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Abstract

Most papers in the portfolio choice literature have examined linear predictability frameworks based

on the idea that simple but flexible Vector Autoregressive (VAR) models can be expanded to produce

portfolio allocations that hedge against the bull and bear dynamics typical of financial markets through

careful selection of predictor variables that capture business cycles and market sentiment. Yet, a distinct

literature exists that shows that nonlinear econometric frameworks, such as Markov switching, are also

natural tools to compute optimal portfolios arising from the existence of good and bad market states.

This paper examines whether and how simple VARs can produce portfolio rules similar to those obtained

under a simple Markov switching, by studying the effects of expanding both the order of the VAR and

the number/selection of predictor variables included. In a typical stock-bond strategic asset allocation

problem for U.K. data, we compute the out-of-sample certainty equivalent returns for a wide range of

VARs and compare these measures of performance with those of nonlinear models. We conclude that

most VARs cannot produce portfolio rules, hedging demands, or (net of transaction costs) out-of-sample

performances that approximate those obtained from equally simple nonlinear frameworks.

Key words: Predictability, Strategic Asset Allocation, Markov Switching, Vector Autoregressive

Models, Out-of-Sample Performance.

JEL codes: G11, C53.

1. Introduction

Understanding the behaviour of asset returns and the portfolio allocation decisions associated with in-

vestments in those assets is of great importance to financial market participants. Intuitively, the optimal

decision of an investor rests on the characteristics of the assets under consideration as well as the invest-

ment horizon. On the one hand, in the absence of return predictability, the seminal papers by Merton

(1969) and Samuleson (1969) have shown that the optimal portfolio mix is independent of the selected

investment horizon. That is, long-horizon investors should allocate their wealth and choose exactly the

same asset allocation as a short-term investors do. On the other hand, the predictability of asset returns
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is now a well established, though widely debated, issue in empirical finance (see, e.g., Welch and Goyal,

2008). This evidence of predictability has given rise to a literature which has sought to examine how

long-run portfolio allocation decisions are affected. The seminal work by Brennan et al. (1997) and Bar-

beris (2000) demonstrates that an investor’s investment horizon is no longer irrelevant once asset returns

are predictable. In fact, even weak predictability can yield economically significant variations in asset

allocation decisions. Moreover, much of the portfolio choice literature focusses on linear predictability

patterns, irrespective of a growing strand of research suggesting that predictability patterns are nonlinear,

for instance in the form of persistent and predictable bull and bear market states.1

Because of their simplicity, linear frameworks provide a natural benchmark in many empirical appli-

cations. Their adoption in asset allocation exercises is predicated on two related but simplistic ideas.

First, though the portfolio choice literature typically focuses on models of limited scale (e.g., VAR(1)

models with 2-3 predictors at most, see Barberis, 2000; Lynch, 2001), the results imply that larger scale

models must exist that can produce improved realized portfolio performance. That is, models must exist

that effectively exploit their flexibility in terms of number of lags and number and nature of predictors to

capture any predictability patterns relevant to portfolio performance, rendering any nonlinear effects of

secondary importance. Second, these small scale VAR(1) models would be indicative of the importance

of linear predictability for dynamic portfolio selection because it is well known from standard graduate

econometrics that any VAR() model can be re-written as an expanded VAR(1) provided the right state

variables are used to augment the multivariate scope of the model. In contrast to the widespread reliance

on these assumptions in the empirical portfolio choice literature, in this paper we seek to examine whether

any such small and medium size VAR models as commonly employed in the empirical finance literature

can exploit linear predictability to yield realized, out-of-sample portfolio outcomes equivalent to those of

an investor that chooses to exploit nonlinear predictability patterns. A positive finding implies that it

would be irrelevant whether or not portfolio managers would or could exploit any evidence of predictable

bull and bear regimes in financial prices.

Our investigation is performed with reference to U.K. financial data. Similarly to U.S. data, there is

now massive evidence that both U.K. equity index returns (often including futures on indices, see e.g.,

Abhyankar, 1999; Abhyankar, Copeland, and Wong, 1995; Ap Gwilym, Brooks, Clare, and Thomas, 1999;

Cochran, 2004; Guidolin and Timmermann, 2003; McMillan, 2004b; Shively, 2003) and U.K. bond prices,

returns, and implied interest rates (see e.g. Brüggemann and Riedel, 2011; Lekkos and Milas, 2004a,

2004b; McMillan, 2004a; McMillan and Speight, 2002) display regime switching behavior. Therefore

asking whether standard, VAR-type linear predictability models may be sufficient to capture all relevant

predictability dynamics with reference to U.K. financial data does not merely represent a robustness check

as to whether the effects are any different from those documented in the U.S. market; on the contrary,

this is a crucial question for the entire strand of the empirical finance literature that has investigated

nonlinear predictability in the U.K. financial markets. Alternatively, our key research objective can be

