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with Two Volatility Surfaces

Abstract

Using the joint characteristic function of equity price and state variables, we can
price contingent claims on both equity and VIX consistently. Based on linear approxi-
mation of jump size, we show that one factor models implies all VIX future contract of
different maturities are perfectly correlated in contrast to market observations. In the
examples of multi-factor model, we demonstrate how to calculate the optimal hedging
ratio for VIX future to hedge VIX option. We derived the unconditional correlation
term structure of VIX future implied by the model based on the stationary distribution
of state variables. We show multifactor models that are calibrated to the two voaltility
surfaces will produce very different hedge ratios for VIX options.

JEL Classification: G12, G13

Kerwords: SPX Volatility Surface, VIX Volatility Surface, VIX Futures, VIX Options,

Hedge Ratio
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Consistent Pricing and Hedging Volatility Derivatives
with Two Volatility Surfaces

1 Introduction

In 1993, the Chicago Board Options Exchange (CBOE) introduced VIX volatility index, and since

then VIX has been accepted universally as the stock market volatility. In 2003, CBOE switched to

use a model free approach to calculate VIX based on prices of S&P 500 (SPX) options. The new

method makes it possible, for the first time, to replicate VIX index value, which led to huge public

interests in trading and hedging volatility. As exxpected, VIX futures contracts were launched

in 2004, followed by VIX options in 2006. Exchange and OTC traded derivatives on VIX and

its variants become increasingly popular; the average daily trading volume of VIX options and

futures has increased 20 folds between 2006 and 2011. VIX derivatives initially created as an

hedging instrument soon became a new asset class for investment and speculation. Such a change

in market practice also reflects in the development of pricing methods for volatility derivatives.

Earlier papers treat volatility as a separate underlying and price volatility derivatives in isolation

from the stock price process. Grunbichler and Longstaff (1996), for example, assume volatility

follows a CIR (Cox, Ingersoll and Ross) process and derive closed form solutions for pricing

volatility futures and options. Psychoyios et al. (2010) model spot VIX dynamic directly as a

CIR process with jumps. The addition of jumps improves the calibration to VIX option prices

significantly, since the CIR process itself cannot produce enough positive skewness to match the

implied volatility of VIX options. The cost of adding jumps is that there is no closed form for

the distribution of spot VIX and the prices of VIX futures and options have to be derived via the

characteristic function of VIX.

A second, more recent, approach of modelling VIX is to use the volatility dynamics of SPX as

the starting point and derive an expression for VIX. Solutions for VIX derivatives are then derived

thereof. For example, Zhang and Zhu (2006) derive the dynamics of VIX future based on a Heston
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process for SPX. Sepp (2008) extends this work by adding jumps to the stochastic variance for

pricing VIX futures and options. Both Zhang and Zhu (2006) and Sepp (2008) are classified as

one foctor model for volatility. Lu and Zhu (2009), on the other hand, use multi-factor model to

study the term structure of VIX futures. This second approach of modelling VIX has become more

popular in recent years. Since this second approach uses a single set of dynamics to price SPX

and VIX derivatives, one can measure the sensitivity of SPX derivatives with respect to changes

in VIX, and vice versa. We call this type of joint modelling and pricing method, the consistent

pricing approach.

In this paper, we adopt the consistent pricing approach, but unlike previous studies which focus

on static calibration of VIX surface,1 we focus on the term structure of VIX future dynamics which

is a key aspect of hedging. In addition, we also show how to derive the exposure of VIX option

with respect to VIX future and use it to derive hedge ratio. We study three affine models, viz. a one-

factor model and two two-factor models for volatility as well as the models’ implied correlation

term structure for VIX futures conditional on the state variables. We show that the correlation term

structure implied by all one factor models is unrealistic. Finally, we also show how to derive the

unconditional correlation term structure for the multi-factor models. This unconditional correlation

can be used to match the market data in model calibration.

2 Consistent Pricing Method

Contingent claims are priced by taking expectation under the risk neutral measure. Since charac-

teristic function always exists and is the only way to represent the distribution of some random

variable when the density function does not exist, it is now common to price contingent claims

by using the characteristic function. To do this, we must first derive the Fourier transform for the

payoff function. Sepp (2003) describes the general approach for deriving the characteristic func-

tion for affine models and how it is used in pricing options. This general pricing framework does

1In the rest part of this paper, we use VIX surface to denote the implied volatility surface of VIX options

4



not always work for non-affine models. For example, the 3/2 model in Carr and Sun (2007) is not

affine; the derivation of the characteristic function is still possible but is more complicated.

In the following subsections, we will first briefly explain how to use the characteristic function

to price SPX derivatives and then extend the pricing approach to price VIX futures and options.

2.1 Derivatives on Equity

The price of a European option is the discounted expectation of future payoff under the risk neutral

measure,

f (Xt , t) = e−r(T−t)EQ[ f (XT ,T )|Ft ]

= e−r(T−t)
ˆ
Rn

f (XT ,T )p(XT |Ft)dXT (1)

where Xt = lnSt . Let us denote G(ω,Xt ,T ) as the characteristic function of the transition distribu-

tion p(XT |Xt), which is defined by the generalised Fourier Transform,

G(ω,Xt ,T ) =

ˆ
∞

−∞

eωXT p(XT |Ft)dXT

p(XT |Ft) =
1

2π

ˆ
∞

−∞

eωXT G(ω,Xt ,T )dℑ(ω)

where ω is a complex number and ℑ(·) denotes the imaginary part.

So if we define f̂ (ω) as the Fourier transform of the payoff function f (XT ,T ), or alternatively

f (XT ,T ) is the inverse Fourier transform of f̂ (ω), then equation (1) can be rewritten as,

f (Xt , t) =
e−r(T−t)

2π

ˆ
R

ˆ
∞

−∞

f̂ (ω)e−ωXT dℑ(ω)p(XT |Ft)dXT

=
e−r(T−t)

2π

ˆ
∞

−∞

f̂ (ω)

ˆ
R

e−ωXT p(XT |Ft)dXT dℑ(ω)

=
e−r(T−t)

2π

ˆ
∞

−∞

f̂ (ω)G(−ω,Xt ,T )dℑ(ω) (2)
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Since the expression of f̂ (ω) and G(−ω,Xt ,T ) are normally known, we can evaluate the inte-

gral in equation (2) numerically. Many efficient methods are developed to perform this integration

efficiently, for example, Fast Fourier Transform by Carr and Madan (1999) and Cosine Fourier

Transform by Fang and Oosterlee (2008).

