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Abstract

Two econometric issues arise in the estimation of complete systems of producer or consumer

demands when many non-negativity constraints are binding for a large share of observations, as

frequently occurs with micro-level data. The �rst is computational. The econometric model is

essentially an endogenous switching regimes model which requires the evaluation of multivariate

probability integrals. The second is the relationship between demand theory and statistical co-

herency. If the indirect utility or cost function underlying the demand system does not satisfy the

regularity conditions at each observation, the likelihood is incoherent in that the sum of the prob-

abilities for all demand regimes is not unity and maximum likelihood estimates are inconsistent.

The solution presented is to use the Gibbs Sampling technique and data augmentation algorithm

and rejection sampling, to solve both the dimensionality and coherency problem. With rejection

sampling one can straightforwardly impose only the necessary conditions for coherency, coherency

at each data point rather than global coherency. The method is illustrated with a series of simulated

demand systems derived from the translog indirect random utility function. The results highlight

the importance of imposing regularity when there are many non-consumed goods and the gains

from imposing such conditions locally rather than globally.

JEL Classi�cation Codes: C3, C4, D0

Key Words: coherency, Gibbs Sampling, demand systems, translog, data augmentation,

Markov Chain Monte Carlo



1 Introduction

An unresolved problem in applied demand analysis is the estimation of complete systems of demand

equations from household surveys having highly disaggregated consumption data when there are

substantial numbers of non-consumers for many goods. This characterizes demand analysis with

individual, household, or �rm-level data.

Derivation of an econometric model from the maximization of a random direct utility function

subject to the Kuhn-Tucker conditions characterizes the primal solution to the consumer problem

(Wales and Woodland (1983)). This method, however, rules out the use of more 
exible demand

speci�cations for which no explicit speci�cation of the direct utility function can be given. The

dual solution consists of deriving consumer demand systems from indirect cost or utility functions

including popular 
exible functional forms such as the translog by specifying virtual (or reservation)

prices which are dual to the Kuhn-Tucker conditions (Lee and Pitt (1986, 1987)).

Two econometric issues arise in the estimation of such demand systems. The �rst is the dimen-

sionality problem. The econometric model is essentially an endogenous switching regimes model

which requires the evaluation of multivariate probability integrals. The computational burden can

be reduced by placing a factor structure on the random components of the indirect utility function

(Lee and Pitt (1986)) or by using simulated maximum likelihood methods (Lee (1997)).

The second econometric issue which must be addressed is the coherency problem (Ransom

(1987); van Soest and Kooreman (1990); van Soest et al. (1993)). Coherency of the likelihood

function is not guaranteed over the entire parameter space. In an incoherent likelihood the sum of

the probabilities for all demand regimes is not one. Quasi-concavity of the cost or utility function

is su�cient (but not necessary) to guarantee coherency. However, current methods to impose

quasi-concavity locally have been characterized as \unsatisfactory" by Diewert and Wales (1987)

and parametric restrictions required to guarantee global quasi-concavity of the translog and other

demand systems destroy their 
exibility (Lau (1978); Jorgensen and Fraumani (1981); Gallant

and Golub (1984); Diewert and Wales (1987); Terrell (1991)). In addition, Hausman (1985) and

MaCurdy et al. (1990) have shown that in models of individual labor supply, the restrictions

necessary to guarantee global concavity impose a priori undesirable limitations on income and

wage elasticities.

A number of empirical researchers have been concerned that the 
exible functional forms used in

various econometric models fail to satisfy the theoretical regularity conditions { strict monotonicity
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and quasi-concavity. The standard approach in these studies is, at most, to check ex post for

regularity at each data point and report it as a "statistic" re
ecting the reasonableness of the

restrictions imposed by demand theory. In fact, the likelihood function for any demand system

having corner solutions which is not quasi-concave at every point is incoherent and the maximum

likelihood estimates are inconsistent (van Soest et al. (1993)). Circumventing this problem through

the speci�cation of globally concave functional forms, such as the Linear Expenditure System,

imposes unrealistic restrictions on behavior, particularly with disaggregate demands and micro-

level data. A recent, notable addition to this literature is Terrell (1996), who employs Bayesian

Gibbs Sampling techniques, along with rejection sampling, to impose the theoretical concavity

conditions locally to demand systems with only interior solutions.

In this paper, we extend the work of Pitt and Lee (1986, 1987) to the estimation of coherent

demand systems in the presence of binding non-negativty constraints. Our solution is to use the

Gibbs Sampling technique, as did Terrell, along with the data augmentation algorithm (Tanner

and Wong (1987)), to solve both the dimensionality and the coherency problem. With rejection

sampling one can straightforwardly impose only the necessary conditions for coherency, coherency

at each data point rather than global regularity. The remainder of the paper is organized as follows:

section 2 presents the dual approach to the consumer maximization problem when there are binding

non-negativity constraints; section 3 discusses the coherency problem in the context of the translog

demand system; section 4 details the estimation algorithm; section 5 presents the Monte Carlo

results; and, section 6 contains some concluding remarks.

