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Abstract

We present an application of importance sampling in a Monte Carlo simulation for multi-

asset options and in a Multi-Level Monte Carlo simulation. We demonstrate that applying im-

portance sampling only on the first level of the Multi-Level Monte Carlo significantly improves

its effective performance. We extend the Likelihood Ratio Method Based on Characteristic

Function to estimate the Greeks of multi-asset options and in a Multi-Level Monte Carlo in a

computationally efficient manner. Moreover, we combine it with the importance sampling to

reduce the variance of the Greeks. Finally, we study the impact of the skew on the effective

performance of importance sampling.
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1 Introduction

In practice, the valuation of contingent claims is typically a multi-dimensional problem that involves

Monte Carlo simulation. The rate of convergence of a Monte Carlo simulation is n−1/2, where n

is the number of sample paths. Hence, improving the accuracy by a factor of 10 requires 100

times as many sample paths. For this reason variance reduction techniques become essential.

Importance sampling reduces the variance by changing the drift of the simulated sample paths.

Variance reduction achieved through importance sampling very much depends on the change of

drift. Much of research effort focuses on how to change the drift to fully exploit the variance

reduction potential of importance sampling. Multi-Level Monte Carlo is a Monte Carlo simulation

performed on different levels. The main advantage of Multi-Level Monte Carlo is that it has lower

computational complexity due to reduced variance compared to the basic Monte Carlo. Moreover,

the variance of Multi-Level Monte Carlo can be further reduced by combining it with other variance

reduction technique such as importance sampling.

In this paper, we focus on importance sampling for multi-asset options and importance sampling

in a Multi-Level Monte Carlo simulation. Our contribution is as follows. First, we present an

application of importance sampling with a stochastic change of drift to multi-asset options. Next,

we provide an efficient importance sampling scheme in a Multi-Level Monte Carlo simulation.

Finally, we extend the Likelihood Ratio Method Based on Characteristic Function to estimate

the Greeks of multi-asset options and in a Multi-Level Monte Carlo and we combine it with the

importance sampling to reduce the variance of the Greeks.

There is relatively little work on variance reduction for multi-asset options. Barraquand (1995)

introduces quadratic resampling and combines it with the importance sampling. Avramidis (2002)

proposes an algorithm that selects the importance sampling density as a mixture of multivariate

Normal densities. Neddermeyer (2011) develops non-parametric importance sampling in conjunc-

tion with quasi-random numbers. Su and Fu (1999), Bouhari (2004) as well as Caprotti (2008)

use importance sampling with a deterministic change of drift. In Su and Fu (1999) the change of

drift is depends on stochastic optimization. In Bouhari (2004) the change of drift relies on the

Robbins-Monro algorithms whereas in Caprotti (2008) it is based on the least squares minimization.

Pellizzari (1998) suggests the use of control variate based on unconditional and conditional expec-

tations of asset prices as a variance reduction technique for multi-asset options in the Black-Scholes

model.
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The rest of the paper is organized as follows. In Section 2 we present an application of impor-

tance sampling with a stochastic change of drift to multi-asset options in the Heston stochastic

volatility model and the Bates stochastic volatility model with jumps. We consider basket, best-of,

worst-of, spread, absolute and composite options. We also extend the Likelihood Ratio Method

Based on the Characteristic Function to multi-asset options. In Section 3 we discuss the appli-

cation of importance sampling in a Multi-Level Monte Carlo using the Heston-Hull-White model

and the Heston-Cox-Ingersoll-Ross model. We demonstrate that applying importance sampling

only on the first level can significantly improve the effective performance of the Multi-Level Monte

Carlo. We use the Likelihood Ratio Method Based on the Characteristic Function to estimate

the Greeks in a Multi-Level Monte Carlo and combine it with the importance sampling to reduce

the variance of the Greeks. We also study the impact of the skew on the effective performance

of importance sampling. What we mean by the skew is the correlation between asset returns and

their volatility. We study this feature because it is an important stylized fact of financial time

series. Finally, Section 4 concludes the paper.

2 Importance Sampling

Here, we present an application of importance sampling for multi-asset option in the Heston model.

We use a stochastic change of drift for a stochastic volatility model that was derived by Fouque

and Tullie in [7].

In the Heston model the stock price dynamics under the risk-neutral measure Q is

dSi,t = riSi,tdt+
√
vi,tSi,tdW

Si
i,t (1)

whereas the variance dynamics is given by

dvi,t = κi (θi − vi,t) dt+ ξi
√
vi,tdW

vi
i,t (2)

where κi is the i-th mean-reversion rate, θi is the i-th long-term variance and ξi is the i-th volatility

of the volatility. The correlation matrix is

C =

 C1 C2

C>2 C3

 (3)
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where

C1 =


ρ1,1 · · · ρ1,n

...
. . .

...

ρn,1 · · · ρn,n

 (4)

is the correlation corresponding to the asset price processes

C2 =


ρ1,n+1 · · · ρ1,2n

...
. . .

...

ρn,n+1 · · · ρn,2n

 (5)

is the correlation corresponding to the asset price processes and the variance processes and

C3 =


ρn+1,n+1 · · · ρn+1,2n

...
. . .

...

ρ2n,n+1 · · · ρ2n,2n

 (6)

is the correlation corresponding to the variance processes.

The difference between the Heston model and the Bates model is that in the Bates model the

stock price dynamics under the risk-neutral measure Q becomes

dSi,t = Si,t
(
ri − λik̄i

)
dt+ Si,t

√
vi,tdW

Si
i,t + Si,tdZi,t (7)

where Zi,t is a compound Poisson process with intensity λi and log-normal distribution of jump

sizes such that if ki is its jump size then ln (1 + ki) ∼ N
(
ln
(
1 + k̄i

)
− 1

2δ
2
i , δ

2
i

)
.