2.2 Pricing of VIX Future and Option

Since the payoff of VIX derivatives is a function of the expectation of the accumulated variance;

the pricing of VIX derivatives is not as straightforward as the pricing of SPX derivatives. The

model for SPX typically has instantaneous variance, not the accumulated variance, as one of the

state variables. To price both SPX and VIX derivatives consistently, we need to derive the expected

accumulated variance as a function of the state variables.

Assuming the dynamic of equity price with time varying variance and jump intensity is as

follows,

d lnSt = (r− vt

2
−λm1)dt +

√
vtdWt +

ˆ
R×R+

Jxµ(dJx,dt)

where m1 = E[eJx − 1] and µ(dJx,dt) is the random measure for the compound Poisson jump Jx

with jump intensity λt . So the accumulated variance over the period from t to t +∆t is given by,

V =

ˆ t+∆t

t

(
vsds+

ˆ
∞

−∞

J2
x µ(dJx,ds)

)
(3)

where ∆t is usually set as 30 days for contracts like variance swap and VIX future.

By assuming no dependance between jump timing and jump size, we have µ(dJx,dt)= µ(dJx)λtdt,

where µ(dJx) is the distribution of jump size. Taking expectation on equation (3) and annualising,

we have
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V̄ (vt ,λt) =
1
∆t

E[V |Ft ]

=
1
∆t

E

[ˆ t+∆t

t

(
vs +λs

ˆ
∞

−∞

J2
x µ(dJx)

)
ds

]
(4)

=
1
∆t

E

[ˆ t+∆t

t

(
vs +λsE[J2

x ]
)

ds

]

V̄ (vt ,λt) is the time t fair price for an annualized ∆t spot variance swap. For many stochastic vari-

ance and stochastic jump intensity models, e.g. Heston and Bates, there are close form solutions

for (4). Based on the above definition, one can further define VIX future and option as

FV IX(t,T ) = EQ
[√

V̄ (vT ,λT )

∣∣∣∣Ft

]
(5)

CV IX(t,T ) = e−r(T−t)EQ

[(√
V̄ (vT ,λT )−K

)+ ∣∣∣∣Ft

]
(6)

which are priced at time t, but settled at time T .2 Therefore, we can derive the VIX future and op-

tion as the expectation of the respective payoff functions under the joint distribution p(vT ,λT |Ft).

Following the steps in Section 2.1, we need to first derive the Fourier Transform of
√

V̄ (vT ,λT )

and
(√

V̄ (vT ,λT )−K
)+

, and also the characteristic function of V̄ (vT ,λT ).

Before we proceed, it is important to point out a subtlety of the VIX definition. VIX, as reported

by CBOE, is based on a replicating strategy using SPX options. Under the assumption of no jump,

the replication is perfect. However, when there are jumps, the replicated variance is different from

equation (3). As shown in Carr and Wu (2009), the VIX constructed by CBOE is actually

V̄ =
1
∆t

E

[ˆ t+∆t

t

(
vs +λs

ˆ
∞

−∞

2
(
eJx−1− Jx

)
ν(dJx)

)
ds

]
(7)

2Noting that for VIX future, the volatility reference period is from T to T +∆t with expectation taken at time T .
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The difference between equation (7) and equation (3) is of the third order of jump size, since3

ˆ
∞

−∞

2
(
eJx−1− Jx

)
ν(dJx) = 2E[eJx−1− Jx] = E[J2

x ]+O(J3
x )

Although O(J3
x ) is small and trivial compared with E[J2

x ], we will use equation (7) as the

definition of VIX for the rest of this paper to be consistent with the CBOE definition. We denote

m2 = 2E[eJx−1− Jx].

3 Characteristic Function of Equity Price and Variance

In this section, we derive the closed form solutions for derivative prices for three models; a single

factor model with jumps in both stock price and variance, a two-factor model with stochastic

variance and stochastic jump intensity where the jump intensity follows a self exciting Hawkes

process, and another two-factor model with two Heston type stochastic variance, one of which

shares the jump timing with the stock price. The number of factors here refer to the factors that

drive the stock price variance. We solve the Partial Integral Differential Equation (PIDE) to derive

the characteristic functions of the state variables and equity price.

3.1 One-Factor Model

As pointed out by Sepp (2008) and Psychoyios et al. (2010), a positive jump is needed in the

variance process to generate enough positive skewness observed in the VIX volatility surface. So

we use the following specification,

3Using Taylor expansion, ex = 1+ x+ x2

2 +O(x3).
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d lnSt = (r− vt

2
−λm1)dt +

√
vtdW 1

t +

ˆ
Jxµ(dJx,dJv,dt)

dvt = κ(θ − vt)dt +σ
√

vtdW 2
t +

ˆ
Jvµ(dJx,dJv,dt) (8)

Jx ∼ N(ε +ρJJv,δ
2)

Jv ∼ Exp(η)

where m1 =E[eJx−1] = 1
1−ρJη

eε+δ 2/2−1, µ(dJx,dJv,dt) is the random measure for jumps in both

price and volatility which share the same jump timing, λ is the jump intensity, and ρJ defines the

dependence between jumps in log price and jumps in variance. The model (SVJJ) in (8) appears

in in Bates (2000), Pan (2002), and Eraker (2004), and nests many other well known stochastic

volatility models. For example, it is the Heston model if there are no jumps. If jumps are only

allowed in equity price but not in variance, the model becomes Bates (1996). However, we should

note that despite the generality of SVJJ, it is still a one factor model for volatility.