2 The Dual Approach to Binding Non-Negativity Constraints

Following Lee and Pitt (1986a), let H(v; �; �) be an indirect utility function de�ned as

H(v; �; �) =
max
q fU(q; �; �) j vq = 1g ; (1)

where U(:; �; �) is a strictly quasi-concave utility function de�ned over k commodities, v is a vector

of normalized (by income) market prices, � is a vector of unknown parameters, and � is a vector

of random components. The latent demand equations q(v; �; �) for a set of k goods are derived by

applying Roy's Identity:

qi =

@H(v;�;�)
@viPk

j=1 vj
@H(v;�;�)

@vj

i = 1; :::; k : (2)
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These demand equations are latent because they are not restricted to the positive orthont as

the maximization problem given by (??) does not contain any non-negativity constraints. The

latent demands qi correspond to a vector of non-negative observed demands, xi as follows: there

exists a vector of positive virtual prices � which can exactly support these zero demands (or any

other allocation) as long as the preference function is strictly quasi-concave, continuous, and strictly

monotonic (Neary and Roberts (1980)). Although analytically deriving virtual price functions when

demands are rationed has been shown to be di�cult for many popular functional forms (Deaton

and Muellbauer (1981)), the problem is enormously simpli�ed when the "ration" is at zero. In this

special case, the denominator in (??) drops out of the virtual price function. If demands for the

�rst m goods are zero, the virtual prices �i(vm+1; :::; vk) are solved from the equations

0 =
@H(�1(�v); :::; �m(�v); �v; �; �)

@vi
i = 1; :::;m (3)

where �i(�v) is the virtual price of good i and �v is the set of market prices of the positively consumed

goods m+ 1 to k.

The market prices �v are also the virtual prices for the consumed goods as they exactly support

the observed positive demands. The remaining (positive) demands are

xi =

@H(�1(�v);:::;�m(�v);�v;�;�)
@viPk

j=1 vj
@H(�1(�v);:::;�m(�v);�v;�;�)

@vj

i = m+ 1; :::; k (4)

The equations (??) are estimable and the parameters of the latent demand equations (??) can be

identi�ed by estimating this conditional demand system.

Selection among di�erent regimes { de�ned by the set of positively consumed goods at the

optimum { is done by a comparision of the virtual and market prices. The regime in which the

�rst m goods are not consumed is characterized by the conditions

�i(�v) � vi i = 1; :::;m (5)

This characterization follows directly from the Kuhn-Tucker conditions.

3 Coherency of the Translog Demand System

When estimating 
exible functional forms of consumer or producer demands, imposing the theoret-

ical curvature restrictions is crucial if the data contains corner solutions, unlike when only interior

solutions are observed. Even if the true demand model generating the data is quasi-concave at each
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observation, failure to impose this condition in the presence of corners may result in inconsistent

estimates of the parameters of the model if the iterative estimation process leaves the regular region

of the parameter space (van Soest et al. (1993)). This inconsistency results from the incoherency

of the econometric model. In an incoherent model, the sum of the probabilities of the demand

regimes is not one. The conditions required for coherency are, �rst, that every possible vector � of

random components generates a unique set of demands, and second, that every demand regime can

be generated by some � vector. Restricting the parameter space to the regular region is su�cient to

guarantee coherency. However, failure to impose regularity does not necessarily lead to inconsistent

estimates if the iterative process does not exit the regular region of the parameter space. For ex-

ample, Lee and Pitt (1987) estimate a linear translog demand system without imposing regularity

ex ante, but con�rm the coherency of their estimates ex post.

3.1 Non-Linear Translog Demand System

To illustrate the coherency problem, consider the translog indirect utility function of Christensen

et al. (1975):

H(v; �; �) =
kX
i=1

�ivi +
1

2

kX
i=1

kX
j=1

�ijvivj +
kX
i=1

�ivi ; (6)

where v is a vector of log normalized market prices, � � Nk(0;�), and there are k goods. A

convenient normalization is
kX
i=1

�i = 1 ;
kX
i=1

�i = 0 : (7)

The latent budget share equations are

viqi =
�i +

Pk
j=1 �ijvj + �i

D
; (8)

where

D = 1 +
kX
i=1

kX
j=1

�ijvj > 0 ; (9)

which is strictly positive as a consequence of utility increasing in income.