1A few papers investigate the implications for optimal portfolio choice of nonlinear dynamics in asset returns, such as

Ang and Bekaert (2002, 2004), Detemple et al. (2003), Guidolin and Timmermann (2005, 2008).
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viewed as striving to make a point concerning the economic value of the widespread use of regime switching

models to model and forecast financial returns, with particular emphasis on U.K. data: we know from

earlier papers (see e.g., Ang and Bekaert, 2004; Guidolin and Timmermann, 2005) that regimes strongly

affect optimal portfolio choices, especially in the perspective of long horizon investors. Some papers have

recently investigated whether regime models can actually improve the forecasting performance in applied

econometric work (see e.g., Guidolin, Hyde, McMillan, and Ono, 2010, Sarantis, 2001, and references

therein). However, for such evidence to be compelling, one also needs to show that traditional, simple

linear predictability frameworks cannot produce in-sample, recursive dynamic asset allocation decisions

that are similar to those deriving from frameworks that exploit bull and bear dynamics.

As a matter of fact, establishing the extent to which the implications of linear and nonlinear pre-

dictability differ with respect to asset allocation is important for investors, asset managers and financial

advisors alike. While, ex-ante, one may expect the portfolio choices implied from an extensive set of

small and medium scale VAR() models to be different from those implied by a relatively basic nonlinear

benchmark model–in our paper a three-state Markov switching model–ex-post there is no guarantee

that nonlinear models may produce a higher economic value in actual decisions than simpler linear models

do. To test this hypothesis, we perform a strategic asset allocation (SAA) exercise familiar in the litera-

ture (see, e.g., Barberis 2000; Brennan et al., 1997): at each point in time, a risk-averse (constant relative

risk aversion) investor allocates her wealth across three macro-asset classes, i.e., stocks, long-term default

risk-free government bonds, and 1-month Treasury bills. Using monthly U.K. data for the long period

1957-2009, which includes the recent financial crisis, we examine long-horizon portfolio choices (up to a

10-year horizon) of an investor who recursively solves a portfolio problem in which utility derives from

real consumption (i.e., cash flows obtained from dividend and coupon payments and from selling securities

in the portfolio) and rebalancing is admitted at the same frequency as the data. That is, the investor

decides upon an asset allocation at time  knowing that at times +1 +2 ..., up to +119 she will be

allowed to change the structure of her portfolio weights to reflect the fact that, at least in principle, new

information will become available at all these future points. Furthermore, our investor selects optimal

portfolio weights taking into account the presence of both fixed and variable transaction costs. This

means that–because a given vector of optimal weights at time  may implicitly imply a need to trade in

all assets between time  and  + 1–our investor will also take into account the trading implications of

her portfolio decisions and especially the impact of any transaction costs incurred on expected utility.

The pillars of our research design are easily described. First, a genuine focus on a long-horizon is

key to discussing the economic value of different models or of return predictability. Second, allowing for

continuous/frequent rebalancing of portfolio weights and investors who care for real consumption streams

and real portfolio returns is consistent with the way predictability is exploited in practice, i.e., with full

awareness of the fact that its existence not only affects today’s choice but will keep affecting choice in all

subsequent periods. Third, as previously stressed by Balduzzi and Lynch (1999) and Lynch and Balduzzi

(2000), all SAA problems under predictability and active portfolio management ought to carefully consider
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whether the forecastable variation in investment opportunity sets offers enough welfare gains to exceed

the often large trading costs.

Our key empirical results can be summarized as follows. First, our relatively large set of small- and

medium scale (up to 6 predictors are included in all possible combinations) VAR() models (with  = 1,

2, 4, and 12) fails to imply portfolio choices that approximate those from a rather simple (one may say,

naive) non-linear benchmark, represented by a plain vanilla three-state Markov switching model. This is of

course only an ex-ante perspective: “different” does not imply “worse” in the view of an applied portfolio

manager and what could be wrong is not the family of VARs, but the proposed nonlinear benchmark.

More importantly, the large family of VARs systematically fail to perform better than nonlinear models

in recursive (pseudo) out-of-sample tests, in the sense that VARs generally produce lower realized real

certainty equivalent returns (i.e. risk-adjusted performances that take into account the curvature of the

utility function under which the portfolio choice program has been solved) than models that identify and

forecast bull and bear dynamics. This means that VARs cannot provide a good approximation to the

time series properties of U.K. financial returns neither ex-ante nor ex-post. Although these findings may

seem obvious ex-ante to some of our Readers, what is not obvious is that in recursive out-of-sample tests

such nonlinearities seem to be ex-post sufficiently real and strong to condemn most (sometimes, all) VARs

to disappointing long-run portfolio ex-post performances.

