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Variance Swap Premium under Stochastic Volatility
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Abstract

We introduce a stochastic volatility model with self-exciting jump intensity
to capture the change in pricing dynamic triggered by big negative stock returns.
The stochastic variance and jump intensity, and their risk premium are estimated
jointly from daily stock returns and option data over 2007-2010. The model
is calibrated to cumulants implied from option prices instead of option prices
directly. We find evidence that the time varying jump intensity plays a very
important role in the sub-prime crisis and explained most of the risk premium,
while in other calmer periods, stochastic variance accounts for most of the risk
premium.

JEL Classification: G12, G13

Kerwords: Hawkes process, Volatility Surface, Volatility Risk Premium, Jump
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Variance Swap Premium under Stochastic Volatility
and Self-Exciting Jumps

1 Introduction

It is well known in the finance literature that volatility of asset return is not constant over

time.1 Models with time varying volatility, e.g. ARCH/GARCH model and Heston model,

show some success in fitting both the historical time series of stock returns and option prices

(see Engle (1982), Duan (1995), Eraker (1998), and Heston (1993)). More recent papers add

jumps to the price and volatility dynamics, and achieve a significantly improved calibration

(see Duffie, Pan and Singleton (2000) and Eraker (2004)). In this change of paradigm,

from a simple stock returns uncertainty to a risk framework with stochastic volatility and

jump processes, one question that immediately followed is “how much premium is associated

with each of these new risk factors?” A major concern of investors and traders of vanilla

and volatility derivatives is the amount of risk premium they pay for these securities. The

objective of this paper is to show the different components of risk premium in implied variance

swap prices.

A variance swap is a forward contract on future “realized” variance. Demeterfi, Derman,

Kamal and Zou (1999) show that variance swap can be replicated, under the risk neutral

measure, by a weighted sum of OTM options across all strikes. Technically, the expected

future variance is equal to a weighted integral of implied volatility of all strikes. Carr and Wu

(2009) calculate the difference between the realized variance and the variance expected under

the risk neutral measure; they find variance risk premium, as reflected by this difference, is

economically significant. Earlier, Pan (2002) shows that in a stochastic volatility framework,

the volatility risk premium also changes over time.

More recently, Bergomi (2004) shows that any single factor volatility risk model cannot
1In this paper, unless otherwise specified, we use ’volatility’ and ’variance’ interchangeably.
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produce the volatility term structure implied by option prices observed in the market; for the

minimum, a second volatility risk factor is needed. Subsequently, Bergomi (2008) proposes

a model with two volatility risk factors of different timescales, as reflected in their different

speeds of mean reversion, and a stock price dynamic that follows a pure diffusion process.

This two factor model, when calibrated to the same market data, was shown to produce very

different prices for more complex exotic volatility derivatives. By using high frequency stock

return data, Todorov (2010) isolates realized jumps from diffusion process, and finds variance

risk premium to be abnormally high after a realized jump. The findings in Todorov (2010)

suggest that realized jumps in the stock price might be another source of risk premium.

Based on these previous studies, we propose a two-factor stochastic volatility and self

exciting jump model. We keep the jump process in the stock price dynamic since it appears

to capture the market’s price reaction during the crisis period well under both the physical

and the risk neutral measures. Unlike the studies mentioned above, we set the jump intensity

to follow a self exciting process, as in Hawkes (1971), to allow direct feedback from stock

return jump to future jumps. The idea of a time varying jump intensity is not new. The

GARJI (Generalised Autoregressive Conditional Jump Intensity) model proposed by Maheu

and McCurdy (2004), as shown below, has the jump intensity, λt, following an autoregressive

process,

λt = λ0 + ρλt−1 + γξt−1

ξt−1 = E[nt−1|rt−1]− λt−1

where E[nt−1|rt−1] is the expected number of jumps conditional on the observed stock return,

ξt−1 is the unexpected jump intensity residual that has an impact on the jump intensity in

the next period through the parameter γ, and ρ controls the speed of decay to the baseline

level λ0. Maheu and McCurdy (2004) fit the GARJI and the GARCH models to a group of

individual stock returns and find a much faster reverting speed in the jump intensity above
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compared with the volatility decay speed in GARCH.

A more recent paper by Ait-Sahalia, Cacho-Diaz and Laeven (2010) propose a model with

both stochastic volatility and mutually exciting jumps for the extremal dependence across

international markets, and find strong evidence of self excitement and contagion effect. In

contrast to Ait-Sahalia et al. (2010), we focus on univariate feedback effect and we have

slightly modified the Hawkes process to allow feedback from only negative stock return

jump in our proposed Stochastic Volatility Self-Exciting Jump (SVSEJ) model. Two models

similar to ours were studied in Carr and Wu (2008) and Fulop, Li and Yu (2012). The

difference between these two papers and our study lies in the definition of jump and the

impact of jump on the subsequent stock price dynamic. The jump in our model is defined

as a rare event that triggers a big reaction in the stock price dynamic. In the calm period,

the jump intensity in our model is small; most of the return variations and risk premium

will be explained by the stochastic variance. When there is a large negative stock return

shock, the market becomes chaotic and the jump intensity in our model is then excited and

triggers further large jumps. Our empirical investigation indicates that such a sudden switch

in model dynamic is important, especially for explaining the large skewness observed in the

option market during the financial crisis. High jump intensity in the crisis period represents

bigger uncertainty under the physical measure, which in turns attracts a higher risk premium

for the big uncertainty, under the risk neutral measure, if there will be more future big losses.

To estimate the model parameters and the associated risk premium, a joint estimation

is carried out using information under both P and Q measures, i.e. by calibrating to both

historical stock prices and option prices. Instead of using option prices directly, we use

the implied cumulants under the Q measure. Cumulants, similar to moments, are summary

statistics of the distributions implied by the volatility surface, and can be used to distinguish

the intrinsic properties of the different volatility risk factors. Furthermore, we derive the

analytical pricing formulae for the log contract and the variance swap, and use it to assess

how the risk premium in implied variance swap price changes in response to a negative stock
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return jump. The biggest challenge in the calibration of our model is that it is strongly

nonlinear and non-Gaussian; the conventional Kalman filter and its variants are no longer

appropriate tools for estimation. So we resort to using particle filter in the implementation,

which then leads to another problem that the likelihood is not continuous with respect to

the parameters to be estimated. To overcome this last problem, we adopt the Expectation

Maximisation (EM) algorithm since it requires the least amount of computational effort and

it converges quickly.

The rest of this paper is organized as follows. We start with the introduction of our

Stochastic Volatility with Self Exciting Jump model in Section 2. We explain the joint

estimation method in Section 3. Section 4 discusses the empirical finding and the time

varying risk premium of variance swap. Section 5 concludes. All the technical details of the

derivations are included in the Appendix.

2 Stochastic Volatility Self-Exciting Jump Model

While stochastic volatility model is well established in the finance literature, strong empirical

evidence from market observed stock and option prices suggest there are jumps in both stock

and volatility dynamics. Inspired by the findings in Todorov (2010) that the variance risk

premium is abnormally high after a realized jump, we introduce another risk factor that is

associated with a large negative shock in stock returns as follows:

dSt
St

= udt+
√
vtdW1,t +

ˆ
R×R+

(eJx − 1) [µ(dJx, dJλ, dt)− πx(Jx)dJxλtdt]

dvt = κv(θv − vt)dt+ σv
√
vtdW2,t (1)

dλt = κλ(θλ − λt)dt+ σλ
√
λtdW3,t +

ˆ
R×R+

1Jx<0Jλµ(dJx, dJλ, dt)

< dW1,t, dW2,t > = ρdt
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where µ(dJx, dJλ, dt) denotes the random measures of a two dimensional jump in price

and jump intensity; there is no correlation between W2,t and W3,t, and between W1,t and

W3,t. We assume that jumps in the stock price, Jx, and jumps in the jump intensity,

Jλ, are compound Poisson jumps, where Jx ∼ πx(Jx) is Double Exponential(ηu, ηd, p) and

Jλ ∼ πλ(Jλ) is Exponential(η). We further assume that jump size and jump timing are in-

dependent, and that the jump sizes in these two processes are independent. Therefore, the

compensator of the random measures can be written as

π(dJx, dJλ)dJxdJλλtdt = πx(Jx)πλ(Jλ)dJxdJλλtdtˆ
R×R+

(eJx − 1)π(Jx, Jλ)dJλdJxλtdt =

ˆ ( ˆ
R×R+

(eJx − 1)π(Jx)dJx

)
π(Jλ)dJλλtdt

=

(ˆ
R×R+

(eJx − 1)π(Jx)dJx

)
λtdt

ˆ
π(Jλ)dJλ

=

ˆ
R×R+

(eJx − 1)π(Jx)dJxλtdt

as shown in equation (1). It should be noted that κλ is not the true mean reverting speed,

because the innovation term is not compensated and hence dλt is not a martingale. If we

adjust the random measure by its compensator, we have κλ = κλ − (1− p)η and ϑλ = κλθλ
κλ

,

which are the mean reversion speed and the long run mean of the jump intensity respectively.