For the model to be coherent, the indirect utility function must be locally quasi-concave, which

requires that

ss
0 � ŝ+

1

D + y0�e
[� � s(�e)0 � �es

0 + e
0

�ess
0] (10)

must be a negative semi-de�nite matrix at each data point, where � is a k x k matrix of slope

parameters, ŝ is a k x k diagonal matrix with si, i = 1; :::; k, the observed shares, along the diagonal,
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s is a k-dimensional vector of observed shares, y is a k-dimensional vector of the di�erences between

log market and virtual prices, and e is a k-dimensional vector of ones (van Soest and Kooreman

(1990)). In contrast, the model is globally coherent if the indirect utility function is globally quasi-

concave, which requires that � is a negative semi-de�nite matrix. However, as Diewert and Wales

(1987) demonstrate, this restriction destroys much of the 
exibility that motivates the use of these

functional forms.

3.2 Linear Translog Demand System

A common representation for a �rm's cost function is the linear (homogeneous) translog indirect

cost function. It is a special case of (??), obtained by imposing the restrictions that
Pk

i=1 �ij = 0.

As a result, �e = 0, D in (??) reduces to one, and the local coherency condition in (??) simpli�es

to the requirement that

� � ŝ+ ss
0 (11)

is a negative semi-de�nite matrix for each observation (Diewert and Wales (1987)). As in the

non-linear model, global coherency requires � to be a negative semi-de�nite matrix.

4 Estimation via Gibbs Sampling

Examples of the linear and non-linear translog demand models are estimated using the Markov

Chain Monte Carlo (MCMC) technique of Gibbs Sampling. In models with a simple latent struc-

ture, the observed data may be augmented in order to make application of the Gibbs Sampler

straightforward. This process converts the observed demands into latent demands. However, draw-

ing latent quantities when the demand system is not regular (i.e., augmenting the data conditional

on parameters which fail to satisfy the local curvature conditions) restricts the space of possible

values that the latent quantities can take. As a result, in an irregular demand system the Gibbs

Sampler corresponds to MCMC estimation of the underlying incoherent and inconsistent likeli-

hood. Consequently, imposing the curvature condition su�cient for coherency of the likelihood is

also necessary to guarantee convergence of the Gibbs Sampler to the appropriate distribution.

The desired density to be sampled from is p(�; �;�js), corresponding to the random (stochastic)

indirect utility function in (??), where s is the vector of observed budget shares. After augmenting

the data, the actual density sampled from is p(�; �;�js�), where s� is a vector of latent budget
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shares. While sampling directly from this density is quite burdensome, sampling from the compo-

nent conditionals is not. This density may be factored into the following conditional densities:

i. p(s�j�; �;�; s)

ii. p(�js�; �; �)

iii. p(�; �js�;�)

The Gibbs Sampler constructs sequences of draws by sampling consecutively from the above

conditional distributions. The precise steps are discussed below.

4.1 Augmenting Budget Shares

The �rst step is to augment the data by simulating the latent budget shares conditional on the

observed data and initial values for the parameters of the model. The data augmentation algorithm

is more complicated than in the multinomial probit model considered by McCulloch and Rossi

(1994). In the case of a demand system with binding non-negativity constraints, one begins by

augmenting only the budget shares for the non-consumed goods. The augmented (latent) demands

uniquely identify a vector of virtual prices. The remaining random components, �, of the indirect

utility function corresponding to the goods for which the observed budget share is strictly positive

can be solved for from these virtual prices. Finally, the augmented (latent) demands for the

consumed goods are uniquely determined given these random components. Thus, even for the

goods not at a corner, the latent and observed budget shares are generally not identical.

4.1.1 Linear Translog Demand System

Below we describe three cases characterized by the number of goods at a corner. A single good at

a corner is di�erentiated from the case of multiple corners only by the ease of exposition.

Case 1. s1 = 0, si > 0 8i 6= 1. The log virtual price for input 1 is given by

�1 = �
1

�11
(�1 +

kX
j=2

�1jvj + �1) : (12)

Since the observed demands for the consumed inputs depend on �1 and not v1, the share equations

are

si = �i �
�i1

�11
�1 +

kX
j=2

(�ij � �i1
�1j

�11
)vj + [�i �

�i1

�11
�1]
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� �i �
�i1

�11
�1 +

kX
j=2

(�ij � �i1
�1j

�11
)vj + ~�i i = 2; :::; k (13)

To appropriately augment the data, �rst derive the components of 
, the covariance matrix of

�1 and ~�i, i = 2; :::; k � 1, given the initial estimate of �. In addition, values for ~�i are obtained

conditional on the initial estimates for � and � and the observed data. Next, one can draw

�1j~� � N(
12

�1
22 ~�;
11 � 
12


�1
22 
21), where ~� is a vector of length k � 2 of observed residuals

and �1 is truncated from above at �(�1 +
Pk

i=1 �1ivi). Once an appropriate value has been drawn

for �1, the latent cost shares for all k inputs are uniquely determined. However, even though �1

is drawn such that s�1 is non-positive, there is no assurance that the resulting implied values for

s�i , i = 2; :::; k, are consistent with the observed demand regime. As a result, one must check the

regime conditions for the consumed inputs. Such conditions were derived in Lee and Pitt (1987)

and require s�i �
�i1
�11

s�1 2 (0; 1), i = 2; :::; k. If any of these conditions are violated, �1 must be

re-drawn.