While the vast majority of the portfolio choice literature has examined investment horizon effects and

the economic value of predictability models using U.S. data, our paper contributes to a small but not

negligible strand of literature that has taken a distinctive interest in U.K. financial markets. Besides the

references cited above, one closely related paper in this literature is Li (2011) who has used one VAR

framework to investigate the horizon effects in optimal portfolio weights deriving from predictability and

model uncertainty using U.K. data.2 Differently from Li’s paper, our goal is to examine a wide range of

VAR models (capturing the main variants that have appeared in the literature) in relation to a single,

relatively simple, nonlinear model. Here, the large family of VARs consists of all those one can form using

combinations of 6 predictors and alternative lag orders,  = 1, 2, 4 and 12. The predictor variables are

those typical in the U.K. literature for their well-established predictive power: the dividend yield, the term

spread, the gilt-equity yield, the RPI inflation rate, the rate of industrial production growth and the change

in oil prices. Further, the analysis of Li (2011) is limited to a single risky asset (equity) while we consider

the potential for investors to allocate funds to both equity and bonds.3 In addition, we are not aware of

previous papers that have jointly solved consumption and portfolio choice problems under MS dynamics

for U.K. data. Further, while Anderson, Fletcher and Marshall (2011), Basu, Oomen and Stemme (2010)

and Fletcher (2011) all provide evidence on the economic value of predictability/conditioning information

for dynamic asset allocation strategies in a mean-variance framework where U.K. stocks form the (or

2Boudry and Gray (2003) provide further international evidence, using Australian data, to examine the impact of pre-

dictability from the dividend yield, the term spread and the relative bill yield on portfolio choices at different horizons.
3Gil-Bazo (2006) documents that extending the asset menu allows for the characteristics of each risky asset to influence

the portfolio mix over the investment horizon.
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part of the) asset menu–in- and out-of-sample, with and without transactions costs and with the ex-post

imposition of bull and bear markets–their analysis is limited to a short one-period investment horizon and

to equities. One last, related paper is Guidolin and Hyde (2010) who, using U.S. data, have also compared

the realized, ex-post performance of a rich family of linear models with a simple, nonlinear one. However,

their analysis ignores transaction costs and therefore surely over-estimates the true economic value of

the asset allocation model investigated. This is problematic, because it is a priori ambiguous whether

transaction costs may differentially affect linear vs. nonlinear models. Apart from the obvious difference

in the data examined, our effort is easily distinguishable from theirs because our research design insists

on the crucial importance of transaction costs on portfolio decisions in the presence of predictability, and

because of our focus on truly long-horizon, 10-year portfolios.

The rest of the paper is structured as follows. Section 2 describes the research design of our paper.

Section 3 describes the data, the three-state Markov switching benchmark, and some features of linear

predictability as captured by VARs. Section 4 computes and presents optimal portfolio weights and

hedging demands under the two classes of models. Section 5 computes realized, recursive out-of-sample

portfolio performances for our key experiment. Section 6 performs robustness checks and presents results

from additional tests. Section 7 concludes.

2. Methodology

2.1. Econometric Models

We perform recursive estimation, portfolio weight calculation and performance evaluation for three groups

of models. First and foremost, we entertain a large class of VAR() models. These VARs consist of (sets

of) linear relationships linking r+1, a  × 1 vector of risky real asset returns at time + 1, and y+1, a
 × 1 vector of predictor variables at time + 1, to lags of both r+1 and y+1. For instance, in the case
of a simple VAR(1), we have"

r+1

y+1

#
= μ+A

"
r

y

#
+ ε+1 ε+1 ∼  (0Ω) (1)

where μ is a ( +)× 1 vector of intercepts, A is a ( +)× ( +) coefficient matrix, and ε+1

is a ( +) × 1 vector of IID, Gaussian residuals. The representation of a VAR(1) in equation (1) is
without loss of generality as any th order VAR can be re-written as a VAR(1) (see e.g., Hamilton, 1994,

p. 259). In this paper we consider multiple values of ,  = 1, 2, 4, and 12.4 Note that–assuming a

specification that always includes the lagged values of real asset returns as in (1)–for a given value of

 there are 2 different VARs one can obtain according to which of the  predictors are included in

[r0+1 y
0
+1]

0. This means that one VAR() will effectively describe the dynamics of r+1 and the first of

the predictors, a VAR() the dynamics of r+1 and the second predictor, a VAR() the dynamics of r+1