We have explained in the introduction that our SVSEJ model has features resembling,

but not the same as, the jump models in e.g. Maheu and McCurdy (2004), Ait-Sahalia

et al. (2010) and Todorov (2010). The most important unique feature of our SVSEJ model

is that the jump in the jump intensity is triggered by a negative jump in stock return. A

positive jump in the stock return will not cause the jump intensity to jump. This choice is

empirically motivated. During our pilot studies, we have estimated a model similar to (1)

using a long period of daily stock returns but with a constant jump intensity. The estimation

is done via MCMC (Markov Chain Monte Carlo). The results show that the standard error

of upward jump size is very big compared with the negative jump counterpart. Based on the

samples drawn from the MCMC, we calculated probability of subsequent stock return jumps
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following a stock return jump. We find that the probability of jump is almost constant,

and below the overall average, after a positive stock return jump. In sharp contrast, after

a negative stock return jump, the probability of jump doubled and decayed monotonically

to the overall average after about 10 days. We interpreted this as a clear evidence of time

varying jump intensity and self-excitement triggered by a negative stock return jump, and

hence created the model in (1).

2.1 Dynamics under Q Measure

2.1.1 Measure Change

Since our objective is to identify the risk premium, we need the dynamics under the Q

measure. The measure change from P to Q is,

dQ
dP

∣∣∣∣Ft = E
(
−
ˆ t

0

γv
√
vsdW2,s

)
× E

(
−
ˆ t

0

γλ
√
λsdW3,s

)
× E

(ˆ t

0

(
e−γJxJx−γJλJλ − 1

)
(µ(dJx, dJλ, dt)− ν(dJx, dJλ)λtdt)

)

where E is the stochastic exponential.

For the Brownian motion term, we shift the mean and maintain the affine form of the

model. Therefore, dWQ
2,t = γv

√
vtdt + dW P

2,t and dWQ
3,t = γλ

√
λtdt + dW P

3,t are Brownian

motions under Q measure. For the compound Poisson jump, we change the distribution of

jump size by a constant shift. The distribution for jump size in the stock return becomes

πQ
x (Jx) = Double Exponential(ηQu , η

Q
j , p

Q) , where ηQu = 1
1+γJxη

P
u
ηPu, η

Q
d = 1

1−γJxηPd
ηPd , and pQ =

pP
(
pP + (1− pP)

1+γJxη
P
u

1−γJxηPd

)−1

. The distribution of jump size in the jump intensity becomes

πQ
λ (Jλ) = Exponential(ηQ), where ηQ = 1

1+γJλη
Pη

P.2 Hence the dynamics of our SVSEJ model

under Q measure is as follows
2For the measure change of the exponential distribution, we have
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dFt
Ft

=
√
vtdW

Q
1,t +

ˆ
R×R+

(eJx − 1)(µQ(dJx, dJλ, dt)− πQ
x (Jx)dJxλtdt)

dvt = κQv (θQv − vt)dt+ σv
√
vtdW

Q
2,t (2)

dλt = +κQλ (θQλ − λt)dt+ σλ
√
λtdW

Q
3,t +

ˆ
R×R+

1Jx<0Jλµ
Q(dJx, dJλ, dt)

< dW1,t, dW2,t > = ρdt

where κQv = κv +γvσv, θQv = κvθv
κQv

, κQλ = κλ+γλσλ, and θQλ = κλθλ
κQλ

. Since the random measure

in the jump intensity equation is not compensated, so the risk premium related to γJλ does

not appear in equation (2). But for the true mean reverting speed and the long run mean

of jump intensity, we have κQ
λ = κλ + γλσλ − γJλ(1− p)η and ϑQ

λ = κλθλ
κQ
λ

, in which γJλ has a

direct impact on the model parameters under the risk neutral measure.

2.1.2 Characteristic Function of Log Price

Our proposed SVSEJ model is designed to be affine, so we are able to use the transform ap-

proach from Heston (1993) to price any claim contingent on the final state of the underlying.

Therefore, we can calibrate our model to fit European option prices listed in the market.

1

ηQ
e−x/η

Q

= A
1

ηP
e−x/η

P

e−γx =
A

ηP
e
−x( 1

ηP
+γ)

ηQ =
1

1
ηP

+ γ
= ηP

1

1 + γηP

Given ηQ, we can back out A

A =
ηP

ηQ
= 1 + γηP
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First, write the moment generating function (MGF), G (·), as

G(ω, xt, vt, λt, t, T ) = φ(−iω, xt, vt, λt, t, T )

φ(ω, xt, vt, λt, t, T ) = E[eiωxT |xt, vt, λt] =

ˆ ∞
−∞

eiωxT f(xT |xt, vt, λt)dxT

where φ (·) is the characteristic function, xT = lnFT is the log price, which is driven by the

stochastic process in (2).

By Feynman-Kac theorem, the expectation of any function of xT , can be determined by

a PIDE (Partial Integral Differential Equation). Following the approach by Pan (2002) and

Sepp (2003), we derive the PIDE for the moment generating function (MGF) of xT for our

SVSEJ model,

0 = Gt − (
1

2
v + λtE[eJx − 1])Gx +

1

2
vtGxx + κ(θ − vt)Gv

+
1

2
σ2vtGvv + ρσvtGxv + κλ(θλ − λt)Gλ

+λt

ˆ
[G(ω, x+ Jx, vt, λt + 1J<0Jλ, t, T )−G(ω, x, vt, λt, t, T )] ν(dJx, dJλ) (3)

with initial condition at time T , GT = exTω. As shown in Appendix A, there is no analytical

solution for the MGF G in (3) because of the self exciting jump part.

2.2 Model Discussion

Our proposed SVSEJ model is a two-factor model. The single factor model is well studied in

the literature and some single factor models provide good fit for both stock price movement

and option volatility surface (see Pan (2002) and Eraker (2004)). However, there are a few

fundamental problems with the single factor models. First, the volatility and skewness gener-

ated by the single factor models are one-to-one correspondence for the same maturity,3 which
3The volatility surface is a function of the state variables. For the single factor model, there is only one

state variable. If the value at any point on the volatility surface is known, we can back out the state of the
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is not the case in the market data. Figure 1 plots the 3rd cumulant (unnormalised skewness)

against the 2nd cumulant (variance) implied by options with two months to maturity. It is

clear that implied variance and skewness are not one-to-one correspondence especially when

the variance is big. In another words, there are more than one factor controlling the market

price dynamics. Second, the term structure of implied variance is fixed in the single factor

models. This means that given the price of a variance swap maturing in e.g. one month,

prices for variance swaps of other maturities will be also known. The implication is that the

correlation term structure of variance derivatives will always be one. But this is not true

with the real market data.