Case 2. sk > 0, si = 0 8i 6= k. For demand regimes where more than one input is not consumed,

virtual prices may be obtained by matrix inversion. Log virtual prices for inputs 1; :::; k � 1 are
2
66664

�1

...

�k�1

3
77775
= �B�1

2
66664

�1 + �1;kvk

...

�k�1 + �k�1;kvk

3
77775
�B

�1

2
66664

�1

...

�k�1

3
77775

(14)

where

B =

2
66664

�11 � � � �1;k�1

...
...

�k�1;1 � � � �k�1;k�1

3
77775

:

Estimates of the latent cost shares are obtained by drawing a k�1 vector of �'s unconditionally

from a multivariate normal distribution with mean zero and a covariance matrix given by the upper

k�1 by k�1 portion of �. Regime conditions for this demand regime require B�1s� � 0, where s�

is a vector of length k� 1 whose elements are the augmented (latent) cost shares. Each element of

the vector B�1s� must be non-negative for virtual prices to be less than or equal to market prices

since 2
66664

�1

...

�k�1

3
77775
=

2
66664

v1

...

vk�1

3
77775
�B

�1

2
66664

s�1
...

s�k�1

3
77775

:

If any element of the vector B�1s� is negative, the entire vector of �'s is re-drawn.
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Case 3. si > 0 8i. In this case, the observed cost shares are the latent shares as well since the

non-negativity constraints are not binding. There is no need to augment the data.

4.1.2 Non-Linear Translog Demand System

Case 1. s1 = 0, si > 0 8i 6= 1. When the "ration" is at zero, D drops out of the virtual price

equations. Thus, (??) still gives the log virtual price for good 1. De�ne �1 � �1 �
1
�11

�1. The

budget shares for the consumed goods are

si =
�i + �i1�1 +

Pk
n=2 �invn + �i

~D
i = 2; :::; k (15)

where

~D = 1 +
kX

m=1

kX
n=2

�mnvn +
kX

m=1

�m1�1 (16)

= 1 +
kX

m=1

kX
n=2

�mnvn +
kX

m=1

�m1�1 �
1

�11

kX
m=1

�m1�1

� D̂ �
1

�11

kX
m=1

�m1�1 :

One can re-write the shares for the consumed goods as

D̂si = �i + �i1�1 +
kX

n=2

�invn + [�i +
1

�11
�1(si

kX
m=1

�m1 � �i1)] (17)

= �i + [�i +
1

�11
�1[(

�i + �i �
�i1
�11

�1

~D
)

kX
m=1

�m1 � �i1]]

� �i + ~�i i = 2; :::; k

where

�i = �i + �i1�1 +
kX

n=2

�invn (18)

by substituting in equation (??) for si on the right-hand side of (??).

Proceeding according to the same logic as in the linear case, the data theoretically could be

augmented by drawing �1 conditional on ~�i, i = 2; :::; k � 1, where ~�i is de�ned by equation (??).

While the mean and variance of ~�i are computable, obtaining its distribution and the conditional

distribution �1j~�i is quite complex. As a result, �1 is drawn unconditionally. Once �1 is drawn,

equation (??) is used to solve for �i, i = 2; :::; k � 1, given �1; �,and � as well as the observed

data. After the full set of residuals has been computed, the regime conditions must be checked.

In the non-linear case, the regime conditions imply that �1 < p1 and D
~D
(s�i �

�i1
�11

s�1) 2 (0; 1),
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i = 2; :::; k � 1. The latter conditions di�er slightly from the regime conditions in the linear case

since in the linear case D
~D
reduces to one. If any condition is violated, �1 must be re-drawn.

Case 2. sk > 0, si = 0 8i 6= k. When only 1 good is consumed, the only change from the

linear case is the equation for the latent shares. Since D is not restricted a priori to be one,

once the �'s are drawn, the formula for obtaining the latent shares has changed (although this is

trivial computationally). The rest of the augmentation procedure is unchanged from the linear

case, including the regime conditions.

Case 3. si > 0 8i. As before, there are no binding non-negativity constraints and the observed

and latent budget shares are identical.