4Because our data start only in 1953, the case of  = 12 could be estimated only when one predictor at the time was

included in isolation in the VAR(12) model, that therefore becomes a four-variate system.
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and the first two predictors in y+1, another VAR() the dynamics of r+1 and the first and the third

among the  predictors, etc. Of course, (1) implies that knowledge of current and past values of asset

returns, of the predictors, or of both implies some power to forecast in a linear fashion future, subsequent

realizations of both real asset returns and the predictors themselves.5

The second class of models consists of nonlinear models in the -state Markov switching class with

constant transition probabilities (collected in a  ×  matrix P),

r+1 = μ+1
+ ε+1 ε+1 ∼  (0Ω+1) (2)

where the latent Markov state is +1 = 1 ...,  and μ+1
is a  × 1 vector of state dependent intercepts

in regime +1. We also allow for the  × covariance matrix of residuals Ω+1 to be state-dependent,

implying that the variance of the asset returns is also state-dependent, i.e.,   [r+1|+1] = Ω+1 . In

particular, we speak of heteroskedastic MSIH models when both means, variances, and covariances, are

a function of the Markov state +1; of homoskedastic MSI models with only mean asset returns are a

function of the Markov state, but the covariance matrix is time homogeneous.

We have also considered a further benchmark class widely adopted in the empirical finance and fore-

casting literature, a simple Gaussian IID model,

r+1 = μ+ ε+1 ε+1 ∼  (0Ω) (3)

which is obviously a single-state restriction of (2). Of course, (3) implies that real asset returns are not

predictable, while (2) implies that real asset returns may follow nonlinear predictability patterns, driven

by the fact that the latent state +1 displays a predictable Markov structure when the transition matrix P

differs from (1) ι+ι
0
+ , where ι+ ≡ [1 1 ... 1]0, i.e., when the regimes themselves are persistent

so that knowledge of +1 implies some ability to forecast +1: Pr(+1|) 6= 1.

2.2. The Portfolio Choice Problem

Consider the portfolio and consumption decisions of a finite horizon investor with time-separable, constant

relative risk aversion (CRRA) preferences who maximizes the expected utility of her lifetime consumption,

max
{ }−1 

=1 =1

X
=1



"

1−


1− 
|Z
#

 ∈ (0 1)    1 (4)

where the discount factor  = 09975 is the subjective rate of time preference (corresponding to an

annualized real discount rate of less than 3%, approximately the mean of the real 1-month T-bill rate in

our sample), the coefficient  measures relative risk aversion,  is the investor’s consumption at time 

5When the matrix A (or more generally, the matrices A1, A2, ..., A) is upper triangular, then we have that while current

and past values of the predictors forecast future asset returns, current and past values of the asset returns cannot forecast

the predictors, as in Barberis (2000). For the case of  = 1 we have tested and rejected these restrictions, and as a result all

the empirical results that follow concern the case of unrestricted VAR matrix A.
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and Z is the relevant vector of state variables at time .
6 The investor consumes a proportion of wealth,

 ≡ , allocating the remainder to an investment portfolio consisting of the  real risky assets.

The return on the portfolio, +1 is then given by
P

=1 +1 where the weights, , allocated to

each risky asset must sum to unity, i.e.,
P

=1  = 1. The intertemporal budget constraint faced by the

investor is given by

+1 = ( − ) (1 + +1) = (1− )+1 (5)

where +1 is the gross portfolio return, +1 ≡ 1+ +1. It is easy to show (see Ingersoll, 1987) that

the Bellman equation faced by the investor for a CRRA utility function that can be derived from (4) and

the budget constraint (5) is

 (Z )
1−


1− 
= max



(

1−
 

1−


1− 
+

 (1− )
1−  1−



1− 

h
 (Z+1 + 1)

1−
+1 |Z

i)
 (6)

where  (Z ) is a function that can be computed numerically. Given that this optimization problem is

homogeneous of degree (1− ) in wealth, the solution is invariant in wealth. Hence the Bellman equation

can be simplified to:

 (Z )

1− 
= max



(

1−


1− 
+

 (1− )
1−

1− 

h
 (Z+1 + 1)

1−
+1 |Z

i)
 (7)

Equation (7) can be solved by backward iteration, starting with  =  − 1 and setting  (Z ) = 1

and then computing  (Z  ) by solving the optimization problem in (7) using  (Z+1 + 1) from the

previous iteration. The backward, recursive structure of the solution reflects the fact that the investor

incorporates in the optimal weights computed at time  the fact that they will be revised in the future at

times +1 +2 ..., +−1, as new information becomes available through the vector of state variables
Z. A variety of solution methods have been proposed in the literature. We employ Monte Carlo methods

for integral (expected utility) approximation.7

2.3. Transaction Costs

We assume that the investor faces transaction costs that are proportional to wealth, so that her law of

motion for wealth is

+1 = ( − ) (1− ) (1 + +1)  (8)

where  is the transaction cost per dollar of wealth. The law of motion for wealth in (8) implicitly

assumes that consumption at time  and any transaction costs to be paid at time  are obtained by

liquidating costlessly the risky and the riskless assets in the proportions {}=1. This assumption is
sensible for liquid assets, especially when they pay coupons or dividends that can be readily used to

