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Abstract: 
This paper develops a two-step estimation methodology, which allows us to apply 
catastrophe theory to stock market returns with time-varying volatility and model 
stock market crashes. Utilizing high frequency data, we estimate the daily realized 
volatility from the returns in the first step and use stochastic cusp catastrophe on 
data normalized by the estimated volatility in the second step to study possible 
discontinuities in markets. We support our methodology by simulations where we 
also discuss the importance of stochastic noise and volatility in deterministic cusp 
catastrophe model. The methodology is empirically tested on almost 27 years of U.S. 
stock market evolution covering several important recessions and crisis periods. Due 
to the very long sample period we also develop a rolling estimation approach and 



 

we find that while in the first half of the period stock markets showed marks of 
bifurcations, in the second half catastrophe theory was not able to confirm this 
behavior. Results suggest that the proposed methodology provides an important 
shift in application of catastrophe theory to stock markets. 
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1. Introduction

Financial inefficiencies such as under- or over-reactions to information as causes of extreme
events in the stock markets are attracting researchers across all fields of economics. In one of
the recent contributions, Levy (2008) highlights the endogeneity of large market crashes as a
result of a natural conformity of investors with their peers and the heterogeneity of investors’
population. The stronger the conformity and homogeneity across the market, the more likely is
the existence of multiple equilibria in the market, which is a prerequisite for a market crash to
happen. Gennotte and Leland (1990) present a model sharing the same notions as Levy (2008)
in terms of effect of small changes when market is close the crash point as well as the volatility
amplification signaling. In another work, Levy et al. (1994) take into consideration the signals
produced by dividend yields and assess the effect of computer trading being blamed for making the
market more homogeneous and thus contributive to uprise of a crash. Kleidon (1995) summarizes
and compares several older models from the turn of 1980s and 1990s, and Barlevy and Veronesi
(2003) propose a model based on rational but uninformed traders, who can unreasonably panic.
In this approach, again, abrupt declines in stock prices can happen even without any real change
of underlying fundamentals. Lux (1995) links the phenomena of market crashes to the process
of phase transition from thermodynamics and models the emergence of bubbles and crashes as a
result of herd behavior among heterogeneous traders in speculative markets. Finally, a strand of
literature documenting precursory patterns and log-periodic signatures even years before largest
crashes in the modern history advocates that crash has an endogenous origin in the ‘crowd’ behavior
and interactions of many agents (Sornette and Johansen, 1998; Johansen et al., 2000; Sornette,
2002, 2004). Compared to commonly shared beliefs, Didier Sornette and his colleagues argue that
exogenous shocks can only serve as triggers, not as the direct causes of crashes and that large
crashes are ‘outliers’.

A very different approach attempting to unfold the information we might need to understand
the crash phenomena by describing how even small shifts in the speculative part of the market
can have sudden, discontinuous effect on prices is catastrophe theory. Catastrophe theory has
been proposed by French mathematician Thom (1975) with the primal aim to shed some light on
the ‘mystery’ of biological morphogenesis. Despite its mathematical virtue, the theory has been
promptly heavily criticized by Zahler and Sussmann (1977) and Sussmann and Zahler (1978a,b) for
its excessive utilization of qualitative approaches together with improper usage of statistical meth-
ods as well as for violation of the necessary mathematical assumptions in many applications. Due
to this criticism, the intellectual bubble and the heyday of cusp catastrophe approach from 1970s
downgraded rapidly, even if defended e.g. by Boutot (1993) or the extensive, gradually updated
work of Arnold (2004). Nonetheless, until quite recently the ‘fatal’ criticism has been ridiculed by
Rosser (2007, p. 3275 & 3257), who states that “the baby of catastrophe theory was largely thrown
out with the bathwater of its inappropriate applications” and suggests that “economists should
reevaluate the former fad and move it to a more proper valuation”.

The application of catastrophe theory in social sciences is not as wide as in natural sciences,
however, it has been proposed from its early birth. Zeeman (1974)’s cooperation with Thom and
also popularization of the theory by his own nontechnical examples (Zeeman, 1975, 1976) led to
the development of many applications in the fields of economics, psychology, sociology, political
studies, and others. Zeeman (1974) also proposed the application of cusp catastrophe model to
stock markets. Translating seven qualitative hypotheses of stock market exchanges to mathemat-
ical terminology of catastrophe theory, one of the first heterogeneous agent models of two main
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types of investors: fundamentalists and chartists, came into the world. Heterogeneity and inter-
action between the two distinct types of agents have attracted wider behavioral finance literature.
Fundamentalists base their expectations about future asset prices in their beliefs about fundamen-
tal and economic factors such as dividends, earnings, macroeconomic environment. In contrast,
chartists do not consider fundamentals in their trading strategies at all. Their expectations about
future asset prices are based on finding historical patterns in prices. While Zeeman’s work was
only qualitative description of the observed facts as bull and bear markets, it contains a number
of important behavioral elements that have been used later in large amount of literature focusing
on heterogeneous agent modeling.1

Nowadays the statistical theory is well developed and parametrized cusp catastrophe models
can be evaluated quantitatively on the data. The biggest difficulty in application of catastrophe
theory arises from the fact that it stems from deterministic systems. Thus, it is hard to apply
it directly to systems that are subject to random influences which are common in behavioral sci-
ences. Cobb and Watson (1980); Cobb (1981) and Cobb and Zacks (1985) provided the bridge
and took catastrophe theory from determinism to stochastic systems. While this was an important
shift, there are further complications in application to stock markets data. Main restriction of
Cobb’s methodology of estimation is the requirement for constant variance which directly forces us
to assume that volatility of the stock markets (as standard deviation of the returns) is constant.
Quantitative verification of Zeeman (1974)’s hypotheses about application of the theory to stock
market crashes has been pioneered by Barunik and Vosvrda (2009), where we fit the cusp model
to the two separate events of large known stock market crashes. Although a successful application,
Barunik and Vosvrda (2009) bring only preliminary results in the restricted environment. Appli-
cation of cusp catastrophe theory on stock market data deserves lot more attention. In the current
paper, we propose an improved way of application and we believe to bring closer answer to the
question whether cusp catastrophe theory is capable of explaining stock market crashes.