From equations (5) and (6), the prices of VIX future and option can be written as,

FV IX(t,T ) =
1

2π

ˆ
∞

−∞

√
π

2(−ω)3/2 φV̄ (−ω, t,T )dℑ(ω) (9)

CV IX(t,T ) =
e−r(T−t)

2π

ˆ
∞

−∞

1− erf(K
√
−ν)

2(−ω)3/2 φV̄ (−ω, t,T )dℑ(ω) (10)

where φV̄ (−ω, t,T ) is the characteristic function of the expectation of accumulated variance V̄ (vT ),

erf is the error function, and
√

π

2(−ω)3/2 and 1−erf(K
√
−ω)

2(−ω)3/2 are the characteristic functions of the payoff

of VIX future and option respectively, which are directly derived from the definition of charac-

teristic function. To derive φV̄ (−ω, t,T ), we write V̄ as a function of vT . Given equation (7), we

have,
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V̄ (vT ) =

(
e−κ∆t−1

κ∆t
(
κθ +λη

κ
− vT )+

κθ +λη

κ

)
+λm2 =C0 +C1vT

where m2 = 2EQ[eJx−1−Jx] = 2
(

1
1−ρJη

eε+δ 2/2−1− ε−ρJη

)
and C0 = λm2+

κθ+λη

κ∆t (e−κ∆t−1
κ

+

∆t), C1 =− (e−κ∆t−1)
κ∆t . We notice that the expectation of accumulated variance is an affine function

of vT . If we know the characteristic function of vT , it is straightforward to derive that of V̄ . On

the other hand, because we are interested in consistent pricing of derivatives on both equity and

variance, we need to derive the joint characteristic function for ST and vT . The characteristic func-

tion of the joint distribution of states is defined as G(ω0,ω1, t,T ) = E[elnST ω0+vT ω1|Ft ], and due

to Feynman-Kac formula, it is the solution to the PIDE,

0 = Gt +(r− vt

2
−λm1)Gx +

1
2

vtGxx +κ(θ − vt)Gv +
1
2

σ
2vtGvv +ρσvtGxv

+λ

ˆ
R×R+

δGν(dJx,dJv) (11)

where x = lnSt , δG = G(x+ Jx,v+ Jv)−G(x,v) and ν(dJx,dJv)λdt is the compensator for the

random measure µ(dJx,dJv,dt), and the initial condition at t = T is given by,

G(ω0,ω1,T,T ) = eω0 lnST+ω1vT (12)

As shown in Sepp (2003), the solution for the PIDE (11) takes the form of exp(ω0 lnSt + r(T −

t)ω0+A(ω0,ω1, t,T )+B(ω0,ω1, t,T )vt). So the integral in the last term of equation (11) becomes,

ˆ
R×R+

δGν(dJx,dJv) =

ˆ
R×R+

(G(x+ Jx,v+ Jv)−G(x,v))ν(dJx,dJv)

= G(x,v)
ˆ
(eω0Jx+BJV −1)ν(dJx,dJv)

= G(x,v)

(
eεω0+δ 2ω2

0/2

1−η(B+ρJω0)
−1

)

Substituting the proposed solution form into the PDE, we have the following ODE set,
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Ȧt = −κθBt−λ (
eεω0+δ 2ω2

0/2

1−η(Bt +ρJω0)
−1)−ω0λ (eε+δ 2/2−1) (13)

Ḃt =
1
2
(ω0−ω

2
0 )+(κ−ρσω0)Bt−

1
2

σ
2B2

t (14)

where˙denotes the derivative w.r.t to time t. The initial conditions at t = T are,

AT = 0 (15)

BT = ω1 (16)

which is derived from equation (12).

To price derivatives on equity price and variance, the joint characteristic function is not nec-

essary, since the payoff only depends on the final state of either equity price or instantaneous

variance. Therefore, we can solve the characteristic functions for lnST and vT separately, which is

much easier. If we force ω1 = 0, we have the solution for A(ω0,0, t,T ) and B(ω0,0, t,T ), which

is the solution for the characteristic function of equity price. The solution as shown below can be

found in Pan (2002) and Sepp (2003),

A(ω0,0, t,T ) = −κθ

σ2

(
ψ+(T − t)+2ln

ψ−+ψ+e−ζ (T−t)

2ζ

)
−λ (T − t)

(
ω0(

eε+δ 2/2

1−ρJη
−1)+1

)
(17)

+λeεω0+
δ2ω2

0
2

{
ψ−(T − t)
ψ−L+ηU

− 2ηU
(ζ L)2− (ML+ηU)2 ln

[
1− ψ+−ηU

2ζ L

(
1− e−ζ (T−t)

)]}
B(ω0,0, t,T ) = −(ω0−ω

2
0 )

1− e−ζ (T−t)

ψ−+ψ+e−ζ (T−t)
(18)

ζ =
√

(κ−ρσω0)2 +σ2(ω0−ω2
0 )

ψ± = ζ ∓ (κ−ρσω0)

ξ =
√

κ2
λ
−2σ2

λ
Λ

χ± = ξ ∓κλ
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To solve the characteristic function for vT , we can set ω0 = 0, and the solution for ODE (13)

and (14) is given by,

A(0,ω1, t,T ) =
2

σ2 κθ ln(
2κ

σ2ω1(e−κ(T−t)−1)+2κ
) (19)

+
2ηλ

2ηκ−σ2 ln(
ω1(σ

2−2ηκ)e−κ(T−t)+2κ−ωσ2

2κ(1−ωη)
)

B(0,ω1, t,T ) =
2κω1e−κ(T−t)

σ2ω1(e−κ(T−t)−1)+2κ
(20)

Similar results can be found in Sepp (2008). Since V̄ (vT ) =C0 +C1vT , we have the characteristic

function for the expectation of accumulated variance,

φV̄ (ν , t,T ) =

ˆ
∞

−∞

eV̄ ν p(V̄ |Ft)dXT

=

ˆ
∞

−∞

e(C0+C1vT )ν p(vT |Ft)dXT

= eνC0

ˆ
∞

−∞

evTC1ν p(vT |Ft)dXT

= eνC0G(0,C1ν , t,T ) (21)

So we can apply G(−ω0,0, t,T ) to equation (2) to price Europe option on the SPX index, and

substitute equation (21) to equations (9) and (10) to price VIX future and VIX option. In this

manner, the pricing of options on SPX and VIX are consistent.