4.2 Remainder of the Algorithm

4.2.1 Linear Translog Demand System

Once every observation has a full set of latent cost shares, an updated estimate of � is obtained

�rst by computing the residuals conditional on the new set of latent shares and current estimates

of � and �, and then drawing a new � � Inverse Wishart(�̂) as in (ii), where �̂ is the estimated

covariance matrix from these residuals. As shown in (iii), once a new estimate of the covariance

matrix has been obtained, � and � are estimated by SUR conditonal on � and the latent shares.

The values of � and � are then updated by drawing

�; � � N(

2
64
�̂

�̂

3
75 ;���) ; (19)

where �̂; �̂ are the SUR estimates and ��� is the covariance matrix of the estimated parameters.

After drawing new estimates for � and �, coherency is checked at each data point. If coherency is

violated at any point, new values are drawn for � and �. This procedure is then cycled through

until the iteration of the algorithm converges to the desired density.

4.2.2 Non-Linear Translog Demand System

Once every observation has a full set of latent budget shares, an updated estimate of � is constructed

as in the linear case. Once a new estimate of the covariance matrix has been obtained, � and � are

estimated using non-linear SUR conditonal on � and the latent shares.
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To obtain new estimates of � and �, rather than minimizing the sum of the squared residuals

(conditional on the latent shares), we minimize the sum of 1
D2 �

0� over all observations. Because D2

is itself a function of a subset of the parameters being estimated (i.e., �), an iterative procedure is

employed within each loop of the Gibbs Sampler, where D2(�) is computed, estimates of � and �

are computed conditional on the priorD2(�), and then D2(�) is updated given the new estimates of

the parameters. This is done until the estimates of � and � converge. After this iterative procedure

is complete, the covariance matrix is computed for �̂ and �̂ and �nal values for � and � are drawn

from the appropriate multivariate normal distribution. After drawing new estimates for � and �,

coherency is checked at each data point. If coherency is violated at any point, new values are drawn

for � and �.

5 Monte Carlo Results

5.1 Linear Translog Demand System

To test the algorithm, 1000 data sets were generated, each with 500 observations and three goods,

from a homogeneous cost function. Log prices were randomly drawn from a uniform distrbution

(with bounds zero and two) and income was drawn from a normal distribution (with mean zero and

a standard deviation of 1.25). The model was then estimated for each data set according to the

procedure outlined, running 501 loops of the Gibbs Sampler and discarding the initial 500 sets of

parameter estimates. This was done twice, once for 1000 data sets with relatively small variances

and once for 1000 data sets with relatively large variances. The higher variances lead to many more

corners in the observed data. For each cost function, this procedure was performed twice, once

imposing global coherency and once imposing only local coherency. The results are presented in

Tables 1 and 2. In addition to the median and standard deviation for each parameter, the average

number of coherency rejections per loop (counting only those loops which were kept) is reported as

well.
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TABLE 1. Monte Carlo Results: Linear Demand System (3 Goods) with Small

Variances.

PARAMETERS TRUE LOCAL COHERENCY GLOBAL COHERENCY

VALUE MEDIAN STANDARD DEVIATION MEDIAN STANDARD DEVIATION

�1 0.200 0.2035 0.0127 0.2013 0.0130

�2 0.300 0.2989 0.0129 0.3001 0.0119

�11 -0.020 -0.0313 0.0258 -0.0317 0.0232

�12 0.007 0.0112 0.0195 0.0117 0.0181

�22 -0.025 -0.0315 0.0217 -0.0325 0.0210

�1 0.200 0.1965 0.0111 0.1975 0.0108

�2 0.150 0.1500 0.0092 0.1507 0.0094

�12 -0.500 -0.4950 0.0907 -0.5110 0.0831

Ave. Regularity Rejections

Per Loopy 3.236 5.142

Number of Loopsy 1,000 1,000

yFigures include only those loops which were not discarded.

Table 1 reports the results of the 1,000 draws from the actual density as well as the true

parameter values used to generate the data. Columns 3 - 4 report the results imposing coherency

locally, while columns 5 - 6 report the results imposing global coherency. Local coherency is imposed

by checking that condition (??) holds for each draw of � and �. Global coherency, on the other

hand, requires that each draw of � is a negative semi-de�nite matrix. It should be noted that the

true � matrix is negative semi-de�nite. Consequently, one would expect the parameter estimates

in the column 5 to be closer on average to the true values.

Comparing the results across the two models, one �nds that both models predict the true

values extremely well. In addition, one �nds little evidence of incoherency, although there is a

small di�erence in the mean number of rejections per loop between the local and global models.

Given the lack of a substantial number of non-consumed goods, the fact that coherency is an issue

at all is perhaps surprising.
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TABLE 2. Monte Carlo Results: Linear Demand System (3 Goods) with Larger

Variances.