Time-varying volatility has become an important stylized fact about stock market data and
researchers quickly recognized that it is an important feature of any modeling strategy used. One of
the most successful early works of Engle (1982); Bollerslev (1986) proposed to include the volatility
as a time-varying process in the (generalized) autoregressive conditional heteroskedasticity frame-
work. From these times, many models has been developed in the literature which improved the
original frameworks. As early as in ‘late nineties’, high frequency data became available to re-
searchers and this has led to another important shift in volatility modeling — realized volatility.
A theory for very simple and intuitive approach of computing the daily volatility using sum of
squared high-frequency returns has been formalized by Andersen et al. (2003); Barndorff-Nielsen
and Shephard (2004). While the volatility literature is immense,2 several researchers have also
studied the volatility and stock market crashes. For example, Shaffer (1991) argues that volatil-
ity might be the cause of a stock market crash. In contrast, Levy (2008) explains why volatility
increases before the crash even if no dramatic information has been revealed.

In our work, we utilize the availability of the high frequency data and popular realized
volatility approach to propose a two-step method of estimation, which will overcome the difficulties
in application of cusp catastrophe theory on stock market data. Using realized volatility, we
estimate the stock market returns volatility and then apply stochastic cusp catastrophe model

1For a recent survey of heterogeneous agent models, see Hommes (2006). Special issue on heterogeneous interacting
agents in financial markets edited by Lux and Marchesi (2002) also provides an interesting contributions.

2Andersen et al. (2004) provides a very useful and complete review of the methodologies.
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on volatility adjusted returns with constant variance. This is motivated by confirmed bimodal
distributions of such standardized data at some periods and it allows us to study if stock markets
are driven into catastrophe endogenously or whether it is just an effect of volatility. To motivate
our approach, we also run a simulation study which gives us strong support for the methodology.
Simulations also illustrate the importance of stochastic noise and volatility in the deterministic
cusp model.

Using a unique data covering almost 27 years of the U.S. stock markets evolution, we empir-
ically test stochastic cusp catastrophe model in the time-varying volatility environment. Moreover,
we take advantage of the data and develop a rolling regression approach to study the dynamics of
the model parameters in such a long time covering several important recessions and crisis. This
allows us to localize the bifurcation periods.

We need to mention several important works which bring similar results to ours. Creedy and
Martin (1993); Creedy et al. (1996) develop a framework for estimation of non-linear exchange rate
models and they show that swings in the exchange rates can be attributed to the bimodality even
without explicit use of catastrophe theory. More recently, Koh et al. (2007) propose to use the
Cardan’s dicriminant to detect the bimodality and confirm the predictive ability of currency pairs
for emerging countries. In our work, we bring new insight to the non-linear phenomena allowing
for time-varying volatility into the modelling strategy.

The paper is organized as follows. The second and the third Sections bring theoretical
framework of stochastic catastrophe theory under the time-varying volatility and its estimation.
The fourth Section presents the simulations supporting our two-step method of estimation and is
followed by the empirical application of the theory on the stock market crashes modeling. Finally,
last Section concludes.

2. Theoretical framework

Catastrophe theory has been developed as a deterministic theory for systems that may
respond to continuous changes in control variables by a discontinuous change from one equilibrium
state to another. A key idea is that system under study is driven towards an equilibrium state. The
behavior of the dynamical systems under study is completely determined by a so-called potential
function, which depends on behavioral and control variables. The behavioral, or state variable
describes the state of the system, while control variables determine the behavior of the system.
The dynamics under catastrophe models can become extremely complex, and according to the
classification theory of Thom (1975), there are seven different families based on the number of
control and dependent variables. We focus on the application of catastrophe theory to model
sudden stock market crashes as qualitatively proposed by Zeeman (1974). In his work, Zeeman
used the so-called cusp catastrophe model, the simplest specification that gives rise to sudden
discontinuities.

2.1. Deterministic dynamics

Let us suppose that the process yt evolves over t = 1, . . . , T as

dyt = −dV (yt;α, β)

dyt
dt, (1)

where V (yt;α, β) is the potential function describing the dynamics of the state variable yt controlled
by parameters α and β determining the system. When the right-hand side of Eq. (1) equals zero,
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−dV (yt;α, β)/dyt = 0, the system is in equilibrium. If the system is at a non-equilibrium point,
it will move back to its equilibrium where the potential function takes the minimum values with
respect to yt. While the concept of potential function is very general, i.e. it can be quadratic
yielding equilibrium of a simple flat response surface, one of the most applied potential functions
in behavioral sciences, a cusp potential function is defined as

−V (yt;α, β) = −1/4y4
t + 1/2βy2

t + αyt, (2)

with equilibria at

−dV (yt;α, β)

dyt
= −y3

t + βyt + α (3)

being equal to zero. The two dimensions of the control space, α and β, further depend on real-
izations from i = 1 . . . , n independent variables xi,t. Thus it is convenient to think about them as
functions

αx = α0 + α1x1,t + . . .+ αnxn,t (4)

βx = β0 + β1x1,t + . . .+ βnxn,t. (5)

The control functions αx and βx are called normal and splitting factors, or asymmetry and bifurca-
tion factors, respectively (Stewart and Peregoy, 1983) and they determine the predicted values of
yt given xi,t. This means that for each combination of values of independent variables there might
be up to three predicted values of the state variable given by roots of

−dV (yt;αx, βx)

dyt
= −y3

t + βxyt + αx = 0. (6)

This equation has one solution if
δx = 1/4α2

x − 1/27β3
x (7)

is greater than zero, δx > 0 and three solutions if δx < 0. This construction was first described
by the 16th century mathematician Geronimo Cardan and can serve as a statistic for bimodality,
one of the catastrophe flags. The set of values for which Cardan’s discriminant is equal to zero,
δx = 0 is the bifurcation set which determines the set of singularity points in the system. In the
case of three roots, the central root is called an “anti-prediction” and is least probable state of
the system. Inside the bifurcation, when δx < 0, the surface predicts two possible values of the
state variable which means that the state variable is bimodal in this case. For the illustration of
the deterministic response surface of cusp catastrophe, we borrow the Figure 2 from simulations
Section, where the deterministic response surface is a smooth pleat.