3.2 Multi-factor Models

In this section, we will study two multi-factor Models. We derive the characteristic function for

both stock price and variance.

3.2.1 Stochastic Variance Self-Exciting Jump

The first model we propose here is a Self Exciting jump model,
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d lnSt = (r− vt

2
−m1λt)dt +

√
vtdWt +

ˆ
Jxµ(dJx,dJλ ,dt)

dvt = κ1(θ1− vt)dt +σ1
√

vtdZt

dλt = κ2(θ2−λt)dt +
ˆ
R×R+

1Jx<0Jλ µ(dJx,dJλ ,dt)

Jx ∼ DE(ηu,ηd, p)

Jv ∼ Exp(η)

where DE(ηu,ηd, p) denotes double exponential distribution, which is introduced by Kou (2002),

ηu and ηd are the means of positive jump and negative jump respectively and p is the probability of

positive jump. The two factors of the model are stochastic variance and stochastic jump intensity.

The stochastic variance process is driven by a CIR process, as in the Heston model. The stochastic

jump intensity is driven by negative realized jump in equity price. Once there is a negative jump

in equity price, there is a corresponding jump in jump intensity. We assume jump size in equity

price and that in jump intensity are independent. So the corresponding PIDE for the characteristic

function for joint distribution of vT and λT is given as,

0 = Gt +(r− 1
2

vt−λtm1)Gx +
1
2

vtGxx +κ(θ − vt)Gv

+
1
2

σ
2vtGvv +ρσvtGxv +κλ (θλ −λt)Gλ (22)

+λt

ˆ
[G(ω0,ω1,ω2,x+ Jx,vt ,λt +1J<0Jλ , t,T )

−G(ω0,ω1,ω2,x,vt ,λt , t,T )]ν(dJx,dJλ )

GT = eω0xT+ω1vT+ω2λT (23)

The solution form is G = eω0xt+r(T−t)ω0+A+Bvt+Cλt . By substituting it into the PIDE (22), the
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corresponding ODE set is,

Ȧt = κ1θ1Bt +κ2θ2Ct

Ḃt =
1
2
(ω0−ω

2
0 )+(κ1−ρσω0)Bt−

1
2

σ
2B2

t (24)

Ċt = −κ2Ct +Λ(ω0,Ct)

where

Λ(ω0,Ct) =

ˆ
eω0Jx+1Jx<0JλCt π(Jx,Jλ )dJxdJλ −1

=

(
p

1−ω0ηu
+

1− p
1+ω0ηd

1
1−Ctη

)
−1

and initial conditions at time T are,

AT = 0

BT = ω1

CT = ω2

which are derived from equation (23).

Since the model is the sum of a Heston stochastic variance and Self Exciting jump and there is

no dependence between them, we can find the solutions for B and C separately. It is easy to see that

the solution of B is just the degenerate case of equations (18) and (20). However, there is no close

form solution for C, and it has to be solved using numerical method, e.g. Runge Kutta method.

Finally, we derive the characteristic function for the expectation of accumulated variance. Fol-

lowing the steps in the previous section, we first write the expectation of accumulated variance

starting at time T as a function of state variables, vT and λT ,
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V̄ (vT ,λT ) = C0(∆T )+C1(∆T )vT +C2(∆T )λT

C0 = θ1(1−C1)+θ2(1−C2)

C1 =
1− e−κ1∆T

κ1∆T

C2 = m
1− e−κ2∆T

κ2∆T

Given the independence of vT and λT , we have,

φV̄ (ν , t,T ) = eνC0φv(C1ν , t,T )φλ (C2ν , t,T ) (25)

for the characteristic function of the expectation of accumulated variance settled at time T , where

φv(ν , t,T ) = G(0,ν ,0,xt ,vt ,λt , t,T ) and φλ (ν , t,T ) = G(0,0,ν ,xt ,vt ,λt , t,T ) are the characteristic

functions of vT and λT respectively.

3.2.2 Double Heston with Jumps

The second multi-factor model is the double Heston model with jumps in one of the two stochastic

variance processes.
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d lnSt = (r−
v1,t + v2,t

2
−m1λ )dt +

√
v1,tdW1,t +

√
v2,tdW2,t

+

ˆ
Jxµ(dJx,dJv,dt)

dv1,t = κ1(θ1− v1,t)dt +σ1
√

v1,tdZ1,t +

ˆ
Jvµ(dJx,dJv,dt)

dv2,t = κ2(θ2− v2,t)dt +σ2
√

v2,tdZ2,t

[dW1,t ,dZ1,t ] = ρ1dt

[dW2,t ,dZ2,t ] = ρ2dt

Jx ∼ N(ε +ρJJv,δ
2)

Jv ∼ Exp(η)

This model is equivalent to the one factor model in Section 3.1 plus another CIR stochastic

variance process. The corresponding PIDE is,

0 = Gt +(r− 1
2
(v1,t + v2,t)−λm1)Gx +

1
2

v1,tGxx +
1
2

v2,tGxx

+κ1(θ1− v1,t)Gv1 +
1
2

σ
2
1 v1,tGv1v1 +ρ1σ1v1,tGxv1 (26)

+κ2(θ2− v2,t)Gv2 +
1
2

σ
2
2 v2,tGv2v2 +ρ2σ2v2,tGxv2

+λ

ˆ
[G(ω0,ω1,ω2,x+ Jx,vt + Jv, t,T )

−G(ω0,ω1,ω2,x,v1,t , t,T )]ν(dJx,dJv)

= 0

GT = eω0xT+ω1v1,T+ω2v2,T (27)

By substituting the solution form G = eω0xt+r(T−t)ω0+A+B1v1,t+B2v2,t , we have the following

ODE set,
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Ȧt = −κ1θ1B1,t−κ2θ2B2,t (28)

−λ (
eεω0+δ 2ω2

0/2

1−η(B1,t +ρJω0)
−1)−ω0λ (eε+δ 2/2−1)

Ḃ1,t =
1
2
(ω0−ω

2
0 )+(κ1−ρ1σ1ω0)B1,t−

1
2

σ
2
1 B2

1,t (29)

Ḃ2,t =
1
2
(ω0−ω

2
0 )+(κ2−ρ1σ2ω0)B2,t−

1
2

σ
2
2 B2

2,t (30)

and the initial conditions at time T are,

AT = 0

B1,T = ω1

B2,T = ω2

which are derived from equation (27).