6In the case of a VAR(), Z ≡ [r0 y0 r0−1 y0−1 ... r0−+1 y0−+1]0 so that the state vectors consists of a combination of
lagged values of asset returns and predictor variables. In a Markov switching framework Z consists instead of the vector of

state probabilities inferred at time .
7An appendix not for publication provides additional details on the numerical methods used in the solution of the portfolio

problem. See also Guidolin and Timmermann (2007, 2008b) and Guidolin and Hyde (2010).

7



pay for transaction costs. In particular, we assume that there is both a fixed and a variable component

to transaction costs. Therefore  is modelled as a function of the difference between the end- and the

beginning-of-period wealth allocation to the assets, { − −1}=1

 = {∃Ä 6=−1} + 

X
=1

| − −1| (9)

where {∃Ä 6=−1} = 1 when the condition  6= −1 is satisfied for at least one  = 1   (i.e.,

there is trading in any asset  between − 1 and ), and 0 otherwise. The first term is a fixed fraction of

the total value of the portfolio that represents the fixed cost of rebalancing the portfolio, regardless of the

size of the rebalancing. The second term is proportional to the change in the value of the asset holdings.

Interestingly, under the new dynamic budget constraint (8), the inherited portfolio allocation from the

previous period, {−1}=1, becomes a state variable when either   or  (or both) is (are) greater than
zero, since their values determine the transaction costs to be paid at time . Similarly to Balduzzi and

Lynch (1999) we initially set  = 01%,  = 05%.

Under (8), the Bellman equation of the problem becomes:

 (Zω−1 )
1− 

= max


(

1−


1− 
+

 (1− )
1−

1− 

h
 (Z+1ω + 1)

1−
+1 |Z

i)
 (10)

where ω−1 is a  × 1 vector that collects the starting portfolio weights. Also in this case, the Bell-
man equation may be solved by backward recursion, using Monte Carlo methods. The only differ-

ence with respect to the case of  =  = 0 is that a Monte Carlo approximation of the expecta-

tion [ (Z+1ω + 1)
1−
+1 |Z ] requires now that we draw  random samples for both asset returns

{R+1}=1 and the predictors {Z+1}=1 and recognize that the choice of ω also affects the term

[ (Z+1ω + 1)
1−
+1 |Z ] This turns the maximization in a fixed-point problem that can be easily

solved on a ( − 1)× ( − 1) grid for ω.

2.4. Performance Measurement

Our (pseudo) out-of-sample (OOS) experiment has a recursive structure within which we consider both

expanding and rolling window estimation schemes. Rolling window estimation schemes are important in

our research design because of the possibility that vector autoregressive frameworks the parameters of

which may be updated on a relatively frequent basis may represent a powerful and yet intuitive device

through which portfolio managers may try and deal with the evidence of regimes and instability in

predictive relationships.

In the expanding window case, we estimate all models (in the case of VARs, these are 188 differ-

ent linear frameworks) using data for the period 1957:03-1973:01 and then proceed to compute portfolio

weights at horizons  = 1, 60, and 120 months, in the latter case with continuous (i.e., monthly, at the

same frequency as the data) rebalancing. Therefore the portfolio shares will be indexed as obtained in

correspondence to 1973:01 and will refer to the holding period 1973:01-1973:02 in the case of  = 1

8



to 1973:02-1978:01 for  = 60, and to 1973:02-1983:01 for  = 120, even though rebalancing can be

performed at the end of every month and this has been correctly taken into account by our investor. At

this point, the estimation sample is extended by one additional month, to the period 1957:03-1973:02, pro-

ducing again portfolio weights at horizons of 1, 60, and 120 months. This process of recursive estimation,

forecasting, and portfolio solution is repeated until we reach the last possible sample, 1957:03-2009:12

(even though the recursive OOS predictive or portfolio performance can be only computed for portfolios

indexed up to time 2009:12 minus  months).