Bergomi (2005) shows that more than one volatility risk factors are needed to fit the

variance dynamics. Cont and Da Fonseca (2002) also claim that a multi-factor model is

necessary to capture the volatility surface dynamics. Todorov (2010) finds risk premium for

variance swap increased dramatically after a realized jump has occurred. This suggests that

one of the risk factors could be strongly associated with stock return jumps. To accommodate

all the empirically observed market features, we construct the SVSEJ model and link the

stock return jump to future jump intensity in a self exciting manner. In our SVSEJ model,

a jump in the jump intensity not only causes jump in variance, but also introduces a big

skewness in the distribution implied by prices of short maturity options. The large implied

skewness, which we witnessed during the crisis, means that there was a huge premium for

deep OTM put options for protection from further big future losses. Mathematically, it is

very difficult to generate such a large skewness from the continuous diffusion part of the

stock price dynamic, because skewness generated by the continuous part is in the order of

(T − t)2. When time to maturity, (T − t), is small, the diffusion component cannot provide

enough skewness to match the observed skewness in the implied volatility surface. On the

other hand, the skewness generated by jumps is proportional to (T − t). If we allow the jump

intensity itself to jump, we effectively introduced jumps in both variance and skewness.

factor, and use it to calculate other values of the volatility surface such as skewness.
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Since jump in the jump intensity also causes a jump in the total variance, the dynamics

of stochastic variance in our model is kept simple. We introduce another Gaussian term,

σλ
√
λtdW3,t, in the dynamic of the jump intensity. The contribution of this term is small

when the market is calm. The more important point is that when a jump occurs, the jump

intensity is excited; this Brownian motion term can help to explain the big fluctuations of

the jump intensity afterwards.

In similar work, Carr and Wu (2008) and Fulop et al. (2012) use Gamma process to

model the jump dynamic and restrict the jump size in stock return to be proportional to the

jump size in the jump intensity. Compared with the compound Poisson process used in our

model, Gamma process has jumps in any time interval and the number of jumps is infinite.

So the jump intensity will jump proportionally to the jump size in stock returns everyday in

their models. However, we believe that market responds to past returns is strongly nonlinear

depending on the size of the loss. To make a clear distinction between large and small stock

returns, and between positive and negative stock returms, we therefore chose the compound

Poisson process, which has a finite number of jumps, for modelling rare jumps. In our

SVSEJ model, the jump size in stock return and the jump size in the jump intensity are

independent. We believe that changes in stock returns and jump intensity may be related,

but not of any simple functional form due to many reasons such as liquidity and trading

rules. When there is a big fluctuation in the option market, it is not necessary that we can

observe a corresponding movement in daily or weekly stock returns. One interesting example

is the flash crash on May 6, 2010, when the Dow Jones Industrial Average suffered the biggest

one day loss in history, but recovered within minutes. The option market responded to the

crash, and VIX increased by 27.5% on that day and continued to increase by another 22%

on the following day. In contrast, the daily stock return was just -3.3% on that day and

-1.3% on the following day.

Compared with the GARJI model in Maheu and McCurdy (2004), the jump intensity in

our model is driven by stock return jumps, and not by the expected jump number. Moreover,
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the jump intensity in our model only responds to negative jumps in stock returns and the size

of the response is random. In our model, both jump and volatility processes are stochastic,

while in the GARJI model they are both deterministic.

3 Joint Estimation under Two Measure

3.1 Cumulants of Log Return

A distribution can be fully represented by its cumulants (or moments). The result of Edge-

worth expansion suggests that the lower cumulants are the most important in explaining the

shape of the distribution. Here, we choose to calibrate to the second and the third cumulants

implied by prices of options with two and three months to maturity every day.4 To use cu-

mulants in the estimation, we need to derive the cumulant implied by the model parameters

and by the market option prices. Since our mode is affine, the cumulant generating function,

Υ, of log returns is an affine function of the state variable,5

Υ(ω, vt, λt, t, T ) = lnG(ω, xt, vt, λt, t, T )− ln extω

= A(ω, t, T ) +B(ω, t, T )vt + C(ω, t, T )λt

So the ith cumulant of log return can be calculated using,

κi =
∂iΥ(ω, vt, λt, t, T )

∂ωi

∣∣∣∣
ω=0

4Under the risk neutral measure, the first cumulant turns out to be the same as the integrated variance
scaled by 2T , while the second cumulant is the total variance of ST . The first cumulant is ignored in the
estimation because the dynamics of the first cumulant is very similar to that of the second cumulant and
does not carry any extra information. The fair price of the variance swap is actually a constant times the
price of log contract, which is the first cumulant.

5Υ is the cumulant generating function for the log return, not log price, so we need to subtract the term,
ln extω.
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which gives,

κi =
∂iA(ω, t, T )

∂ωi

∣∣∣∣
ω=0

+
∂iB(ω, t, T )

∂ωi

∣∣∣∣
ω=0

vt +
∂iC(ω, t, T )

∂ωi

∣∣∣∣
ω=0

λt (4)

We show in Appendix B how to derive the first derivatives (i = 1) of A, B, and C with respect

to ω for the first cumulant κ1.6 The higher order derivatives with respect to ω for the higher

order cumulants can be derived similarly. The results in Appendix B are substituted into

equation (4) to produce the second and third cumulants, κ2 and κ3.

High skewness (or third cumulant) implied by short maturity options, such as that ob-

served during the crisis, can only be explained by jumps. To understand this, apply Taylor

expansion on κ2 and κ3 and let (T − t)→ 0 for short maturity options. Then

κ2 ≈ vt(T − t) + E[J2
x ]λt(T − t) +O((T − t)2)

κ3 ≈ E[J3
x ]λt(T − t) +O((T − t)2)

It is clear that, for short maturoty options, the second cumulants κ2 (or variance) is due to

the diffusion and the jump parts, both in the order of (T − t). However, the third cumulant

κ3 (unnormalised skewness) is completely dominated by the jump component only.

Equation (4) provides the model implied cumulants. The cumulants implied by market

data can be constructed from OTM option prices as follows:
6Although we do not use the first cumulant in the estimation. The first cumulant derived in Appendix B

is used later to determine the variance swap risk premium.
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κ∗1 = M1

κ∗2 = M2 −M2
1

κ∗3 = M3 − 3M2M1 + 2M3
1

where M1, M2 and M3 are the first three moments of ln
(
FT
Ft

)
as follows:

M1 = −
ˆ Ft

0

1

K2
P (K)dK −

ˆ ∞
Ft

1

K2
C(K)dK

M2 =

ˆ Ft

0

2

K2

(
1− ln

K

Ft

)
P (K)dK +

ˆ ∞
Ft

(
1− ln

K

Ft

)
C(K)dK

M3 =

ˆ Ft

0

3

K2

(
2 ln

K

Ft
− ln2 K

Ft

)
P (K)dK +

ˆ ∞
Ft

3

K2

(
2 ln

K

Ft
− ln2 K

Ft

)
C(K)dK

and P (K) and C(K) are the (interpolated and extrapolated) market put and call SPX option

prices at strike K (see Section 4.1). Details of the derivations following Carr and Madan

(2002) can be found in Appendix C.

3.2 Estimating Hidden State Model

The dynamics of our SVSEJ model has two latent processes, vt and λt. We can rewrite the

model into a state-space form and use filtering technique to back out the latent variables.

For a sample period of length T , the observation on each day is yt = {rt, κjt(τi)}, where

rt=ln(St+1/St) is the log return and κit(τj) is the ith cumulant of log return implied from

time t prices of jth maturity option as described in the previous section. Therefore, the

measurement equations can be written as,
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rt =

(
u−

v2
t−1

2
− λt−1

(
p

1− ηu
+

1− p
1 + ηd

− 1

))
∆t+

√
vt−1Z1,t + 1

Nt>0
Jx,t (5)

κit(τj) = Ai,j +Bi,jvt + Ci,jλt + σi,jεi,j,t (6)

where jump timing Nt ∼ Poisson(λt∆t), 1
Nt>0

is an indicator function which takes value 1

when Nt > 0 or 0 otherwise, jump size Jx,t ∼ πx(Jx) has a double exponential distribution,

Z1,t is a standard normal random variable, and εi,j,t (for i = 2, 3, j = 2, 3) are four uncorre-

lated standard normal random variables.7 The cumulants used in the equation (6) are the

second and the third cumulants of the 2-month and 3-month implied distributions. More

detailed discussion regarding the choice of cumulants is in Section 4. As mentioned in the

previous section, Ai,j, Bi,j, and Ci,j can be derived in close form as shown in Appendix B.