The solution form for B1 are the same as equation (18) and (20), and B2 is the degenerating case

of B1 as λ goes to zero. Due to the independence of v1,T and v2,T , the expectation of accumulated

variance is,

V̄ (v1,T ,v2,T ) = C0 +C1v1,T +C2v2,T

C0 = λ

(
m2 +

η(e−κ1∆T +κ1∆T −1)
κ2

1 ∆t

)
+θ1(1−C1)+θ2(1−C2)

C1 =
1− e−κ1∆T

κ1∆T

C2 =
1− e−κ2∆T

κ2∆T

Similar to the case of SVSEJ model, because of the independence of two state variables, the

17



characteristic function of the expectation of accumulated variance is,

φV̄ (ν , t,T ) = eνC0φv1(C1ν , t,T )φv2(C2ν , t,T ) (31)

where φv1(ν , t,T ) = G(0,ν ,0,xt ,vt ,λt , t,T ) and φv2(ν , t,T ) = G(0,0,ν ,xt ,vt ,λt , t,T ). Applying

equations (9) and (10), we can calculate the price for VIX future and VIX option.

4 Correlation and Hedging

In this section, we analyze the instantaneous correlation term structure for VIX futures implied by

the models from the previous section. We first show that the one factor model implies an unrealistic

constant correlation term structure for VIX futures, contrary to the empirical observation.

4.1 Flaw of Single Factor Models

Single factor stochastic variance models are very popular for pricing equity and FX derivatives.

However, Single-Factor models have some implications that are undesirable. For example, if

stochastic variance is the only driving factor for the volatility, the correlation term structure of

variance derivatives is always one. We use the SVJJ model as example to illustrate this pitfall

below. For the sake of simplicity, from now on, we use VixT
t instead of FV IX(t,T ) to denote VIX

future price observe at t and settled at T . Given the SVJJ specification in (8), we can derive the

SDE for VIX future price, which is observed at t and settled at T ,

dVixT
t =

∂VixT
t

∂vt

√
vtσdZt +

ˆ
R×R+

δVixT
t (µ(dJv,dt)−υ(dJv,dt))

where δVixT
t is due to the jump in variance process, and δVixT

t =VixT
t (vt +Jv)−VixT

t (vt).4 Given

the above dynamics for VIX future, the correlation between VIX futures of different maturities is

4Note that the dynamics of VIX future price is a martingale.
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ρt =

〈
dVixT1

t ,dVixT2
t

〉
√〈

dVixT1
t ,dVixT1

t

〉〈
dVixT2

t ,dVixT2
t

〉 (32)

=

∂VixT1
t

∂vt

∂VixT2
t

∂vt
σ2vt +λ

´
R δVixT1

t δVixT2
t υ(dJv)√√√√

∏
2
i=1

((
∂VixTi

t
∂vt

)2

σ2vt +λ
´
R

(
δVixTi

t

)2
υ(dJv)

)

Substituting the characteristic function (21) into equation (9) and taking derivative, we have

∂VixT
t

∂vt
=

1
2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

B(C1ν , t,T )φV̄ (ν , t,T )

]
dν

where φV̄ (ν , t,T ) is given by (21). For the change due to jump, we use the linear approximation as

follows,

δVixT
t = VixT

t (vt + Jv)−VixT
t (vt)

=
1

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2 (

eBJv−1
)

φV̄ (ν , t,T )

]
dν

≈
Jv

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

B(C1ν , t,T )φV̄ (ν , t,T )

]
dν

Therefore, under the linear approximation for jump, the correlation is,

ρt ≈
D1D2σ2vt +2D1D2η2λ√(

D2
1σ2vt +2D2

1η2λ
)(

D2
2σ2vt +2D2

2η2λ
)

= 1

where Di =
1

2
√

π

´
∞

0 ℜ

[( 1
iν

) 3
2 B(C1ν , t,Ti)φV̄ (ν , t,Ti)

]
dν . Therefore, for two VIX futures with

maturities T1 and T2, the correlation is always one, contradicting to the market observation. For the

one factor model, if the price of one VIX future with certain maturity is given, the state variable can
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be derived and therefore price of the second VIX futures with a different maturity is also known.

However, this is not the case for the multi-factor models.

4.2 VIX Future Dynamics and Correlation implied by Multiple Factor Model

4.2.1 Stochastic Variance Self-Exciting Jump

First we looked at the dynamics of VIX future under the Self-Exciting jump model, where the

dynamics on the VIX future is derived as follows,

dVixT
t = •dt +

∂VixT
t

∂vt
dvt +

ˆ
R×R+

δVixT
t µ
∗

= •dt +
dvt

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

eiνC0B(C1)φv(C1)φλ (C2)

]
dν

+
1

2
√

π

ˆ
R×R+

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

eiνC0φv(C1)
(
φλ+Jλ

(C2)−φλ (C2)
)]

dν×µ
∗

=

√
vtσ

2
√

π
dWt

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

B(C1)φV̄ (ν , t,T )

]
dν

+
1

2
√

π

ˆ
R×R+

ˆ
∞

0
ℜ

[(
1
iν

) 3
2 (

eJλC(C2)−1
)

φV̄ (ν , t,T )

]
dν×µ

∗

where µ∗ = µ(dJx,dJλ ,dt)−υ(dJx,dJλ ,dt) is the compensated random measure for jump, and

we write B(Ci) = B(Ciν , t,T ), C(Ci) = C(Ciν , t,T ), and φ(Ci) = φ(Ciν , t,T ) for short notation.