In the rolling window case, we use a window of 10 years of data, since we need to estimate relatively

complex and richly parameterized VAR(4). The exercise is identical to the one described for the expanding

case, apart from the use of an initial, shorter 10-year sample, 1963:02-1973:01. On the next iteration, the

estimation sample is simply rolled forward by one month, to the period 1963:03-1973:02, producing again

portfolio weights at horizons of 1, 60, and 120 months. This process of recursive estimation, forecasting,

and portfolio solution is repeated until we reach the last possible sample, 2000:01-2009:12. In the case of

the rolling window OOS scheme, we are able to consistently estimate over time 170 linear models.8

To evaluate recursive realized OOS performance, we focus on two measures. First, we calculate the

certainty equivalent return (CER), defined as the sure real rate of return that an investor is willing to

accept rather than adopting a particular risky portfolio strategy. We compute/solve for CER as
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where ̃ is the monthly consumption flow an investor receives under a constant investment opportunity

set simply composed of a riskless real asset that yields a monthly certainty equivalent of  , and 

is the length of the (pseudo) out-of-sample period used in our backtesting exercise. Given this definition,

transaction costs are ignored for the purposes of computing CER even when the optimal weights ω̂ reflect

transaction costs. This means, that where transaction costs were indeed applied, the -horizon 

needs to be interpreted as a net-of-transaction costs measure.

Second, we compute the out-of-sample Sharpe Ratio for each portfolio strategy, defined as
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where 

 is the real 1-month T-bill and + is real portfolio return on a -horizon strategy.

Third, even though our paper explicitly entertains several sets of parameters related to the size of

transaction costs, to get a feeling for the amount of trading required to implement each type of portfolio

8We had to drop a few models characterized by  = 4 (to be precise, 12) because with only ten years of monthly data, at

at least one point in our recursive estimation exercise, parameter estimates could not be obtained because of near-singularity

issues. As one would expect, this happened especially for cases when  was relatively large, i.e., when many predictors were

simultaneouly used with long lags. However, because the models causing such issues always corresponded to models that had

yielded very poor realized portfolio performances in the expanding window case, we have decided to keep the 10-year rolling

window parameterization unaltered, as this would be probably rather appealing to many investors, for whom a relatively

short rolling window means a higher protection against breaks and parameter instability.
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strategy, we compute portfolio turnover, defined as the average sum of the absolute value of the trades

across the  available assets that is required net of the natural effect of real asset returns cumulating

over time:

Turnover =
1

 −

−X
=1

X
=1

¯̄̄̄
¯̂ −

Q−
=1 (1 + )̂


−1P

=1

Q−
=1 (1 + )̂


−1

¯̄̄̄
¯ 

This adjusted turnover index can be interpreted as the average percentage of wealth traded in each period

on a discretionary basis, i.e., as a result of a decision to re-shuffle the portfolio structure and not simply

as a result of the differential rate of growth of real asset values, given the initial weights, {̂−1}=1.9

3. Data and Preliminary Estimation Results

We use monthly data on asset returns and a standard set of predictive variables sampled over the period

1957:03 to 2009:12. The data are obtained from Datastream and Global Financial Database. The real

asset return data are computed from the FTSE All Share equity index, the 10-year Government bond

return and the short term Treasury bill return, all deflated by the retail price index (RPI) inflation rate.

The six predictive variables are the dividend yield on equities (computed as a moving average of the

past 12-month dividends on the FTSE All Share-weighted index divided by the lagged index), the RPI

inflation rate, the term spread defined as the difference between long- (10 year) and short-term (3 month)

government bond yields, the rate of industrial production growth, the gilt-equity yield (the ratio of the

yield on irredeemable gilts (consols) to the equity dividend yield) and the change in spot oil prices (West

Texas Intermediate). This choice of predictor variables is governed by the prior literature on return

predictability in the U.K. financial markets, which provides evidence of the forecasting ability of the

dividend yield (Black and Fraser, 1995; Pesaran and Timmermann, 2000; McMillan, 2003; Kellard et al.

2010), the term spread (Clare and Thomas, 1992; Black and Fraser, 1995) retail price inflation (Pesaran

and Timmermann, 2000), industrial production (Pesaran and Timmermann, 2000; McMillan, 2003) the

gilt-equity yield (Clare et al., 1994; Pesaran and Timmermann, 2000; Harris and Sanchez-Valle, 2000) and

oil prices (Pesaran and Timmermann, 2000). With 6 predictors and  = 1 2 4 and (to a limited extent)

12, this implies 3× 26 = 192 alternative VAR models. These 192 specifications are estimated using both
an expanding window and a rolling window scheme. In addition, we examine 6 VAR(12) models (each

predictor separately, only under the expanding scheme). This yields a total of 390 models.