2.2. Stochastic dynamics

Most of the systems in behavioral sciences are subject to noise stemming from measurement
errors or inherent stochastic nature of the system under study. Thus for a real-world applications,
it is necessary to add non-deterministic behavior into the system. As catastrophe theory has
primarily been developed to describe deterministic systems, it may not be obvious how to extend
the theory to stochastic systems. An important bridge has been provided by Cobb and Watson
(1980); Cobb (1981) and Cobb and Zacks (1985) who used the Itô stochastic differential equations
to establish a link between the potential function of a deterministic catastrophe system and the
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stationary probability density function of the corresponding stochastic process. This in turn led
to definition of a stochastic equilibrium state and bifurcation compatible with the deterministic
counterpart. Cobb and his colleagues simply added a stochastic Gaussian white noise term to the
system

dyt = −dV (yt;αx, βx)

dyt
dt+ σytdWt, (8)

where −dV (yt;αx, βx)/dyt is the deterministic term, or drift function representing the equilibrium
state of the cusp catastrophe, σyt is the diffusion function and Wt is a Wiener process. When the
diffusion function is constant, σyt = σ, and the current measurement scale is not to be nonlinearly
transformed, the stochastic potential function is proportional to deterministic potential function
and probability distribution function corresponding to the solution from Eq. (8) converges to a
probability distribution function of a limiting stationary stochastic process as dynamics of yt are
assumed to be much faster than changes in xi,t (Cobb, 1981; Cobb and Zacks, 1985; Wagenmakers
et al., 2005). The probability density that describes the distribution of the system’s states at any
t is then

fs(y|x) = ψ exp

(
(−1/4)y4 + (βx/2)y2 + αxy

σ

)
. (9)

The constant ψ normalizes the probability distribution function so its integral over the entire range
equals to one. As bifurcation factor βx changes from negative to positive, the fs(y|x) changes its
shape from unimodal to bimodal. On the other hand, αx causes asymmetry in fs(y|x).

2.3. Cusp catastrophe under the time-varying volatility

Stochastic catastrophe theory works only under the assumption that the diffusion function is
constant, σyt = σ, and the current measurement scale is not to be nonlinearly transformed. While
this may be reliable in some applications in behavioral sciences, it may cause crucial difficulties
in others. One of the problematic application is in modeling stock market crashes as the diffusion
function σ, called volatility of stock market returns, has strong time-varying dynamics and it
clusters over time, which is documented by strong dependence in the squared returns. To illustrate
the volatility dynamics, let us borrow the dataset used further in this study. Figure 4 shows the
evolution of the S&P 500 stock index returns over almost 27 years and documents how volatility
strongly varies over time. One of the possible and very simple solutions in applying cusp catastrophe
theory to the stock makrets is to consider only a short time window and fit the catastrophe model
to the data where volatility can be assumed as constant (Barunik and Vosvrda, 2009). While in
Barunik and Vosvrda (2009) we were the first who quantitatively applied stochastic catastrophes to
explain the stock market crashes on localized periods of crashes, this is very restrictive assumption
to make generally.

Here, we propose more rigorous solution to the problem by utilizing recently developed
concept of realized volatility. It will allow us to use the previously introduced concepts as after
estimating volatility from the returns process consistently, we will be able to estimate the catas-
trophe model on the process which fulfils assumptions of stochastic catastrophe theory. Thus we
assume that stock markets can be described by cusp catastrophe process subject to time-varying
volatility. While this is a great advantage, which will allow us to apply cusp catastrophe theory
on the different time periods conveniently, the disadvantage of our approach is that it can not be
generalized to other branches of behavioral sciences where the high frequency data are not avail-
able and thus realized volatility can not be computed. Thus our generalization is restricted to
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application on financial data, mainly. Still, our main aim is to study the stock market crashes,
thus the advocated approach will be very useful in the field of behavioral finance. Let us describe
the theoretical concept here and in the next Sections, we will describe the full model and two-step
estimation procedure.

Suppose that the sample path of the corresponding (latent) logarithmic price process pt is
continuous over t = 1, . . . , T and determined by the stochastic differential equation

dpt = µtdt+ σtdWt, (10)

where µt is a drift term, σt is the predictable diffusion function, or instantaneous volatility, and
Wt is a standard Brownian motion. A natural measure of the ex-post return variability over the
[t− h, t] time interval, 0 ≤ h ≤ t ≤ T is the integrated variance

IVt,h =

∫ t

t−h
σ2
τdτ, (11)

which is not directly observed, but as shown in Andersen et al. (2003) and Barndorff-Nielsen
and Shephard (2004), corresponding realized volatilities provide its consistent estimates. While
it is convenient to work in the continuous time environment, empirical investigations are based
on discretely sampled prices and we are interested in studying h-period continuously compounded
discrete-time returns rt,h = pt − pt−h. Andersen et al. (2003) and Barndorff-Nielsen and Shephard
(2004) showed that daily returns are Gaussian conditionally on information set generated by the
sample paths of µt and σt and integrated volatility normalizes the returns as

rt,h

(∫ t

t−h
σ2
τdτ

)−1/2

∼ N
(∫ t

t−h
µτdτ, 1

)
. (12)

This result of quadratic variation theory is important to us as we use it to study stochastic cusp
catastrophe in the environment where volatility is time-varying. In the modern stochastic volatility
literature it is common to assume that stock market returns follow the very general semi-martingale
process (as in Eq. 10), where the drift and volatility functions are predictable and the rest is
unpredictable. Back in the origins of this literature, one of the very first contributions published in
the stochastic volatility literature by Taylor (1982) assumed that daily returns will be the product of
volatility and autoregression process. In our application, this will be also the case as we will assume
that daily stock market returns are described by the process which is the product of volatility and
cusp catastrophe model.

To formulate the approach, we assume that stock returns normalized by its volatility

y∗t = rt

(∫ t

t−h
σ2
τdτ

)−1/2

(13)

follow a stochastic cusp catastrophe process

dy∗t = −dV (y∗t ;αx, βx)

dy∗t
dt+ dWt. (14)

It is important to note the difference between Equation (14) and Equation (8) as there is no
diffusion term in the process anymore. As the diffusion term of y∗t is constant and equal to one
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now, results of Cobb can be used conveniently, and we can use stationary probability distribution
function of y∗t for the parameter estimation using maximum likelihood method.

As noted earlier, the integrated volatility is not directly observable. However, the now so
popular concept of realized volatility and availability of high-frequency data brought a simple ways
how to measure it accurately. This will help us in proposing a simple and intuitive way of estimating
cusp catastrophe model on the stock market returns under the highly dynamic volatility.

3. Estimation

A simple consistent estimator of the integrated variance under the assumption of no mi-
crostructure noise contamination in the price process is provided by the well-known realized vari-
ance (Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2004) . The realized variance over
[t− h, t], for 0 ≤ h ≤ t ≤ T , is defined by

R̂V t,h =

N∑
i=1

r2
t−h+( i

N )h, (15)

where N is the number of observations in [t − h, t] and rt−h+( i
N )h is i−th intraday return in the

[t−h, t] interval. R̂V t converges in probability to true integrated variance of the process as N →∞.

