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Abstract 
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assets.  Out-of-sample forecast tests indicate that the four-regime MS model is, indeed, superior to 
all of the GARCH specifications in forecasting returns in each asset class, but is inferior in 
forecasting return variances.  For the purpose of forecasting inter-asset return covariances, 
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Introduction 

A growing consensus that listed real estate investment trusts (REITs) provide investors exposure 
to the returns of the underlying real estate asset class4 has renewed interest in the investment 
return characteristics of REITs, and particularly in how they interact in a mixed-asset portfolio 
with non-REIT equities and other financial assets such as bonds.5 

In this paper the authors investigate whether the fairly simple four-regime Markov switching 
(henceforth MS) structure identified by Case, Guidolin and Yildirim [2013, henceforth CGY] 
remains successful in out-of-sample (OOS) validation tests.  In particular, we use their multivariate 
multistate MS framework to make recursive, pseudo OOS forecasts of the transitions among the 
four regimes identified and of the moments of the return distribution conditional on the predicted 
regime probabilities.  In the limit, the exercise is extended to encompass the entire multivariate, 
joint density of asset returns.  We compare the forecasting performance of the four-regime MS 
model by comparing its forecasts with similarly recursive pseudo OOS forecasts of moments and 
densities generated by several promising GARCH specifications for the returns of the REIT, stock, 
and bond asset classes. 

The issue of whether and how it may be possible to accurately predict REIT returns as well as the 
association—under some conditions, their multivariate correlations—among REIT, stock and bond 
returns is obviously relevant both to academics and to practitioners alike.  In particular, students of 
real estate finance have been facing the progressive development of increasingly sophisticated 
(multivariate) time series models used to better understand the dynamics of real estate valuations 
and especially to forecast such valuations, often in critical times (such as the recent 2008-2009 
financial crisis preceded by and concurrent with a real estate bust of historical proportions). In this 
paper, we therefore tackle a critical question that many scholars and practitioners must have asked 
themselves as well as colleagues: do such complex time series frameworks offer concrete 
predictive benefits, and when? Although a number of related papers exist, we are not aware of this 
question having been researched before.  Importantly, our key findings are often obtained using 
testing methodologies—particularly in the case of predictive density tests—that are also quite 
novel and complicated. Yet, our baseline back-testing design appears to fit common practice with 

                                                     
4 See Hoesli and Oikarinen [2012]; Stefek and Suryanarayanan [2012]; Boudry et al. [2012]; Oikarinen et al. 
[2011]; Yunus et al. [2012]; Lee and Chiang [2010]; Chiang [2009]; Li et al. [2009]; Morawski et al. [2008]; 
and Lee et al. [2008]. 
5 See Chaves et al. [2011]; Berkelaar and Kouwenberg [2010]; Fischer et al. [2010]; Fugazza et al. [2008, 
2009, 2012]; Lee [2010]; Sa-Aadu et al. [2010]; Amenc et al. [2009]; Dulguerov [2009]; MacKinnon and Al 
Zaman [2009]. 
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trading and risk management desks, while our main empirical findings are easy to review and 
summarize. 

In-sample evidence shows that even rather complex ARCH-type models (e.g., a BEKK GARCH(1,1) 
with Student t innovations) fails to fit the evidence of deviations from the null hypothesis of zero 
skewness and of tails with a thickness consistent with the assumptions on the distribution of the 
model innovations (e.g., identical to the normal distribution).  We therefore fit to the vector of 
REIT, stock, and bond returns a four-state heteroskedastic MS model similar to the one already 
employed by CGY [2013] on a shorter sample. On the one hand, the regime switching model gives 
rather intriguing results.  For instance, while two highly persistent regimes (the “REIT premium” 
and “normal” bull market states) describe the behavior of the U.S. financial market during almost 
80% of the sample period, two other interesting states exist—an “investor’s dream” and a 
"nightmare" regime—that appear to frequently “communicate”, in the sense that with a non-trivial 
probability markets switch from one to the other state. 

However, there is no clear-cut evidence that any of the most promising multivariate time series 
models estimated in this paper dominates the others in terms of in-sample evidence.  For instance, 
different information criteria give varying indications as to the best fitting GARCH-type model.  
While the maximized log-likelihood suggests that the four-state MS model better fits the historical 
returns than any of the single-state GARCH models, information criteria suggest that this 
improvement in fit does not compensate for the increase in the number of parameters.  Moreover, 
we find evidence that the MS model may not completely account for persistence in squared 
residuals.  Yet, further diagnostic tests emphasize that only the MS model may successfully deal 
with the non-Gaussian distribution of standardized residuals. 

Because it is not clear what the trade-off may be between the ability of models to successfully fit 
the volatility clustering typical of the data and their success at reproducing the skewed and fat-
tailed (marginal) distributions of the data, from the perspective of a “user” of these models 
interested in their OOS forecasting performance, we proceed to assess the comparative 
performance of seven models recursively estimated in this paper at forecasting the means, 
variances, and covariances of asset returns.  We find that the non-linear four-state MS model 
produces more accurate forecasts than other models as far as means (i.e., point forecasts) and 
correlations are concerned.  Such superiority is stronger for short, 1-month horizons; in the case of 
correlations, we report evidence that at a 12-month horizon multivariate GARCH models are better 
than the MS model.  Diebold-Mariano tests of equal predictive accuracy confirm that in the case of 
the 1-month horizon, the differential performance in favor of the MS formulation is statistically 
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significant.  On the contrary, as one may expect given their nature and historical development, 
multivariate GARCH models—among them, in particular a simple constant conditional correlation 
framework—perform better than the MS model does.  

Finally, we also investigate the use of the competing models to predict the entire density of asset 
returns in OOS tests.  This has become increasingly important to risk and money managers in the 
aftermath of the 2008-2009 financial crisis, when considerable time variation in higher order 
moments, such as skewness and kurtosis, was found to contribute to poor performance by many 
risk management systems.  We find that none of the models appears to have correctly predicted the 
subsequent distribution of asset returns: in a real time exercise and for all models, we have 
indications that some characteristics of the return densities for each asset class have been 
predicted incorrectly.  Nevertheless, the density forecast tests offer some support for the claim that 
the MS model or any of the GARCH models—especially the CCC specification—represent the best 
approach to forecast REIT and stock return densities; multivariate GARCH models, however, 
appear to be superior for predicting bond densities. 

Literature Review 

One strand of literature recognizes that taking into account the term structure of asset volatilities 
and correlations can lead to important differences in portfolio construction for short-horizon vs. 
long-horizon investors when asset returns are predictable.  Rehring and Sebastian [2011] use 
vector autoregression (VAR) linear models to estimate the term structure of volatilities for direct 
real estate and listed REITs in the U.S. and U.K., as well as the term structure of direct-REIT 
correlations in each country.  Rehring [2012] presents a similar analysis for direct real estate, 
stocks, bonds, and Treasury bills in the U.K. 

The development of autoregressive conditional heteroskedasticity (ARCH) models has encouraged 
a blossoming of research into dynamic asset volatilities and, more recently, dynamic inter-asset 
correlations.  In one notable example, Ward [2008] developed a Bayesian approach to estimating a 
GARCH model of dynamic REIT volatility and documented superior performance relative to the 
standard maximum likelihood GARCH model, a result that Ward attributed in part to the 
incorporation of parameter restrictions in the Bayesian estimation. 

Chong et al. [2009] employed the dynamic conditional correlation GARCH model (Engle [2002]) to 
evaluate the dynamic volatilities of U.S. REITs, commodities, eight equity benchmarks, and six fixed 
income benchmarks, as well as the dynamic correlations of REITs with each of the other 
benchmarks.  The authors confirmed that correlations tend to rise during periods of increased 
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return volatility, but also that correlations between REITs and U.S. government bonds decline 
during periods of increased interest rate volatility. 

Wu et al. [2010] estimated a dynamic conditional correlation bivariate threshold GARCH model 
(Engle [2002]) to evaluate conditional REIT beta, finding that U.S. REITs exhibited defensive 
properties during 2005-2009 such that investors would benefit from increased holdings during 
market declines.  On the other hand, Yang et al. [2012] employed the multivariate asymmetric 
generalized dynamic conditional correlation GARCH model developed by Cappiello et al. [2006] to 
estimate dynamic volatilities of and correlations among U.S. stocks, bonds, REITs, and commercial 
mortgage-backed securities (CMBS) during 1999-2008 and found evidence of an asymmetric REIT-
stock correlation, suggesting reduced hedging effectiveness for REITs against the stock market 
decline. 

Fei et al. [2010] also employed Cappiello et al.’s [2006] AG-DCC framework to model REIT volatility 
as well as REIT correlations with both stocks and house prices (as measured by the S&P/Case-
Shiller Home Price Indices).  Fei et al. found that the REIT-stock correlation was related positively 
to the contemporaneous credit spread, negatively to the contemporaneous term spread, and 
positively to the lagged unemployment rate.  They also found that expected REIT returns tended to 
be higher during months when conditional REIT-stock correlations were the lowest, and lower 
when conditional correlations were higher. 

Peng and Schulz [2012] employed several versions of the DCC model to evaluate volatilities and 
correlations among REITs, stocks, and bonds in eight countries.  Peng and Schulz used OOS tests to 
show economic trading benefits, as well as superior accuracy in risk estimation arising from the 
dynamic models when compared to static volatility and correlation estimates. 

Case, Guidolin and Yildirim [2013] showed that the dynamic time series properties of asset returns 
may be more successfully described using MS formulations than even quite complex formulations 
of autoregressive conditional heteroskedastic (ARCH) models, especially when returns are 
modeled jointly in a trivariate framework.  In particular, CGY found that a fairly simple model with 
four regimes—a “typical” state with normal equity returns and relatively low volatilities for stocks 
and REITs along with relatively low bond returns; a “REIT-premium” state with much higher 
returns for REITs than for non-REIT stocks and relatively high returns for bonds; an “investor’s 
dream” state with spectacularly high returns for all three asset classes; and an “investor’s 
nightmare” state with spectacularly low returns—provided a better fit than conditional correlation 
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GARCH models.  The analysis was, however, limited to the characterization of historically realized 
returns, i.e., it was performed only in-sample. 

However, a considerable literature in applied econometrics and finance has often doubted of the 
actual value of multi-state, Markov switching models in forecasting applications.  As discussed in 
Guidolin [2012], all dynamic time series models are as good as their forecasting performance is.  In 
fact, there is no guarantee that a model that fits historical data well will also perform well in OOS 
tests, for three reasons.  First, the extensive search for more complicated models using the same (or 
similar) data set(s) may suffer from a so-called “data-snooping bias,” as pointed out by Lo and 
MacKinlay [1989].  Certainly, most of the real estate finance literature has focused on rather similar 
data from U.S. financial markets.  Second, large, richly parameterized models may contain an 
excessive number of parameters and inevitably exhibit excessive sampling variation in parameter 
estimates, which in turn may adversely affect their OOS performance.  Third, a model that fits a 
historical data set well may not forecast the future well because of unforeseen structural changes in 
the process of asset returns (see the discussion in Dacco and Satchell [1999]).  In the case of MS 
models this may derive from misspecification of the number of regimes.  From both practical and 
theoretical standpoints, then, in-sample analysis alone is not adequate and it is necessary to 
examine the OOS predictive ability of nonlinear models, which is the goal of our paper. 

Data 

Our primary focus is the real estate equity asset class, for which we use monthly total returns for 
listed equity real estate investment trusts (REITs) in the U.S. as measured by the FTSE NAREIT All 
Equity REIT Index.  We also investigate total returns in the stock and bond asset classes using 
monthly data for the CRSP NYSE/AMEX/NASDAQ Value-Weighted Market Index and the CRSP U.S. 
Treasury 10-Year Bond Index.  The risk-free rate is represented by the CRSP 30-Day Treasury Bill 
Returns series.  Our data span the historical period January 1972 – December 2010 for which REIT 
returns were available. 

Table 1 displays summary statistics for all three asset classes for the full historical sample.  
Research by Case, Yang and Yildiray [2012] and others establishes that a “modern REIT era” began 
in late 1991, so Table 1 also shows summary statistics for the pre-modern era (January 1972 – 
December 1991) and the modern era (January 1992 – December 2010).  Over each of the three 
periods, REITs provided the highest arithmetic average returns at 1.104 percent per month during 
the pre-modern era, 1.050 percent per month during the modern era, and 1.078 percent per month 
over the full historical period.  Returns of non-REIT stocks were comparable during the pre-
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modern era (1.060 percent per month) but considerably lower during the modern era (0.736 
percent per month) and averaged 0.889 percent per month over the full historical period.  Bond 
returns, too, were higher during the pre-modern era (0.769 percent per month) than during the 
modern era through 2010 (0.552 percent per month). 

The standard deviation of monthly returns indicates that REITs were less volatile than stocks 
during the pre-modern era (4.144 percent vs 4.867 percent), and therefore provided stronger risk-
adjusted returns with a Sharpe ratio of 0.116.  During the modern era REITs were more volatile 
than stocks (5.763 percent vs 4.483 percent), but their Sharpe ratio (0.182 for REITs vs 0.164 for 
stocks) indicates that their higher mean return more than compensated for their added volatility.  
Over the full historical period REIT volatility was slightly higher than stock volatility (4.993 vs 
4.660) but, again, the stronger Sharpe ratio (0.125 vs 0.094) indicates that higher mean REIT 
returns more than compensated for their slightly larger volatility.  Bond returns showed 
exceptionally low volatility (2.061) and therefore the highest Sharpe ratio (0.268) during the 
modern era, a result that is not surprising given the dis-inflation of the early 1990s and the 
aggressively expansionary monetary policies of more recent years. 