To apply this result to multi-asset options we will express the Heston model in matrix notation.

Let

dXt = b (Xt) dt+ a (Xt) dηt (8)

where C = ΣΣ>, ηt is a 2n-dimensional correlated Q-Brownian motion and

dXt =



S1,t

...

Sn,t

v1,t
...

vn,t


, ηt =



WS1
1,t

...

WSn
n,t

W v1
1,t

...

W vn
n,t


, b(x) =



r1s1
...

rnsn

κ1(θ1 − v1)

...

κn(θn − vn)


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a(x) =



√
v1s1 0 · · · · · · · · · 0

0
. . . · · · · · · · · ·

...

... · · · √vnsn · · · · · ·
...

... · · · · · · ξ1
√
v1 · · ·

...

... · · · · · · · · ·
. . . 0

0 · · · · · · · · · 0 ξn
√
vn


Let h (t,Xt) be η-adapted process. We introduce the martingale

Ht = exp

(ˆ T

0

Σ−1h(s,Xs) · Σ−1dηt +
1

2

ˆ T

0

Σ−1h(s,Xs) · Σ−1h(s,Xs)ds

)
(9)

and define a new probability measure Q̃ by the density

dQ̃
dQ

= (HT )
−1

(10)

By the Girsanov theorem for correlated Brownian motions, the process

η̃t = ηt +

ˆ t

0

h (s,Xs) dηs (11)

is a 2-dimensional correlated Q̃-Brownian motion. Thus under a new probability measure Q̃ the

model dynamics becomes

dXt = (b (Xt)− a (Xt)h (t,Xt)) dt+ a (Xt) dη̃t (12)

The optimal choice of h for which the variance of the Monte Carlo estimator under Q̃ is minimized

is

h(t,Xt) = − 1

P (t,Xt)
a(t,Xt)

>∇P (t,Xt) (13)

This result is also valid for the Bates model with the difference that

a(x) =



(
√
v1 +

dZ1,t

dW
S1
1,t

)
s1 0 · · · · · · · · · 0

0
. . . · · · · · · · · ·

...

... · · ·
(
√
vn +

dZn,t

dWSn
n,t

)
sn · · · · · ·

...

... · · · · · · ξ1
√
v1 · · ·

...

... · · · · · · · · ·
. . . 0

0 · · · · · · · · · 0 ξn
√
vn


We refer to [13] for details.
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For both models we approximate P (t,Xt) using its fast mean-reversion expansion as in [7]

which is given by the price of a European option in the Black-Scholes model with volatility

σ̄ =

√√√√ N∑
i=1

σ2
i − 2

N∑
1≤i<j≤N

σiσjρi,j (14)

and initial stock price S̄ =
∑N
i=1 Si. We use the fast mean-reversion expansion because it can

be used in conjunction with a look-up table introduced in [13] which dramatically reduces the

computational time.

2.1 Basket Option

The payout of a basket option depends on the performance of a basket of underlying assets, each

with its own corresponding weight. The weights wi must satisfy the constraints 0 ≤ wi ≤ 1 for all

i = 1, · · · , n and
∑n
i=1 wi = 1. The payout of the basket call with maturity T is given by

max (w1S1(T ), · · · , wnSn(T )−K, 0) (15)

The main advantage of a basket option is that it offers great flexibility in the construction of the

underlying basket and it is usually cheaper than buying vanilla options on each of the underlying

assets.

As an example we will consider basket call on three underlying assets. We assume that the

time to maturity is 1 year. Other parameters are

i w S r v0 ξ κ θ

1 50% 70 0.05 0.04 0.4 3 0.09
2 30% 35 0.05 0.09 0.3 0.5 0.25
3 20% 40 0.05 0.25 0.2 5 0.04

Table 1: Model parameters

and the correlation matrix is

1 0.4 0.2 −0.6 −0.28 −0.1

0.4 1 0.5 −0.24 −0.7 −0.25

0.2 0.5 1 0.0282 −0.35 −0.5

−0.6 −0.24 0.0282 1 0.168 0.0294

−0.28 −0.7 −0.35 0.168 1 0.175

−0.1 −0.25 −0.5 0.0294 0.175 1


(16)
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We note that the Feller condition is satisfied for each underlying asset.

In a Monte Carlo simulation we use 10 000 sample paths and a time increment of 0.001. In

Table 2 we report the results for basic Monte Carlo and importance sampling for the Heston model

and the Bates model. For the Bates model, we assume that the jump intensity is 1 per year,

standard deviation of the jumps is 2% and the mean jump size is -5%.

K
S0

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Heston

price
MC 23.0003 18.0939 13.4929 9.4321 6.1308 3.6583 2.0060 0.9916
IS 23.0432 18.1301 13.5388 9.4302 6.0855 3.6288 1.9740 0.9759

variance
MC 139.1319 131.7882 116.7452 93.7079 66.5853 41.7007 22.8492 11.1104
IS 23.9918 22.8241 27.9146 15.9959 11.1225 10.7502 5.6949 1.8306

Bates

price
MC 22.9964 18.0972 13.5079 9.4722 6.1935 3.7289 2.0761 1.0521
IS 22.9257 18.0389 13.4853 9.4724 6.2015 3.7453 2.0880 1.0719

variance
MC 143.5208 135.8888 120.4728 96.8471 69.1762 43.8538 24.5189 12.2881
IS 32.9773 31.0928 26.9779 21.0307 14.3609 8.3187 4.1190 1.7322

Table 2: Price and variance of price for basket call as a function of K
S0

.