R̂V t,h
p→
∫ t

t−h
σ2
τdτ, (16)

As observed log-prices are contamined with microstructure noise in the real world, subse-
quent literature has developed several estimators. While it is important to consider both jumps
and microstructure noise in the data, our main interest is in estimating catastrophe theory and
addressing the question if it can be used to explain the deterministic part of stock market returns.
Thus, we will restrict ourselves to the simplest estimator which uses sparse sampling to deal with
the microstructure noise. Extant literature shows the support of this simple estimator, most re-
cently, Liu et al. (2012) run a horse race of most popular estimators and conclude that when the
simple realized volatility is computed using 5-minute sampling, it is very hard to be outperformed.

In the first step, we thus estimate the realized volatility from the stock market returns using
5-min data as proposed by the theory and normalize the daily returns to obtain returns with
constant volatility. While using the daily returns, h = 1 and we drop h for the ease of notation
from now on.

r̃t = rtR̂V
−1/2

t (17)

In the second step, we apply stochastic cusp catastrophe to model the normalized stock market
returns. While state variable of the cusp is a canonical variable, it is an unknown smooth transfor-
mation of the actual state variable of the system. As proposed by Grasman et al. (2009), we allow
for the first order approximation to the true smooth transition allowing the measured r̃ to be a

yt = ω0 + ω1r̃t, (18)

with ω1 the first order coefficient of a polynomial approximation. Independent variables will be

αx = α0 + α1x1,t + . . .+ αnxn,t (19)

βx = β0 + β1x1,t + . . .+ βnxn,t, (20)
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hence the statistical estimation problem is to estimate 2n+2 parameters {ω0, ω1, α0, . . . , αn, β0, . . . , . . . , βn}.
We estimate the parameters using the maximum likelihood approach of Cobb and Watson (1980)
augmented by Grasman et al. (2009). The negative log-likelihood for a sample of observed values
(x1,t, . . . , xn,t, yt) for t = 1, . . . , T is simply logarithm of the probability distribution function in
Eq. (9).

3.1. Statistical evaluation of the fit

To assess the fit of cusp catastrophe model to the data, a number of diagnostic tools have
been suggested. Stewart and Peregoy (1983) suggested a pseudo-R2 as a measure of explained
variance. Difficulty arises here as for a given set of values of the independent variables the model
may predict multiple values for the dependent variable. As a result of bimodal density, expected
value is unlikely to be observed as it is an unstable solution in the equilibrium. For this reason, two
alternatives for the expected value as the predictive value can be used. The first one chooses the
mode of the density closest to the state values and is known as the delay convention, the second one
uses the mode at which the density is highest and is known as the Maxwell convention. Cobb and
Watson (1980) and Stewart and Peregoy (1983) suggest to use delay convention where the variance
of error is defined as the variance of the difference between the estimated states and the mode of
the distribution that is closest to this value. The pseudo-R2 is then defined as 1−V ar(ε)/V ar(y),
where ε is error.

While pseudo-R2 is problematic due to the nature of cusp catastrophe model, it should be
used complementary to other alternatives. To test the statistical fit of cusp catastrophe model
rigorously, we use following steps. First, the cusp fit should be substantially better than multiple
linear regression. This could be tested by means of the likelihood ratio test, which is asymptotically
chi-squared distributed with degrees of freedom being equal to the difference in degrees of freedom
for two compared models. Second, ω1 coefficient should deviate significantly from zero. Otherwise,
the yt in Eq. (18) would be constant and cusp model would not describe the data. Third, the cusp
model should indicate a better fit than following logistic curve

yt =
1

1 + e−αt/β
2
t

+ εt, (21)

for t = 1, . . . , T , where εt are zero mean random disturbances. The rationale for choosing to
compare the cusp model to this logistic curve is that this function does not posses degenerate points,
while it possibly models steep changes in the state variable as a function of changes in independent
variables mimicking the sudden transitions of the cusp. Thus comparison of the cusp catastrophe
model to the logistic function serves us as a good indicator of the presence of bifurcations in the
data. While these two models are not nested, Wagenmakers et al. (2005) suggests to compare them
via information criteria, when stronger Bayesian Information Criterion (BIC) should be required
for the decision.

4. Monte Carlo study

In order to validate our assumptions about process generating stock market returns and our
two-step estimation procedure, we conduct a Monte Carlo study where we simulate the data from
stochastic cusp catastrophe model, allow for time-varying volatility in the process and estimate the
parameters to see if we are able to recover the true values.
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Figure 1: An example of simulated time series where cusp surface is subject to noise only, yt, and noise together
with volatility, rt. (b) simulated returns yt (a) kernel density estimate of yt (c) simulated returns rt contamined with
volatility (d) kernel density estimate of rt.

We simulate the data from stochastic cusp catastrophe model subject to time-varying volatil-
ity as

rt = σtyt (22)

dσ2
t = κ(ω − σ2

t )dt+ γdWt,1, (23)

dyt = (αt + βtyt − y3
t )dt+ dWt,2 (24)

where dWt,1 and dWt,2 are standard Brownian motions with zero correlation, κ = 5, ω = 0.04 and
γ = 0.5. The volatility parameters satisfy Feller’s condition 2κω ≥ γ2, which keeps the volatility
process away from the zero boundary. We set the parameters to values which are reasonable for a
stock price, as in Zhang et al. (2005).

In the cusp equation, we use two independent variables

αt = α0 + α1xt,1 + α2xt,2 (25)

βt = β0 + β1xt,1 + β2xt,2 (26)

with coefficients α2 = β1 = 0, so x1 drives the assymetry side and x2 drives the bifurcation side of
the model solely. Parameters are set as α0 = −2, α1 = 3, β0 = −1 and β2 = 4.

In the simulations, we are interested to see how the cusp catastrophe model performs under
the time-varying volatility. Thus we estimate the coefficients on the processes yt = rt/σt and rt.
Figure 1 shows one realization of the simulated returns yt and rt. While yt is cusp catastrophe
subject to noise, rt is subject to time-varying volatility as well. It is noticeable how time-varying
volatility causes the shift from bimodal density to unimodal. More illustrative is Figure 2, which
shows cusp catastrophe surface of both processes. While the solution from deterministic cusp
catastrophe is contamined with noise in the first case, the volatility process in the second case
makes it much more difficult to recognize the two states of the system in the bifurcation area. This
causes difficulties in recovering true parameters.

Table 1 shows the results of simulation. We simulate the processes 100 times and report
the mean and standard deviations from the mean3. The true parameters are easily recovered in
the simulations from the yt when cusp catastrophe is subject to noise only as the mean values are
statistically indistinguishable from the true simulated values α0 = −2, α1 = 3, β0 = −1 and β2 = 4.