Table 1 also shows evidence of widespread deviation from normality in returns, as shown by the 
strong rejections implied by the Jarque-Bera test (the p-values are essentially zero across all assets 
and sub-samples).  In the case of REITs, this is mostly due to their high excess kurtosis, while in the 
case of stocks and bonds the rejection of normality is equally imputable to their asymmetry (i.e., 
non-zero skewness) as to their thick tails.  As is well known, modeling regimes in the distribution 
of asset returns represents a parsimonious and straightforward way to capture asymmetries and 
fat tails, which we shall pursue in what follows.  Finally, while there is widespread evidence across 
asset classes and sub-samples that returns are characterized by volatility clustering, as shown by 
the high and statistically significant serial correlation (as tested through a Ljung-Box test with 12 
lags) in squared stock returns, there are indications of non-zero serial correlation in levels of 
returns only for REIT and 1-month T-bills. Of course, volatility clustering is easily reproduced and 
predicted through the use of ARCH-type models, but rich multi-state switching models also offer 
chances to fit this feature of the data. 

Methodology 

The core of our analysis consists of generating a sequence of recursive pseudo OOS forecasts under 
alternative assumptions that we use to evaluate the performance of each model specification in 
terms of forecasting state-specific conditional asset return moments (means, variance, and 
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covariances) as well as densities.  For each model specification, we first use the data through 
January 1990 to forecast the total mean return and variance for each asset, plus the covariance 
between each pair of assets, for February 1990 (one month ahead) through January 1995 (60 
months ahead).  We then expand our sample by one month, using data through February 1990 to 
forecast for March 1990 through February 1995.  We proceed recursively in this fashion until we 
exhaust the data sample. 

We evaluate each model using four measures of forecast accuracy—their root mean squared error 
(RMSE), forecast error variance, mean absolute error (MAE), and bias—relative to the historically 
realized sample estimates of moments of functions of returns (total returns, squared returns, and 
cross-products) over each forecast horizon.  We next apply Diebold-Mariano tests to evaluate on a 
pairwise basis which model provided the superior forecast of each moment in terms of squared or 
absolute loss.  Finally, we use a range of tests to evaluate the performance of each model in 
forecasting return densities.  Details on each of these tests will be provided within each 
corresponding section to keep the paper compact. 

As for the specific models under consideration, we investigate the forecasting performance of six 
multivariate specifications employed by CGY [2013].  We refer readers to that paper for details of 
model estimation; here we review only a few essential aspects of model structure.  Our benchmark 
is a single-state Gaussian IID random walk for asset prices—that is, a representation of the no-
predictability benchmark in finance: 

tt εµ 2/1Ω+=r      [1] 

with tε  NID(0, I3), where 3 is the number of assets under consideration and 1/2 is a 3 x 3 
Choleski factorization for the covariance matrix of returns, i.e., (1/2)(1/2)’ =   Var[rtrt’].  We 
add components to this baseline specification that earlier work has suggested may improve in-
sample fit.  First, we estimate a single-state homoskedastic Gaussian VAR(1):6 

ttt Σεµ ++= −1rΦr     [2] 

Next, we estimate two versions of the diagonal BEKK GARCH(1,1) model of Engle and Kroner 
[1995], specifying first a Gaussian and then a Student’s t distribution for the innovations.  Denoting 
the one-step-ahead conditional mean vector and covariance matrix of rt by ][11| tttt E rμ −− ≡  and 

][11| tttt Var rΩ −− ≡ , respectively, the model may be written as 

                                                     
6 Similarly to CGY [2013], increasing the number of lags in the VAR has been considered, but the null 
hypothesis of p = 1 was never formally rejected in favor of more lags. 
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                                                  ),( IID ~            3
2/1
1|1| I0εεΩμr Gttttttt −− += ,   [3] 

where tε  denotes a vector white noise process with unit variances and ),( 3I0G  refers to a generic 
standardized distribution, here either a multivariate normal or a multivariate t-Student.  In the case 
of a simple diagonal BEKK GARCH(1,1) model, we have 

                                                  BBΩAεεAΨΩ 2|1111| ')'ˆˆ( −−−−− ++= tttttt ,   [4] 

in which A and B are diagonal matrices.  We also estimated the constant conditional correlation 
(CCC) GARCH model developed by Bollerslev [1990], as well as the dynamic conditional correlation 
(DCC) GARCH generalization introduced by Engle [2002].  Specifically, let 1| −ttD  denote the N×N 
diagonal matrix with the conditional standard deviations, or the square root of the diagonal 
elements in 1| −ttΩ  along the diagonal.  The conditional covariance matrix may then be uniquely 
expressed in terms of the decomposition 

                                                              1|1|1|1| −−−− = tttttttt DΓDΩ ,    [5] 

where 1| −ttD  denotes the 3×3 matrix of conditional correlations.  Of course, this decomposition 
does not result in any immediate simplifications from a modeling perspective, as the conditional 
correlation matrix must now be estimated.  However, following Bollerslev [1990] and assuming 
that the temporal variation in the covariances is driven solely by the temporal variation in the 
corresponding conditional standard deviations, so that the conditional correlations are constant, 

ΓΓ =−1|tt , dramatically reduces the number of parameters in [5].7 

While the assumption of constant conditional correlations may often be a reasonable simplification 
over shorter time periods, it is arguably too simplistic in many situations of practical interest.  To 
circumvent this, while retaining the key features of the decomposition 1|1|1|1| −−−− = tttttttt DΓDΩ , Engle 
[2002] developed the Dynamic Conditional Correlation (DCC) model in which the temporal 
variation in the conditional correlation is characterized by a simple scalar GARCH(1,1) model, with 
the covariance matrix for the standardized residuals targeted at their unconditional value: 

2|1111| )'ˆˆ()1( −−−−− ++−−= tttttt QuuQQ βαβα ,  [6] 

                                                     
7 Moreover, the CCC assumption greatly simplifies the multivariate estimation problem, which may now 
proceed in two steps. In the first step N individual univariate GARCH models are estimated for each of the 
series in rt, resulting in an estimate for the diagonal matrix, 1|

ˆ
−ttD . In our paper, following much of the 

literature, we select a simple GARCH(1,1) for all the returns series. In a second step, defining the 3×1 vector 
of standardized residuals for each of the univariate series, )ˆ(ˆˆ 1|

1
1| −

−
− −≡ tttttt μrDu , the elements in Γ may simply 

be estimated by the corresponding sample analogue, ∑ =
−=

T

t ttT
1

1 'ˆˆˆ uuΓ . 
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where Q  is the unconditional covariance matrix of the standardized errors tttt εDu ˆˆˆ 1
1|

−
−≡  where 

1|
ˆ

−ttD  is the diagonal matrix of time t GARCH(1,1) standard deviations estimated in the first step.  
Although this recursion guarantees that the 1| −ttQ  matrices are positive definite, the individual 
elements are not necessarily between -1 and +1.  Thus, in order to arrive at an estimate for the 
conditional correlation matrix, the elements in 1| −ttQ  must be standardized, resulting in the 
following estimate for the ijth correlation: 

2/12/11|, }{}{
}{

}ˆ{ˆ
jjtiit

ijt
ijtttij QQ

Q
Γ =≡ −ρ    [7] 

Like the CCC model, the DCC model is also simple to implement in large dimensions, requiring only 
the estimation of three univariate models along with the estimation of the two exponential 
smoothing parameters, α and β.8 

Finally we estimate the four-state Markov regime switching VAR(1) specification of CGY:9 

     tStSt tt
εµ 2/1

1 ΩrΦr ++= −     [8] 

with tε  NID(0, I3). tS  =1, 2, …, K is a latent state variable driving all the matrices of parameters 
appearing in [8]. 

tSµ  is a 3x1 vector that collects the 3 regime-dependent intercepts, while the 3x3 
matrix 2/1

tSΩ  represents the factor applicable to state tS  in a state-dependent Choleski factorization 
of the variance covariance matrix, 

tSΩ .  When K > 1, alternative hidden states are possible and 
they will influence both the conditional mean and the volatility/correlation structures 
characterizing the multivariate process in [8].  These unobservable states are generated by a 
discrete-state, homogeneous, irreducible and ergodic first-order Markov chain  

{ } { }( ) ( ) ,|Pr,|Pr 1
1
1

1
1 ijtt

t
jj

t
jjt piSjSrSjS ===== −

−

=

−

=
  [9] 

where pij is the generic [ , ]i j  element of the K x K transition matrix P. 10 All these multivariate 
models, including the MS VAR in [8]-[9], are estimated by maximum likelihood (MLE).  In 

                                                     
8 As formally shown in Engle and Sheppard (2001), the parameters in the DCC model characterizing the 
dynamic dependencies in 1| −ttQ , and in turn 1| −ttΓ , may be consistently estimated in a second step by 
maximizing the partial log-likelihood function. 
9 On the basis of in-sample empirical results and a detailed model specification search, both described in CGY 
[2013], we constrain the VAR coefficients to be identical across regimes, allowing only the intercepts to be 
regime-specific. 
10 The assumption of a first-order Markov process is not restrictive, since a higher order Markov chains can 
always be re-parameterized as a higher dimensional first-order Markov chain, i.e., substitutability exists 
between the order of the Markov chain driving St and the number of regimes K. See Guidolin [2012] for 
additional details. Ergodicity implies the existence of a stationary vector of (unconditional) state 
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particular, estimation and inference in the MS VAR case are based on the EM (Expectation-
Maximization) algorithm, a filter that enables the iterative calculation of the one-step ahead 
forecast of the state vector t+1|t given the information set and the construction of the log-
likelihood function of the data.  As explained in CGY (see also the textbook treatment in Hamilton 
[1994]), standard inferential procedures and tests—such as Wald’s and those based on the 
likelihood ratio principle—are available.11 

Empirical Model Estimates 

A specific technical appendix not for publication summarizes the empirical estimates of the single-
state models that we have entertained in the paper. Here we simply recall the most important 
features of the estimations that have been performed. The estimation of a simple Gaussian VAR(1) 
model over the full historical period January 1972 – December 2010.  REIT reveals that returns are 
significantly and positively related to lagged values of stock and bond returns, while stock returns 
are positively related to lagged values of REIT returns; bond returns are related positively to their 
own lagged values and negatively to lagged REIT returns.  The constant variances for REITs 
(23.425), stocks, (21.328), and bonds (5.128) are all close to the historically realized variances 
implied by Table 1, as are constant correlations.  However, a multivariate Ljung-Box (L-B) test for 
serial correlation indicates that the model fails to account for persistence in squared residuals, 
which is to be expected given its homoskedastic nature. 

The empirical estimates for the VAR(1) diagonal BEKK GARCH(1,1) model with Gaussian shocks 
show that, as with the previous model, REIT returns are related significantly and positively to 
lagged stock and bond returns, and bond returns are related positively to their own lagged values 
and negatively to lagged REIT returns; stock returns, however, show no statistically significant 
relationship with lagged values of any of the three asset classes.  The implied unconditional mean 
returns, however, are smaller than the sample estimates for all assets.  The conditional variance 
functions indicate that persistence is strongest for bonds (the implied half-life of a shock is 25 

                                                                                                                                                                                
probabilities ξ  satisfying ξPξ '= . Irreducibility implies that ξ  > 0 meaning that all unobservable states are 
possible. 
11 The only exception concerns the number of non-zero rows of the transition matrix P, i.e. the number of 
regimes K.  In this case, even under the assumption of asymptotic normality of the estimator of the model’s 
parameter, standard tests are characterized by non-standard asymptotic distributions of the likelihood ratio 
test statistic due to the existence of nuisance parameters under the null hypothesis.  We say that these 
parameters become a nuisance to the estimation. Under any number of regimes smaller than K there are a 
few structural parameters of the unrestricted model—the elements of the transition probability matrix 
associated with the rows that correspond to disappearing states—that can take any values without 
influencing the resulting likelihood function. 
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months) and weaker for REITs (17 months) and stocks (15 months), and that implied 
unconditional standard deviations are similar to sample estimates.  This is evidence that log-
likelihood maximization favors fitting in-sample variances over mean returns.  The conditional 
covariance functions, too, indicate persistence in correlations; the implied unconditional REIT-
stock correlation is similar to the sample estimate (0.589 vs 0.581), but the implied unconditional 
REIT-bond and stock-bond correlations are slightly higher than their sample estimates. 

The maximized log-likelihood and the Akaike, Bayes-Schwartz, and Hannan-Quinn information 
criteria all suggest that the VAR(1) diagonal BEKK GARCH(1,1) model with Gaussian shocks better 
fits the historically realized data than the homoscedastic VAR(1) model does, even considering the 
increase in the required number of parameters.  Moreover, a multivariate L-B test documented in 
the appendix suggests that the model has successfully addressed serial correlation in the residuals.  
The Jarque-Bera test, however, advises that the standardized residuals from the model are not 
normally distributed, contrary to what has been assumed.  This is of course evidence of residual 
misspecifications that stem from un-modeled skewness and kurtosis dynamics in the data, 
consistent with the presence of asymmetries and thick tails in Table 1.  Interestingly, such 
econometric misspecifications also cause a failure of the model to fit key financial aspects of the 
data under investigation: the implied (monthly) Sharpe ratios are all smaller than the empirical 
ones reported in Table 1. 