Based on the Euler approximation, the transition equations that drive the set of latent

processes, xt = {vt, λt} are

vt = vt−1 + κv (θv − vt−1) ∆t+ σv
√
vt−1

(
ρZ1,t +

√
1− ρ2Z2,t

)
(7)

λt = λt−1 + κλ (θλ − λt−1) ∆t+ σλ
√
λt−1Z3,t + 1

Nt>0,Jx,t<0
Jλ,t (8)

where jump size Jλ,t ∼ πλ(Jλ) has an exponential distribution, Z2,t and Z3,t are uncorrelated

standard normal random variables, and 1
Nt>0,Jx,t<0

is an indicator function which takes the

value 1 when Nt > 0 and Jx,t < 0, or the value 0 otherwise.
7The integral for the jump term is
ˆ
R×R+

(eJx − 1)(µ(dJx, dJλ, dt)− πx(Jx)dJxλtdt) = 1
Nt>0

Jx,t − λtdt
ˆ
R

(eJx − 1)πx(Jx)dJx,

and
ˆ
R

(eJx − 1)πx(Jx)dJx =

(
p

1− ηu
+

1− p
1 + ηd

− 1

)
appears as a compensator in the ∆t term in equation (5).
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3.3 Filtering Problem

We cannot use Kalman filter or its variants to estimate the state-space model in Section

3.2 as the model is highly non-Gaussian and nonlinear. Instead, a particle filter is used to

approximate the predictive and filtered distributions. There is an extensive literature on

how to make particle filter efficient and accurate. The readers are referred to the book by

Doucet et al. (2001) for further details.

Compared with the other applications of particle filtering, the biggest challenge in esti-

mating the model in Section 3.2 is due to the fact that jumps in both the observation and the

transition equations are defined to be rare but have a big influence on how the observed and

latent variables behave. To make the filtering process more efficient in the standard Sequen-

tial Importance Resampling (SIR) framework (see Gordon et al. (1993)), the jump timing

Nt = {0, 1} is initially drawn from a Bernoulli distribution.8 The step-by-step procedure of

the filtering process is described below:

1. Initialisation: with initial values Θ = {µ, κv, θv, σv, ρ, κλ, θλ, σλ, η, ηu, ηd, p, γν , γλ, γJx ,

γJλ , σ22, σ23, σ32, σ33}, set t = 0 and x0 = {v0, λ0}, where v0 = θv and λ0 = θλ.

2. Prediction: starting from t = 1, we have for m = 1 : M , where M = 2000 is the

number of particles:

(a) Prediction of jump: Since there is maximum one jump per day, Nm
t ∈ {0, 1}; we

draw M samples of Nm
t from a Bernoulli distribution with π = 0.5. For each

Nm
t = 1, we draw Jmx,t from the double expoential distribution (ηu, ηd, p), and for

each Jmx,t < 0, we draw Jmλ,t from the exponential distribution (η).

(b) Prediction of latent process:

i. Calculate Zm
1,t from (5) using Jmx,t from Step (a) and the observed value of rt;

8Random variable from the Bernoulli distribution only takes value of 1 or 0. Here we ignore the possibility
of multiple jumps on each day. The result obtained later shows that the jump intensity is small enough to
justify this assumption.

17



ii. Simulate M samples of Zm
2,t and use it, together with Zm

1,t from Step i, to

calculate vmt from equations (7);

iii. Simulate M samples of Zm
3,t and use it, together with Jmλ,t from Step (a), to

calculate λmt from equation (8).

(c) Calculate the importance weight for the jump samples:

πmt =
Poisson(Nm

t , λ
m
t )

Bernoulli(Nm
t , π = 0.5)

(9)

In equation (9), the numerator is the probability of jump in the model, the denom-

inator is the probability of jump used in the sampling process; πmt is equivalent

to the likelihood ratio in the Monte Carlo method.9

3. Updating:

(a) Calculate εmi,j,t from observed values of κit(τj) from equation (6) for i = 2, 3 and

j = 2, 3 using the parameter values, Θ, and particle values of the latent variables

in Step 2.

(b) Calculate the importance and normalised weights of the particles using

wmt = πmt × Φ
(
Zm

1,t

)
×
∏
i,j

Φ
(
εmi,j
)

w̄mt =
wmt∑M
m=1 w

m
t

(c) Resample the particles J̃mx,t from Jmx,t, J̃mλ,t from Jmλ,t, ṽmt from vmt , and λ̃mt from λmt

according to the normalized weight, w̄mt .

4. Let t = t+ 1 and start again from Step 2 until t = T .
9The reader is reminded here that πmt and π denote probabilties, whereas πx and πλ denote distributions.

In equation (9), π is set equal to 0.5 to represent a naive prior.
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3.4 Estimation Method

The estimation is done by Maximum Likelihood Estimation (MLE). Given the filtered sam-

ples, the likelihood is given by,

L[Θ|y1:T ] =
T∏
t=1

p(yt|y1:t−1,Θ)

=
T∏
t=1

ˆ
p(yt|xt,Θ)p(xt|y1:t−1,Θ)dxt

≈
T∏
t=1

M∑
m=1

wmt

where wmt is the importance weight from the previous subsection. The availability of the

importance weights has avoided the need to evaluate (conditional) likelihood of yt and xt of

which closed forms are not available.

However, given the nature of Monte Carlo, the approximated likelihood function based

on Filtered process is not continuous.10 Therefore, we cannot apply classical optimisation

algorithm. Malik and Pitt (2011) proposed a method to approximate the likelihood for a

state space model, which is continuous with respect to the change of the parameters values.

However, such a method is difficult to use for multidimensional problem, which is our case

here. Instead, we adopt the Expectation Maximisation (EM) together with smoothed parti-

cles for the estimation. Compared with direct MLE, EM method requires more computation,

because it is an iterative procedure and it relies on the smoothed particle paths, which is

computationally expansive to calculate. Despite these complications, other approaches would

require even more computation efforts. Here we explained the EM procedure, which mainly

follows Hurzeler and Kunsch (1998), for use with the particle filter and smoother.

1. Filtering: Using the steps described in Section 3.3 and initial parameter values Θ to
10The discontinuity mainly comes from the resampling step, in which one has to sample from the distri-

bution represented by particles associated with different weights
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generate M filtered and re-sampled particles x̃mt =
{
ṽmt , λ̃

m
t

}
for t = 1, · · · , T .

2. Smoothing: produce the smoothed path x̂1:T backward, for t = T, · · · , 1, based on

the filtered samples from Step 1. We explained the step-by-step smoothing procedures

below:

(a) Start at t = T with the special case, p(x̂T |y1:T ,Θ) ∼ p(x̃T |y1:T ,Θ). For this special

case, the smoothed particles are the same as the filtered particles, i.e. x̂mT = x̃mT

for m = 1 : M , M = 2000.

(b) Set t = T − 1 and t+ 1 = T , sample x̂t from

p(x̂t|x̂mt+1, y1:T ,Θ) ∝ p(x̂t|y1:t,Θ)p(x̂mt+1|x̃t,Θ)

Here, we use the filtered particles {x̃m̃t }m̃=1:M as the candidates for x̂t. In this case,

p(x̂t|y1:t,Θ) becomes a constant, 1
M
, since the likelihood of the filtered particles

after resampling are all equal. Then we only need to calculate

p(x̂t|x̂mt+1, y1:T ,Θ) ∝ p(x̂mt+1|x̃m̃t ,Θ)

where m is the counter for the smoothed particles, and m̃ is the counter for the

filtered particles. In other cases where there is no confusion over which particle

is used, m is used generally as the counter.

(c) For each m, the probability p(x̂mt+1|x̃m̃t ,Θ) for a given m̃ is calculated from equa-

tions (7) and (8) as follows:

i. Calculate Zm̃
1,t from (5) using J̃m̃x,t and the observed value of rt;

ii. Use Zm̃
1,t from Step i, ṽm̃t and v̂mt+1 to calculate Zm̃

2,t from equations (7).

iii. Use J̃m̃λ,t, λ̃m̃t and λ̂mt+1 to calculate of Zm̃
3,t from equation (8).
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iv. Calculate the likelihood values below for each m̃,

p(x̂mt+1|x̃m̃t ,Θ) = Φ
(
Zm̃

2,t

)
Φ
(
Zm̃

3,t

)
Φ
(
J̃m̃λ,t

)
Φ
(
J̃m̃x,t

)
(10)

v. Repeat Step i to Step iv for m̃ = 1 : M .