3The distribution of the parameters is Gaussian in both cases which makes it possible to compare the results
within mean and standard deviation.
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Figure 2: An example of simulated data where cusp surface is subject to noise only, yt, and noise with volatility,
rt. Parts (a-b) show the cusp deterministic pleat and simulated {x1, x2, yt} from 2 different viewpoints, parts (c-d)
show the cusp deterministic pleat and simulated {x1, x2, rt} from 2 different viewpoints.

The fits are reasonable as it explains about 60% of the data variation in the noisy environment.
Moreover, in the cusp model, we first estimate the full set of parameters (α0, α1, α2, β0, β1, β2),
and second we restrict parameters α2 = β1 = 0. Estimation easily recovers the true parameters
in both cases when in unrestricted case estimates α2 = β1 = 0 and fits are statistically the same.
In comparison, both cusp models perform much better than logistic and linear models which was
expected. It is also interesting to note that ω0 = 0 and ω1 = 1 which means that the observed data
are the true data and no transformation is needed. These results are important as they confirm
that estimation of stochastic cusp catastrophe model is valid and it can be used to quantitatively
apply the theory on the data.

Results of estimation on the rt process, which is subject to time-varying volatility reveal that
addition of the volatility process makes it difficult for maximum likelihood estimation to recover
the true parameters. Variance of estimated parameters is very large and the mean values are far
away from the true simulated values. Moreover, fits are statistically weaker as it explains no more
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(a) Estimates using yt = rt/σt (b) Estimates using rt

Cusp Linear Logistic Cusp Linear Logistic

Unrestricted Restricted Unrestricted Restricted

α0 -2.059 (0.143) -2.066 (0.141) -1.614 (3.352) -3.111 (0.531)
α1 3.083 (0.195) 3.084 (0.203) 4.355 (1.382) 4.540 (0.690)
α2 -0.009 (0.118) -1.126 (2.121)
β0 -1.016 (0.237) -1.018 (0.187) -7.088 (3.287) -5.428 (2.420)
β1 0.001 (0.319) 2.394 (1.806)
β2 4.003 (0.232) 4.006 (0.223) 5.821 (1.430) 5.544 (1.293)
ω0 -0.005 (0.035) -0.006 (0.025) 0.163 (0.305) -0.038 (0.053)
ω1 1.003 (0.021) 1.003 (0.021) 0.539 (0.155) 0.552 (0.154)

R2 0.609 (0.022) 0.608 (0.023) 0.397 (0.025) 0.462 (0.027) 0.378 (0.043) 0.379 (0.044) 0.345 (0.034) 0.401 (0.038)
LL -888.6 (24.3) -889.4 (24.1) -1323.3 (21.4) -1266.4 (23.5) -1109.4 (52.7) -1117.6 (57.6) -1471.7 (212.6) -1426.5 (211.4)
AIC 1793.1 (48.5) 1790.9 (48.3) 2654.7 (42.7) 2546.9 (47.0) 2234.8 (105.5) 2247.3 (115.3) 2951.3 (425.1) 2867.0 (422.9)
BIC 1832.4 (48.5) 1820.3 (48.3) 2674.3 (42.7) 2581.2 (47.0) 2274.0 (105.5) 2276.7 (115.3) 2970.9 (425.1) 2901.4 (422.9)

Table 1: Simulation results (a) according to stochastic cusp catastrophe model (b) according to stochastic cusp catastrophe
model with process in volatility. The total sample based on 100 random simulations is used and sample means as well as
standard deviations (in parentheses) for each value are reported. All figures rounded to one or three decimal digits.

than 38% of variance of the data. Also it is interesting to note that logistic fit and linear fit are
much closer to the cusp fit.

In conclusion, the simulation results are important as they reveal that time-varying volatility
in cusp catastrophe model destroys the ability of MLE estimator to recover the cusp potential.

5. Empirical modeling of stock market crashes

Armed with the results from simulations, we move to the estimation of cusp catastrophe
model on the real-word data from stock markets. For the analysis, we use long time span of
S&P 500, broad U.S. stock market index covering almost 27 years from February 24, 1984 until
November 17, 2010. Figure 3 plots the prices and depicts several recessions and crisis periods.
According to the National Bureau of Economic Research (NBER), there were three U.S. recessions
in the periods of July 1990 – March 1991, March 2001 – Nov 2001 and Dec 2007 – June 2009.
These recessions are depicted as grey periods. Black lines depict one day crashes associated with
large price drops. Namely, Black Monday 1987 (October 19, 1987), Assian crisis crash (October 27,
1997), Ruble Devaluation 1998 (August 17, 1998), Dot-com Bubble Burst (March 10, 2000), World
Trade Center Attacks (September 11, 2001), Lehman Brothers Holdings Bankruptcy (September
15, 2008), and lastly Flash Crash (March 6, 2010). Technically, largest one day drops in the
studied period occurred on October 19, 1987, October 26, 1987, September 29, 2008, October 9,
2008, October 15, 2008, December 1, 2008 recording declines of 20.47%, 8.28%, 8.79%, 7.62%,
9.03%, 8.93%, respectively.

Let us look closer at the crashes depicted by Figure 3 and discuss their nature. Term Black
Monday refers to Monday October 19, 1987 when stock markets around the world from Hong Kong
through Europe and U.S. crashed in a very short time and recorded the largest one day drop in
history. After this unexpected severe event, many predicted the most troubled years since the
1930s. However, stock markets gained the losses back and closed the year in positive numbers.
Until now there has not been consensual opinion on the cause of the crash. Many potential causes
include program trading, overvaluation, illiquidity, or market psychology. Thus this crash seems
to have an endogenous cause. After several successive years, stock markets did not record large
shocks until 1996 when Asian financial crisis driven by investors deserting emerging overheated
Asian shares resulted in October 27, 1997 mini crash of U.S. markets. In a successive year, the
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Figure 3: S&P 500 prices data. Figure highlights several important recession periods as grey periods and crashes
events as black lines. Periods are closer described in the text.

Russian government devaluated the rubble, defaulted on domestic debt and declared a moratorium
on payment to foreign creditors. This caused another international crash on August 17, 1998. These
two shocks are believed to be exogenous to the U.S. stock markets. During the period of 1997 –
2000, the so-called dot-com bubble emerged when a group of internet-based companies entered
the markets and attracted many investors confident in their profits overlooking the companies’
fundamental values. This resulted in a collapse, or bubble burst during 2000 – 2001. Another
exogenous shock has been brought to stock markets in the year 2001 when World Trade Centre
(WTC) was attacked and destroyed. While markets recorded sudden drop, this should not be
attributed to internal forces of the markets. The recent financial crisis of 2007 – 2008 also known
as a global financial crisis emerged from bursting of the U.S. housing bubble which peaked in
2006. In a series of days in September and October 2008, stock markets have seen large successive
declines. Many believe that this crash has been driven mainly by the housing markets, but there is
no consensus about the real causes. Finally, our studied period also covers the May 6, 2010 Flash
Crash also known as The Crash of 2:45 in which the Dow Jones Industrial Average index plunged
about 1000 points (9%) only to recover the losses within a few minutes. It was a biggest intraday
drop in a history and one of the main possible causes might be impact of high frequency traders
or large directional bets.