Because a t-Student distribution generally helps in fitting fat-tailed return distributions (and this 
was one of the salient features of the non-normalities that have emerged above), we have also 
estimated the same VAR(1) diagonal BEKK GARCH(1,1) model with a Student’s t distribution 
specified for the innovations.  In this model REIT returns are related to lagged bond returns but not 
significantly to lagged stock returns, stock returns are related positively to lagged REIT returns, 
and bond returns are related only to their own lagged values.  Implied unconditional mean returns 
are now close to their sample estimate for REITs (1.074 vs 1.078), slightly higher for stocks (0.941 
vs 0.889), and slightly lower for bonds (0.532 vs 0.663).  Interestingly, the model implies that 
unconditional volatility is a bit less for REITs than their sample estimate (4.430 vs 4.993) but 
higher for both stocks (4.798 vs 4.660) and bonds (2.745 vs 2.311); it also implies substantially 
greater volatility persistence for bonds (the half-life of a shock climbs to 46 months), though not for 
REITs or stocks.  The estimated conditional covariance functions, too, are characterized by 
substantial persistence.  The maximized log-likelihood (2902 vs 2849), as well as the AIC, BIC, and 
HQ criteria all indicate that the specification of a Student’s t distribution for innovations provides a 
better fit of the historical data. However, it remains the case that the Sharpe ratios implied by the 
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model are often distant from the empirical ones.  In a statistical perspective, a Cramer-Von Mises 
test of the assumption that the standardized residuals have a multivariate Student-t distribution 
with the estimated degrees of freedom parameter still yields an overwhelming rejection, with a p-
value of zero. Unreported evidence shows that this occurs not only because the standardized 
residuals remain strongly asymmetrically distributed, but also because of non-zero excess kurtosis. 

In the case of the VAR(1) CCC-GARCH(1,1) and VAR(1) DCC-GARCH(1,1) estimation results, the 
conditional mean functions are the same as the ones obtained in the homoskedastic Gaussian 
VAR(1) model.12  Because the attempt to achieve a better fit of the data by resorting to a non-
normal distribution for the model’s innovations has failed to give appreciable results, the VAR(1) 
CCC and DCC models are again estimated assuming that the innovations have a multivariate normal 
distribution, in line with the bulk of the literature (see e.g., Case et al. [2012]).  In both tables, the 
models fail to provide an unequivocally superior fit to historical data according to the maximized 
log-likelihood, AIC, BIC, and HQ criteria.  For instance, the log-likelihood function fails to increase 
when one moves from the BEKK model to the CCC.  More interestingly, a richer DCC implies a lower 
optimized log-likelihood than a BEKK does.  However, when it comes to ranking models based on 
information criteria, we obtain a different perspective: the H-Q gets worse (i.e., it increases) both 
when going from a BEKK to the CCC, and when comparing the BEKK with the DCC.  This is possible 
because the DCC requires more parameters than does the BEKK.  This represents evidence in favor 
of the sample fit provided by a t-Student BEKK GARCH(1,1) model, given a common conditional 
mean function. 

In the case of REITs, the CCC model suggests slightly greater volatility persistence and an implied 
unconditional volatility (4.755) higher than the t-Student diagonal BEKK model (4.430) but lower 
than the sample estimate (4.993).  For stocks, the implied unconditional volatility from the CCC 
model (4.863) is greater than either the t-Student BEKK model (4.798) or the sample estimate 
(4.660).  The CCC-implied unconditional bond volatility (2.285) is lower than what is implied by 
the t-Student BEKK model (2.745) and slightly lower than the sample estimate (2.311).  The DCC 
model produces the highest implied unconditional volatilities for both REITs (5.189) and stocks 
(5.148) and the implied volatility for bonds (2.625) is higher than the sample estimate (2.311) 
though not as high as that implied by the t-Student model. 

                                                     
12 This is because a quasi maximum likelihood estimation approach allows us to estimate the model in two 
steps: first, we estimate the conditional mean (autoregressive parameters) by OLS; second, conditioning on 
the first-step estimates, we estimate the models for conditional variances and covariances. 



14 

Table 2 summarizes the empirical estimates for the four-state VAR(1) homoskedastic Markov 
regime switching model.  Relative to the model estimated by CGY [2013] on a slightly shorter 
historical time period (January 1972 – December 2008), the results show some differences that can 
generally be attributed to the addition of two years during which historically realized returns were 
extraordinarily strong for REITs and bonds but not for stocks.  Regimes 1 and 2 correspond 
roughly to the “REIT premium” and “typical” bull market states identified by CGY, but the “REIT 
premium” is actually estimated to be relatively common, with ergodic probabilities of 0.410 for 
Regime 1 and 0.379 for Regime 2, respectively; moreover, implied unconditional means are higher 
for bonds than for stocks in both states (0.783 vs 0.217 in Regime 1, and 0.729 vs 0.636 in Regime 
2), and more attractive for bonds than for REITs (0.660) in Regime 2.  Implied unconditional 
volatility is sharply lower for REITs than for stocks in Regime 2 (2.600 vs 3.581) and only slightly 
higher in Regime 1 (4.815 vs 4.798), so that implied unconditional Sharpe ratios are higher for 
REITs in both states (0.092 vs <0 in Regime 1 and 0.060 vs 0.037 in Regime 2).  Regime-conditional 
correlations, however, are similar to those estimated by CGY and all larger in Regime 2 than in 
Regime 1 (0.654 vs 0.454 for REITs with stocks, 0.410 vs -0.132 for REITs with bonds, and 0.493 vs 
-0.215 for stocks with bonds). 

As in CGY, Regime 3 can be characterized as an “investor’s dream” state with spectacularly high 
implied (unconditional) regime-specific mean returns (3.764 percent per month for REITs, 2.904 
for stocks, and 3.028 for bonds) and moderately low implied unconditional volatilities (3.478, 
3.720, and 3.212 respectively), resulting in spectacularly strong implied unconditional Sharpe 
ratios (0.936 for REITs, 0.644 for stocks, and 0.784 for bonds).  Implied unconditional correlations, 
too, are low at 0.291 for REITs with stocks, 0.002 for REITs with bonds, and 0.258 for stocks with 
bonds, which implies strong hedging opportunities specific to this regime.  Finally, Regime 4 can be 
characterized as an “investor’s nightmare” state with spectacularly low mean returns (especially 
for REITs), high volatilities (especially for REITs, 15.713 percent per month), and a high REIT-stock 
correlation (0.810).  Indeed, the implied unconditional mean returns (-6.894 percent per month for 
REITs, -4.367 for stocks, and -2.198 for bonds) are even more severe than estimated by CGY, 
presumably because their historical period through the end of 2008 did not include the early-2009 
months of the financial crisis. 

Figure 1 depicts the smoothed state probabilities for all four regimes.  As the figure indicates, what 
used to be considered the “normal” bull market prevailed during three-quarters of the 265 months 
from August 1975 through August 1997, interrupted by only four months of “nightmare” (October 
1979, March 1980, and October-November 1987), a four-month stretch identified only marginally 



15 

as the “REIT premium” state (June-September 1979), and repeated short bursts of the “dream” 
state.  Starting in September 1997, however, the “REIT premium” state has been the norm, 
prevailing in 137 of 160 (more than 85 percent) of months.  Both the “normal” state and the 
“investor’s dream” have been comparatively rare since the long “REIT premium” stretch began: the 
“normal” state has prevailed only during February-March 2003 and December 2003-February 
2004—and in those episodes only uncertainly—while the “dream” has characterized only May-
November 2003, March 2004, and to some extent March 2009 (the initial recovery from the recent 
crisis).13  Investors were hit by acutely bear states during April 2004 and during 6 of the 7 months 
of the crisis in September 2008-April 2009. 

The estimated transition matrix shown in Table 2 indicates that the “REIT premium” state (Regime 
1) is the most persistent, with episodes lasting 43.5 months on average, and is readily entered from 
the “investor’s nightmare” state (Regime 4, with an estimated 0.180 transition probability)—as, 
indeed, appears to have occurred in May 2009.  The “normal” state (Regime 2) is less persistent, 
with episodes lasting 9 months on average, but is often accessed starting from the “investor’s 
dream” state (Regime 3, with a 0.213 transition probability).  Episodes of both the “investor’s 
dream” and the “nightmare” states tend to be short (lasting, on average, just 3.8 months for Regime 
3 and 2.3 months for Regime 4); thankfully, however, the dream is relatively likely to follow the 
nightmare with a transition probability of 0.259, while the probability of entering the extreme bear 
state is significantly different from zero only from the dream at just 0.049 (in which case perhaps it 
may be called a “post-Bacchanalian hangover”). 

The maximized log-likelihood (2903) suggests that the four-state MS model better fits the data 
than any of the single-state models, but the AIC, BIC, and HQ criteria suggest that this improvement 
in fit does not compensate for the large increase in the number of parameters to be estimated (57 
vs 24-26 parameters in the case of multivariate GARCH models).  Moreover, the multivariate Ljung-
Box test for serial correlation suggests that the MS model has not completely accounted for 
persistence in the squared residuals (although the corresponding L-B test commands a p-value 
between 5 and 10 percent only).  Interestingly, however, the Jarque-Bera test statistic indicates 
that the MS model has dealt successfully with the non-Gaussian distribution of standardized 
residuals, while each of the single-state models continued to display signs of non-normality.  It is 

                                                     
13 It is tempting to think of the near-disappearance of episodes of strong stock market returns since August 1997 
as part of the “new normal” popularized by PIMCO starting in 2009, but the “new normal” scenario fails to account 
either for the fact that weakness in stock returns seems to have begun as early as September 1997 (averaging just 
5.74 percent annualized returns through December 2010) or for the strength of REIT returns over the same 
period (11.12 percent in annualized terms). 
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not clear what the trade-off may be between the ability of models to successfully fit the volatility 
clustering in the data and their success at re-producing their skewed and fat-tailed (marginal) 
distributions.  Moreover, it remains unclear which of these features may be more promising in the 
OOS forecasting perspective that we pursue. 

Accuracy of Recursive Moment Forecasts 

While the diagnostic tests discussed in the previous section hint to the fact that the four-state 
VAR(1) Markov switching model may outperform single-state models in terms of in-sample fit over 
the our historical sample, the primary interest of this paper is to evaluate OOS forecast accuracy.  
To this end, we conducted recursive pseudo out-of-sample tests: specifically, we estimated the full 
set of parameters for each model using the realized historical data for only the period January 1972 
through January 1990, and used those parameter estimates to forecast the moments of the 
conditional joint return distribution—return means, variances, and inter-asset covariances—for 
the months from February 1990 through January 1995 (that is, one-month forecasts through 60-
month forecasts).14  We then re-estimated the parameters of each model using the updated realized 
historical data through February 1990, and used the updated parameter estimates to forecast the 
joint return moments for March 1990 through February 1995, repeating this process and 
eventually truncating the forecast period until we had finally used historical data for January 1972 
through November 2010 to forecast only December 2010. This is a rather typical and natural back-
testing, real time recursive exercise intended to tease out of the data whether any model offers 
predictive advantages. 

Mean Forecasts 

The first panel (A) of Table 3 summarizes the performance of each model in recursively forecasting 
REIT returns, with predictive accuracy measured on the basis of the root mean squared forecast 
error (RMSE), forecast error variance, MAE, and prediction bias (see Table 3 for a definition of 
these measures).  Strikingly, the four-state MS model provides very substantially superior one-
month forecasts than any of the single-state models in terms of RMSE (4.961 vs a minimum of 
5.535 for the homoskedastic VAR(1) and DCC-GARCH models), error variance (24.602 vs 30.633 for 
the same models), and MAE (3.437 vs 3.789 for the CCC-GARCH model).  The MS model was the 
only one that produced forecast returns with an upward bias, which was greater in absolute value 
(0.088) than that of the IID benchmark (0.062) as well as the homoskedastic and DCC-GARCH 
                                                     
14 In what follows, we display and discuss only the one-month and 12-month forecasts. Results for longer-horizon 
forecasts were qualitative similar to those obtained for 12-month forecasts, but are of dubious usefulness to 
portfolio and risk managers even though they are fully legitimate in a statistical dimension. 
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VAR(1) models (0.000), but less than those of the remaining GARCH models.  The MS model also 
produced the most accurate 12-month forecast according to the RMSE criterion, but 
underperformed the homoskedastic VAR(1) model, the IID benchmark, and the Gaussian diagonal 
BEKK GARCH model according to the error variance and MAE criteria; moreover, not surprisingly, 
the differences in 12-month forecast accuracy measures were not nearly as large as for one-month 
forecasts. 

An unreported figure (see the appendix) depicts the one-month REIT return forecasts produced by 
the t-Student BEKK specification, which was only marginally more successful than (and visually 
indistinguishable from) the Gaussian BEKK GARCH model, the CCC-GARCH model, and even the IID 
random walk benchmark; the graph shows that the models fail to capture essentially any of the 
sharp monthly variation in historically realized returns.  The same set of plots depicts the REIT 
returns forecast by the homoskedastic and DCC-GARCH VAR(1) specifications (utilizing the same 
conditional mean functions), which much more successfully reflect monthly swings.  Figure 2, 
however, shows that the four-state MS specification is dramatically more successful in forecasting 
monthly REIT returns.15  This is especially visible in correspondence to the dramatic swings of the 
2008-2009 crisis, but is also true during less turbulent months, e.g., March 1998 (DCC-GARCH 
forecasts a return of 0.35%, MS forecast is 1.26%, the realized return was 1.79%), December 2001 
(DCC-GARCH -0.50%, MS 1.36%, realized 2.44%), or August 2003 (DCC-GARCH -1.57%, MS -0.28%, 
realized 0.54%). 