On average importance sampling reduces the variance 5 times compared to the basic Monte

Carlo.

2.2 Best-of Option

Best-of option depends on the performance of the best performing asset in a basket. The payout

of the best-of call with maturity T is given by

max (max (S1(T ), · · · , Sn(T ))−K, 0) (17)

Best-of call has a higher upside potential compared to a call option on the same a basket of

underlying assets.

As an example we will consider best-of three underlying assets call option. We assume that the

time to maturity is 1 year. Other parameters are

i S r v0 ξ κ θ

1 30 0.05 0.04 0.4 3 0.09
2 35 0.05 0.09 0.3 0.5 0.25
3 40 0.05 0.25 0.2 5 0.04

Table 3: Model parameters

and the correlation matrix is given by (16). We also note that the Feller condition is satisfied

for each underlying asset.
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In a Monte Carlo simulation we use 10 000 sample paths and a time increment of 0.001. In

Table 4 we report the results for basic Monte Carlo and importance sampling for the Heston model

and the Bates model. For the Bates model, we assume that the jump intensity is 1 per year,

standard deviation of the jumps is 2% and the mean jump size is -5%.

K
S0

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Heston

price
MC 23.3939 20.0806 16.8117 13.6660 10.7524 8.1722 5.9940 4.2450
IS 23.3965 20.0837 16.8275 13.6950 10.7276 8.1459 5.9882 4.2398

variance
MC 114.9330 114.2491 112.0612 106.5591 96.5682 82.5957 66.5238 50.5769
IS 58.0854 49.6236 40.2004 31.9864 24.6266 19.9598 15.4075 11.2659

Bates

price
MC 23.5387 20.2257 16.9608 13.8165 10.8969 8.3088 6.1219 4.3675
IS 23.4815 20.1805 16.9499 13.8360 10.8988 8.3327 6.1667 4.4003

variance
MC 118.2053 117.5027 115.1506 109.5496 99.5909 85.5577 69.3061 53.0277
IS 57.7069 49.5691 40.9534 33.3357 26.6619 21.6881 16.7958 12.4169

Table 4: Price and variance of price for best-of call as a function of K
S0

.

On average importance sampling reduces the variance 3 times compared to the basic Monte

Carlo.

2.3 Worst-of Option

Worst-of option depends on the performance of the worst performing asset in a basket. The payout

of the worst-of call with maturity T is given by

max (min (S1(T ), · · · , Sn(T ))−K, 0) (18)

Worst-of call has a lower upside potential compared to a call option on the same a basket of

underlying assets.

As an example we will consider worst-of three underlying assets call option. We use the same

parameters as in the previous section. In a Monte Carlo simulation we use 10 000 sample paths and

a time increment of 0.001. In Table 5 we report the results for basic Monte Carlo and importance

sampling for the Heston model and the Bates model. For the Bates model, we assume that the

jump intensity is 1 per year, standard deviation of the jumps is 2% and the mean jump size is -5%.
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K
S0

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Heston

price
MC 7.5960 5.0870 3.1251 1.7429 0.8760 0.3895 0.1544 0.0590
IS 7.6359 5.1117 3.1181 1.7279 0.8628 0.3849 0.1524 0.0533

variance
MC 42.3979 32.2608 21.3585 12.1857 5.9854 2.5606 0.9838 0.3423
IS 19.3028 13.8514 8.7862 4.7116 2.1009 0.7885 0.2509 0.0701

Bates

price
MC 7.4994 5.0152 3.0794 1.7277 0.8753 0.3964 0.1649 0.0615
IS 7.5106 5.0174 3.0583 1.6931 0.8489 0.3835 0.1561 0.0580

variance
MC 42.7988 32.4943 21.5437 12.3510 6.1418 2.6990 1.0523 0.3754
IS 20.1260 14.3138 8.9745 4.7930 2.1609 0.8268 0.2723 0.0798

Table 5: Price and variance of price for worst-of call as a function of K
S0

.

On average importance sampling reduces the variance 3 times compared to the basic Monte

Carlo.

2.4 Spread option

Spread option depends on the difference between two underlying assets. Seller of such an option

is long correlation which differentiates it from the majority of multi-asset options that leave the

seller short correlation. The payout of the spread call with maturity T is given by

max (S1(T )− S2(T )−K, 0) (19)

As an example we will consider spread call. We assume that the time to maturity is 1 year.

Other parameters are

i S r v0 ξ κ θ

1 30 0.05 0.04 0.4 3 0.09
2 5 0.05 0.09 0.3 0.5 0.25

Table 6: Model parameters

and the correlation matrix is



1 0.4 −0.6 −0.28

0.4 1 −0.24 −0.7

−0.6 −0.24 1 0.168

−0.28 −0.7 0.168 1


(20)

We note that the Feller condition is satisfied for each underlying asset.

In a Monte Carlo simulation we use 10 000 sample paths and a time increment of 0.001. In

Table 7 we report the results for basic Monte Carlo and importance sampling for the Heston model
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and the Bates model. For the Bates model, we assume that the jump intensity is 1 per year,

standard deviation of the jumps is 2% and the mean jump size is -5%.