•dt is some drift which will cancel the drift from other terms, since it is a future contract and total

drift is zero. For the difference of jump, we have

δVixT
t = VixT

t (λt + Jv)−VixT
t (λt)

=
1

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

eiνC0φv(C1)φλ (C2)
(

eCJλ −1
)]

dν

≈
Jλ

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

C(C2)φV̄ (ν , t,T )

]
dν
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in which the last equality is due to linear approximation. Therefore, the correlation can be calcu-

lated as,

ρt =

〈
dVixT1

t ,dVixT2
t

〉
√〈

dVixT1
t ,dVixT1

t

〉〈
dVixT2

t ,dVixT2
t

〉
=

D1D2σ2vt +2E1E2P(Jx < 0)η2λt√(
D2

1σ2vt +2E2
1 η2λt

)(
D2

2σ2vt +2E2
2 η2λt

)
=

σ2vt +
2E1E2
D1D2

η2P(Jx < 0)λt√
∏

2
i=1

(
σ2vt +2( Ei

Di
)2η2P(Jx < 0)λt

)
where

Di =
1

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

B(C1ν , t,Ti)φV̄ (ν , t,Ti)

]
dν

Ei =
1

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

C(C2ν , t,Ti)φV̄ (ν , t,Ti)

]
dν

and B and C are solutions to the ODE set (24). B has the same solution forms as equation (20),

and there is no close form for C, which can be solved by ODE solver numerically. φV̄ is given by

equation (25).

4.2.2 Double Heston with Jumps

For the Double Heston with Jumps model, the dynamics for VIX future is,
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dVixT
t = •dt +

∂VixT
t

∂v1,t
dv1,t +

∂VixT
t

∂v2,t
dv2,t

=
dv1,t

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

eiνC0B(C1)φv1(C1)φv2(C2)

]
dν

+
dv2,t

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

eiνC0B(C2)φv1(C1)φv2(C2)

]
dν

+

ˆ
R×R+

δVixT
t (µ(dJv,dt)−υ(dJv,dt))+•dt

=

√v1,tσ1

2
√

π
dZ1,t

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

B(C1)φV̄ (ν , t,T )

]
dν

+

√v2,tσ2

2
√

π
dZ2,t

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

B(C2)φV̄ (ν , t,T )

]
dν

+
1

2
√

π

ˆ
R×R+

ˆ
∞

0
ℜ

[(
1
iν

) 3
2 (

eJvC(C2)−1
)

φV̄ (ν , t,T )

]
dν×µ

∗

where µ∗ = µ(dJx,dJv,dt)− υ(dJx,dJv,dt) is the compensated random measure for jump. As

before, the total drift for a future contract is zero. Again, we use linear approximation for the jump

part on stochastic variance,

δVixT
t = VixT

t (vt + Jv)−VixT
t (vt)

=
1

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2 (

eBJv−1
)

φV̄ (ν , t,T )

]
dν

≈
Jv

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

B(ω, t,T )φV̄ (ν , t,T )

]
dν

As before, the correlation can be calculated as,
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ρt =

〈
dVixT1

t ,dVixT2
t

〉
√〈

dVixT1
t ,dVixT1

t

〉〈
dVixT2

t ,dVixT2
t

〉
=

D1D2
(
σ2v1,t +2η2λ

)
+E1E2σ2v2,t√

∏
2
i=1
(
D2

i (σ
2v1,t +2η2λ )+E2

i σ2v2,t
)

where for i = 1,2

Di =
1

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

B1(C1ν , t,Ti)φV̄ (ν , t,Ti)

]
dν

Ei =
1

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

B2(C2ν , t,Ti)φV̄ (ν , t,Ti)

]
dν

and B1 and B2 are solutions to the ODE set (28), (29), and (30). The solution forms are exactly the

same as equation (20) with corresponding parameters, and φV̄ is given by equation (31).

4.3 Calibration

Here, we calibrate the two multi-factor models proposed in the previous section using European

style options on SPX and VIX on 25/04/2008. There are 5 maturities, May, June, July, August,

and November, that have liquid options traded. The option data is downloaded from OptionMetrics

and we have excluded all the options without trading volume. We only use put option on equity

and call option on VIX to capture the negative skew for SPX surface and the positive skew for VIX

surface. For risk free interest rate, we assume a flat 2% for all maturities.

The calibration is done by minimizing the mean square error between market implied volatility

and model implied volatility. There are a few reasons for not matching option prices instead. First,

VIX future price is an output of the model, which we need to take into account in the calibration.

Hence, we need to assign weights on option price and future price, which has a big influence in the

calibration. Moreover, since the option prices for SPX and VIX are not comparable, their pricing
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Table 1: Calibrated Parameters of Self Exciting Jump Model
Parameter Estimates

κ1 1.4791
θ1 0.0364
σ1 0.5389
ρ1 -0.8454
κ2 34.3965
θ2 6.2696
η 22.4183
ηu 0.0362
ηd 0.0422
p 0.3686

This table reports the calibrated parameters of Self Exciting Jump model. The calibration is done
by min square error of implied volatility between market and model.

errors will have an unbalanced influence on the calibration. By using implied volatility, we avoid

any such issue since the implied volatilities for equity and VIX are of the same scale and it is

reasonable to put equal weights on the two surfaces in the calibration.

The calibration results for the Self-Exciting jump model is reported in Table 1 and the fit of

volatility surface is plotted in Figure 1. The calibration for Double Heston with Jumps model using

the same data is reported in Table 2 and the fit of volatility surface is plotted in Figure 2. Given

the parameter values, we can calculate the instantaneous correlation term structure conditional on

the state variables for the two models. The result is plotted in Figure 3. The results show that both

models calibrated well jointly to the two surfaces. However, they produce a different correlation

term structure for the VIX futures. The SVSEJ model has a faster decay while Double Heston with

Jumps is more linear and decays slower.

4.4 Unconditional Correlation Term Structure of VIX Future

We have shown how to derive the conditional correlation of VIX futures in the previous sections.