PARAMETERS TRUE LOCAL COHERENCY GLOBAL COHERENCY

VALUE MEDIAN STANDARD DEVIATION MEDIAN STANDARD DEVIATION

�1 0.200 0.2360 0.0730 0.2403 0.0130

�2 0.300 0.2868 0.0792 0.2838 0.0119

�11 -0.020 -0.0870 0.0824 -0.0827 0.0232

�12 0.007 0.0358 0.0607 0.0362 0.0181

�22 -0.025 -0.0717 0.0637 -0.0742 0.0210

�1 0.600 0.6014 0.1024 0.5960 0.0108

�2 0.450 0.4618 0.0623 0.4641 0.0094

�12 -0.500 -0.5773 0.2309 -0.5803 0.0831

Ave. Regularity Rejections

Per Loopy 41.119 51.357

Number of Loopsy 1,000 1,000

yFigures include only those loops which were not discarded.

Table 2 reports the results obtained using the data generated from the linear model but with

relatively large variances for the stochastic elements. The larger variances substantially increase

the prevelance of non-consumed goods. Consequently, the number of coherency rejections rises in

both models. When coherency is imposed globally, there were on average nearly 51.4 rejections per

loop of the Gibbs Sampler (counting only those loops after which the Gibbs Sampler converges to

the appropriate density). Even when coherency is only checked at each data point, there is still over

41.1 rejections per loop on average. However, the fact that there are fewer rejections in the local

model illustrates the expansion of the acceptable parameter space (and additional 
exibility of the

model) which is gained with the MCMC technique. Unlike in the smaller variance case, however,

the parameter estimates are not as accurate; although there is little di�erence between the local

and global coherency models.
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TABLE 3. Monte Carlo Results: Linear Demand System (6 Goods).

PARAMETERS TRUE LOCAL COHERENCY GLOBAL COHERENCY

VALUE MEDIAN STANDARD DEVIATION MEDIAN STANDARD DEVIATION

�1 0.100 0.0800 0.0291 0.0790 0.0292

�2 0.200 0.2170 0.0257 0.2160 0.0245

�3 0.050 0.0410 0.0243 0.0395 0.0244

�4 0.150 0.1490 0.0296 0.1480 0.0317

�5 0.070 0.0760 0.0279 0.0790 0.0262

�11 -0.060 -0.0840 0.0134 -0.0835 0.0131

�12 0.010 0.0100 0.0097 0.0100 0.0098

�13 0.020 0.0300 0.0010 0.0290 0.0098

�14 0.015 0.0220 0.0117 0.0210 0.0118

�15 0.020 0.0280 0.0109 0.0280 0.0111

�22 -0.080 -0.0890 0.0114 -0.0890 0.0114

�23 0.030 0.0365 0.0097 0.0370 0.0010

�24 0.010 0.0120 0.0112 0.0100 0.0113

�25 0.015 0.0170 0.0117 0.0170 0.0119

�33 -0.070 -0.0870 0.0124 -0.0870 0.0129

�34 0.010 0.0100 0.0120 0.0120 0.0122

�35 0.005 0.0040 0.0122 0.0030 0.0125

�44 -0.100 -0.1200 0.0154 -0.1195 0.0153

�45 0.025 0.0300 0.0117 0.0310 0.0114

�55 -0.090 -0.1040 0.0135 -0.1040 0.0134

Ave. Regularity Rejections

Per Loopy 1.300 5.477

Number of Loopsy 1,000 1,000

yFigures include only those loops which were not discarded.

To illustrate the usefulness of the model in estimating demand systems with more than three

goods, Table 3 presents the results from a six good linear translog demand demand system. As

before, coherency is checked both locally and globally, with the model imposing coherency globally

rejecting over four times as often per loop.
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TABLE 3 (cont.). Monte Carlo Results: Linear Demand System (6 Goods).

PARAMETERS TRUE LOCAL COHERENCY GLOBAL COHERENCY

VALUE MEDIAN STANDARD DEVIATION MEDIAN STANDARD DEVIATION

�1 0.170 0.2420 0.0394 0.2400 0.0381

�2 0.240 0.2640 0.0228 0.2610 0.0221

�3 0.180 0.2240 0.0276 0.2220 0.0275

�4 0.250 0.3000 0.0320 0.3020 0.0327

�5 0.210 0.2440 0.0275 0.2420 0.0266

�12 0.500 0.3395 0.1160 0.3270 0.1197

�13 0.050 -0.1130 0.1451 -0.1075 0.1473

�14 -0.200 -0.2490 0.1467 -0.2255 0.1470

�15 0.120 -0.1440 0.1490 -0.1290 0.1504

�23 0.000 -0.1580 0.1329 -0.1615 0.1262

�24 -0.270 -0.2620 0.1191 -0.2400 0.1224

�25 -0.620 -0.5070 0.0989 -0.5055 0.0972

�34 0.180 0.0970 0.1368 0.1025 0.1429

�35 -0.120 -0.0810 0.1554 -0.0740 0.1530

�45 0.330 0.1785 0.1733 0.1620 0.1274

Ave. Regularity Rejections

Per Loopy 1.300 5.477

Number of Loopsy 1,000 1,000

yFigures include only those loops which were not discarded.