K
S0

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Heston

price
MC 10.9116 8.7664 6.8078 5.0821 3.6278 2.4616 1.5897 0.9777
IS 10.8962 8.7438 6.7701 5.0316 3.5795 2.4298 1.5730 0.9676

variance
MC 51.5956 47.0730 40.6259 32.9627 25.0319 17.7671 11.7748 7.3314
IS 3.4245 3.7729 2.9216 1.7977 1.3673 1.0649 0.7246 0.3987

Bates

price
MC 10.9352 8.8015 6.8525 5.1433 3.7056 2.5509 1.6764 1.0552
IS 10.9055 8.7716 6.8252 5.1218 3.6918 2.5521 1.6944 1.0786

variance
MC 54.2643 49.5032 42.8706 34.9473 26.7347 19.1973 12.9460 8.2356
IS 5.4703 4.7225 4.1768 3.4911 2.5868 1.9515 1.4214 0.9444

Table 7: Price and variance of price for spread call as a function of K
S0

.

On average importance sampling reduces the variance 13 times compared to the basic Monte

Carlo.

2.5 Absolute option

Absolute option is an option written on the absolute value of the difference between the two

underlying assets at maturity. The payout of the spread call with maturity T is given by

max (max (S1(T ), S2(T ))−min (S1(T ), S2(T ))−K, 0) (21)

As an example we will consider absolute call on two underlying assets. We assume that the

time to maturity is 1 year. Other parameters are

i S r v0 ξ κ θ

1 30 0.05 0.04 0.4 3 0.09
2 35 0.05 0.09 0.3 0.5 0.25

Table 8: Model parameters

and the correlation matrix is given by (20). We also note that the Feller condition is satisfied

for each underlying asset.

In a Monte Carlo simulation we use 10 000 sample paths and a time increment of 0.001. In

Table 9 we report the results for basic Monte Carlo and importance sampling for the Heston model

and the Bates model. For the Bates model, we assume that the jump intensity is 1 per year,

standard deviation of the jumps is 2% and the mean jump size is -5%.

10



K
S0

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Heston

price
MC 0.8110 0.4772 0.2775 0.1561 0.0860 0.0470 0.0260 0.0137
IS 0.8157 0.4738 0.2703 0.1517 0.0837 0.0457 0.0241 0.0124

variance
MC 8.4177 4.9509 2.8182 1.5635 0.8538 0.4603 0.2410 0.1229
IS 4.3064 1.9271 0.9153 0.4107 0.1753 0.0765 0.0256 0.0071

Bates

price
MC 0.8988 0.5351 0.3091 0.1733 0.0947 0.0509 0.0271 0.0143
IS 0.8731 0.5180 0.3015 0.1726 0.0973 0.0530 0.0289 0.0158

variance
MC 9.2814 5.4544 3.0895 1.6995 0.9159 0.4850 0.2541 0.1307
IS 3.9397 1.8787 0.8458 0.3651 0.1514 0.0554 0.0207 0.0082

Table 9: Price and variance of price for absolute call as a function of K
S0

.

On average importance sampling reduces the variance 7 times compared to the basic Monte

Carlo.

2.6 Composite

Composite option is an option on a foreign underlying asset with a strike denominated in the

domestic currency. The holder of a composite option faces foreign exchange risk, but benefits from

having fixed the strike in the domestic currency. The payout of the composite call with maturity

T is given by

max (S(T )FX(T )−K, 0) (22)

where FX is the foreign exchange rate.

As an example we will consider composite call. We assume that the time to maturity is 1 year.

Other parameters are

i S r v0 ξ κ θ

1 30 0.05 0.04 0.4 3 0.09
2 2 0.05 0.09 0.3 0.5 0.25

Table 10: Model parameters

and the correlation matrix is given by (20). We also note that the Feller condition is satisfied

for each underlying asset.

In a Monte Carlo simulation we use 10 000 sample paths and a time increment of 0.001. In

Table 11 we report the results for basic Monte Carlo and importance sampling for the Heston

model and the Bates model. For the Bates model, we assume that the jump intensity is 1 per year,

standard deviation of the jumps is 2% and the mean jump size is -5%.
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K
S0

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Heston

price
MC 14.7229 11.8809 9.2202 6.8346 4.8012 3.1750 1.9658 1.1369
IS 14.7025 11.8549 9.1903 6.8037 4.7791 3.1696 1.9776 1.1546

variance
MC 132.9938 113.6243 93.6035 73.2430 53.7984 36.7750 23.3859 13.9662
IS 65.9776 54.7920 44.3035 34.0895 24.4774 16.1298 9.6617 5.2622

Bates

price
MC 14.7446 11.9122 9.2596 6.8880 4.8743 3.2598 2.0555 1.2193
IS 14.7270 11.8902 9.2423 6.8705 4.8617 3.2663 2.0775 1.2507

variance
MC 138.4657 118.5183 98.0459 77.1913 57.2165 39.7261 25.8310 15.8694
IS 70.2021 58.6839 47.6199 36.9331 26.9349 18.1927 11.4240 6.8354

Table 11: Price and variance of price for composite call as a function of K
S0

.

On average importance sampling reduces the variance 2 times compared to the basic Monte

Carlo.

2.7 Greeks

Price of a multi-asset option can be expressed as expectation under the risk-neural measure Q

P = E
[
e−r(T−t)φ (S1(T ), · · · , Sn(T ))

]
(23)

where φ (S1(T ), · · · , Sn(T )) is the payout function. Using the definition of expectation, this can

be written as

P =

ˆ ∞
0

· · ·
ˆ ∞
0

e−r(T−t)φ (S1(T ), · · · , Sn(T )) f(x1, · · · , xn)dx1 · · · dxn (24)

where f(x1, · · · , xn) is the joint density.