Cusp catastrophe theory in terms of Zeeman (1974)’s hypotheses proposes to model the
crashes as an endogenous events driven by speculative money. Employing our two-step estimation
method, we will estimate the cusp model to quantitatively test the theory on period covering all
these crashes and see if the theory can explain them using our data. An interesting discussion may
stem from studying the causality between volatility and crashes. While Levy (2008) provides a
modeling approach for increasing volatility before the crash event, in our approach the crashes are
driven endogenously by speculative money, thus the sudden discontinuities are not connected to
volatility.
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5.1. Data description

For our two-step estimation procedure, we need two sets of the data. First set consists of
high frequency data and it is used to estimate volatility of returns. Second set consists of a data
about sentiment. Let us describe both datasets used. For the realized volatility estimation, we
use the S&P 500 futures traded on the Chicago Mercantile Exchange (CME)4. The sample period
extends from February 24, 1984 until November 17, 2010. Although after the introduction of
CME Globex(R) electronic trading platform on Monday December 18, 2006, CME started to offer
nearly continuous trading, we restrict the analysis on the intraday returns with 5-minute frequency
within the business hours of the New York Stock Exchange (NYSE) as the most liquidity of S&P
500 futures comes from the period when U.S. markets are open. We eliminate transactions executed
on Saturdays and Sundays, US federal holidays, December 24 to 26, and December 31 to January
2, because of the low activity on these days, which could lead to estimation bias.

Using the realized volatility estimator, we then measure the volatility of stock market returns
as a sum of squared 5-minute intraday returns. In this way, we obtain 6739 daily volatility estimates.
Figure 4 shows the estimated volatility 4(b) together with daily returns 4(a). It can be immediately
noticed that the volatility of the S&P 500 is strongly time-varying over the very long period.

For the state (behavioral) variable of the cusp model, we use S&P 500 daily returns stan-
dardized by the estimated daily realized volatility according to Eq. 17. By standardization, we
obtain stationary data depicted by the Figure 4(c).

In choosing control variables, we follow the success of our previous application in Barunik
and Vosvrda (2009) where we have compared several measures of control variables and we have
shown that fundamentalists, or the asymmetry side of the market, are best described by the ratio
of advancing stocks volume and declining stock volume and chartists, or the bifurcation side of the
model, are best described by the OEX put/call ratio5. Variables related to the trading volumes are
generally considered as a good measure of trading activity of large funds and institutional investors
and thus representing the fundamental side of the market. Therefore, the ratio of advancing stock
and declining stock volume should contribute mainly to the asymmetry side of the model. On
the other hand, the activity of market speculators and technical traders should be well captured
by the OEX put/call ratio as it is the ratio of daily put volume and call volume of the options
with the underlying Standard and Poors’ index. Financial options are widely used and the most
popular instruments for speculative purposes and therefore serve as a good measure of speculative
money. Thus they should represent internal forces leading the market to the bifurcation within
cusp catastrophe model. All in all, we suppose the OEX put/call options ratio to contribute mainly
on the bifurcation side of the model. Moreover, we use the third control variable, which is the daily
change of total trading volume, as a driver for both fundamental and speculative money in the
market. It is generally related to the continuos fundamental trading activity but it may also reflect
the elevated speculative activity on the market well. Therefore, we expect this variable not only
to help the regression on the asymmetry side, but also on the bifurcation side. The time span of
all these data matches the time span of S&P 500 returns, i. e. February 24, 1984 until November
17, 2010. The descriptive statistics of all the data used are saved in the Table 4 in Appendix 6.

4The data were provided by Tick Data, Inc.
5The data were provided by Pinnacle Data Corp.
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Figure 4: S&P 500 (a) returns rt, (b) realized volatility RVt and (c) standardized returns rtRV
−1/2
t data. Figure

highlights several important recession periods as grey periods and crashes events as black lines. Periods are closer
described in the text.

5.2. Full sample static estimates

In the estimation, we primarily aim at testing whether cusp catastrophe model is able to
describe the stock market data well in the time-varying volatility environment and thus that stock
markets show signs of bifurcations. In doing so, we follow the statistical testing described earlier
in the text.

Table 2 shows the estimates of the cusp fits. Let us concentrate of the left part of the Table

2(a), where we fit cusp catastrophe model to the standardized returns rtR̂V
−1/2

t . First, we do not
make any restrictions and use all the three control variables, thus αx = α0 +α1x1,t+α2x2,t+α3x3,t

and βx = β0+β1x1,t+β2x2,t+β3x3,t, where x1 is the ratio of advancing stocks volume and declining
stocks volume, x2 OEX put/call options ratio and x3 rate of change of the total volume. State
variable is r̃t, returns normalized with estimated realized volatility. In terms of log likelihood, cusp
model describes the data much better than linear regression model. ω1 coefficient is far away from
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(a) Estimates using rtR̂V
−1/2

t (b) Estimates using rt

Cusp Linear Logistic Cusp Linear Logistic

Unrestricted Restricted Unrestricted Restricted

α0 -2.378 *** 1.333 *** 5.008 *** 5.000 ***
α1 4.974 *** 3.369 *** 4.426 *** 2.730 ***
α2 0.062 *** 0.771 ***
α3 0.300 *** -0.064 *** -0.463 *** -0.534 ***
β0 -4.654 *** -1.334 *** -5.011 *** -5.000 ***
β1 -5.011 *** -1.201 ***
β2 0.139 *** -0.054 *** -1.138 *** -0.208 ***
β3 0.422 *** 0.299 *** 0.644 *** 0.683 ***
ω0 -0.700 *** 0.329 *** 0.786 *** 0.826 ***
ω1 0.492 *** 0.905 *** 0.407 *** 0.402 ***

R2 0.800 0.769 0.385 0.823 0.637 0.530 0.405 0.687
LL -4786.161 -4733.071 -7634.756 -5885.983 -7728.981 -8174.635 -7811.134 -5648.799
AIC 9592.321 9482.142 15279.512 11789.970 15477.960 16365.270 15632.270 11311.600
BIC 9660.209 9533.682 15313.456 11851.070 15545.820 16419.800 15666.350 11359.310

Table 2: Estimation results on the S&P 500 stock market data. Full sample extends from February 24, 1984 until

November 17, 2010. Left part of the Table presents the estimation results on the normalized returns rtR̂V
−1/2

t , right
part of the Table presents the results for the original S&P 500 stock market returns rt.

zero although some degree of transformation of the data is needed. All the other coefficients are
strongly significant at 99% levels. Most importantly, when cusp fit is compared to the logistic fit
in terms of AIC and BIC, we can see that the cusp model strongly outperforms the logistic model.