5.2 Non-Linear Translog Demand System

The same procedure as detailed in the previous section is used to test the non-linear model. The

results are presented in Tables 4 and 5. Unlike in the linear model, however, additional conditions

for rejection sampling are imposed in the non-linear model for purely computational reasons. First,

in some cases, given the values of the parameters for � and � from the previous iteration of the

Gibbs Sampler, the data could not be augmented such that the appropriate regime conditions

were satis�ed. Because the observed shares are augmented by drawing the stochastic elements �

from a (multivariate) normal distribution, with in�nite support, augmenting the data is always

feasible given a suitably large number of draws. However, given the limitations of the random

number generator, extremely low probability events are never sampled.1 As a result, if after 500,000

1For example, 10 million draws from a standard normal were all between 0 and, approximately, 5.5 in absolute

value.
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attempts at augmenting a particular observation, a suitable � vector could not be found, the results

of the previous loop of the Gibbs Sampler are discarded and the previous loop is re-done so that the

iterative process may proceed. For example, if given the parameter estimates from iteration 400,

appropriate latent data cannot be simulated, the results from loop 400 are discarded and iteration

400 is re-computed given the parameter values from iteration 399. If the problem occurred during

the �rst loop of the Gibbs Sampler, the initial values are altered slightly and then the process

is re-started. The limit of 500,000 was chosen because after several tests of the random number

generator within the context of the non-linear model, it was found that if the data could not be

augmented within the initial 500,000 draws, the probability of simulating suitable latent data with

further draws was negligable.

Second, because an iterative procedure is used to perform non-linear SUR estimation within

each iteration of the Gibbs Sampler, convergence of the SUR estimates is an issue. If after a set

number of iterations and changes in maximization algorithms and initial values the process had

not converged, the same action was taken as detailed above; namely, the Gibbs Sampler is \backed

up" a loop and then allowed to proceed. This potentially introduces a bias into the estimation if

the non-convergence of the SUR estimates is linked to the particular observed data. However, as

is reported below, non-convergence of the SUR estimates is quite rare.

A �nal source of rejection pertains to the coherency criterion. Again, because the �'s are drawn

from a multivariate normal distribution with in�nite support, as long as the space of coherent

parameters is non-empty, it is always possible to draw a set of coherent parameter values. However,

computationally, this is not the case. As a result, if after 500,000 attempts a coherent � matrix

could not be drawn, the Gibbs Sampler was backed up an iteration and allowed to proceed.
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TABLE 4. Monte Carlo Results: Non-linear Demand System (3 Goods) with Small

Variances.

PARAMETERS TRUE LOCAL COHERENCY GLOBAL COHERENCY

VALUE MEDIAN STANDARD DEVIATION MEDIAN STANDARD DEVIATION

�1 0.050 0.0495 0.0043 0.0498 0.0044

�2 0.150 0.1505 0.0061 0.1481 0.0060

�11 -0.050 -0.0501 0.0040 -0.0511 0.0041

�12 0.030 0.0303 0.0038 0.0297 0.0038

�13 0.010 0.0098 0.0037 0.0091 0.0034

�22 -0.060 -0.0602 0.0063 -0.0639 0.0056

�23 0.035 0.0357 0.0058 0.0312 0.0043

�33 -0.040 -0.0366 0.0301 -0.0643 0.0170

�1 0.060 0.0606 0.0034 0.0616 0.0036

�2 0.090 0.0902 0.0046 0.0910 0.0044

�12 -0.500 -0.5007 0.0505 -0.5004 0.0517

Ave. Regularity Rejections

Per Loopy 0.002 477.681

Number of Loopsy 1,000 1,000

yFigures include only those loops which were not discarded.

Table 4 presents the results from the non-linear model with small variances. As in the previous

tables, column 2 gives the true values of the parameters, columns 3 - 4 contains the results when

coherency is imposed locally, and columns 5 - 6 gives the results when global coherency is imposed

on the parameter values. While the parameter estimates are virtually identical across the two

models, imposing coherency globally signi�cantly constrains the space of acceptable parameter

values relative to the space of locally coherent values. Consequently, on average one rejected over

477 parameter draws per iteration of the Gibbs Sampler when imposing global coherency, while

rarely rejecting any parameter draws per loop of the Gibbs Sampler when imposing coherency

locally.