Since the conditional correlation term structure of VIX future is conditional on state variables

and change over time and unobservable, the unconditional correlation might be of more interest,

because one can calculate it from historical VIX future data. VIX future can be expressed as,
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Figure 1: Fit of Implied Volatility by Self Exciting Jump Model

This graph plots the fit of implied volatility on 25/04/2008 with 5 maturities. The red line with
crosses is the implied volatility by model and the blue line the implied volatility by market price.
The left column is the fit of the implied vol of Equity put options; the right column is the fit of the
implied vol of VIX call options. From top to bottom are the maturities in May, June, July, August,
and November in 2008 respectively.
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Figure 2: Fit of Implied Volatility by Double Heston with Jump Model

This graph plots the fit of implied volatility on 25/04/2008 with 5 maturities. The red line with
crosses is the implied volatility by model and the blue line the implied volatility by market price.
The left column is the fit of the implied vol of Equity put options; the right column is the fit of the
implied vol of VIX call options. From top to bottom are the maturities in May, June, July, August,
and November in 2008 respectively.
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Table 2: Calibrated Parameters of Double Heston with Jump Model
Parameter Estimates

κ1 3.6721
θ1 0.0195
σ1 0.6981
ρ1 -0.8562
η 0.0410
ρJ 1.0395
κ2 34.2975
θ2 0.0234
σ2 1.3896
ρ2 -0.9999
λ 1.1576
ε -0.0667
δ 0.0522

This table reports the calibrated parameters of Double Heston with Jump model. The calibration
is done by min square error of implied volatility between market and model.

ρ = E [ρt ] =

ˆ
ρt p( f1, f2)d f1d f2 (33)

where f1 and f2 are the state variables. Since the SVSEJ and Double Heston with Jumps models are

Markov models, the state variables have stationary distributions under some trivial assumptions.

We derived the stationary distribution for the state variables for these two models in Appendix A.

The following is a summary of the stationary distributions used in our study.

1. For the CIR process in Heston model, the stationary distribution for variance is a Gamma

distribution.

2. For the Heston with jump in variance process, the stationary distribution is not any known

distribution. However, when the jump size in variance is small, specifically, η < σ2

2κ
, the

distribution can be approximated by another Gamma distribution. When the jump size is

big, the distribution of variance is a sum of two independent Gamma distributions.

3. The stationary distribution for the jump intensity of the self exciting jump process is also a
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Gamma distribution, but with a shift in its base line level θ .

Since the volatility factors are independent in both models, the joint distribution of the factors are

just the product of the marginal distributions. Using equation (33), we can calculate the uncondi-

tional correlation, given the model parameters and stationary distribution functions.

Figure 4 plots the unconditional term structure for VIX future. Not surprisingly, two models

produce very different term structures. Unlike the conditional correlation, the term structure of

unconditional correlation for VIX future can be calculated from market data. It will be interesting

to compare with the correlation implied by model with that observed in the market to see which

model fit the market better. But it should be noted that the unconditional distribution of factors,

p( f1, f2), is supposed to be under the P measure. In our study, we simply use the model parameters

under the Q measure as a demonstration. It is possible to calibrate the model under both measures

with appropriate transforms from P measure to Q measure.

4.5 Hedging VIX Options

Here we compare the hedge ratio for VIX option w.r.t VIX future using the model studied in the

previous section. In the one factor model without jumps, one can achieve perfect hedge, and the

dynamical optimal hedge ratio is,

ht =

∂C
∂vt
∂F
∂vt

where C is the derivative, i.e., VIX option, to be hedged and F is the hedging instrument, i.e., VIX

future. For the multi-factor models, perfect hedging is impossible. The hedge ratio or delta which

gives minimal hedging variance is,

h(K) =

〈
dCT

t (K),dFT
t
〉〈

dFT
t ,dFT

t
〉
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In SVSEJ, the dynamics of VIX future or option is given by,

d• ≈ ∂•
∂vt

√
vtσdZt +

∂•
∂λt

ˆ
R×R+

1Jx<0Jλ (µ(dJx,dJλ ,dt)−υ(dJx,dJλ ,dt))

whereas in Double Heston with Jumps model model, we have

d• ≈ ∂•
∂v1,t

(
√

v1,tσdZ1,t +

ˆ
R×R+

Jv (µ(dJx,dJv,dt)−υ(dJx,dJv,dt))
)

+
∂•

∂v2,t

√
v2,tσdZ2,t

∂•
∂vt

can be derived given the close form of characteristic function as shown in Section 4. By

following the same procedure in Section 4.2, we have the optimal hedge ratio for SVSEJ model as,

h(K) =
DFDCσ2vt +2EFECη2P(Jx < 0)λt√(

D2
Fσ2vt +E2

Fη2P(Jx < 0)λt
)

where

DF =
1

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

B(C1ν , t,T1)φV̄ (ν , t,T1)

]
dν

DC =
1

2
√

π

ˆ
∞

0
ℜ

[
1− erf(K

√
−ν)

(iν)3/2 B(C1ν , t,T2)φV̄ (ν , t,T2)

]
dν

EF =
1

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

C(C2ν , t,T1)φV̄ (ν , t,T1)

]
dν

EC =
1

2
√

π

ˆ
∞

0
ℜ

[
1− erf(K

√
−ν)

(−iν)3/2 C(C2ν , t,T2)φV̄ (ν , t,T2)

]
dν

The optimal hedge ratio for Double Heston with Jumps model is given by,
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h(K) =
D1D2

(
σ2v1,t +2η2λ

)
+E1E2σ2v2,t√(

D2
1 (σ

2v1,t +2η2λ )+E2
1 σ2v2,t

)
where

DF =
1

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

B1(C1ν , t,T1)φV̄ (ν , t,T1)

]
dν

DC =
1

2
√

π

ˆ
∞

0
ℜ

[
1− erf(K

√
−ν)

(iν)3/2 B1(C1ν , t,T2)φV̄ (ν , t,T2)

]
dν

EF =
1

2
√

π

ˆ
∞

0
ℜ

[(
1
iν

) 3
2

B2(C2ν , t,T1)φV̄ (ν , t,T1)

]
dν

EC =
1

2
√

π

ˆ
∞

0
ℜ

[
1− erf(K

√
−ν)

(−iν)3/2 B2(C2ν , t,T2)φV̄ (ν , t,T2)

]
dν

Figure 5 plots the hedge ratio implied by the two models based on the parameters estimated in

the previous section. For ATM VIX option, the delta for the SVSEJ model is smaller than that for

the Double Heston with Jumps model, suggesting a less exposure of VIX option to its underlying

under SVSEJ model.