Our hypothesis is, that the ratio of advancing and declining stock volume will contribute
only to the asymmetry side and OEX put/call ratio representing the measure of speculative money
in the market will contribute to the bifurcation side of the model. For testing this hypothesis, we
set the parameters α2 = β1 = 0 and refer to this as a restricted model. From the Table 2(a), we
can see that log likelihood of the restricted model improves in comparison to the unrestricted one.
Also in terms of information criteria, fit further improves. All the parameters are again strongly
significant and we can see that they change considerably. This can be attributed to the fact that
x1,t seems to contribute strongly to both sides of the market in the unrestricted model. Although
β2 coefficient representing the coefficient of speculative money is quite small in comparison to other
coefficients, still it is strongly significant. As this is the key coefficient of the model driving the
stock market to the bifurcation, we will further investigate its impact in following sections. It is
interesting to note that the ω1 parameter increases very near to one in the restricted model. This
means that the observed data are close to the state variable.

When moving to the right (b) part of the Table 2, we repeat the same analysis, but this time,
we use original rt returns as the state variable. This means that we would like to compare cusp
catastrophe fit on the data with strongly varying volatility. While using the very long time span of
the data where the volatility varies considerably, we expect the model to deteriorate. Although the
application of cusp catastrophe model to the non-stationary data can be questioned, we bring these
estimates for comparison to our modeling approach. We can see an important result here. While
linear and logistic models provide the very similar fits in terms of log likelihoods, information
criteria and R2, both unrestricted as well as restricted cusp models deteriorate. ω1 coefficient
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1987 2008

Cusp Linear Logistic Cusp Linear Logistic

Unrestricted Restricted Unrestricted Restricted

α0 -0.970 * -0.535 *** -3.938 *** -0.598 ***
α1 1.792 *** 1.794 *** 1.793 *** 1.798 ***
α2 -0.073 -1.322
α3 0.191 0.029 -0.814 0.005 ***
β0 0.562 * 0.322 * -0.542 *** -1.142 *
β1 -0.395 * -1.803 ***
β2 -1.255 ** -0.731 * -0.990 ** -0.031 ***
β3 1.648 *** 1.547 *** -0.803 0.282
ω0 0.453 *** 0.771 *** -0.637 *** 0.680 ***
ω1 0.561 *** 0.602 *** 0.476 *** 0.641 ***

R2 0.855 0.827 0.454 0.895 0.816 0.858 0.483 0.884
LL -85.971 -90.659 -208.557 -104.045 -88.054 -103.437 -185.150 -90.148
AIC 191.943 197.317 427.114 226.089 196.108 222.875 380.300 198.296
BIC 220.385 220.071 441.335 251.687 224.550 245.628 394.521 223.894

Table 3: Estimation results of the two distinct periods of the S&P 500 normalized stock market returns, rtR̂V
−1/2

t .

together with all the other coefficients are still strongly different from zero, but important result
is that not only the logistic model describes the data better, but also the presence of bifurcations
in the raw return data can not be claimed.

To conclude this section, the results suggest strong evidence that over the long period of
almost 27 years, stock markets are better described by cusp catastrophe model. Using our two-
step modeling approach we have shown that cusp model fits the data far best, fundamental and
bifurcation sides are controlled by the indicators of fundament and speculative money, respectively.
In a contrast, when cusp is fit to the original data under strong variation of volatility, model dete-
riorates. We should note that these results resemble the results from simulation, thus simulation
strongly supports our modeling approach as well.

5.3. Examples of 1987 and 2008 crashes

While the results in the previous section are supportive for cusp catastrophe model, the
sample period of almost 27 years might contain many structural changes. Thus we would like to
further investigate how the model performs in time. For this, we borrow the two very distinct
crashes of 1987 and 2008 and compare the localized cusp fits. The reasons for studying these
particular periods are several. These two crashes are distinct in time as there is 21 years difference
between them, so we would like to see how the data describe the periods. The stock market crash
of 1987 has not yet been explained and many believe that it was an endogenous crash constituting
perfect candidate for the cusp model. On the other hand, the 2008 period covers much deeper
recession, thus is very different from the 1987. Last important reason is that both periods contain
all the largest one day drops, which occurred on October 19, 1987, October 26, 1987, September 29,
2008, October 9, 2008, October 15, 2008, December 1, 2008 recording declines of 20.47%, 8.28%,
8.79%, 7.62%, 9.03%, 8.93%, respectively. In the following estimations, we will restrict ourselves
to our newly proposed two-step approach of cusp catastrophe fitting procedure and we utilize the
sample covering half year.
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Figure 5: Rolling values of BIC information criteria for cusp catastrophe (in bold black) and logistic (in black)
models.

When focusing on the estimation results for the 1987 crash, we can see that both restricted
and unrestricted models fit the data much better than linear regression. ω1 coefficients are signifi-
cantly different from zero and when the cusp models are compared to the logistic model, they also
seem to provide much better fits. Thus cusp catastrophe model explains the data very well and we
can conclude that the stock market crash of 1987 has been led by internal forces. This confirms our
previous findings in Barunik and Vosvrda (2009) even though comparison can not be made directly
as we have used different sample length in our previous study. When comparing unrestricted and
restricted model fits, we can see that they do not differ significantly within log likelihoods, AIC
and BIC. Also coefficient estimates are close. The reason is that unrestricted model estimates the
α2 coefficient which can not be distinguished from zero and β1 coefficient is significant only on 90%
level of significance. Thus x1 proves to drive the fundamentals and x2 speculators. Note that β2

coefficient is much larger in its magnitude than on the fit of full sample in the previous section.
Interestingly, x3 seems to drive the speculative money in the 1987, but does not help to explain
the 2008 behavior.

Data from the 2008 period show different results. While cusp fits are much better in com-
parison to the linear regression, they can not be statistically distinguished from logistic model.
This means that there is very weak evidence of discontinuities in this period. It is an interesting
result, as it may suggest that the 2008 large drops were not driven endogenously by stock market
participants but exogeneously by the burst of the housing market bubble.