Full-sample descriptive statistics for all series are reported in the top panel of Table 1. Mean real

stock returns are close to 0.65% per month with mean real long-term bond returns around 0.25% implying

annualized returns of 7.8% and 3.0% respectively. Estimates of volatility imply annualized values of around

19% for real stock returns and 5.6% for real bond returns, yielding unconditional monthly Sharpe ratios

of 0.09 and 0.06, respectively. Real asset returns are characterized by relatively large (in absolute value)

skewness and kurtosis and are clearly non-Gaussian, as signalled by the rejections of the (univariate)

null of normality delivered by the Jarque-Bera test. Table 1 also reports summary statistics for the 6

9For simplicity, we initialize ̂1978:01 = ̂1979:12 for all horizons and strategies.
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predictors used in this paper, but fails to reveal any unexpected features. For instance, the retail inflation

rate was on average 5.6% per year, the riskless term spread has been on average positive and close to 100

basis points (in annualized terms), the annualized dividend yield has been on average 4.4%, and industrial

production has grown at the rather modest average yearly rate of 1.3%. In spite of its ups and downs, oil

prices have on average grown at a 9.4% rate per year, while the gilt-equity ratio has been on average well

in excess of 1. The second and third panels of Table 1 also show summary statistics disaggregated for

the initial estimation sample (under the expanding scheme, 1957:03-1977:12) and for the recursive, OOS

backtesting sample (1978:01-2009:12) and in fact reveal some evidence of pervasive instability in the key

statistical properties of the data, which is consistent with our introductory remarks on whether and how

simple linear models may effectively capture and forecast such shifts.

Visual inspection of the time series dynamics of the real value of stocks, bonds, and bills in the U.K.

over our sample period, gives the customary view that on average the (real) returns on equities are much

higher than for bonds, but that large boom and bust cycles are also frequent. For instance, the deep

stock market declines of 1974, 2001-2002, and 2007-2008 are visible. While the growth in the real value

of a pure investment in Treasury bills has been relatively smooth (at least since 1982), also the real value

of gilts has been exposed to important fluctuations. However, both in the 2001-2002 and the 2007-2008

crises, the real value of have moved in a direction disconnected with stocks, presumably because of a

“flight-to-safety” effect.

The rest of this Section is devoted to a number of related sets of estimation results that need brief

comment as a way of introducing our main findings in Sections 4-6. In Section 3.1 we briefly discuss the

properties and implications of our estimates of a simple three-state Markov switching heteroskedasticity

(MSIH) model. The number of details and depth of description is kept to a minimum because the goal of

our paper is not to analyze the portfolio choice implications of regime switching models (a task already

undertaken by Ang and Bekaert, 2002, and Guidolin and Timmermann, 2005) able to capture bull and

bear dynamics but instead whether standard VAR models can approximate the portfolio implications

of MISH in the case of U.K. financial markets. In Section 3.2 we outline some evidence on the nature

and strength of the linear predictability patterns–as picked up by simple VARs typical of the empirical

finance literature–that characterize our data on U.K. stock and bond real returns. The objective here is

not (and it could not be) to provide an exhaustive quantification of what linear predictability implies, but

to at least provide some evidence for how this predictability may appear in a VAR vs. a MISH model.

3.1. Regimes in U.K. Real Asset Returns

As an initial step, we estimate and compare a number of alternative specifications for the Markov switching

model in (2). Specifically we examine information criteria such as the Bayes-Schwartz information criterion

(BIC), a standard measure that trades off in-sample fit for parsimony, and perform Davies (1977)-corrected

likelihood ratio tests which account for nuisance parameter issues in the context of Markov switching

models. All of these statistics confirm the number of regimes  equal to 3, consistent with the findings of
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Guidolin and Timmermann (2005).10

The standard QMLE parameter estimates for the three-state model are reported in panel B of Table

2.11 An understanding of the MSIH model can be achieved by analysis of the parameter estimates within

each regime. The first regime is a bear state, and in a sense, this is an extreme or “rare events” regime

in which expected real returns are highly negative and statistically different from zero. In this state, all

assets are more volatile than they are unconditionally (in panel A of the Table, where monthly volatilities

can be read off the main diagonal of the “Correlations/Volatilities” panel), with peaks of 24 percent for

stocks and of 6% per gilts, in annualized terms. The bear state is short-lived with an average duration of

around 3.3 months. In this regime, the three asset classes are only mildly correlated. In most cases, at

least on average, when the U.K. financial markets exit this bear state, they switch to the intermediate,

equity bull regime which is characterized by positive and statistically significant mean real returns on all

assets. In this regime, all assets are less volatile than in the unconditional, single-state case. This regime

is highly persistent with an average duration of 23.5 months and characterizes approximately 80% of any

long sample. This means that for the majority of the time, U.K. financial markets are characterized by

positive real returns on all assets and moderate volatility, which fits historical experience.