(d) The smoothed particle, x̂mt , is re-sampled from {x̃m̃t }m̃=1:M using normalised prob-

ability
πm̃∑M
m̃=1 π

m̃

where πm̃ = p(x̂mt+1|x̃m̃t ,Θ) from equation (10).

(e) Repeat step (c) and (d) for m = 1 : M .11

(f) Set t = t− 1 and repeat from step (c) till t = 1.

3. Expectation: Calculate the expectation of log likelihood based on smoothed samples.

Q(Θ∗|Θ) = Ex1:T |y1:T ,Θ [ln p(x1:T , y1:T |Θ∗)]

≈ 1

M

T∑
t=1

M∑
i=1

[
ln p(x̂mt |x̂mt−1,Θ

∗) + ln p(yt|x̂mt ,Θ∗)
]

where Θ∗ = Θ and {x̂mt }Tt=1 are smoothed samples from Step 2. In the calculation of the

log likelihood, p(x̂mt |x̂mt−1,Θ
∗) = Φ

(
Ẑm

2,t

)
Φ
(
Ẑm

3,t

)
Φ
(
Ĵmλ,t

)
Φ
(
Ĵmx,t

)
and p(yt|x̂mt ,Θ∗) =

Φ
(
Ẑm

1,t

)
×
∏

i,j Φ
(
εmi,j
)
, both calculated using the smoothed samples.

4. Maximisation: Maximise Q(Θ∗|Θ) with respect to Θ∗, and let Θ = Θ∗. Then use the

new Θ to repeat from Step 1 until the parameters converged.
11For the smoothing step, the computation is in the order ofM2, whereas the computation for the filtering

step previously is in the order of M .
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4 Empirical Results

4.1 Data Description

The data used in this study include S&P 500 daily closing price and the prices of the

corresponding European options with maturities up to six months. The sample period is

from October 2007 to October 2010 which includes the important period of sub-prime crisis.

We hope to explain how the market behaves in such a turbulent period. Vanilla option prices

are used to construct the cumulants of log return. On the other hand, as shown in equation

(6), to calculate cumulants, we need option prices with strike price ranges from 0 to infinity,

which we approximate by interpolating and extrapolating the market option prices using the

SVI function in Gatheral (2004). As shown in Appendix C, the higher the moments, the

more weights are placed on the deep OTM options and the bigger the impact of extrapolation

errors. Taking into account of these pitfalls, we chose to calibrate only the second and the

third cumulants, which correspond to the second and third centered moments.

One important source of errors in fitting equation (6) is from the interpolation between

maturities. In this study, we focus on the short maturities options, namely two and three

months. This is because the stock market movement has the greatest impact on the short

maturity options which are also the most liquid. In order to get the cumulants at the

targeted maturities of interest, we linearly interpolate the two adjacent cumulants from the

two nearest maturities. For one month maturity, one of the two cumulants used in the

interpolation is less than one month. It is well known that options expiring within two

weeks are subject to large trading noise which will severely impact on the quality of the

cumulants calculated from the option prices. In this study, we exclude all the options that

mature within two weeks. We also remove, on each day, all options with trading volume

less than 100. At the final stage, we dropped the interpolated one month maturity options

because the noise introduced by the interpolation is too big and it is not possible to have

a continuous time series since half the time, the first maturity options are dropped because
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the time to maturity is less than two weeks.

Table 1: Summary Statistics
Mean Standard Deviation

Log Return -0.0003 0.0192
κ2(τ2) 0.0170 0.0153
κ3(τ2) -0.0048 0.0072
κ2(τ3) 0.0262 0.0213
κ3(τ3) -0.0090 0.0123

In total, the data set consists of 770 daily observations; one market log return and four

cumulants for each day. We do not have any identification problem, since there are five

measurement equations each day, which is more than the number of transition equations.12

Table 1 reports the mean and standard deviation of the daily log return and cumulants. The

mean value of the log return is negative due to the big loss during the sub-prime crisis. We

can also see big standard deviation for all the four cumulants as a result of the crisis.

4.2 Empirical Findings and Analysis

Table 2 reports the parameters estimates and the associated standard errors. Due to the

large amount of data used in the estimation, most of the parameters values show strong

statistical significant except the mean return, µ, under the P measure. The mean return is

estimated from only the log return series. The cumulants implied by options, which is under

the Q measure, contains no information about the mean return.

For the ease of comparison, we reported the parameters values under the P and the Q

measures in Table 3. The relationship of parameters values under the two measures are given
12There are two transition equations. But the jump timing is also a latent process which we need to take

into account.
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Table 2: Parameters Estimates
Mean (Standard Deviation) Mean (Standard Deviation)

u -0.1106 (0.0574) σλ 10.0698 (0.0026)
κv 2.3910 (0.0170) η 5.5406 (0.0002)
θv 0.0949 (0.0003) γv -1.1549 (0.0096)
σv 0.7311 (0.0017) γλ 3.7750 (0.0009)
ρ -0.8699 (0.0025) γJx 19.1631 (0.0034)
ηu 0.0352 (0.0001) γJλ -0.1579 (0.0000)
ηd 0.0320 (0.0000) σ2,2 0.0015 (0.0000)
p 0.4543 (0.0003) σ2,3 0.0010 (0.0000)
κλ 7.6358 (0.0090) σ3,2 0.0010 (0.0000)
θλ 0.0218 (0.0002) σ3,3 0.0008 (0.0000)

This table reports the parameters estimates from Monte Carlo-Expectation Maximisation
with standard errors in parentheses.

below,

κQv = κPv + γvσv

θQv =
κPvθ

P
v

κQv

ηQu =
ηPu

1 + ηPuγJx

ηQd =
ηPd

1− ηPdγJx

pQ =
p(1− γJxηPd )

p(1− γJxηPd ) + (1− p)(1 + γJxη
P
u)

κQλ = κPλ + γλσλ

θQλ =
κPλθ

P
λ

κQλ

ηQ =
ηP

1 + ηPγJλ

The parameters values for ρ, σv, and σλ are the same under theP and the Q measures.

Correspond to previous studies; we also obtain a negative volatility risk premium γv,

which results in a smaller mean reverting speed κv and a higher long run mean θv for

stochastic variance under the Q measure. The leverage effect between stochastic variance

and log return is characterised by the correlation ρ. Studies that use only stock return series
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Table 3: Parameters Comparison under Two Measure
P Measure Q Measure

κv 2.3910 1.5467
θv 0.0949 0.1467
ηu 0.0352 0.0210
ηd 0.0320 0.0827
p 0.4543 0.1613
κλ 7.6358 45.6493
κλ 4.6123 8.5145
θλ 0.0218 0.0036
ϑλ 0.0361 0.0196
η 5.5406 44.2755

κλ = κλ − (1− p)η and ϑλ = κλθλ
κλ

are the mean reverting speed and long run mean of the
jump intensity after compensating the random measure.

for estimation (e.g., Fulop et al. (2012) and Eraker (2004)) typically produce a ρ around -0.6.

Studies that use option data such as Bergomi (2004), Duffie et al. (2000), and Carr and Wu

(2008) produce a much more negative ρ often closed to -1. Our ρ=-0.8699, produced from

joint estimation using both option and stock returns data, falls between the two numbers

reported by previous studies.

The most drastic differences between the two measures are related to the jump part. First,

we observe a big negative shift in the distribution of jump size in log returns, producing a

much higher risk neutral skewness implied by option prices. The premium paid for the

skewness is further amplified by the huge increase of jump size in jump intensities under

the Q measure. An interesting observation is in the change in the mean reversion speed

κλ = κλ − (1 − p)η and the long run mean ϑλ = κλθλ
κλ

of the jump intensity. Unlike the

stochastic variance, the jump intensity decays faster under the Q measure than under the

P measure. However, the big jump size under the Q measure suggests a very high premium

for short maturity option that decay quickly with option maturity. In terms of implied

volatility surface, the results correspond to a high skewness at short maturities that flattens

out quickly as maturity gets longer.