5.4. Rolling regression estimates

While 1987 data are explained by cusp catastrophe model very well and 2008 are not, we
would like to further investigate how cusp catastrophe fit changes over time. With almost 27 years
of all data needed for our two-step method of estimation, we estimate cusp catastrophe model on
half year samples rolling with the step of one month. The half year period is reasonable as it
is enough data for the sound statistical fit and on the other hand it is not too long period so it
can uncover a structural breaks in the data. In the estimation, we again restrict ourselves to our
two-step estimation procedure. To keep the results under control, we use final restricted model,
where we suppose that x1 controls asymmetry side of the model and x2 controls bifurcation side
solely, while x3 contributes to both sides. Thus α2 = β1 = 0.

Before we move to interpreting the rolling regression results, let us discuss bimodality of the
rolling samples. Stochastic catastrophe corresponds to a transition from a unimodal to a bimodal
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distributions. Thus we need to first test for the bimodality in order to be able to draw any con-
clusions from our analysis. For this, we borrow the dip test of unimodality developed in Hartigan
(1985); Hartigan and Hartigan (1985). The dip statistic is the maximum difference between the
empirical distribution function and the unimodal distribution function and it measures departure
of the sample from unimodality. Asymptotically the dip statistics for samples from a unimodal dis-
tribution approaches zero and for samples from any multimodal distribution approaches a positive
constant. We use bootstrapped critical values for the small rolling sample sizes in order to asses
the unimodality. Figure 6 shows the histogram of all dip statistics together with its bootstrapped
critical value 0.0406 for the 90% significance level. The results suggest that unimodality is re-
jected at 90% significance level at several periods, while for most of the periods, unimodality can
not be rejected. Thus we observe transition from unimodal to bimodal (or possibly multimodal)
distributions during the studied period several times.

Encouraged by the knowledge that the bifurcations might be present in our dataset, we move
to rolling cusp results. Figure 7 shows the rolling coefficient estimates together with its significance.
ω1 is significantly different from zero in all periods. α1 coefficient is strongly significant over the
whole period, while it becomes lower in its magnitude during the last years. Thus ratio of advancing
and declining volumes is a good measure for fundamentalists driving the asymmetry part of the
model. Much more important is the β2 parameter, which drives the bifurcations in the model.
We can notice that while in the period until the year 1996 it has been significant and its value
has changed over time considerably, in the period after the year 1996 it can not be distinguished
from zero statistically (except for some periods). This is very interesting result as it shows how
OEX put/call ratio was a good measure of speculative money in the market and controlled the
bifurcation side of the model. During the first period, it was driving the stock market into the
bifurcations, while in the second period, the market was rather stable under the model. Only in
the very last few years in the recent 2008 recessions parameter started to play a role in the model
again. Still, its contribution is relatively small.

This is confirmed also when we compare the cusp model to the logistic one. Figure 5 compares
the Bayesian Information Criteria of the two models and we can see that cusp catastrophe model
was much better fit of the data up to year 2003, while for the upcoming years of 2003-2009 (roughly)
it can not be distinguished from the logistic model, or logistic model outperforms the cusp strongly.
In the last period after 2009 and before the Flash crash, cusp again explains the data better, but
the difference is not so strong as in the before-2003 period. This result in fact shows that while
before 2003 stock markets were showing marks of bifurcation behavior according to the cusp model,
later on after the year 2003 in the period of stable growth when stock market participants believed
that stock markets are stable, they do not show marks of the bifurcation behavior any more.

To conclude this section, we have found that in spite of the fact that we model volatility in
the first step, stock markets show marks of bistability over several crisis periods.

6. Conclusion

In this paper, we contribute to the stock market crashes modeling literature and quantitative
application of stochastic cusp catastrophe theory. We develop a two-step estimation procedure and
estimate cusp catastrophe model under the time-varying stock market volatility. This allows us to
test the Zeeman (1974)’s qualitative hypotheses about cusp catastrophe and bring new empirical
results to our previous work in this area (Barunik and Vosvrda, 2009).
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In the empirical testing, we use a unique high-frequency and sentiment data about U.S.
stock market evolution covering almost 27 years. The results suggest evidence that over the long
period, stock markets were better described by stochastic cusp catastrophe model. Using our two-
step modeling approach we have shown that cusp model fits the data far best, fundamental and
bifurcation sides are controlled by the indicators of fundament and speculative money, respectively.
In a contrast, when cusp is fit to the original data under strong variation of volatility, model
deteriorates. We should note that these results resemble the results from a Monte Carlo study we
run, thus simulation strongly supports our analysis. Further, we develop a rolling estimation and
find that while until the year 2003 cusp catastrophe model explains the data well, this changes in
the period of stable growth 2003–2008.

In conclusion, we have found that in spite of the fact that we model volatility in the first
step, stock markets show marks of bistability during several crisis periods.
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Appendix: Descriptive statistics

rt RVt rtRV
−1/2
t x1 x2 x3

Mean 0.00030 0.00697 0.15535 1.67051 1.16636 0.02029
Median 0.00059 0.00571 0.11005 1.12730 1.11000 0.00301
Std. Dev. 0.01175 0.00478 1.42534 2.21562 0.36245 0.21405
Skewness -1.32728 3.55338 0.13660 6.71651 1.37368 2.38477
Ex. Kurtosis 29.44420 23.96040 -0.02713 76.35370 4.87145 17.36620
Minimum -0.22887 0.00122 -5.21961 0.00187 0.30000 -0.76040
Maximum 0.10957 0.07605 5.45738 44.06780 4.56000 2.19614

Table 4: Descriptive Statistics of the data. Sample period extends from February 24, 1984 until November 17, 2010. The S&P

500 stock market returns rt, realized volatility RVt, daily returns normalized by the realized volatility rtRV
−1/2
t and data for

independent variables {x1, x2, x3} are ratio of advancing stocks volume and declining stock volume, OEX put/call options and
change of total volume, respectively.

Figure 6: Histogram of the dip statistics for bimodality computed for all rolling window periods together with
bootstrapped critical value 0.0406 for the 90% significance level plotted in bold black.
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Appendix: Rolling regression estimates

Figure 7: Rolling coefficients with their |z-values|. (a) estimated ω1 coefficient values, (b) estimated values of
asymmetry coefficients, α1 in bold black, α3 in black. |z-values| related to both coefficient estimates are as • and ∗,
respectively. (c) estimated values of bifurcation coefficients, β2 in bold black, β3 in black. |z-values| related to both
coefficient estimates are as • and ∗, respectively. Plots (b) and (c) also contain 95% reference z-value as a dashed
black line.
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