Panel B of Table 3 shows that the outperformance of the MS model in terms of forecast accuracy is 
even more pronounced for non-REIT stock returns than for REITs: the MS model produces not 
merely a smaller RMSE (4.105 vs a minimum of 4.502 for the CCC-GARCH model), error variance 
(16.853 vs 20.222, again for the CCC-GARCH specification), and MAE (3.191 vs 3.429 for the t-
Student BEKK model), but also less bias (practically 0, i.e., no bias vs -0.168 for the homoskedastic 
VAR(1) model and the DCC-GARCH).  As panel C shows, the MS also outperforms the other models 
in forecasting one-month bond returns according to all four measures.  Moreover, panel B indicates 
that MS outperforms all of the single-state models in terms of 12-month mean stock return forecast 
accuracy according to all four measures; panel C concerning bonds, however, shows that the 
homoskedastic VAR(1) model provides better 12-month forecasts of bond returns according to the 
RMSE and error variance criteria. 

                                                     
15 Similar plots concerning 12-month forecasts have been omitted to save space. 
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In short, the four-state VAR(1) MS model produced dramatically better one-month forecasts of 
REIT, stock, and bond returns than any of the single-state models by every criterion except (for 
REIT returns only) bias; the model also performed comparatively well at 12-month return 
forecasts, especially in the stock market. This progressive improvement in the ability to forecast 
stock and bonds returns when going from the t-Student BEKK VAR(1) model, to the Gaussian DCC 
VAR(1), to the multi-state non-linear models is visible. 

Variance Forecasts 

The first panel of Table 4 summarizes the performance of each model in recursively forecasting the 
(conditional) variance of REIT returns, using the same four measures (RMSE, error variance, MAE, 
and bias) but applied to the square of realized monthly returns.  Interestingly, the four-state MS 
model produces larger forecast errors than any of the GARCH models according to the RMSE, error 
variance, and bias criteria, outperforming only the IID benchmark and the homoskedastic VAR(1) 
model (and, indeed, underperforming even those simple models in terms of bias).  The CCC-GARCH 
specification appears to have provided the most accurate one-month variance forecasts, with the 
smallest RMSE and error variance and the second smallest bias.  Only the MAE criterion suggested 
comparatively successful forecasts from the MS model, which is an indication that while the MS 
model may generally track the time-variation in squared asset returns, it has more difficulties with 
forecasting spikes in volatility, for which multivariate GARCH models are surely better designed. 

An unreported set of plots (see Appendix) depicts one-month REIT volatility forecasts produced by 
the homoskedastic Gaussian VAR(1) model, which is visually indistinguishable from the IID 
random walk benchmark.  In the plot, for simplicity the (latent) volatility is approximated by the 
square root of squared realized asset returns, i.e., by the absolute value of returns.  As the graph 
shows, the two approaches fail to capture essentially any of the sharp monthly variation in squared 
returns; the increase in REIT volatility during the 2008-2009 crisis is depicted as only a small rise 
in forecast volatility (only due to the fact that these homoskedastic models have been recursively 
re-estimated), and the subsequent sudden decline is not captured at all.  The same plots (right 
column) shows the much more successful one-month REIT volatility forecast by the four-state MS 
specification.  As Figure 3 makes clear, however, the CCC-GARCH model (only marginally better 
than, and visually indistinguishable from, the t-Student and Gaussian diagonal BEKK specifications 
and the DCC-GARCH specification) much more satisfactorily captures the very dramatic increase 
and subsequent decline of REIT volatility during and after the recent financial crisis.  It is 
somewhat interesting that a constant conditional correlation model outperforms the DCC at 
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forecasting variances; as we shall see, this is clearly not the case when one forecasts conditional 
covariances. 

The second and third panels of Table 4 show that the outperformance by the GARCH modeling 
approaches—especially, though not dramatically, the CCC formulation—also holds for forecasting 
stock and bond volatilities.  In short, while the four-state MS model with heteroskedastic 
components more successfully forecasts volatility than the simple homoskedastic VAR(1), single-
state GARCH specifications clearly outperform the four-state approach except under a MAE 
criterion.  Although this may be considered relatively unsurprising given the rudimentary structure 
of the conditional heteroskedasticity function featured by the four-state MS, such differences ought 
to be taken into account by portfolio and risk managers. 

Covariance Forecasts 

Table 5 uses the same four criteria to evaluate the performance of each model in forecasting REIT-
stock, REIT-bond, and stock-bond covariances.  It is perhaps common wisdom that GARCH-type 
models perform well at forecasting conditional return variances, even relative to an MS model with 
four regimes.  The authors were quite surprised, therefore, to find that the GARCH models appear 
to fall well short of the MS model in predicting conditional covariances.  For one-month forecasts of 
REIT-stock covariances, the best-performing GARCH model appears to have been the t-Student 
diagonal BEKK specification, which sharply improved over the IID random walk in terms of RMSE 
(0.469 vs 0.500), error variance (0.220 vs 0.249), and MAE (0.184 vs 0.196).  The four-state MS, 
however, showed significant improvement according to all three criteria with an RMSE of just 
0.457, error variance of 0.206, and MAE of 0.166. 

The same result holds for REIT-bond covariances, although in this case the best-performing GARCH 
model appears to have been the CCC-GARCH specification.  Although the differences are not as 
dramatic, the MS model produced smaller values of RMSE (0.196 vs 0.200), error variance (0.038 vs 
0.040), and MAE (0.081 vs 0.083).  As the last panel shows, the same is true of forecast stock-bond 
covariances with slightly lower RMSE (0.119 vs 0.124), error variance (0.014 vs 0.015), and MAE 
(0.067 vs 0.069). 

An unreported series of plots concerning the one-month REIT-stock correlation forecasts from the 
homoskedastic VAR(1) model (which is visually indistinguishable from the IID benchmark) and the 
very similar CCC-GARCH model,16 give evidence of the secular decline in REIT-stock correlations 
                                                     
16 In the plots, we focus on correlations because these are more meaningful than forecasting covariances.  
However, the cost to be paid is that realized correlations in real time are either -1 or +1 and therefore simply 
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during the 1990s that has been observed in realized data,17 but the decline is modest, from about 
0.685 during the beginning of the forecast period to about 0.555 for the forecasts just prior to the 
liquidity crisis; moreover, neither shows the increase in REIT-stock correlations since October 
2000 that has been observed in other papers,18 and neither shows any appreciable increase as a 
result of the liquidity crisis. Figure 4 shows instead the REIT-stock correlations forecast by the t-
Student diagonal BEKK model (visually indistinguishable from the DCC-GARCH model) and the 
Gaussian diagonal BEKK model.  Both show a much stronger decline during the 1990s from about 
0.7 to as low as 0.01, a strong increase following October 2000 to as high as 0.7, and a jump to 
above 0.8 during the 2008-2009 crisis followed by a sharp decline to below 0.5 as the crisis 
subsided.  The trends in these sets of correlation forecasts would appear quite familiar to 
investment managers—a truth that is, however, distressing, because they mirror correlations 
estimated using primitive methods such as a trailing 24-month correlation coefficient, also shown 
(for comparison) in Figure 4. 

An unreported figure concerning the one-month REIT-stock correlation forecasts produced by the 
four-state Markov switching model reveals that, like the other models, the MS model forecasts the 
secular downward trend through the 1990s; in the MS framework, however, this trend can be 
explained most readily in terms of the declining state probability of the “normal” state (Regime 2), 
with a conditional REIT-stock correlation of 0.654, and the increasing predicted probability of the 
“REIT premium” state (Regime 1), characterized by a conditional REIT-stock correlation of just 
0.454.  Indeed, the MS forecast correlation reached its lowest values in November 1998 – February 
1999, shortly following the end of the period during which Regime 2 became dominant and early in 
the period during which Regime 1 surged.  From April 2004 through the beginning of the 2008 
financial crisis the forecast correlation remained abnormally low, averaging just 0.433.  During the 
financial crisis, the predicted correlation jumped to 0.675, but from March 2009 it declined rapidly 
to average just 0.477 from June 2009 through the end of our sample—in correspondence to a 
steadily declining probability of the “nightmare” state.  Perhaps surprisingly, there is substantially 
greater monthly variation in MS conditional correlation forecasts for the REIT-bond and stock-
bond pairs.  The model implies a sharp decline in both forecast correlations subsequent to the 
financial crisis, consistent with the increasing estimated probability of the “REIT premium” regime. 

                                                                                                                                                                                
correspond to a sign indicator function that we omit from the plots.  This is due to the fact that dividing 
realized cross products of returns by their absolute values gives either -1 or +1 depending on whether the 
returns had the same sign or not. 
17 See Case et al. [2012], Westerheide [2006], Conover et al. [2002], Clayton and MacKinnon [2001], and 
Chandrashekaran [1999]. 
18 See Case et al. [2006], Huang and Zhong [2012], and Westerheide [2006]. 
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Diebold-Mariano Tests 

Diebold and Mariano’s (1995, henceforth D-M) statistic compares the accuracy of two sets of 
forecasts using a selected loss function, )ˆ()ˆ,( ||
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where 𝜎�𝑃 is a (corrected) estimator of the sample standard deviation of the differences in loss 
functions that has a complex expression that can be found, e.g., in Corradi and Swanson [2006], and 
P is the length of the OOS period over which our real time assessment is performed.  Under some 
technical assumptions, as both P and the overall sample size T → ∞, under the null hypothesis, DMP 
→D N(0,1) and under the alternative hypothesis the test will have asymptotically unit power.19  Two 
commonly used loss functions are the squared, 2
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thtL ++ = εε .  Clearly, while the former loss reflects the same functional form as the MSE 

criterion, the latter is affine to the MAE.  Tables 6-8 show the D-M statistic computed from the 
series of forecasts for REIT, stock, and bond (mean) returns (Table 6), variances (Table 7), and 
covariances (Table 8) produced by each pair of models for the one-month horizon.20  In each panel, 
the figures above the diagonal are the D-M test statistics for the squared error loss function, while 
those below the diagonal are the statistics for the absolute error loss function; in both cases a 
positive (negative) statistic implies that the model in the column is superior (inferior) to the model 
in the row. 

Table 6 presents the D-M test results for point forecasts.  The results are striking: across all three 
assets, in every test pairing the four-state regime switching model against any of the other models, 
the MS model provides superior one-month-ahead forecasts regardless of whether the squared or 
absolute error loss function is used.  In every case, the p-value implies rejection of the null 
hypothesis (of equal accuracy) at a high level of statistical significance, while not a single statistic 
comparing two non-MS models is significantly different from zero. 
Table 7 presents the D-M statistics comparing one-month variance forecasts.  The variance 
forecasts produced by the MS model appear to be superior only to those implied by the Gaussian 
IID random walk and the homoskedastic Gaussian VAR(1) model, and then only according to the 

                                                     
19 Although the result has been reported for one-step ahead errors, all results carry over to the case of h > 1. 
20 We have also performed D-M tests for 12-month forecasts but found results that are both qualitatively similar 
to those in Tables 6-8 and that in general reveal few or no statistically significant differences. 
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absolute error loss function and only for stocks and bonds.  Of the four GARCH specifications, none 
appears to be consistently superior but according to the absolute error loss function the CCC 
specification outperforms all three other GARCH models in predicting stock variances, and 
outperforms the t-Student and DCC specifications in predicting bond variances; furthermore, the 
sign of the D-M statistic suggests superior CCC-GARCH variance forecasts in most of the pairwise 
comparisons that do not reach common levels of statistical significance. 

Turning to Table 8 showing the results for return covariances, the results are again surprising: the 
D-M statistics indicate that the covariance forecasts produced by the four-state MS model are 
superior to those produced by every other model tested, and the test statistics are statistically 
significant for every comparison using the absolute error loss function for REIT-stock and REIT-
bond covariance forecasts, as well as several of the comparisons of stock-bond covariance 
forecasts. 

To summarize the D-M test results, the four-state MS model appears to produce more accurate one-
month forecasts of both returns and covariances than any of the other models tested.  This result is 
consistent with the conclusions suggested by the comparisons of RMSE results, forecast error 
variance, and MAE shown in Tables 3 and 5.  GARCH-type specifications, however, appear to 
produce superior one-month variance forecasts, and the CCC specification appears to be the 
strongest performer among the class of GARCH models—a result that is, similarly, consistent with 
the forecast error statistics shown in Table 4. 

Tests of Density Forecast Accuracy 

The severe declines in most asset values during the 2008-2009 financial crisis has attracted the 
attention of both academics and practitioners to higher-moment statistics summarizing the shapes 
of return densities, especially skewness (positive or negative asymmetry in the return distribution) 
and kurtosis (tail probabilities greater or less than those implied by a normal distribution with 
identical variance).  While accurate forecasts of means, variances, and covariances will be useful for 
many purposes in portfolio management, for many risk management purposes it will be important 
to evaluate each model’s success in forecasting the entirety of the return density. 