Let us consider the first derivative of the option price with respect to S1(0)

∆ =
∂

∂S1(0)

ˆ ∞
0

· · ·
ˆ ∞
0

e−r(T−t)φ (S1(T ), · · · , Sn(T )) f(x1, · · · , xn)dx1 · · · dxn

=

ˆ ∞
0

· · ·
ˆ ∞
0

e−r(T−t)φ (S1(T ), · · · , Sn(T ))

∂
∂S1(0)

f(x1, · · · , xn)

f(x1, · · · , xn)
f(x1, · · · , xn)dx1 · · · dxn

where
∂

∂S1(0)
f(x1,··· ,xn)

f(x1,··· ,xn)
is the likelihood ratio. By Sklar’s Theorem there exists a copula C such

that

F (x1, · · · , xn) = C (F1 (x1) , · · · , Fn (xn)) = C (u1, · · · , un) (25)

In [13] we showed that the CDF and PDF for both the Heston model and the Bates model can

12



be obtained as

F1 (x1) = Pr (S1(T ) ≤ x1) =
1

2
− 1

π

ˆ ∞
0

Re

[
exp (−iω ln (x1))φT (ω)

iω

]
dω

f1 (x1) ≈ F1 (x1 + ∆x)− F1 (x1)

∆x

where φ is the characteristic function. nth order differentiation of (25) gives an expression for the

joint density.

f(x1, · · · , xn) =

n∏
i=1

fi (xi) c (u1, · · · , un) (26)

where c (u1, · · · , un) = ∂nC(u1,··· ,un)
∂u1···∂un

. Other Greeks can be computed in a similar manner. In order

to estimate the Greeks with respect to correlation between assets we will use an analytical copula

as an approximation of copula in (25).

As an example let us again consider basket call. As an approximation of the joint PDF for the

Heston model we will use t copula with 62 degrees of freedom and correlation matrix


1 0.4 0.2

0.4 1 0.5

0.2 0.5 1

 (27)

In Figure 1 we display the joint PDF for the first and second underlying asset in Table 1. The

joint PDF in the upper panel was obtained using the Monte Carlo simulation. The joint PDF in

the lower panel was obtained using t copula with 62 degrees of freedom and marginal PDFs of

the first and second underlying asset in Table 1. Correlation matrix and the number of degrees of

freedom were estimated using maximum likelihood.
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Figure 1: Joint PDF for the first and second underlying asset in Table 1 for the Heston model.



In Tables 12 and 13 we report delta and gamma of each underlying asset computed by the

Likelihood Ratio Method Based on the Characteristic Function for the Heston model.

i K
S0

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

1
delta

MC 0.4973 0.4850 0.4572 0.4070 0.3346 0.2500 0.1678 0.1005
IS 0.4978 0.4832 0.4528 0.4005 0.3290 0.2499 0.1702 0.1045

variance
MC 3.9044 2.9080 2.0993 1.4687 0.9938 0.6445 0.3937 0.2223
IS 2.9194 1.9176 1.1636 0.6470 0.3326 0.2544 0.1250 0.0439

2
delta

MC 0.2968 0.2873 0.2671 0.2329 0.1870 0.1366 0.0906 0.0524
IS 0.2961 0.2865 0.2673 0.2365 0.1910 0.1352 0.0874 0.0501

variance
MC 10.9800 7.8665 5.3811 3.4908 2.1292 1.2105 0.6341 0.3048
IS 9.8116 6.5965 4.1291 2.3213 1.1894 0.6826 0.2735 0.0868

3
delta

MC 0.1991 0.1886 0.1728 0.1506 0.1219 0.0897 0.0583 0.0340
IS 0.2025 0.1932 0.1789 0.1593 0.1315 0.0995 0.0689 0.0430

variance
MC 7.7937 5.4444 3.6204 2.2803 1.3568 0.7634 0.4083 0.2102
IS 6.2314 4.0029 2.3606 1.2534 0.6082 0.2816 0.1127 0.0388

Table 12: Delta and variance of delta for basket call as a function of K
S0

.

On average importance sampling reduces the variance of delta 2 times.

i K
S0

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

1
gamma

MC 0.0001 0.0009 0.0025 0.0048 0.0071 0.0084 0.0083 0.0067
IS 0.0020 0.0026 0.0039 0.0060 0.0079 0.0089 0.0086 0.0071

variance
MC 0.0479 0.0378 0.0291 0.0217 0.0157 0.0108 0.0070 0.0042
IS 0.0372 0.0262 0.0174 0.0107 0.0061 0.0033 0.0018 0.0009

2
gamma

MC 0.0142 0.0115 0.0093 0.0077 0.0065 0.0054 0.0042 0.0027
IS 0.0197 0.0169 0.0144 0.0120 0.0100 0.0079 0.0055 0.0036

variance
MC 0.4378 0.3224 0.2279 0.1536 0.0977 0.0581 0.0322 0.0164
IS 0.4136 0.2865 0.1852 0.1098 0.0587 0.0298 0.0127 0.0046

3
gamma

MC 0.0104 0.0082 0.0063 0.0047 0.0036 0.0029 0.0024 0.0020
IS 0.0127 0.0103 0.0081 0.0062 0.0047 0.0034 0.0025 0.0017

variance
MC 0.1819 0.1294 0.0883 0.0576 0.0360 0.0218 0.0130 0.0078
IS 0.1433 0.0928 0.0554 0.0301 0.0150 0.0079 0.0032 0.0011

Table 13: Gamma and variance of gamma for basket call as a function of K
S0

.

On average importance sampling reduces the variance of gamma 2 times.

As an approximation of the joint PDF for the Bates model we will use t copula with 30 degrees

of freedom and the correlation matrix given by (27).