Figure 2 plots the log return series with the smoothed jump size. The estimation of
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jumps depends on the observed stock return as well as the estimated instantaneous variance.

Therefore, the continuous big fluctuations during the sub-prime crisis are not all classified as

jumps. Only the first few days of the crisis period are identified as jumps when the estimated

instantaneous variance is low. Moreover, the estimation of jumps in this paper also depends

on the information contained in the option prices. For example, there is a big loss in the

stock market before October 2008, which was not identified as a jump because of the lack of

implied skew in the option prices. Such an inconsistency between the two markets is part of

the reason why we disentangle the dependency of the jump size in log return and the jump

size in jump intensity.

In contrast, Carr and Wu (2008) and Fulop et al. (2012) assume that jump size in return

is proportional to the jump size in the jump intensity. Such a specification works fine when

the estimation uses only option prices or only stock return data but not both. It can be used

to produce the risk premium for stock return jumps if the estimation uses only option data.

The jump size in jump intensity is much harder to estimate using only stock return data.

However, if the estimation uses both option data and stock return data, we can relax this

constraint. For the sake of parsimony, we do not impose any other dependence structure.

In Figures 3 and 4, we plot the time series of the four cumulants calculated from market

option prices together with the filtered counterparts from the estimation. The filtered pro-

cesses track the market observed cumulants well in both calm and crisis periods. Compared

with the jump estimates in Figure 2, we can see that the periods with higher skewness (third

cumulant) during the subprime crisis started with negative jumps in stock returns.

Figure 5 plots the time series of filtered stochastic variance and filtered stochastic jump

intensity. It is clear that stochastic variance explains most of the market pricing dynamics

in the calm period when the stochastic jump intensity is small and negligible. During the

crisis period, the stochastic jump intensity becomes very prominent. Compared with the

previous figures, we notice that the start of the crisis period marked by negative stock return

jumps is followed by big fluctuations in the stochastic jump intensity. The fluctuations of
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the jump intensity is controlled by the diffusion part of the jump intensity dynamics whose

variance is proportional to
√
λt; the larger the jump intensity, the bigger its fluctuations. The

fluctuations in the stochastic jump intensity are not necessarily associated with or driven by

jumps in the stock return.

To see the different roles played by variance and jump intensity, we plot the contributions

to the cumulants by these two stochastic components. Figures 6 and 7 show, respectively,

the proportion of the implied cumulants of 2-month and 3-month maturity options that

are explained by jump intensity. Before the sub-prime crisis, we can see both the second

and third cumulants are mainly explained by stochastic variance. In the sub-prime crisis,

jump intensity explains most of the skewness (third cumulant); the leverage effect between

stochastic variance and stock return is not enough to account for the big skewness implied

by prices of short maturity options. For the second cumulant, stochastic variance is always

the most important factor. If we do not use the skewness information in the estimation,

it might not be possible to identify the jump intensity process, since stochastic variance is

capable of fully explain the second cumulant.

4.3 Risk Premium of Variance Swap

Since we have the estimates for the risk premium for both stochastic variance and jump

intensity, we can revisit the question, “how the risk premium of variance swap reacts to

negative stock return jumps?” Variance swap is a forward contract on realised variance.

Demeterfi et al. (1999) show that the expectation of future variance, or the fair price of a

variance swap, is a weighted integral of option prices across all strikes, assuming that there

is no jump in equity price. This result strongly influenced the way in which the CBOE

calculates the spot VIX index (see CBOE (2009)) defined as the square root of the fair price

of variance swap. Carr and Wu (2009) establish the relationship between log contract and

variance swap in the presence of jumps. If admitting jumps, the variance swap calculated

by CBOE is,
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E[VSt,T |Ft] = (T − t)(θv + 2E[eJx − 1− x]ϑ) +
1− e−κv(T−t)

κv
(vt − θv)

+2E[eJx − 1− Jx]
1− e−κλ(T−t)

κλ
(λt − ϑλ) (11)

From the original definition of variance swap, E[VSt,T |Ft] =
´ T
t
〈d lnSt〉, we have

E[VSt,T |Ft] = (T − t)(θv + E[J2
x ]ϑ) +

1− e−κv(T−t)

κv
(vt − θv)

+E[J2
x ]

1− e−κλ(T−t)

κλ
(λt − ϑλ) (12)

The difference between these two definitions are of the third order of the jump size, i.e.

O(E[J3
x ]), which is very small and we shall omit it in this paper. In the remainder of this

paper, we will use the second definition of variance swap in (12) to calculate the time varying

risk premium for the variance swap. Following Todorov (2010), we define the variance swap

risk premium as the difference between the expectations under the two measures,

V Rτ (t) = EP[VSt,T |Ft]− EQ[VSt,T |Ft] (13)

where τ = T − t, and EP[VSt,T |Ft] and EQ[VSt,T |Ft] are calculated using the parameters

values under the two measures and reported in Table 3 together with filtered values of vt

and λt. Figure 8 plots the risk premium associated with the one month variance swap. Since

the risk premium is also an affine function of the state variables, the risk premium will jump

whenever the state variables jump. Using high frequency data to identify realized stock

return jumps, Todorov (2010) finds the decay speed of variance swap premium is abnormally

high after realized jumps. In our two factor specification, we confirm this observation.
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The risk premium and the percentage contribution from the jump intensity shot up at the

beginning of the sub-prime crisis. The percentage contribution from the jump intensity to

the risk premium decays slowly after this initiate shock till the Greek debt crisis in 2010.

Since the percentage contribution from the jump intensity decays after jumps, we expect a

faster decay speed for the jump intensity than that for the stochastic variance, κλ > κv,

which is consistent with the parameters estimates reported in Table 3.

An interesting observation to note by comparing Figure 8 with Figures 6 and 7 is that

the proportion of risk premium due to jump is much bigger than jump’s contribution to

the total variance. This means investors pay a higher risk premium for the same amount

of variance that produced by jumps. As shown by Bakshi and Madan (2006), risk premium

for variance comes from higher moments. For each unit of variance produced from jump,

the corresponding skewness and kurtosis associated with jumps are much higher than those

associated with the diffusion process, and hence the risk premium paid for each unit of jump

is much higher. In the sub-prime crisis, jumps only account for 40% of the variance, but in

terms of risk premium for variance swap, over 90% of the premium is due to jumps.

5 Conclusions

We proposed a stochastic variance with self exciting jump (SVSEJ) model for explaining

the time varying risk premium of variance swap based on premium embedded in short term

maturity option prices. Instead of using option prices directly, we track the cumulants

implied by options to distinguish the different roles played by stochastic variance and self

exciting jump. It is shown that the stochastic variance is able to fit market dynamics very

well in the normal period and accounts for most of the time varying risk premium. However,

in the crisis period, the market behaves very differently. The high skewness under Q measure

implied in the prices of short term maturity options can only be explained by jumps with

high jump intensity.
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To cater for both calm or crisis periods, we use a Poisson process to capture rare jump

events that act as the turning points from calm to crisis periods. Such an assumption is

based on what we observe in the history of stock markets. Jumps is triggered by abrupt big

movements in the stock return, and also characterised by the very skewed implied volatility

surface. The self exciting jump in our model explains well the high skewness triggered by a

negative stock return jump at the start of the crisis period. We introduce another diffusion

term in the jump intensity to describe the big fluctuation of jump intensity in the aftermath

reflecting investor’s uncertainty about future jumps. A mean reverting term (together with

some other conditions)13 guarantees the stationarity of the process, ensuring the market

pricing dynamics will revert back to the normal condition eventually. The estimation of the

model shows that the reverting speeds of the stochastic variance and the self exciting jump

are different under both measures, resulting in different risk premium between calm and

crisis periods.

In this study, we only focus on the risk premium of options with two and three months

to maturity because we do not have liquid data for long maturity options. It is possible that

we may need extra factors to explain prices of options with medium and long maturities. For

example, the long run mean of the stochastic variance at long maturity implied by our model

is a constant, while we can see big changes day by day of the ATM implied volatility of long

maturity options. A stochastic long run mean might be a potential third factor if one wants

to include prices of long maturity options in the calibration. Other possible improvements

concern the particle filter method, especially the sampling of jumps in the prediction step.