Following Diebold et al. [1998] and Berkowitz [2001], we evaluate the density forecasts produced 
by our seven multivariate models using seven statistics to test whether the probability integral 
transform t

r

tttttt drrfrF t

∫ ∞− −− ℑ≡ℑ ),|(),|( 11 θθ  is distributed i.i.d. U[0,1], which will be the case if the 

sequence of density forecasts corresponds to the true data generating process.  Here 1−ℑt  is the 
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conditioning information set as of time t-1, for instance one lag of past information in the case 
of VAR(1) and first-order Markov processes.  First, we use Kolmogorov and Cramer-von Mises 
tests of the null hypothesis that the scores )ˆ,|(ˆ

1 θ−ℑ≡ tttt rFU  are distributed U[0,1].  Second, we 

apply Ljung-Box tests of zero serial correlation up to lag 12 on both the transformed scores 





Φ≡ ∫ ∞−

− duufz tr

tt )(1  and their squares to test for serial correlation; we should fail to reject the 

null hypothesis of no serial correlation if the scores (and therefore their transforms) are 
independently distributed.  Third, we jointly test whether the transformed scores have zero mean 
and unit variance, as they should if ]1 ,0[~ UUt , which Diebold, Gunther and Tay [1998] and 

Berkowitz [2001] have shown to be equivalent to correct specification of the model.  Finally, we 
use Jarque-Bera and Cramer-von Mises tests for whether the transformed scores are normally 
distributed. 

Table 9 presents the results of all seven tests on one-month density predictions for REITs, stocks, 
and bonds, respectively, produced by our seven modeling frameworks.  With respect to the 
Kolmogorov and Cramer-von Mises tests of uniformity of the distribution of the scores, we fail to 
reject the null hypothesis (that the models are correctly specified) in every case except the four-
state MS forecasts of bond return densities.  The Ljung-Box tests likewise fail to reject the null 
hypothesis that the transformed scores are independently distributed; applied to the squared 
transformed scores for forecasted stock return densities, however, the Ljung-Box test fails to reject 
the null except in the cases of the CCC-GARCH specification and the MS model. 

The joint test of zero mean and unit variance of the transformed scores rejects the null hypothesis 
(of correct model specification) for the IID random walk benchmark and the homoskedastic 
VAR(1) model, and also for all four GARCH models in forecasting stock return densities, as well as 
for the MS model in forecasting bond return densities.  The test fails to reject the null for the MS 
model in forecasting REIT and stock return densities, and for all four GARCH models in forecasting 
REIT and bond return densities. 

The Jarque-Bera and Cramer-von Mises tests of normality of the transformed scores reject the null 
hypothesis (of correct model specification) in most cases: none of the specifications, it seems, 
successfully models the true data generating process.  On the other hand, all four GARCH models 
(along with the IID model) are fairly successful at forecasting bond densities according to the 
Cramer-von Mises test, and the DCC-GARCH model also fails to reject the null hypothesis according 
to a Jarque-Bera test. 
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To summarize, none of the models appears to have successfully replicated the data generating 
process: in every case there is some evidence that some (unspecified) characteristic of the return 
density has been forecast incorrectly.  Nevertheless, the density prediction tests offer some support 
for (1) either the MS model or any of the GARCH models—especially the CCC specification—as the 
best approach to forecast REIT return densities; (2) any of the GARCH models—especially the DCC 
specification—as the best approach to forecasting bond return densities; and (3) the MS model as 
the best approach to forecast stock return densities. 

Conclusion 

The objective of this paper is to investigate whether the favorable performance of a fairly simple 
multistate Markov regime switching model relative to even very complex multivariate GARCH 
specifications, observed by Case, Guidolin and Yildirim [2013] using measures of in-sample 
prediction accuracy, extends to real time, pseudo OOS forecasting accuracy.  To evaluate this, we 
recursively estimated the parameters of each model specification and used it to forecast means and 
variances for the REIT, stock, and bond asset classes; REIT-stock, REIT-bond, and stock-bond 
covariances; and the entire return densities for the three assets. 

Our OOS tests indicated that the four-regime MS model was, indeed, superior to all of the GARCH 
specifications in forecasting returns on each asset class, showing a smaller root mean squared 
forecast error, smaller error variance, smaller mean absolute error, and (for stock and bond 
returns) smaller bias over one-month forecast horizons.  Diebold-Mariano tests confirmed that the 
MS model outperformed each alternative specification in pairwise comparisons using either the 
squared or absolute error loss functions. 

Perhaps not surprisingly, our forecast tests indicated that, for the purpose of predicting return 
variances, the MS model is inferior (except under a mean absolute error criterion) to carefully 
constructed GARCH models, especially the CCC-GARCH specification.  Diebold-Mariano tests 
generally confirmed the inferiority of the MS approach and the superiority of the GARCH approach, 
especially the CCC specification, for the purpose of forecasting volatility. 

The most surprising result of our analysis, given the underperformance of the multistate MS model 
in forecasting variances, is its superior performance in forecasting inter-asset covariances.  Our 
OOS tests indicated that the MS model produced the smallest RMSE error, smallest error variance, 
and smallest MAE, and Diebold-Mariano tests confirmed the superiority of the MS model in 
pairwise comparisons, with statistically significant differences in all comparisons of REIT-stock and 
REIT-bond covariance forecasts using an absolute error loss criterion. 
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While predictive density tests indicated some failure to forecast correctly the entire return 
distribution, they provided some support for the MS model as the superior approach to forecasting 
equity densities and a not inferior approach to forecasting REIT densities, while suggesting the 
superiority of a GARCH approach (especially the DCC-GARCH specification) for forecasting bond 
return densities. 

To summarize, if the primary objective is to form superior forecasts of asset return variances in a 
multivariate framework, the analysis presented in this paper suggests that a GARCH model—
especially the CCC-GARCH specification—systematically outperforms a four-state heteroskedastic 
Markov switching model.  In contrast, if the primary objective is to forecast asset returns, the MS 
model appears to be superior to any of the GARCH specifications tested in this paper.  Moreover, 
and most surprisingly, the MS framework appears to be comparable to any of the GARCH 
specifications for the purpose of forecasting covariances. 

Of course, it would be interesting to try to combine the two main classes of multivariate non-linear 
models examined in this paper—i.e., multistate MS models with GARCH—to yield regime switching 
models. Although recent work by Pelletier [2006] shows how that can be accomplished in the case 
of simple CCC GARCH models, the technical and numerical difficulties of the general BEKK and DCC 
cases recommend leaving this exciting extension to future work. 

A practical extension of our analysis would be to evaluate the economic benefits (after trading 
costs) of a framework in which multistate MS modeling, combined with GARCH, is used to guide 
monthly tactical reallocations among asset classes within a strategic allocation fixed by implied 
unconditional expected returns, variances, and covariances. Preliminary evidence in Bianchi and 
Guidolin [2013] and Sa-Aadu et al. [2010] show that portfolios that are regularly rebalanced to 
follow the signals from a simple MS model yield realized risk-adjusted performances that cannot be 
replicated by any homoskedastic VAR framework, even within a large family that includes a range 
of alternative predictors.  However, their results represent largely examples and only place a lower 
bound to the measure of actual economic value that non-linear modeling in tactical re-allocations 
among REITS, stocks, and bonds may yield. 
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Table 1 

Summary Statistics for US REITs, Stock, and Long-Term Government Bond Returns 
The table reports basic summary statistics for U.S. stock, REIT, and (long-term, government) bond returns. For benchmarking purposes, also 
information on 1-month T-bill yields is provided. In the table, statistics in parenthesis are the p-values associated to the null hypothesis of a zero value 
for the parameter or statistic under investigation. When possible, the p-values are computed for two-tailed tests of hypothesis. In the case of kurtosis, 
the null hypothesis is of a kurtosis that equals the Gaussian benchmark of 3. Jarque-Bera is a test of distributional normality based on deviations of 
skewness and kurtosis coefficients from the null of normality. LB(12) is the Ljung-Box test for zero serial correlation up to order 12 for levels and 
squared returns, respectively. The null hypothesis of a zero median return is tested using a Wilcoxon signed-rank test. In the case of volatility, the null 
hypothesis is that the volatility of an asset class is the same as 1-month T-bills, and the hypothesis is tested using a variance ratio test. 

 

Mean Volatility Sharpe ratio Median Skewness Excess Kurtosis Jarque-Bera LB(12) - Levels LB(12) - Squares

1.078 4.993 0.125 1.308 -0.756 8.43 1430.3 71.997 244.2
(0.000) (0.000)  (0.000) (0.166) (0.048) (0.000) (0.000) (0.000)
0.889 4.660 0.094 1.280 -0.572 2.115 112.72 1.644 24.777

(0.000) (0.000)  (0.000) (0.063) (0.096) (0.000) (0.999) (0.016)
0.663 2.311 0.091 0.615 0.310 1.311 40.992 14.461 90.471

(0.000) (0.000)  (0.000) (0.126) (0.069) (0.000) (0.272) (0.000)

0.452 0.264  0.429 0.749 1.172 70.546 4031.2 3219.8
(0.001)   (0.000) (0.005) (0.080) (0.000) (0.000) (0.000)

1.104 4.144 0.116 1.136 -0.349 2.253 55.619 20.993 18.611
(0.011) (0.000)  (0.000) (0.220) (0.067) (0.000) (0.050) (0.098)
1.060 4.867 0.089 1.049 -0.386 2.465 66.718 9.046 7.273

(0.001) (0.000)  (0.000) (0.056) (0.024) (0.000) (0.699) (0.839)
0.769 2.525 0.057 0.604 0.458 1.076 19.979 15.561 57.518

(0.000) (0.000)  (0.000) (0.013) (0.168) (0.001) (0.212) (0.000)

0.625 0.228  0.594 1.177 1.573 80.125 1336.3 1175.3
(0.000)   (0.000) (0.000) (0.045) (0.000) (0.000) (0.000)

1.050 5.763 0.182 1.618 -0.869 8.787 762.27 75.082 137.33
(0.006) (0.000)  (0.000) (0.219) (0.068) (0.000) (0.000) (0.000)
0.736 4.483 0.164 1.339 -0.840 1.532 49.128 9.744 55.739

(0.014) (0.000)  (0.001) (0.038) (0.192) (0.000) (0.638) (0.000)
0.552 2.061 0.268 0.633 -0.070 1.134 12.414 15.794 14.881

(0.000) (0.000)  (0.000) (0.428) (0.192) (0.002) (0.201) (0.248)

0.270 0.153  0.300 -0.345 -1.184 17.840 1906.6 1679.6

(0.000)   (0.000) (0.005) (0.000) (0.000) (0.000) (0.000)

Govt. Bond Returns

1-Month T-Bill Returns

REIT Returns

Stock Returns

Govt. Bond Returns

1-Month T-Bill Returns

Full Sample (1972-2010)

Modern Era (1992-2010)

REIT Returns

Stock Returns

Pre-Modern Era (1972-1991)

REIT Returns

Stock Returns

Govt. Bond Returns

1-Month T-Bill Returns
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Table 2 
Estimates of VAR(1) Four-State Markov Switching Heteroskedastic Model 

The rightmost column reports unconditional means, volatilities, correlations, and Sharpe ratios implied by the model conditional in each of the four 
possible regimes. The Sharpe ratios are computed with reference to the average 1-month T-bill yield. Unconditional moments are computed under the 
(counter-factual) assumption that the system never leaves a given state and they should be interpreted with caution. The elements in the last column of 
the estimate Markov transition matrix are not associated to standard errors because of the presence of an adding-up constraint in estimation (by which 
the elements in each of row of the transition probability must sum to a total probability of 1). The joint Jarque-Bera test is computed using a Doornik-
Hansen type square root of correlation matrix transformation to compute standardized residuals which are independent of the ordering of the asset 
return variables in the estimated vector system. In the table, boldfaced coefficients are significant at 5% or lower size. 