In Figure 2 we display the joint PDF for the first and second underlying asset in Table 1. The

joint PDF in the upper panel was obtained using the Monte Carlo simulation. The joint PDF in

the lower panel was obtained using t copula with 30 degrees of freedom and marginal PDFs of

the first and second underlying asset in Table 1. Correlation matrix and the number of degrees of

freedom were estimated using maximum likelihood.
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Figure 2: Joint PDF for the first and second underlying asset in Table 1 for the Bates model.



In Tables 14 and 15 we report delta and gamma of each underlying asset computed by the

Likelihood Ratio Method Based on the Characteristic Function for the Bates model.

i K
S0

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

1
delta

MC 0.4966 0.4845 0.4567 0.4066 0.3347 0.2512 0.1706 0.1044
IS 0.4912 0.4769 0.4489 0.3976 0.3292 0.2488 0.1722 0.1092

variance
MC 3.8657 2.8944 2.1049 1.4874 1.0193 0.6713 0.4182 0.2421
IS 2.8849 1.9074 1.1758 0.6710 0.3565 0.1826 0.0906 0.0463

2
delta

MC 0.3056 0.2933 0.2708 0.2342 0.1862 0.1364 0.0906 0.0529
IS 0.2895 0.2812 0.2598 0.2284 0.1803 0.1296 0.0833 0.0477

variance
MC 10.8908 7.8325 5.3818 3.5098 2.1576 1.2400 0.6602 0.3245
IS 9.6904 6.5213 4.1040 2.3413 1.2146 0.5691 0.2377 0.0889

3
delta

MC 0.1803 0.1722 0.1588 0.1390 0.1136 0.0831 0.0543 0.0317
IS 0.1766 0.1701 0.1611 0.1442 0.1206 0.0939 0.0655 0.0404

variance
MC 7.5413 5.2603 3.4916 2.1943 1.3011 0.7289 0.3872 0.1981
IS 6.0178 3.8632 2.2887 1.2276 0.6000 0.2648 0.1058 0.0389

Table 14: Delta and variance of delta for basket call as a function of K
S0

.

On average importance sampling reduces the variance of delta 2 times.

i K
S0

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

1
gamma

MC 0.0023 0.0028 0.0040 0.0060 0.0080 0.0091 0.0087 0.0071
IS 0.0037 0.0040 0.0055 0.0071 0.0089 0.0100 0.0094 0.0078

variance
MC 0.0477 0.0379 0.0295 0.0223 0.0163 0.0114 0.0076 0.0047
IS 0.0342 0.0242 0.0168 0.0105 0.0063 0.0036 0.0020 0.0011

2
gamma

MC 0.0210 0.0174 0.0142 0.0115 0.0093 0.0072 0.0053 0.0033
IS 0.0267 0.0227 0.0199 0.0163 0.0132 0.0098 0.0072 0.0048

variance
MC 0.4307 0.3207 0.2294 0.1565 0.1009 0.0608 0.0340 0.0175
IS 0.3641 0.2523 0.1679 0.1049 0.0561 0.0279 0.0123 0.0051

3
gamma

MC 0.0123 0.0096 0.0071 0.0050 0.0035 0.0025 0.0019 0.0014
IS 0.0117 0.0094 0.0075 0.0057 0.0041 0.0032 0.0021 0.0013

variance
MC 0.1674 0.1184 0.0801 0.0515 0.0315 0.0185 0.0105 0.0059
IS 0.1210 0.0781 0.0472 0.0258 0.0129 0.0061 0.0026 0.0009

Table 15: Gamma and variance of gamma for basket call as a function of K
S0

.

On average importance sampling reduces the variance of gamma 2 times.

3 Multi-Level Monte Carlo with Importance Sampling

Multi-Level Monte Carlo is a Monte Carlo simulation with different number of time steps hl = 2−lT

on each level l = 0, 1, · · · , L. Let P denote the payout and Pl denote its approximation on level l.

The Multi-Level Monte Carlo estimator is given by

Ŷ = E [PL] = E [P0] +

L∑
l=1

E [Pl − Pl−1] (28)

Let Ŷ0 denote an estimator for E [P0] using N0 sample paths and let Ŷl denote an estimator for
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E [Pl − Pl−1] using Nl sample paths. Ŷl is calculated as a mean of Nl independent samples

Ŷl =
1

Nl

Nl∑
i=1

(
P il − P il−1

)
(29)

It is important to note that Pl and Pl−1 are obtained using the same Brownian path. This

is done by first constructing Nl Brownian increments to evaluate P il and then summing them in

pairs, yielding Nl

2 Brownian increments, to evaluate P il−1.

The variance of the Multi-Level Monte Carlo estimator is

V ar
[
Ŷ
]

=

L∑
l=0

V ar
[
Ŷl

]
=

L∑
l=0

1

Nl
Vl (30)

where Vl = V ar [Pl − Pl−1].

The mean square error is given by

MSE = E
[(
Ŷ − E [P ]

)2]
= V ar

[
Ŷ
]

+
(
E
[
Ŷ
]
− E [P ]

)2
(31)

where
(
E
[
Ŷ
]
− E [PL]

)
is the discretization error. By Theorem 3.1 in [8]

(
E
[
Ŷ
]
− E [PL]

)2
≤

ε2

2 and V ar
[
Ŷ
]
≤ ε2

2 so the upper bound on the mean square error is ε2.

We wish to minimize the variance of Y for a given computational cost C =
∑L
l=0

Nl

hl
. It can be

shown that the optimal number of sample paths for level l is

Nl =

⌈
2ε−2

√
Vlhl

(
L∑
l=0

√
Vl
hl

)⌉
(32)

Overall, Monte Carlo for a given ε has computational complexity proportional to ε−3 whereas

that of the Multi-Level Monte Carlo is proportional to ε−2 (log ε)
2

due to reduced variance.