5 Conclusion

In this study, we provide a framework for pricing derivatives on SPX and VIX consistently, given

the characteristic function of equity price and the factors that drive variance. This method can be

applied to any affine model such as Heston model with jumps, since the characteristic functions of

affine models are easy to derive.

In this paper, we are particular interested in the correlation term structure of VIX futures of

different time to maturity. We studied two categories of affine models, a one-factor model and two

multi-factor models. Based on a linear approximation of the jump size, we show that one-factor

models always imply a perfect correlation between VIX futures of different maturities. However,
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we know that it is not the case in the market. So even one factor model can fit volatility surfaces

well, it still implies a wrong dynamics for variance.

Next, we show that two different multi-factor models are able to fit the implied volatility sur-

faces of SPX option and VIX option well. Based on the calibrated model parameters, however,

they produce very different correlation term structure. We also derive the unconditional corre-

lation so that the correlation implied by models can be compared with that calculated from the

market historical data.

To calculate the unconditional correlation term structure, we derive the stationary distribution

of the factors, based on the Kolmogorov forward equation. By taking expectation of conditional

correlation, we can calculate the unconditional correlation term structure. However, to compare

with the correlation observed in the market, we need the stationary distributions of the factors

under the P measure. In this study, we only use the parameters calibrated under Q measure to

calculate the unconditional correlation of the factors as a demonstration.

In the last part, we demonstrated how to calculate the optimal hedge ratio for hedging VIX

option with VIX future. Since two models implies different dynamics for VIX future, it is not

surprised to see that hedge ratio are also different.
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Appendix A.1 Stationary distribution of stochastic variance with

jump

The CIR process with jumps is as follows,

dvt = κ(θ − vt)dt +σ
√

vtdWt +

ˆ
Jvµ(dJv,dt)

The forward equation is,

∂ f (v, t)
∂ t

= − ∂

∂v
κ(θ − v) f (v, t)+

1
2

∂ 2

∂v2 σ
2v f (v, t)−λ f (v, t)+λ

ˆ
f (v− Jv, t)ν(dJv)

The stationary distribution is the solution of

0 = − ∂

∂v
κ(θ − v) f (v)+

1
2

∂ 2

∂v2 σ
2v f (v)−λ f (v)+λ

ˆ
f (v− Jv)ν(dJv)

where ∂ f (v,t)
∂ t = 0, since it is stationary. The difficulty arises due to the integral. We apply Fourier

transform to solve this problem. The Fourier transform is defined as,

F(ω) = F [ f (x)] =
ˆ

eωx f (x)dx

where ω is complex number.

So the OIDE becomes,

0 = ω
[
κθF(ω)−κF ′(ω)

]
+

1
2

ω
2
σ

2F ′(ω)−λF(ω)+λF(ω)

ˆ
eJvω

ν(dJv)

= (ωκθ +λ
ηω

1−ηω
)F(ω)+(

1
2

ω
2
σ

2−ωκ)F ′(ω)
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Therefore, we have,

(ωκ− 1
2

ω
2
σ

2)F ′(ω) = (ωκθ +λ
ηω

1−ηω
)F(ω)

The condition of determined solution is,

F(0) = 1

The solution for F(ω), which is the characteristic function of the stationary distribution is,

F(ω) = (1− σ2

2κ
ω)−2κθ/σ2

(
1−ηω

1− σ2

2κ
ω

)−2ηλ/(2ηκ−σ2)

When η > σ2

2κ
and λ < κθ

2ηκ−σ2

σ2η
, we can rearrange the expression as,

F(ω) = (1− σ2

2κ
ω)2ηλ/(2ηκ−σ2)−2κθ/σ2

(1−ηω)−2ηλ/(2ηκ−σ2)

which is product of two Characteristic functions of Gamma distribution. So v1,t is the sum of two

Gamma distributed random variables.

When η < σ2

2κ
, there is no such simple solution, so we expand the Characteristic function and

take the first order approximation of η , we have,

Φ(ω) = (1− σ2

2κ
ω)−2(λη+κθ)/σ2

which is just the Characteristic function of a Gamma distribution.

For the second state variable, it is just the degenerate case of v1,t as λ → 0, so the Characteristic

function is,

Φ(ω) = (1− σ2

2κ
ω)−2κθ/σ2
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which is the characteristic function of Gamma distribution Γ(2κθ

σ2 , σ2

2κ
) for the CIR process. Here,

it is clear to see that when 2κθ/σ2 < 1, the probability of v2,t of being zero is positive.5

5Strictly speaking, it is the density that is positive, not the probability. There is still a debate whether one should
stick with such so called Feller condition when using CIR process.
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Appendix A.2 Stationary distribution of self exciting jump inten-

sity

The intensity process for self exciting jump is as follows,

dλt = κ(θ −λt)dt +
ˆ
R×R+

1Jx<0Jλ µ(dJx,dJλ ,dt)

The forward equation is,

∂ f (λ , t)
∂ t

= − ∂

∂λ
κ(θ −λ ) f (λ , t)−λ f (λ , t)+P(Jx < 0)

ˆ
(λ − Jλ ) f (λ − Jλ , t)ν(dJλ )

The stationary distribution is the solution of

0 = − ∂

∂λ
κ(θ −λ ) f (λ )−λ f (λ )+P(Jx < 0)

ˆ
(λ − Jλ ) f (λ − Jλ )ν(dJλ )

Applying Fourier transform, we have,

0 = ω
[
κθF(ω)−κF ′(ω)

]
−P(Jx < 0)

[
F ′(ω)−F ′(ω)

ˆ
eJλ ω

ν(dJλ )

]

The ODE to be solved is,

(
P(Jx < 0)ηω

1−ηω
−κω)F ′(ω) = −ωκθF(ω)
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The solution is,

F(ω) = eθω

(
1− ηκ

κ−ηP(Jx < 0)
ω

)−θP(Jx<0)/κ

which corresponds to a Gamma distribution, Γ(θP(Jx<0)
κ

, ηκ

κ−ηP(Jx<0)) shifted with θ . Unlike normal

Gamma distribution, which is supported in (0,∞), the shifted Gamma distribution here is supported

in (θ ,∞).
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