 
 

Unconditional Means, Vols 
& Correlations (monthly)

Regime 1:
0.785

0.217

0.783

 4.815    4.798    1.683
    ρ[REIT, Stock] = 0.454   ρ[REIT, Gov. bond] = -0.132  ρ[Stock, Gov. bond] = -0.215      0.454   -0.132  -0.215

 0.092   -0.027   0.261
Regime 2:

0.660

0.636

0.729

 2.600   3.581   1.903
     ρ[REIT, Stock] = 0.654    ρ[REIT, Gov. bond] = 0.410   ρ[Stock, Gov. bond] = 0.493       0.654   0.410   0.493

 0.060   0.037  0.118

              (0.403)   (0.052)               (0.048)               (0.074)

rStock,t = 0.289 + 0.133rREIT,t-1 - 0.089rStock,t-1 + 0.005rBond,t-1 + (h2,Stock,t)
1/2uStock,t

Four-State VAR(1) Markov Switching Model

Conditional mean functions rREIT,t = 0.704 + 0.077rREIT,t-1 + 0.008rStock,t-1 + 0.256rBond,t-1 + (h2,REIT,t)
1/2uREIT,t

               (0.382)   (0.057)              (0.057)               (0.087)

rBond,t = 0.509 - 0.010rREIT,t-1 - 0.076rStock,t-1 + 0.092rBond,t-1 + (h2,Bond,t)
1/2uBond,t

                (0.126) (0.023)              (0.025)               (0.045)
Conditional variance functions hREIT,t = 23.182               hStock,t = 23.020                hbond,t = 2.834
Conditional correlation functions

Implied Sharpe ratios:

Conditional mean functions rREIT,t = 0.532 + 0.077rREIT,t-1 + 0.008rStock,t-1 + 0.256rBond,t-1 + (h3,REIT,t)
1/2uREIT,t

              (0.229)   (0.052)               (0.048)               (0.074)

rStock,t = 0.743 + 0.133rREIT,t-1 - 0.089rStock,t-1 + 0.005rBond,t-1 + (h3,Stock,t)
1/2uStock,t

               (0.310)   (0.057)              (0.057)               (0.087)

rBond,t = 0.490 - 0.010rREIT,t-1 - 0.076rStock,t-1 + 0.092rBond,t-1 + (h3,Bond,t)
1/2uBond,t

                (0.174) (0.023)              (0.025)               (0.045)
Conditional variance functions hREIT,t = 6.759               hStock,t = 12.821                hbond,t = 3.622
Conditional correlation functions

Implied Sharpe ratios:
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Table 2 (continued) 
Estimates of VAR(1) Four-State Markov Switching Heteroskedastic Model 

 

Regime 3:
3.764

2.904

3.028

  3.478    3.720     3.212
     ρ[REIT, Stock] = 0.291    ρ[REIT, Gov. bond] = 0.002   ρ[Stock, Gov. bond] = 0.258      0.291    0.002     0.258

  0.936    0.644     0.784
Regime 4:

-6.894

-4.367

-2.198

 15.713   9.485   4.311
     ρ[REIT, Stock] = 0.810    ρ[REIT, Gov. bond] = 0.034   ρ[Stock, Gov. bond] = -0.115       0.810    0.034  -0.115

 -0.458   -0.491  -0.578
Regime 1 Regime 2                  Regime 3 Regime 4 Ergodic Probs.

0.977 0.011                        0.000 0.012 0.410
(0.080) (0.068)                                 (0.010)
0.008 0.889                        0.099 0.004 0.379

(0.008) (0.010)                                  (0.010)
0.002 0.213                         0.737 0.049 0.176

(0.009) (0.036)                                  (0.011)
0.180 0.003                         0.259 0.558 0.035

(0.033) (0.017)                                  (0.122)
Log-Likelihood 2903.077       Number of parameters 57
Akaike information criterion -12.3732       Saturation ratio 24.58
Bayes-Schwartz information criterion -11.9536       Joint Jarque-Bera on stdzed res. 15.005
Hannan-Quinn information criterion -12.2682       Mult. Ljung-Box(12) autocorrel. 130.23*

Regime 4

Four-State VAR(1) Markov Switching Model

Conditional correlation functions
Implied Sharpe ratios:

Estimated Transition Matrix
Regime 1

Regime 2

Regime 3

                (4.577)   (0.052)               (0.048)              (0.074)

rStock,t = -4.869 + 0.133rREIT,t-1 - 0.089rStock,t-1 + 0.005rBond,t-1 + (h1,Stock,t)
1/2uStock,t

                (3.158)   (0.057)              (0.057)               (0.087)

rBond,t = -0.214 - 0.010rREIT,t-1 - 0.076rStock,t-1 + 0.092rBond,t-1 + (h1,Bond,t)
1/2uBond,t

                (1.221)   (0.023)              (0.025)              (0.045)
Conditional variance functions hREIT,t = 246.892               hStock,t = 89.963                hbond,t = 18.584

                (0.540) (0.023)              (0.025)               (0.045)
Conditional variance functions hREIT,t = 12.098               hStock,t = 13.838                hbond,t = 10.320
Conditional correlation functions

Implied Sharpe ratios:

Conditional mean functions rREIT,t = -5.808 + 0.077rREIT,t-1 + 0.008rStock,t-1 + 0.256rBond,t-1 + (h1,REIT,t)
1/2uREIT,t

Conditional mean functions rREIT,t = 3.121 + 0.077rREIT,t-1 + 0.008rStock,t-1 + 0.256rBond,t-1 + (h4,REIT,t)
1/2uREIT,t

              (0.678)   (0.052)               (0.048)               (0.074)

rStock,t = 3.363 + 0.133rREIT,t-1 - 0.089rStock,t-1 + 0.005rBond,t-1 + (h4,Stock,t)
1/2uStock,t

              (0.808)   (0.057)               (0.057)               (0.087)

rBond,t = 1.773 - 0.010rREIT,t-1 - 0.076rStock,t-1 + 0.092rBond,t-1 + (h4,Bond,t)
1/2uBond,t
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Table 3 
Summary Measures of Predictive Accuracy for the Mean (Point Forecasts) 

For 7 multivariate models in this paper, we report the MSE, RMSE, the error variance, the prediction bias, and the MAE of the recursive, pseudo OOS 
point forecasts obtained from real time parameter estimation and updating. MSE is the mean squared forecast error, and MAE is the mean absolute 
forecast error, 

MSEm,i= ∑ −

=−
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t
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hte
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where m indicates the model under examination, h is the forecast horizon, and et,h represents the forecast error, et,h obtained as a difference between 
realized monthly returns and predicted ones. RMSE is the square root of MSE. The best performance measures across the set of 7 models are boldfaced. 

 

Panel A: REIT Returns (Point Forecasts, in % terms)

Model H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month
Gaussian IID Benchmark 31.860 32.415 5.644 5.693 31.856 32.414 -0.062 0.030 3.804 3.817

Gaussian VAR(1) 30.633 32.363 5.535 5.689 30.633 32.361 -0.000 0.038 3.796 3.814
Gaussian VAR(1) Diag. 
BEKK GARCH (1,1)

31.774 32.245 5.639 5.697 31.758 32.452 -0.126 0.029 3.796 3.816

t-Student VAR(1) Diag. 
BEKK GARCH (1,1)

31.765 32.571 5.636 5.708 31.749 32.575 -0.124 0.010 3.791 3.820

Gaussian VAR(1) CCC                
GARCH (1,1)

31.776 32.636 5.637 5.713 31.762 32.634 -0.121 0.037 3.789 3.828

Gaussian VAR(1) DCC              
GARCH (1,1)

30.633 32.568 5.535 5.707 30.633 32.567 -0.000 0.031 3.791 3.835

Four-State Markov 
Switching VAR(1) 24.610 32.464 4.961 5.670 24.602 32.463 0.088 0.042 3.437 3.824

Mean Absolute  ErrorBiasError VarianceRoot Mean Squared Mean Squared Error
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Table 3 (continued) 
Summary Measures of Predictive Accuracy for the Mean (Point Forecasts) 

 

 
 

 

Panel B: Stock Returns (Point Forecasts, in % terms)

Model H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month
Gaussian IID Benchmark 20.286 20.100 4.504 4.483 20.241 20.063 -0.212 -0.192 3.442 3.415

Gaussian VAR(1) 20.461 20.066 4.523 4.480 20.433 20.037 -0.168 -0.172 3.484 3.413
Gaussian VAR(1) Diag. 
BEKK GARCH (1,1)

20.274 20.216 4.503 4.496 20.223 20.174 -0.225 -0.206 3.429 3.424

t-Student VAR(1) Diag. 
BEKK GARCH (1,1)

20.275 20.185 4.503 4.493 20.226 20.151 -0.222 -0.185 3.434 3.417

Gaussian VAR(1) CCC                
GARCH (1,1)

20.271 20.117 4.502 4.485 20.222 20.077 -0.222 -0.200 3.430 3.415

Gaussian VAR(1) DCC              
GARCH (1,1)

20.461 20.117 4.523 4.485 20.433 20.086 -0.168 -0.176 3.484 3.420

Four-State Markov 
Switching VAR(1) 16.853 20.046 4.105 4.477 16.853 20.027 -0.000 -0.140 3.191 3.412

Mean Absolute  ErrorBiasError VarianceRoot Mean Squared Mean Squared Error

Panel C: Bond Returns (Point Forecasts, in % terms)

Model H = 1 month H = 12 month H = 1 month H = 12 month H = 1 monthH = 12 month H = 1 month H = 12 month H = 1 month H = 12 month
Gaussian IID Benchmark 4.142 4.208 2.035 2.051 4.129 4.191 -0.116 0.129 1.544 1.549

Gaussian VAR(1) 3.916 4.176 1.979 2.044 3.900 4.160 -0.124 -0.129 1.517 1.544
Gaussian VAR(1) Diag. 
BEKK GARCH (1,1)

4.140 4.188 2.035 2.047 4.118 4.170 -0.150 -0.132 1.541 1.544

t-Student VAR(1) Diag. 
BEKK GARCH (1,1)

4.136 4.202 2.034 2.049 4.114 4.185 -0.151 -0.133 1.541 1.547

Gaussian VAR(1) CCC                
GARCH (1,1)

4.150 4.192 2.037 2.047 4.128 4.175 -0.149 -0.129 1.543 1.547

Gaussian VAR(1) DCC              
GARCH (1,1)

3.916 4.220 1.979 2.054 3.900 4.202 -0.124 -0.133 1.517 1.546

Four-State Markov 
Switching VAR(1) 3.312 4.188 1.820 2.047 3.331 4.177 -0.050 -0.107 1.391 1.542

Mean Absolute  ErrorBiasError VarianceRoot Mean Squared Mean Squared Error
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Table 4 
Summary Measures of Predictive Accuracy for the Variance (Point Forecasts of Squared Realized Returns) 

For 7 multivariate models in this paper, we report the MSE, RMSE, the error variance, the prediction bias, and the MAE of the recursive, pseudo OOS 
point forecasts obtained from real time parameter estimation and updating. MSE is the mean squared forecast error, and MAE is the mean absolute 
forecast error, 

MSEm,i= ∑ −
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where m indicates the model under examination, h is the forecast horizon, and et,h represents the forecast error, et,h obtained as a difference between 
realized squared monthly returns and predicted variances. RMSE is the square root of MSE. The best performance measures across the set of 7 models 
are boldfaced. 

 

Panel A: REIT Squared Returns (in % terms)

Model H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month

Gaussian IID Benchmark 1.048 1.111 1.024 1.052 1.022 1.076 0.160 0.172 0.309 0.317

Gaussian VAR(1) 1.052 1.104 1.026 1.051 1.022 1.075 0.173 0.171 0.306 0.316
Gaussian VAR(1) Diag. 
BEKK GARCH (1,1)

0.878 1.107 0.937 1.052 0.875 1.076 0.054 0.176 0.323 0.318

t-Student VAR(1) Diag. 
BEKK GARCH (1,1)

0.873 1.099 0.934 1.048 0.868 1.069 0.069 0.173 0.315 0.314

Gaussian VAR(1) CCC                
GARCH (1,1)

0.871 1.095 0.933 1.047 0.868 1.069 0.058 0.162 0.320 0.316

Gaussian VAR(1) DCC              
GARCH (1,1)

0.897 1.092 0.947 1.045 0.892 1.062 0.067 0.172 0.323 0.315

Four-State Markov 
Switching VAR(1) 1.038 1.104 1.019 1.050 1.006 1.074 0.178 0.172 0.302 0.317

Mean Squared Error Root Mean Squared Error Variance Bias Mean Absolute  Error
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Table 4 (continued) 
Summary Measures of Predictive Accuracy for the Variance (Point Forecasts of Squared Realized Returns) 

 

 

 

Panel B: Stock Squared Returns (in % terms)

Model H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month

Gaussian IID Benchmark 0.121 0.124 0.348 0.353 0.121 0.124 -0.004 -0.005 0.209 0.210

Gaussian VAR(1) 0.121 0.124 0.348 0.352 0.121 0.124 0.002 -0.005 0.206 0.210
Gaussian VAR(1) Diag. 
BEKK GARCH (1,1)

0.111 0.125 0.333 0.354 0.111 0.125 0.001 -0.003 0.185 0.212

t-Student VAR(1) Diag. 
BEKK GARCH (1,1)

0.111 0.122 0.333 0.350 0.111 0.122 0.001 -0.002 0.185 0.206

Gaussian VAR(1) CCC                
GARCH (1,1)

0.110 0.123 0.332 0.351 0.110 0.123 -0.000 -0.002 0.182 0.213

Gaussian VAR(1) DCC              
GARCH (1,1)

0.111 0.123 0.334 0.351 0.111 0.123 -0.005 -0.002 0.186 0.206

Four-State Markov 
Switching VAR(1) 0.118 0.124 0.343 0.352 0.116 0.124 0.049 0.003 0.186 0.205

Root Mean Squared Error Variance Bias Mean Absolute  ErrorMean Squared Error

Panel C: Bond Squared Returns (in % terms)

Model H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month

Gaussian IID Benchmark 0.006 0.006 0.078 0.079 0.006 0.006 -0.012 -0.012 0.052 0.052

Gaussian VAR(1) 0.006 0.006 0.077 0.079 0.006 0.006 -0.010 -0.012 0.051 0.053
Gaussian VAR(1) Diag. 
BEKK GARCH (1,1)

0.006 0.006 0.076 0.079 0.006 0.006 0.000 -0.011 0.046 0.053

t-Student VAR(1) Diag. 
BEKK GARCH (1,1)

0.006 0.006 0.077 0.079 0.006 0.006 -0.002 -0.011 0.047 0.052

Gaussian VAR(1) CCC                
GARCH (1,1)

0.006 0.006 0.076 0.079 0.006 0.006 0.002 -0.012 0.045 0.052

Gaussian VAR(1) DCC              
GARCH (1,1)

0.006 0.006 0.076 0.079 0.006 0.006 -0.001 -0.011 0.046 0.052

Four-State Markov 
Switching VAR(1) 0.006 0.006 0.077 0.080 0.006 0.006 0.007 -0.006 0.044 0.050

Mean Squared Error Root Mean Squared Error Variance Bias Mean Absolute  Error
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Table 5 
Summary Measures of Predictive Accuracy for Covariances (Forecasts of Cross-Realized Returns) 

For 7 multivariate models in this paper, we report the MSE, RMSE, the error variance, the prediction bias, and the MAE of the recursive, pseudo OOS 
point forecasts obtained from real time parameter estimation and updating. MSE is the mean squared forecast error, and MAE is the mean absolute 
forecast error, 
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where m indicates the model under examination, h is the forecast horizon, and et,h represents the forecast error, et,h obtained as a difference between 
realized cross products of monthly returns for pairs of assets and predicted covariances. RMSE is the square root of MSE. The best performance 
measures across the set of 7 models are boldfaced. 