In terms of the additional conditions checked within each loop of the Gibbs Sampler, seven

loops were discarded in the local coherency model because a coherent � matrix was not found

after 500,000 draws; 911 iterations were discarded in the model imposing coherency globally.2 In

addition, in the local coherency model, one iteration was thrown out because the non-linear SUR

2Note, because these loops are discarded, the 500,000 rejections do not �gure in the averages reported in the

tables.
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estimates failed to converge and 156 loops were discarded because of an inability to augment the

observed data after 500,000 attempts. In the global coherency model, 609 loops were discarded due

to an inability to augment the data, but the non-linear SUR estimates always converged.

TABLE 5. Monte Carlo Results: Non-linear Demand System (3 Goods) with Large

Variances.

PARAMETERS TRUE LOCAL COHERENCY GLOBAL COHERENCY

VALUE MEDIAN STANDARD DEVIATION MEDIAN STANDARD DEVIATION

�1 0.050 0.0534 0.0056 0.0495 0.0055

�2 0.150 0.1498 0.0081 0.1477 0.0080

�11 -0.050 -0.0502 0.0054 -0.0520 0.0052

�12 0.030 0.0303 0.0052 0.0303 0.0051

�13 0.010 0.0099 0.0050 0.0089 0.0047

�22 -0.060 -0.0611 0.0086 -0.0656 0.0076

�23 0.035 0.0356 0.0075 0.0307 0.0061

�33 -0.040 -0.0378 0.0408 -0.0683 0.0243

�1 0.080 0.0812 0.0052 0.0830 0.0052

�2 0.120 0.1213 0.0068 0.1226 0.0069

�12 -0.500 -0.5011 0.0555 -0.4985 0.0560

Ave. Regularity Rejections

Per Loopy 0.031 356.715

Number of Loopsy 1,000 1,000

yFigures include only those loops which were not discarded.

Table 5 presents the results from the model with slightly larger variances. While the values

chosen for the variances are larger than one might �nd in actual household or individual data, the

variances are signi�cantly smaller than the values chosen in the linear model. When the non-linear

model was tested with values larger than those actually used, the model became computationally

burdensome.

The results are very similar across the two models, however the average number of coherency

rejections per iteration of the Gibbs Sampler di�ers dramatically across the two models. The model

imposing coherency globally rejected parameter draws on average over 350 times more often than

in the local coherency model. In addition, nearly 1600 loops of the Gibbs Sampler were discarded

in the global coherency model because coherent parameter values could not be simulated within

the 500,000 draw limit. In the model imposing coherency locally, only 46 loops were thrown out.
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As for the remaining conditions checked to ensure that the Gibbs Sampler could always proceed,

ten loops were discarded in the local coherency model because the non-linear SUR estimates failed

to converge; eight in the global coherency model. Ten iterations had to be thrown out in the local

coherency model because of an inability to augment the data; �ve in the global coherency model.

6 Conclusion

In the estimation of demand systems involving data at the individual, household, or �rm level, the

issue of how to handle the existance of many non-consumed goods has yet to be resolved empirically.

Two problems arise in the estimation of such models. First, the model is essentially an endogenous

switching regimes model, involving the evaluation of high-dimensional probability integrals which

can be quite burdensome computationally. Second, the problem of statistical coherency { where

the sum of the probabilities of the various demand regimes is not one { must be addressed. The

curvature condition imposed by demand theory, quasi-concavity of the cost or utility function, is a

su�cient condition for coherency.

The use of the Gibbs Sampling algorithm, along with data augmentation, solves both of these

issues. Given the simple latent structure of the demand system, augmenting the data removes the

need to directly evaluate any probability integrals. In addition, use of rejection sampling within

each iteration of the Gibbs Sampler allows one to impose only the minimum restrictions necessary

to guarantee coherency: coherency at each data point, not global coherency. Previous attempts to

impose coherency in models with corners have not been successful. Either more restrictive functional

forms have been utilized, such that coherency is guaranteed globally, or global coherency has been

imposed on more 
exible functional forms, destroying their 
exibility. Attempts to impose concavity

restriction locally have also been \unsatisfactory", according to Diewert and Wales (1987). A recent

exception has been the work of Terrell (1996), who employs Gibbs Sampling to the estimation of

demand systems with only interior solutions.

The Gibbs Sampling algorithm along with the data augmentation technique is used in this paper

to estimate translog indirect utility and cost functions with simulated data. The results con�rm

not only the accuracy of the Gibbs Sampler estimates, but also the importance of addressing the

problem of coherency. In all of the models estimated, the parameter vector frequently entered

the space of incoherent values and rejecting on the basis of global coherency signi�cantly restricts

the acceptable parameter space relative to the model imposing coherency locally. Of course, the
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emprical importance of imposing local coherency requires estimation of demand systems using real

�rm or individual data. It is in this direction, we plan on moving in the future.
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