided information problems:
failure of learning and social inefficiency. Different forces are at work in the two
models, however, which is why Theorems 3 and 5 were proved differently. In the
two-sided model (assuming all agents trade), force CL competes with forces MI and
N, and cannot overcome them. The proof of Theorem 3 does not involve type-sl or
type-bh agents (those with an incentive to lie about the state of the world): force
N by itself guarantees the result. In contrast, force N is absent from the one-sided
model, since there are no meetings between uninformed agents: there force CL loses
to force MI. In the two-sided version, force F may prevent some agents from ever
trading. In the one-sided version, force F does not appear, and all agents trade.
All equilibrium outcomes are asymptotically interim incentive inefficient, due to
excessive delay.

Ultimately we would like to isolate the properties which a model of decentralized
trade should have in order to yield a positive result. To this end, we discuss briefly
the role of three assumptions made in our model.

Anonymity. We know that a key assumption for our results is the strict
anonymity of the procedure: an agent not only cannot tell whether his opponent
is informed or not, he also cannot recognize an opponent he may have met before.
The following example shows why this is important.

Example 2. Consider the one-sided information model of section 6. Continue
to assume that agents are unable to distinguish between informed and uninformed
opponents. They can, however, recognize individuals they have met before. The
following is now an equilibrium:

(i) each type-sh and type-bl agent plays ∞;

(ii) each type-sl and type-bh agent plays 0;
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(iii) each type-b agent plays tough in period 0 and whenever he meets an opponent
he has met before; otherwise, he plays soft.

If all agents follow their equilibrium strategies in this example, the game ends in
period 0 (state L) or 1 (state H). All trade takes place at EPIR prices, and no
inefficiency persists in the limit. What makes the equilibrium work is that if a type-
sl agent deviates and plays tough in period 0 (and no one else deviates), then he
and his opponent will be the only ones left in the game, and they will meet again
in period 1 (and 2, and 3, . . .).

Equal population size. We have assumed that the measure of buyers and the
measure of sellers are equal. Suppose that this is not the case, but that (as before)
each agent can only meet one opponent at a time: then in each period there are
agents who are unmatched and hence cannot bargain. The two-sided model should
not be affected qualitatively by this, since force N should continue to command the
outcome. The one-sided model is affected, at least when there are more sellers than
buyers. The following is an equilibrium, provided that all buyers are matched in
period 0: type-sh and type-bl agents play ∞; type-sl and type-bh agents play 0;
type-b agents play 1. Sellers in state L are forced to play soft: by playing tough, a
seller would not trade in period 0, and his probability of being matched to the only
remaining buyer in the next period is 0. This is a significant difference with the
model of this paper, and it persists even when the measure of sellers is arbitrarily
close to that of buyers.

We like to think of our model as a limit of others where the measures of buyers
and sellers are different. Consider a situation where the measure of buyers is µB,
while that of sellers is µS, and suppose µB < µS. Suppose that there is a friction
in the matching process so that the probability for a buyer to meet a seller is
f(µB/µS) < 1, and so the probability for a seller to meet a buyer is g(µB/µS) =
(µB/µS)f(µB/µS). The functions f and g are continuous and such that f(1) =
g(1) = 1. The sequence of these models as µS tends to µB would approximate the
one in this paper. To the extent that equilibrium payoff correspondences are upper-
hemicontinuous, our results suggest that these models would also yield negative
results. Note in particular that the equilibrium identified in the previous paragraph
ceases to be an equilibrium now. It is not clear, however, what these models would
yield, due to the presence of a double limit: limδ→1 and limµS→µB . It is possible that
the relative speed at which these two frictions are removed may have an impact in
the results [see Muthoo (1993)]. Suppose, for example, that all buyers are informed
and that µB < µS. On the one hand, there is excess supply for the good, so sellers
should be playing softer than in our model (this would work against learning). On
the other hand, they could learn now from the different frequency of their meetings
in the two states (which would work in favor of learning). Clearly, further research
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is needed to sort out these complicated effects.
The trading procedure. The two-action simultaneous procedure is a strong

assumption. A sequential procedure might be more conducive to information rev-
elation, as information may be revealed in the proposal made by the first mover.
However, the analysis of this model appears quite challenging: it would combine
elements of signalling and screening in each meeting.
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