One could also consider the use of parallel computing to speed up the EM algorithm.

13The technical condition required here is κλ > 0 or κλ > (1− p)η .
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Appendix

A. Solution of PIDE for Moment Generating Function

We derive the solution form for the moment generating function in equation (3), which has

the following form,

G(ω, xt, vt, λt, t, T ) = eωxt+A(ω,t,T )+B(ω,t,T )vt+C(ω,t,T )λt (14)

Given the initial condition at time T thatG(ω, xT , VT , λT , T, T ) = exTω, we haveA(ω, T, T ) =

0, B(ω, T, T ) = 0, and C(ω, T, T ) = 0. Substitute this solution form into equation (3), we

have

−1

2
vtω − λtE[eJ − 1]ω +

1

2
vtω

2 + κ(θ − vt)B(ω, t, T ) +
1

2
σ2vtB(ω, t, T )2

+ρσvtωB(ω, t, T ) + κλ(θλ − λt)C(ω, t, T ) + λt

ˆ
R×R+

(eJω+1J<0JλC(ω,t,T ) − 1)ν(dJ, dJλ)

= −∂A(ω, t, T )

∂t
− ∂B(ω, t, T )

∂t
vt −

∂C(ω, t, T )

∂t
λt

Regroup the equation with respect to the state variables vt and λt,

0 = (−1

2
ω + ω2 − κB(ω, t, T ) +

1

2
σ2B(ω, t, T )2 + ρσωB(ω, t, T ) +

∂B(ω, t, T )

∂t
)vt

+(−E[eJ − 1]ω − κλC(ω, t, T ) +

ˆ
R×R+

(eJω+1J<0JλC(ω,t,T ) − 1)ν(dJ, dJλ)

+
∂C(ω, t, T )

∂t
)λt + κvθvB(ω, t, T ) + κλθλC(ω, t, T ) +

∂A(ω, t, T )

∂t

Since vt and λt are stochastic and not identical, to let the RHS always equals to zero, we

have
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∂A(ω, t, T )

∂t
= −κvθvB(ω, t, T )− κλθλC(ω, t, T ) (15)

∂B(ω, t, T )

∂t
=

1

2
(ω − ω2) + (κ− ρσω)B(ω, t, T )− 1

2
σ2B(ω, t, T )2 (16)

∂C(ω, t, T )

∂t
= κλC(ω, t, T ) + E[eJx − 1]ω

−
ˆ

(eJxω+1Jx<0JλC(ω,t,T ) − 1)ν(dJx, dJλ) (17)

Therefore, the PIDE is decomposed as a set of ODEs. The second nonlinear ODE (16)

is known as the Riccati differential equation, which has analytical solution, while the third

ODE (17), which corresponds to the self exciting jump intensity, has no analytical solution

and has to be solved numerically.14

B. Price of Log Contract and Variance Swap

The relationship between moment generating function and log contract is given by,

E[lnFT |Ft] =
∂G(ω, xt, vt, λt, t, T )

∂ω
|ω=0

= lnFt +
∂A(ω, t, T )

∂ω
|ω=0 +

∂B(ω, t, T )

∂ω
|ω=0vt +

∂C(ω, t, T )

∂ω
|ω=0λt (18)

Taking derivative with respect to ω on equations (15), (16), and (17), we have,
14The numerical method used here is the Runge-Kutta solver.
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∂2A(ω, t, T )

∂t∂ω
|ω=0 = −κvθv

∂B(ω, t, T )

∂ω
|ω=0 − κλθλ

∂C(ω, t, T )

∂ω
|ω=0

∂2B(ω, t, T )

∂t∂ω
|ω=0 =

1

2
− ρσB(0, t, T ) + κ

∂B(ω, t, T )

∂ω
|ω=0 − σ2B(0, t, T )

∂B(ω, t, T )

∂ω
|ω=0

∂2C(ω, t, T )

∂t∂ω
|ω=0 = κλ

∂C(ω, t, T )

∂ω
|ω=0 + E[eJx − 1]

−
ˆ
R×R+

(Jx + 1Jx<0Jλ
∂C(ω, t, T )

∂ω
|ω=0)e1Jx<0JλC(0,t,T )ν(dJx, dJλ)

Given the initial conditions A(ω, T, T ) = 0, B(ω, T, T ) = 0, and C(ω, T, T ) = 0, we have

A(0, t, T ), B(0, t, T ), and C(0, t, T ) are all equal to zero, which simplify the above ODE set

as,

∂2A(ω, t, T )

∂t∂ω
|ω=0 = −κvθv

∂B(ω, t, T )

∂ω
|ω=0 − κλθλ

∂C(ω, t, T )

∂ω
|ω=0

∂2B(ω, t, T )

∂t∂ω
|ω=0 =

1

2
+ κv

∂B(ω, t, T )

∂ω
|ω=0

∂2C(ω, t, T )

∂t∂ω
|ω=0 = κλ

∂C(ω, t, T )

∂ω
|ω=0 + E[eJx − 1]

−
ˆ
R×R+

(Jx + 1Jx<0Jλ
∂C(ω, t, T )

∂ω
|ω=0)ν(dJx, dJλ)

Taking integral with respect to t and using the initial conditions, we have,

∂A(ω, t, T )

∂ω
|ω=0 =

1− (T − t)κv − e−κv(T−t)

2κv
θv + ϑ

1− (T − t)κλ − e−κλ(T−t)

κ2
λ

κλθλ

∂B(ω, t, T )

∂ω
|ω=0 =

e−κv(T−t) − 1

2κv
∂C(ω, t, T )

∂ω
|ω=0 = ξ

e−κλ(T−t) − 1

κλ

where κλ = κλ−P (J < 0)η and ξ = E[eJx−1−Jx]. Substituting above results into equation

(18), the price of log contract is given by,
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E[lnFT |Ft] = lnFt −
1

2
(T − t)θv −

1− e−κv(T−t)

2κv
(vt − θv)

−ξ(T − t)ϑλ − ξ
1− e−κλ(T−t)

κλ
(λt − ϑλ) (19)

where ϑλ = κλ
κλ
θλ is the long run mean of the jump intensity. Using the relationship between

log contract and variance swap (see Carr and Wu (2009)),

E[lnFT |Ft] = lnFt −
1

2
E[V St,T |Ft] +

ˆ T

t

ˆ
R×R+

(eJx − 1− Jx −
J2
x

2
)ν(dJx, dt)

Noticing that ξ = E[eJx−1−Jx] = E[J
2
x

2
] +E[eJx−1−Jx− J2

x

2
] and using the assumption

that jump timing and size are independent, we substitute above relationship into equation

(19) to have,

E[VSt,T |Ft] = (T − t)(θv + E[J2
x ]ϑλ) +

1− e−κv(T−t)

κv
(vt − θv)

+E[J2
x ]

1− e−κλ(T−t)

κλ
(λt − ϑλ) (20)

We can see from equation (20) that over the time interval from t to T , as the contribution

to the variance, diffusion and jump parts have the same functional form in terms of their

mean reversion rate and long run mean, except that the variance from jumps is scaled by

E[J2
x ], which is the variance for each jump. So using variance swap prices alone is not enough

to separate the two state variables in our model.