 

Panel A: REIT-Stock Covariance (in % terms)

Model H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month

Gaussian IID Benchmark 0.250 0.261 0.500 0.511 0.249 0.261 0.027 0.028 0.196 0.199

Gaussian VAR(1) 0.250 0.261 0.500 0.511 0.249 0.260 0.025 0.027 0.194 0.199
Gaussian VAR(1) Diag. 
BEKK GARCH (1,1)

0.221 0.262 0.470 0.511 0.221 0.260 0.012 0.034 0.188 0.197

t-Student VAR(1) Diag. 
BEKK GARCH (1,1)

0.220 0.258 0.469 0.508 0.220 0.257 0.022 0.032 0.184 0.195

Gaussian VAR(1) CCC                
GARCH (1,1)

0.224 0.258 0.474 0.508 0.224 0.257 0.013 0.033 0.186 0.194

Gaussian VAR(1) DCC              
GARCH (1,1)

0.223 0.258 0.472 0.508 0.223 0.257 0.019 0.034 0.187 0.195

Four-State Markov 
Switching VAR(1) 0.209 0.270 0.457 0.519 0.206 0.263 0.056 -0.080 0.166 0.259

Mean Squared Error Root Mean Squared Error Variance Bias Mean Absolute  Error
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Table 5 (continued) 
Summary Measures of Predictive Accuracy for Covariances (Forecasts of Cross-Realized Returns) 

 
 

 

Panel B: REIT-Bond Covariance (in % terms)

Model H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month

Gaussian IID Benchmark 0.040 0.041 0.200 0.203 0.040 0.041 -0.010 -0.011 0.084 0.085

Gaussian VAR(1) 0.040 0.041 0.200 0.203 0.040 0.041 -0.008 -0.011 0.084 0.085
Gaussian VAR(1) Diag. 
BEKK GARCH (1,1)

0.042 0.041 0.204 0.203 0.042 0.041 -0.002 -0.010 0.084 0.085

t-Student VAR(1) Diag. 
BEKK GARCH (1,1)

0.042 0.041 0.206 0.203 0.042 0.041 -0.003 -0.010 0.085 0.085

Gaussian VAR(1) CCC                
GARCH (1,1)

0.040 0.041 0.200 0.203 0.040 0.041 -0.007 -0.010 0.083 0.085

Gaussian VAR(1) DCC              
GARCH (1,1)

0.042 0.041 0.205 0.203 0.042 0.041 -0.002 -0.010 0.085 0.085

Four-State Markov 
Switching VAR(1) 0.038 0.042 0.196 0.204 0.038 0.041 -0.002 -0.027 0.081 0.091

Mean Squared Error Root Mean Squared Error Variance Bias Mean Absolute  Error

Panel C: Stock-Bond Covariance (in % terms)

Model H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month H = 1 month H = 12 month

Gaussian IID Benchmark 0.016 0.016 0.126 0.127 0.015 0.015 -0.025 -0.029 0.074 0.074

Gaussian VAR(1) 0.016 0.016 0.126 0.127 0.015 0.015 -0.025 -0.029 0.074 0.074
Gaussian VAR(1) Diag. 
BEKK GARCH (1,1)

0.015 0.016 0.124 0.127 0.015 0.015 -0.006 -0.028 0.069 0.074

t-Student VAR(1) Diag. 
BEKK GARCH (1,1)

0.015 0.016 0.124 0.126 0.015 0.015 -0.007 -0.026 0.070 0.073

Gaussian VAR(1) CCC                
GARCH (1,1)

0.016 0.016 0.126 0.126 0.016 0.015 -0.013 -0.026 0.071 0.073

Gaussian VAR(1) DCC              
GARCH (1,1)

0.015 0.016 0.124 0.126 0.015 0.015 -0.007 -0.026 0.070 0.073

Four-State Markov 
Switching VAR(1) 0.014 0.018 0.119 0.134 0.014 0.015 -0.010 -0.052 0.067 0.076

Mean Squared Error Root Mean Squared Error Variance Bias Mean Absolute  Error
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Table 6 
Diebold Mariano Tests of Equal Predictive Accuracy for 1-Month Forecasts of Mean Asset Returns 

For each pair of the 7 multivariate models entertained in this paper, the table reports the D-M statistic and the corresponding p-values computed from 
a HAC-adjusted estimator of the variance matrix of the loss function differences. Above the main diagonal the loss function is the squared loss; below 
the main diagonal the loss function is absolute loss. Above the main diagonal, a negative (positive) D-M statistic implies that the model in the row is 
inferior (positive) to the one in the column. Below the main diagonal, a negative (positive) D-M statistic implies that the model in the column is 
superior (inferior) to the one in the row. In the table, significant D-M statistics are boldfaced. 

 

Gaussian IID 
Benchmark

Gaussian 
VAR(1)

Gaussian VAR(1) Diag. 
BEKK GARCH (1,1)

t-Student VAR(1) Diag. 
BEKK GARCH (1,1)

Gaussian VAR(1) CCC                
GARCH (1,1)

Gaussian VAR(1) DCC              
GARCH (1,1)

Four-State Markov 
Switching VAR(1)

Gaussian IID Benchmark 1.216 (0.225) 0.672 (0.502) 0.670 (0.503) 0.675 (0.500) 1.216 (0.225) 2.426 (0.016)
Gaussian VAR(1) -0.152 (0.880) -1.072 (0.285) -1.066 (0.288) -1.068 (0.286) NA 2.752 (0.006)

Gaussian VAR(1) Diag. BEKK 
GARCH (1,1)

-1.493 (0.137) -0.101 (0.919) 0.227 (0.820) -0.076 (0.939) 1.072 (0.285) 2.342 (0.020)

t-Student VAR(1) Diag. BEKK 
GARCH (1,1)

-1.683 (0.094) -0.131 (0.896) -0.467 (0.641) -0.254 (0.800) 1.066 (0.288) 2.338 (0.020)

Gaussian VAR(1) CCC                
GARCH (1,1)

-1.510 (0.132) -0.098 (0.922) 0.048 (0.962) 0.501 (0.617) 1.068 (0.286) 2.338 (0.020)

Gaussian VAR(1) DCC              
GARCH (1,1)

-0.152 (0.880) NA 0.101 (0.919) 0.131 (0.896) 0.098 (0.922) 2.752 (0.006)

Four-State Markov Switching 
VAR(1)

-5.272 (0.000) -5.927 (0.000) -4.956 (0.000) -4.952 (0.000) -4.959 (0.000) -5.927 (0.000)

Gaussian IID Benchmark -0.372 (0.710) 0.134 (0.894) 0.112 (0.911) 0.144 (0.886) -0.372 (0.710) 3.672 (0.000)
Gaussian VAR(1) 0.838 (0.403) 0.380 (0.704) 0.378 (0.706) 0.388 (0.699) NA 4.465 (0.000)

Gaussian VAR(1) Diag. BEKK 
GARCH (1,1)

-1.570 (0.118) -1.098 (0.274) -0.067 (0.947) 0.061 (0.951) -0.380 (0.704) 3.469 (0.001)

t-Student VAR(1) Diag. BEKK 
GARCH (1,1)

-1.042 (0.299) -1.020 (0.309) 1.278 (0.202) 0.112 (0.911) -0.378 (0.706) 3.467 (0.001)

Gaussian VAR(1) CCC                
GARCH (1,1)

-1.478 (0.141) -1.049 (0.275) 0.183 (0.855) -1.040 (0.299) -0.388 (0.699) 3.466 (0.001)

Gaussian VAR(1) DCC              
GARCH (1,1)

0.838 (0.403) NA 1.098 (0.274) 1.020 (0.309) 1.094 (0.275) 4.465 (0.000)

Four-State Markov Switching 
VAR(1)

-3.580 (0.000) -4.886 (0.000) -3.268 (0.001) -3.342 (0.001) -3.291 (0.001) -4.886 (0.000)

Gaussian IID Benchmark 1.205 (0.230) 0.080 (0.936) 0.288 (0.774) -0.372 (0.711) 1.205 (0.230) 3.635 (0.000)
Gaussian VAR(1) -0.768 (0.443) -1.204 (0.230) -1.160 (0.247) -1.229 (0.220) NA 6.426 (0.000)

Gaussian VAR(1) Diag. BEKK 
GARCH (1,1)

-0.510 (0.610) 0.683 (0.495) -0.080 (0.936) 1.204 (0.230) 0.425 (0.671) 3.655 (0.000)

t-Student VAR(1) Diag. BEKK 
GARCH (1,1)

-0.603 (0.547) 0.666 (0.506) -0.150 (0.881) -1.590 (0.113) 1.160 (0.247) 3.579 (0.000)

Gaussian VAR(1) CCC                
GARCH (1,1)

-0.063 (0.950) 0.736 (0.463) 1.006 (0.316) 1.172 (0.243) 1.229 (0.220) 3.634 (0.000)

Gaussian VAR(1) DCC              
GARCH (1,1)

-0.768 (0.443) NA -0.683 (0.495) -0.666 (0.506) -0.736 (0.463) 6.426 (0.000)

Four-State Markov Switching 
VAR(1) -3.868 (0.000) -5.687 (0.000) -3.728 (0.000) -3.684 (0.000) -3.727 (0.000) -5.687 (0.000)

REIT Returns

Stock Returns

Bond Returns
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Table 7 
Diebold Mariano Tests of Equal Predictive Accuracy for 1-Month Forecasts of Asset Return Variances 

For each pair of the 7 multivariate models entertained in this paper, the table reports the D-M statistic and the corresponding p-values computed from 
a HAC-adjusted estimator of the variance matrix of the loss function differences. Above the main diagonal the loss function is the squared loss; below 
the main diagonal the loss function is absolute loss. Above the main diagonal, a negative (positive) D-M statistic implies that the model in the row is 
inferior (positive) to the one in the column. Below the main diagonal, a negative (positive) D-M statistic implies that the model in the column is 
superior (inferior) to the one in the row. In the table, significant D-M statistics are boldfaced. 

 

Gaussian IID 
Benchmark

Gaussian 
VAR(1)

Gaussian VAR(1) Diag. 
BEKK GARCH (1,1)

t-Student VAR(1) Diag. 
BEKK GARCH (1,1)

Gaussian VAR(1) CCC                
GARCH (1,1)

Gaussian VAR(1) DCC              
GARCH (1,1)

Four-State Markov 
Switching VAR(1)

Gaussian IID Benchmark -1.738 (0.084) 1.241 (0.216) 1.267 (0.207) 1.239 (0.216) 1.215 (0.225) 0.552 (0.581)
Gaussian VAR(1) -3.829 (0.000) 1.250 (0.213) 1.275 (0.204) 1.248 (0.213) 1.226 (0.221) 0.713 (0.477)

Gaussian VAR(1) Diag. BEKK 
GARCH (1,1)

0.698 (0.486) 0.878 (0.381) 1.880 (0.061) 1.146 (0.253) -1.338 (0.182) -1.262 (0.208)

t-Student VAR(1) Diag. BEKK 
GARCH (1,1)

0.307 (0.760) 0.491 (0.624) -4.703 (0.000) 0.361 (0.718) -1.521 (0.129) -1.290 (0.198)

Gaussian VAR(1) CCC                
GARCH (1,1)

0.521 (0.603) 0.695 (0.488) -2.640 (0.009) 3.062 (0.002) -1-289 (0.199) -1.261 (0.209)

Gaussian VAR(1) DCC              
GARCH (1,1)

0.709 (0.479) 0.904 (0.367) -0.185 (0.853) 1.577 (0.116) 0.547 (0.585) -1.229 (0.220)

Four-State Markov Switching 
VAR(1)

-1.365 (0.174) -0.660 (0.510) -1.151 (0.251) -0.730 (0.466) -0.940 (0.348) -1.184 (0.238)

Gaussian IID Benchmark 0.378 (0.706) 2.230 (0.027) 2.227 (0.027) 2.060 (0.040) 1.998 (0.047) 0.788 (0.432)
Gaussian VAR(1) -5.306 (0.000) 2.155 (0.032) 2.153 (0.032) 1.998 (0.047) 1.933 (0.054) 0.767 (0.444)

Gaussian VAR(1) Diag. BEKK 
GARCH (1,1)

-3.734 (0.000) -3.380 (0.001) -0.516 (0.607) 1.012 (0.313) -0.824 (0.411) -1.697 (0.091)

t-Student VAR(1) Diag. BEKK 
GARCH (1,1)

-3.732 (0.000) -3.384 (0.001) -0.462 (0.645) 1.032 (0.303) -0.727 (0.468) -1.678 (0.095)