To illustrate the performance of Multi-Level Monte Carlo with the importance sampling we

will use the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model. The dynamics of

these models under the risk neutral measure Q is given by

dSt = rtStdt+
√
vtStdW

S
t (33)

dvt = κ (v̄ − vt) dt+ γ
√
vtdW

v
t (34)

drt = λ (θ − rt) dt+ ηrpt dW
r
t (35)

where
〈
dWS

t dW
v
t

〉
= ρS,vdt,

〈
dWS

t dW
r
t

〉
= ρS,rdt and 〈dW r

t dW
v
t 〉 = 0. If p = 0 we have the

Heston-Hull-White model and if it is 0.5 we have the Heston-Cox-Ingersoll-Ross model.
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We compare the performance of the Multi-Level Monte Carlo with the importance sampling and

without importance sampling for European call option. We use the following parameters: κ = 2,

γ = 0.06, v0 = v̄ = 0.04, λ = 0.05, r0 = θ = 0.07, η = 0.01, S0 = 100, ρS,v = −0.3, ρS,r = 0.2,

T = 1. We set ε = 0.01 and L = 8. We consider five strikes: 60, 80, 100, 120 and 140. In Table 16

we report European option prices and relative errors with respect to the semi-analytical solution

for different strikes under the Heston-Hull-White model and the Heston-Cox-Ingersoll-Ross model.

Strike 60 80 100 120 140

Heston-Hull-White
Semi closed-form (price) 44.0682 26.0077 11.5943 3.7583 0.9221

MLMC (price) 44.0918 26.0258 11.6100 3.7636 0.9219
MLMC (relative error) 0.05% 0.07% 0.13% 0.14% 0.02%

MLMC+IS (price) 44.0879 26.0256 11.6085 3.7648 0.9229
MLMC+IS (relative error) 0.04% 0.07% 0.12% 0.17% 0.08%

Heston-Cox-Ingersoll-Ross
Semi closed-form (price) 44.0686 25.9996 11.5668 3.7296 0.9071

MLMC (price) 44.0724 26.0067 11.5696 3.7320 0.9037
MLMC (relative error) 0.01% 0.03% 0.02% 0.06% 0.37%

MLMC+IS (price) 44.0769 26.0045 11.5693 3.7326 0.9041
MLMC+IS (relative error) 0.02% 0.02% 0.02% 0.08% 0.33%

Table 16: Option price and relative error with respect to the semi-analytical solution.

Given the nature of the Multi-Level Monte Carlo, we observe that it is possible to use impor-

tance sampling on all levels or some levels. We will refer to the former case as full importance

sampling. We note that the first level, where l = 0, is the coarsest, because the time step at this

level is T . The point is that variance at level l decreases as l increases because both Pl−1 and Pl

accurately approximate P as they are obtained using the same Brownian path. Therefore, as an

alternative to the full importance sampling we will consider importance sampling on the first level

only. In Figure 3 we illustrate the effective performance defined as the ratio of variance reduction

from importance sampling to speed for different strikes. Speed is defined as the ratio of computa-

tional time of the Multi-Level Monte Carlo with the importance sampling to computational time of

the Multi-Level Monte Carlo without importance sampling. We compare Multi-Level Monte Carlo

with full importance sampling, Multi-Level Monte Carlo with the importance sampling on the first

level only and Multi-Level Monte Carlo without importance sampling. The results indicate that the

Multi-Level Monte Carlo with the importance sampling is more efficient than Multi-Level Monte

Carlo without importance sampling and Multi-Level Monte Carlo with the importance sampling

on the first level only is much more efficient than both Multi-Level Monte Carlo without impor-

tance sampling and Multi-Level Monte Carlo with full importance sampling. The performance

improvement compared to the Multi-Level Monte Carlo full importance sampling comes from two
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sources. The first one is variance reduction from importance sampling. The second one is reduced

computational time. This is due to the fact that the number of sample paths at level l which is

given by (32) depends on the variance at level l. Since importance sampling reduces the variance at

the first level, the required number of sample paths at this level is less compared to the Multi-Level

Monte Carlo without importance sampling.

Figure 3: Effective performance for different strikes.

It is also possible to use the Likelihood Ratio Method Based on Characteristic Function to

estimate the Greeks in a Multi-Level Monte Carlo. Let us consider the first derivative of the

Multi-Level Monte Carlo estimator (28) with respect to S0.

∆ =
∂

∂S0
E [PL]

=
∂

∂S0
E [P0] +

L∑
l=1

∂

∂S0
E [Pl − Pl−1]

=

ˆ ∞
0

e−r(T−t)P0

∂
∂S0

f(x)

f(x)
f(x)dx+

L∑
l=1

ˆ ∞
0

e−r(T−t) (Pl − Pl−1)
∂
∂S0

f(x)

f(x)
f(x)dx

where
∂

∂S0
f(x)

f(x) is the likelihood ratio which can be obtained from the characteristic function as

in [13].