For the second and third cumulants we tracked in the estimation, we follow the same

procedure and derive the close form by using Wolfram Mathematica,
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∂2A(ω, t, T )

∂ω2
|ω=0 =

e−2(T−t)κv

8κ3
v

θv((1 + 4e(T−t)κv − 5e2(T−t)κv)σ2 (21)

+ 2e(T−t)κv(8(−1 + e(T−t)κv)ρσ

+ (2 + e(T−t)κv)(T − t)σ2)κv + 8e2(T−t)κv(T − t)κ3
v

− 8e(T−t)κv(−1 + (T − t)ρσ + e(T−t)κv(1 + (T − t)ρσ))κ2
v)

+
e−2(T−t)κλ

κ3
λ

ϑ(e(T−t)κλκ2
λ(1 + e(T−t)κλ(−1 + (T − t)κλ))J2

− (−1 + p)ηξ(η(1 + 4e(T−t)κλ(1 + (T − t)κλ)

+ e2(T−t)κλ(−5 + 2(T − t)κλ))ξ

+ 2e(T−t)κλκλ(2 + (T − t)κλ + e(T−t)κλ(−2 + (T − t)κλ))ηd))
∂2B(ω, t, T )

∂ω2
|ω=0 =

e−2(T−t)κv

4κ3
v

(−σ2 + e2(T−t)κvσ2 + 4e(T−t)κvρσκv (22)

− 2e(T−t)κv(T − t)σ2κv − 4e(T−t)κvκ2
v + 4e2(T−t)κvκ2

v

+ 4e(T−t)κv(T − t)ρσκ2
v − 4e2(T−t)κvρσκv)

∂2C(ω, t, T )

∂ω2
|ω=0 =

e−2(T−t)κλ

κ3
λ

(e(T−t)κλ(−1 + e(T−t)κλ)κ2
λJ2 (23)

− 2(−1 + p)ηξ(η(−1 + e2(T−t)κλ − 2e(T−t)κλ(T − t)κλ)ξ

+ e(T−t)κλκλ(−1 + e(T−t)κλ − (T − t)κλ)ηd))
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∂3A(ω, t, T )

∂ω3
|ω=0 = −e

−3(T−t)κv

16κ5
v

σθv(−(−1− 6e(T−t)κv (24)

−15e2(T−t)κv + 22e3(T−t)κv)σ3

+6e(T−t)κvσ((−5− 8e(T−t)κv + 13e2(T−t)κv)ρσ

+σ((1− 8e(T−t)κv + 7e2(T−t)κv)ρ

+(1 + 3e(T−t)κv + e2(T−t)κv)(T − t)σ))κv

−6e(T−t)κv(2(−1 + (T − t)ρσ)σ

+2e2(T−t)κv(12ρρσ + 5σ + 2(T − t)ρσ2

+(T − t)ρσ2)− e(T−t)κv(24ρρσ

+8σ − 12tρσσ − 4tρσ2 + (T − t)2σ3))κ2
v

+12e2(T−t)κv(−(T − t)(−4− 2e(T−t)κv + (T − t)ρσ)σ

+ρ(−8 + 8tρσ + 4e(T−t)κv(2 + (T − t)ρσ)− (T − t)2σ2))κ3
v

−24e2(T−t)κv(T − t)ρ(2 + 2e(T−t)κv − (T − t)ρσ)κ4
v)

−e
−3(T−t)κλ

κ5
λ

ϑ(−e2(T−t)κλκ4
λ(1 + e(T−t)κλ(−1 + (T − t)κλ))J3

−3e(T−t)κλ(−1 + p)ηκ2J2(η(1 + 4e(T−t)κλ(1 + (T − t)κλ)

+e2(T−t)κλ(−5 + 2(T − t)κλ))ξ + e(T−t)κλκλ(2 + (T − t)κλ

+e(T−t)κλ(−2 + (T − t)κλ))ηd)

+(−1 + p)ηξ(η2(−κλ(−1 + 9e(T−t)κλ + 9e2(T−t)κλ(1 + 2(T − t)κλ)

+e3(T−t)κλ(−17 + 6tκ)) + 2(−1 + p)η(1 + 6e(T−t)κλ(1 + (T − t)κλ)

+e3(T−t)κλ(−22 + 6tκ) + 3e2(T−t)κλ(5 + 6tκ+ 2(T − t)2κ2
λ)))ξ

2

−3e(T−t)κληκ(κλ(1 + 4e(T−t)κλ(1 + (T − t)κλ)

+e2(T−t)κλ(−5 + 2(T − t)κλ))

+ [· · · ]
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[· · · ] = −2(−1 + p)η(2 + (T − t)κλ + 2e(T−t)κλ(2 + (T − t)κλ)2

+e2(T−t)κλ(−10 + 3(T − t)κλ)))ξηd

−3e2(T−t)κλκ2
λ(−(−1 + p)η(6 + 4tκ+ (T − t)2κ2

λ

+2e(T−t)κλ(−3 + (T − t)κλ))

+2κ(2 + (T − t)κλ + e(T−t)κλ(−2 + (T − t)κλ)))η2
d))

∂3B(ω, t, T )

∂ω3
|ω=0 =

3e−3(T−t)κv

16κ5
v

σ(−(−1− 2e(T−t)κv + e2(T−t)κv (25)

+2e3(T−t)κv)σ3

+2e(T−t)κvσ(4(−2 + e(T−t)κv + e2(T−t)κv)ρσ

+σ(2(−1 + e(T−t)κv)2ρ+ (2 + e(T−t)κv)(T − t)σ))κv

−2e(T−t)κv(4(−1 + (T − t)ρσ)σ + 4e2(T−t)κv(2ρρσ + σ)

−e(T−t)κv(8ρρσ − 8tρσσ + (T − t)2σ3))κ2
v

+4e2(T−t)κv((T − t)(4− (T − t)ρσ)σ

+ρ(−4 + 4e(T−t)κv + 4tρσ − (T − t)2σ2))κ3
v

+8e2(T−t)κv(T − t)ρ(−2 + (T − t)ρσ)κ4
v)
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∂3C(ω, t, T )

∂ω3
|ω=0 =

e−3(T−t)κλ

κ5
λ

(e2(T−t)κλ(−1 + e(T−t)κλ)κ4
λJ3 (26)

+ 3e(T−t)κλ(−1 + p)ηκ2J2(2η(−1 + e2(T−t)κλ

− 2e(T−t)κλ(T − t)κλ)ξ

+ e(T−t)κλκλ(−1 + e(T−t)κλ − (T − t)κλ)ηd)

− 3(−1 + p)ηξ(η2(κλ(−1 + 6e(T−t)κλ − 2e3(T−t)κλ

+ e2(T−t)κλ(−3 + 6(T − t)κ))

+ 2(−1 + p)η(−1 + 2e3(T−t)κλ − 2e(T−t)κλ(1 + 2(T − t)κλ)

+ e2(T−t)κλ(1− 2(T − t)κλ − 2(T − t)2κ2
λ)))ξ

2

− 2e(T−t)κληκ(−κλ(1− e2(T−t)κλ + 2e(T−t)κλ(T − t)κλ)

− (−1 + p)η(−3 + 3e2(T−t)κλ − 2(T − t)κλ

− 2e(T−t)κλ(T − t)κλ(2 + (T − t)κλ)))ξηd

− e2(T−t)κλκ2
λ(−2κ(1− e(T−t)κλ + (T − t)κλ)

− (−1 + p)η(−2 + 2e(T−t)κλ − 2(T − t)κλ − (T − t)2κ2
λ))η

2
d))

where J2 = E[J2
x ] and J3 = E[J3

x ].

C. Cumulants derived from Option Prices

As shown in Carr and Madan (2002), for any twice differentiable function f(FT ) of the final

future price FT ,

f(FT ) = f(Ft) + f ′(Ft)(FT − Ft)

+

ˆ Ft

0

f ′′(K)(K − FT )+dK +

ˆ ∞
Ft

f ′′(K)(FT −K)+dK
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Let f(·) =
(
ln ·

Ft

)i
, where i denotes moment order, and taking expectation on both sides,

we can calculate the ith moment of the log return,

E[f(FT )] +

ˆ Ft

0

f ′′(K)P (K)dK +

ˆ ∞
Ft

f ′′(K)C(K)dK (27)

where C(K) and P (K) are option prices at strike price K without discounting. So, for the

first three moments of
(
lnFT

Ft

)
, we have,

M1 = −
ˆ Ft

0

1

K2
P (K)dK −

ˆ ∞
Ft

1

K2
C(K)dK

M2 =

ˆ Ft

0

2

K2

(
1− ln

K

Ft

)
P (K)dK +

ˆ ∞
Ft

(
1− ln

K

Ft

)
C(K)dK

M3 =

ˆ Ft

0

3

K2

(
2 ln

K

Ft
− ln2 K

Ft

)
P (K)dK +

ˆ ∞
Ft

3

K2

(
2 ln

K

Ft
− ln2 K

Ft

)
C(K)dK

To convert moments to cumulants, we have, option implied cumulants

κ∗1 = M1

κ∗2 = M2 −M2
1

κ∗3 = M3 − 3M2M1 + 2M3
1
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