Gaussian VAR(1) CCC                
GARCH (1,1)

-3.588 (0.000) -3.273 (0.001) -2.326 (0.021) -2.141 (0.033) -1.697 (0.091) -1.739 (0.083)

Gaussian VAR(1) DCC              
GARCH (1,1)

-3.160 (0.002) -2.828 (0.005) 1.381 (0.169) 1.750 (0.081) 4.043 (0.000) -1.481 (0.140)

Four-State Markov Switching 
VAR(1)

-4.244 (0.000) -3.997 (0.000) 0.164 (0.870) 0.192 (0.848) 0.586 (0.559) -0.105 (0.916)

Gaussian IID Benchmark 2.215 (0.028) 1.519 (0.130) 1.093 (0.275) 1.236 (0.218) 1.272 (0.205) 0.126 (0.900)
Gaussian VAR(1) -9.813 (0.000) 1.301 (0.194) 0.803 (0.423) 0.994 (0.321) 0.997 (0.320) -0.043 (0.966)

Gaussian VAR(1) Diag. BEKK 
GARCH (1,1)

-5.536 (0.000) -4.820 (0.000) -0.599 (0.550) -0.003 (0.997) -0.020 (0.984) -0.622 (0.534)

t-Student VAR(1) Diag. BEKK 
GARCH (1,1)

-3.668 (0.000) -2.954 (0.003) 2.446 (0.015) 1.100 (0.273) 1.276 (0.203) -0.519 (0.604)

Gaussian VAR(1) CCC                
GARCH (1,1)

-4.683 (0.000) -4.096 (0.000) -1.781 (0.076) -5.544 (0.000) -0.048 (0.962) -0.737 (0.462)

Gaussian VAR(1) DCC              
GARCH (1,1)

-4.001 (0.000) -3.339 (0.001) 0.648 (0.518) -3.216 (0.002) 5.919 (0.000) -0.748 (0.455)

Four-State Markov Switching 
VAR(1) -3.895 (0.000) -3.441 (0.001) -1.091 (0.277) -1.628 (0.105) -0.600 (0.549) -1.300 (0.195)

REIT Returns

Stock Returns

Bond Returns
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Table 8 
Diebold Mariano Tests of Equal Predictive Accuracy for 1-Month Forecasts of Asset Return Covariances 

For each pair of the 7 multivariate models entertained in this paper, the table reports the D-M statistic and the corresponding p-values computed from 
a HAC-adjusted estimator of the variance matrix of the loss function differences. Above the main diagonal the loss function is the squared loss; below 
the main diagonal the loss function is absolute loss. Above the main diagonal, a negative (positive) D-M statistic implies that the model in the row is 
inferior (positive) to the one in the column. Below the main diagonal, a negative (positive) D-M statistic implies that the model in the column is 
superior (inferior) to the one in the row. In the table, significant D-M statistics are boldfaced. 

 

Gaussian IID 
Benchmark

Gaussian 
VAR(1)

Gaussian VAR(1) Diag. 
BEKK GARCH (1,1)

t-Student VAR(1) Diag. 
BEKK GARCH (1,1)

Gaussian VAR(1) CCC                
GARCH (1,1)

Gaussian VAR(1) DCC              
GARCH (1,1)

Four-State Markov 
Switching VAR(1)

Gaussian IID Benchmark -0.449 (0.654) 1.264 (0.208) 1.287 (0.199) 1.348 (0.179) 1.193 (0.234) 1.687 (0.093)
Gaussian VAR(1) -5.082 (0.000) 1.250 (0.213) 1.272 (0.204) 1.329 (0.185) 1.181 (0.239) 1.667 (0.097)

Gaussian VAR(1) Diag. BEKK 
GARCH (1,1)

-1.302 (0.194) -0.876 (0.382) 0.823 (0.411) -0.826 (0.409) -1.899 (0.059) 0.763 (0.446)

t-Student VAR(1) Diag. BEKK 
GARCH (1,1)

-1.863 (0.064) -1.442 (0.151) -5.848 (0.000) -0.928 (0.354) -2.250 (0.025) 0.729 (0.467)

Gaussian VAR(1) CCC                
GARCH (1,1)

-1.780 (0.076) -1.268 (0.206) -0.509 (0.611) 0.700 (0.485) 0.324 (0.746) 1.056 (0.292)

Gaussian VAR(1) DCC              
GARCH (1,1)

-1.426 (0.155) -1.032 (0.303) -0.999 (0.319) 1.600 (0.111) 0.046 (0.964) 0.885 (0.377)

Four-State Markov Switching 
VAR(1)

-6.143 (0.000) -5.577 (0.000) -4.982 (0.000) -4.345 (0.000) -5.381 (0.000) -4.306 (0.000)

Gaussian IID Benchmark 1.149 (0.252) -1.339 (0.182) -1.345 (0.180) -0.569 (0.570) -1.339 (0.182) 1.506 (0.133)
Gaussian VAR(1) -3.980 (0.000) -1.352 (0.178) -1.353 (0.177) -0.660 (0.510) -1.348 (0.179) 1.499 (0.135)

Gaussian VAR(1) Diag. BEKK 
GARCH (1,1)

0.175 (0.861) 0.717 (0.474) -1.327 (0.186) 1.151 (0.251) -1.299 (0.195) 1.467 (0.144)

t-Student VAR(1) Diag. BEKK 
GARCH (1,1)

0.946 (0.345) 1.428 (0.155) 3.101 (0.002) 1.200 (0.231) 1.366 (0.173) 1.445 (0.150)

Gaussian VAR(1) CCC                
GARCH (1,1)

-1.788 (0.075) -1.243 (0.215) -1.304 (0.194) -1.788 (0.075) -1.189 (0.236) 1.760 (0.080)

Gaussian VAR(1) DCC              
GARCH (1,1)

0.893 (0.373) 1.370 (0.172) 2.985 (0.003) -0.946 (0.345) 1.742 (0.083) 1.444 (0.150)

Four-State Markov Switching 
VAR(1)

-4.287 (0.000) -3.855 (0.000) -3.290 (0.001) -3.402 (0.001) -2.556 (0.011) -3.371 (0.001)

Gaussian IID Benchmark 2.291 (0.023) 1.147 (0.252) 0.955 (0.340) 0.123 (0.902) 0.838 (0.403) 3.053 (0.003)
Gaussian VAR(1) -2.291 (0.023) 1.117 (0.265) 0.924 (0.356) 0.004 (0.997) 0.808 (0.420) 3.037 (0.003)

Gaussian VAR(1) Diag. BEKK 
GARCH (1,1)

-1.147 (0.252) -1.117 (0.265) -0.791 (0.430) -1.221 (0.223) -0.759 (0.449) 1.547 (0.123)

t-Student VAR(1) Diag. BEKK 
GARCH (1,1)

-0.955 (0.340) -0.924 (0.356) 0.791 (0.430) -0.987 (0.325) -0.645 (0.519) 1.515 (0.131)

Gaussian VAR(1) CCC                
GARCH (1,1)

-0.123 (0.902) -0.004 (0.997) 1.221 (0.223) 0.987 (0.325) 0.861 (0.390) 2.944 (0.004)

Gaussian VAR(1) DCC              
GARCH (1,1)

-0.838 (0.403) -0.808 (0.420) 0.759 (0.449) 0.645 (0.519) -0.861 (0.390) 1.470 (0.143)

Four-State Markov Switching 
VAR(1) -3.053 (0.003) -3.037 (0.003) -1.547 (0.123) -1.515 (0.131) -2.944 (0.004) -1.470 (0.143)

REIT-Stocks Covariance

REIT-Bonds Covariance

Stock-Bond Covariance
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Table 9 
Predictive Density Tests for 1-Month Forecasts of Asset Returns 

In the table, we evaluate the density forecasts produced by our models using seven statistics to test whether the probability integral transform 
scores from each model and for each asset return series are distributed i.i.d. U[0,1], which should be the case if the sequence of density forecasts 
is generated by the true data generating process. P-values are in parenthesis. Boldfaced statistics indicate that the null of correct 
specification cannot be rejected 

 

Gaussian IID 
Benchmark

Gaussian 
VAR(1)

Gaussian VAR(1) Diag. 
BEKK GARCH (1,1)

t-Student VAR(1) Diag. 
BEKK GARCH (1,1)

Gaussian VAR(1) CCC                
GARCH (1,1)

Gaussian VAR(1) DCC              
GARCH (1,1)

Four-State Markov 
Switching VAR(1)

REITs 0.532 (0.939) 0.630 (0.822) 1.091 (0.185) 1.051 (0.220) 0.788 (0.563) 0.989 (0.282) 1.309 (0.065)
Stocks 1.224 (0.100) 0.979 (0.293) 0.979 (0.293) 0.969 (0.305) 1.243 (0.091) 0.895 (0.400) 1.065 (0.207)
Bonds 1.213 (0.105) 1.327 (0.059) 0.940 (0.340) 0.950 (0.327) 0.874 (0.429) 0.794 (0.554) 1.390 (0.042)

REITs 0.044 (0.907) 0.071 (0.737) 0.331 (0.111) 0.260 (0.175) 0.123 (0.479) 0.250 (0.187) 0.386 (0.079)
Stocks 0.289 (0.145) 0.309 (0.127) 0.212 (0.245) 0.168 (0.338) 0.376 (0.083) 0.200 (0.266) 0.208 (0.252)
Bonds 0.408 (0.069) 0.411 (0.067) 0.168 (0.338) 0.161 (0.357) 0.142 (0.413) 0.121 (0.487) 0.569 (0.027)

REITs 13.128 (0.001) 17.202 (0.000) 3.313 (0.191) 1.343 (0.511) 0.147 (0.929) 1.974 (0.373) 2.406 (0.300)
Stocks 25.991 (0.000) 28.897 (0.000) 12.765 (0.002) 9.466 (0.009) 17.208 (0.000) 8.376 (0.015) 0.451 (0.798)
Bonds 6.843 (0.033) 8.062 (0.018) 1.083 (0.582) 0.964 (0.618) 1.203 (0.548) 0.716 (0.699) 9.065 (0.011)

REITs 51.592 (0.000) 37.270 (0.000) 41.008 (0.000) 46.788 (0.000) 24.288 (0.000) 41.758 (0.000) 45.364 (0.000)
Stocks 48.992 (0.000) 36.234 (0.000) 49.020 (0.000) 57.034 (0.000) 44.435 (0.000) 40.573 (0.000) 7.061 (0.029)
Bonds 17.716 (0.000) 11.410 (0.003) 12.478 (0.002) 12.481 (0.002) 8.125 (0.017) 5.232 (0.073) 12.885 (0.002)

REITs 0.151 (0.024) 0.140 (0.032) 0.146 (0.027) 0.154 (0.021) 0.108 (0.089) 0.128 (0.047) 0.209 (0.041)
Stocks 0.293 (0.000) 0.213 (0.004) 0.266 (0.001) 0.266 (0.001) 0.314 (0.000) 0.233 (0.002) 0.138 (0.035)
Bonds 0.125 (0.051) 0.160 (0.018) 0.110 (0.068) 0.107 (0.090) 0.104 (0.100) 0.125 (0.052) 0.191 (0.007)

REITs 19.896 (0.069) 18.836 (0.093) 14.016 (0.300) 13.257 (0.351) 12.588 (0.400) 11.204 (0.512) 20.040 (0.066)
Stocks 9.355 (0.672) 11.548 (0.483) 10.449 (0.577) 11.073 (0.523) 6.563 (0.885) 13.882 (0.308) 7.946 (0.789)
Bonds 14.226 (0.287) 13.652 (0.323) 12.314 (0.421) 11.367 (0.498) 11.292 (0.504) 8.655 (0.732) 5.773 (0.927)

REITs 88.690 (0.000) 82.802 (0.000) 4.807 (0.964) 5.518 (0.938) 6.854 (0.867) 7.579 (0.817) 5.673 (0.059)
Stocks 42.996 (0.000) 44.600 (0.000) 39.619 (0.000) 42.393 (0.000) 8.827 (0.718) 37.739 (0.000) 20.983 (0.051)
Bonds 10.952 (0.533) 14.651 (0.261) 6.087 (0.912) 5.405 (0.943) 4.895 (0.961) 5.243 (0.949) 16.619 (0.164)

Ljung-Box (12) Test on Squared Transformed Scores

Kolmogorov Test of U[0,1] Hypothesis

Cramer-Von Mises Test of U[0,1] Hypothesis

Joint Test of Hypothesis of Zero Mean and Unit Variance for Transformed Scores

Jarque-Bera Test of Normality of the Transformed Scores

Cramer-Von Mises Test of Normality of the Transformed Scores

Ljung-Box (12) Test on Transformed Scores



42 

Figure 1 

Smoothed State Probabilities from a VAR(1) Four-State Markov Switching Heteroskedastic Model 
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Figure 2 

Recursive, Pseudo Out-of-Sample 1-Month Ahead Point Forecasts from Four-State 
VAR(1) Markov Switching Heteroskedastic Model 
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Figure 3 

Recursive, Pseudo Out-of-Sample 1-Month Ahead Volatility Forecasts from 
Gaussian CCC GARCH(1,1) Model 
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Figure 4 

Recursive, Pseudo Out-of-Sample 1-Month Ahead Correlation Forecasts from 
Gaussian vs t-Student VAR(1) BEKK GARCH(1,1) Models 
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