In Tables 17 and 18 we report delta and gamma computed by the Likelihood Ratio Method

Based on the Characteristic Function for European option under the Heston-Hull-White model

and the Heston-Cox-Ingersoll-Ross model.
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Strike 60 80 100 120 140

Heston-Hull-White
MLMC (delta) 0.9595 0.9187 0.6691 0.3227 0.1068

MLMC (variance) 8.5492 4.7461 2.5166 1.1986 0.4324
MLMC+IS (delta) 0.9621 0.9172 0.6690 0.3235 0.1058

MLMC+IS (variance) 4.3355 1.1883 0.2358 0.0869 0.0379
Heston-Cox-Ingersoll-Ross

MLMC (delta) 0.9570 0.9179 0.6698 0.3231 0.1062
MLMC (variance) 8.6794 4.8099 2.5586 1.2152 0.4403
MLMC+IS (delta) 0.9577 0.9195 0.6686 0.3224 0.1057

MLMC+IS (variance) 4.4050 1.2070 0.2374 0.0861 0.0350

Table 17: Delta and variance of delta.

On average importance sampling reduces the variance of delta 8 times.

Strike 60 80 100 120 140

Heston-Hull-White
MLMC (gamma) 0.0001 0.0042 0.0165 0.0175 0.0092
MLMC (variance) 0.0569 0.0370 0.0219 0.0119 0.0055

MLMC+IS (gamma) 0.0001 0.0042 0.0164 0.0174 0.0092
MLMC+IS (variance) 0.0264 0.0108 0.0035 0.0011 0.0005

Heston-Cox-Ingersoll-Ross
MLMC (gamma) 0.0001 0.0041 0.0165 0.0176 0.0092
MLMC (variance) 0.0591 0.0383 0.0227 0.0123 0.0057

MLMC+IS (gamma) 0.0002 0.0042 0.0164 0.0175 0.0091
MLMC+IS (variance) 0.0271 0.0112 0.0036 0.0011 0.0005

Table 18: Gamma and variance of gamma.

On average importance sampling reduces the variance of gamma 7 times.

Another interesting question is whether the skew has an impact on the effective performance

of importance sampling. To answer this question we consider two scenarios. In the first scenario

ρS,v = −0.3, and in the second scenario ρS,v = −0.7. In Figure 4 we illustrate the effective

performance in each scenario for different strikes. The results indicate that the skew has no

significant impact on the effective performance of importance sampling.
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Figure 4: Effective performance for different strikes.

Finally, we will use the Multi-Level Monte Carlo to price basket call on three underlying assets.

We will use the same parameters as in Section 2.1 and λ = 0.05, r0 = θ = 0.05, η = 0.01,

ρS,v = −0.3, ρS,r = 0.2, ρr,v = 0. We set ε = 0.05 and L = 8. We note that a combination

of Multi-Level Monte Carlo and hybrid stochastic volatility model such as Heston-Hull-White

or Heston-Cox-Ingersoll-Ross is particularly suitable for pricing variable annuities which are in

principle long-dated basket put options. In Table 19 we report the results for basket call on three

underlying assets and in Figure 5 we illustrate the effective performance.

K
S0

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Heston-Hull-White

price
MLMC 23.0163 18.1578 13.5499 9.4680 6.1793 3.6732 2.0032 1.0110

IS 23.0566 18.1401 13.5361 9.5040 6.1853 3.6966 2.0461 1.0250

variance
MLMC 167.2807 163.5697 151.1191 128.0302 98.3946 68.8361 45.2237 28.9471

IS 82.6510 83.0224 79.2609 68.8662 53.9843 39.5120 27.5075 18.7768
Heston-Cox-Ingersoll-Ross

price
MLMC 23.0473 18.1467 13.5498 9.4906 6.1786 3.7034 2.0303 1.0340

IS 23.0272 18.1399 13.5098 9.4610 6.1423 3.6764 2.0344 0.9912

variance
MLMC 167.5398 163.5396 151.2621 128.0371 98.0752 69.0209 45.4317 28.6720

IS 82.6687 82.9464 79.3410 68.9031 53.9411 39.3100 27.4990 18.6551

Table 19: Price and variance of price for basket call as a function of K
S0

.

On average importance sampling reduces the variance 2 times compared to the Multi-Level

Monte Carlo without importance sampling.

22



Figure 5: Effective performance as a function of K
S0

.

4 Conclusion

We have presented an application of importance sampling with stochastic change of drift to multi-

asset options. We have illustrated the use of importance sampling with basket, best-of, worst-of,

spread, absolute and composite options as examples. Based on our results, importance sampling

reduces variance of multi-asset options by a factor of 3-13 on average across the strikes.

We have provided an extension of the Likelihood Ratio Method Based on the Characteristic

Function to multi-asset options and combined it with the importance sampling to reduce the

variance of the Greeks. Based on our results, importance sampling reduces variance of Greeks of

multi-asset options by a factor of 2 on average across the strikes.

We applied importance sampling in a Multi-Level Monte Carlo and demonstrated that applying

importance sampling on the first level significantly improves its effective performance. For Euro-

pean option the Multi-Level Monte Carlo with full importance sampling the effective performance

is on average almost 3 times better than that of the Multi-Level Monte Carlo without importance

sampling. The Multi-Level Monte Carlo with the importance sampling on the first level only the

effective performance is on average almost 19 times better than that of the Multi-Level Monte

Carlo without importance sampling. For basket option the Multi-Level Monte Carlo with the

importance sampling on the first level only the effective performance is on average almost 2 times

better than that of the Multi-Level Monte Carlo without importance sampling. We have also used

the Likelihood Ratio Method Based on the Characteristic Function to estimate the Greeks in a
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Multi-Level Monte Carlo and combined it with the importance sampling to reduce the variance of

the Greeks. Based on our results, importance sampling reduces variance of Greeks of by a factor

of 6-8 on average across the strikes.

Finally, we have studied the impact of the skew on the effective performance of importance

sampling. Our results suggest that the skew has no significant impact on the effective performance

of importance sampling.
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