The third regime is another bull state, but with three distinct features: the dominant asset class

in terms of mean real returns is long-term government bonds, while stocks have an estimated mean

coefficient which fails to be significant at conventional levels. All assets are more volatile in this state

than in the single-state, unconditional benchmark; real returns on long-term bonds are highly correlated

with both stocks (0.39) and 1-month T-bills (0.32). We label this regime as a “bond bull state” with

high volatility. Clearly, the data lead to specifying this third regime because they need the flexibility to

specify heterogeneous dynamics for bond and stock returns during bull regimes. Further checks confirm

that the poor performance of simpler, two-state models fitted to our data largely derives from this need

to allow for differential dynamics in stock and bond returns. Yet this third regime is rare, accounting

for less than 8% of the sample, with an average duration of 3 months. Interestingly, as shown by the

transition probabilities, there is a significant link between the bear state and the gilt bull/high volatility

state. This link is further illustrated by plotting the smoothed probabilities for each of the three regimes.

Figure 1 highlights that the first regime represents an extreme state largely restricted to bear markets

and to well known recessionary periods in the 1970s, early 1980s, the invasion of Iraq and the first Gulf

War in 1990 and the recent financial crisis. The second (bull) state is exceptionally persistent and has

in fact characterized long periods of the recent U.K. financial history, such as most of the 1960s, the mid

1980s and 1988-1990, 1991-2001 and then 2004-2007. Finally, the third state occurs rarely, often following

10Details on the model selection process are available from the Author(s) upon request. We emphasize that however the

goal of our paper is not to isolate the best fitting Markov switching model but instead to show that–even if the Markov

switching benchmark were to be misspecified–simple linear VAR models cannot produce qualitatively similar forecasts and,

as a result, portfolio decisions.
11Panel A reports the estimates for a single-state model, which here is the Gaussian IID benchmark in (3) and shows

results that are consistent with the summary statistics in Table 1. Morever, Table 1 shows that gilt real returns are positively

but moderately correlated with both real bill and stock returns. On the contrary, real stock returns and real bill returns are

essentially uncorrelated.
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or preceding the bear regime. These are periods of declining short-term rates and of increasing gilt prices

that lead–consistently with our characterization of the regime–to high and statistically significant real

bond returns. Interestingly, the third regime captures the October 1987 crash but immediately returns

to the bull regime and similarly the third regime does not occur following the bear regime in 1991.

3.2. Linear Predictability

While in the MSIH framework, it is the predictability of future regimes captured by the constant transition

probability matrix, in the case of VAR() models such predictability is characterized in two ways: by the

choice of which predictors are included; by the number of lags, . As we have explained above, one of

the key objectives of this paper is to entertain (within a given set) all possible VAR models that can

be built for alternative choices among six predictors, and different selections of the parameter . It is

of course impossible to document parameter estimates for all such possible 262 linear models. In this

section we therefore select results on a qualitative basis and report recursive OLS estimates of the VAR

parameters for two cases that (with some hindsight) play an important role in our research design: a full

(i.e., including all predictors) VAR(1) model estimated on an expanding window basis; a leaner VAR(1)

model that includes only the log-change in oil prices as a predictor, estimated on a 10-year rolling basis.12

Figure 2 shows recursive, expanding window estimates along with the associated 90% confidence

intervals for the coefficients associated to the six predictive variables in a full VAR(1) model. In each of

the six panels, we plot the time variation of the coefficient (the solid, boldfaced curve) and of its 90%

confidence interval for predicting real stock returns (on the left axis) and for predicting real gilt and bill

returns (on the right axis). Visibly, most 90% confidence intervals do include most of the time (often, for

all the periods investigated, between January 1972 and December 2009) zero, which is equivalent to state

that the null hypothesis of a zero coefficient could not be rejected using a test of hypothesis with 10%

size. In fact, in 16 cases out of 18 possible cases (3 real return series times six alternative predictors),

a null hypothesis of no predictive power for subsequent returns cannot be rejected for all the months in

our sample. The only exceptions concern real bill returns that–especially after the early 1990s–can be

predicted (with p-values generally between 0.05 and 0.1) by past log-changes in oil prices with a negative

coefficient (i.e., higher growth in oil prices lead a reduction in short-term real rates), and real stock

returns that–between 1974 and 1987–can be predicted (again with p-values between 0.05 and 0.1) by

past dividend yields with a positive coefficient, as one generally finds in the empirical finance literature.

Real bond returns were never really predictable in our sample, at least through the lenses of this relatively

large-scale VAR(1) model. Figure 2 is therefore useful to emphasize that linear forecastability of real asset

returns generally tends to be rather weak in our U.K. sample, although some interesting exceptions can

be found. Moreover, such results on the weak predictive power for standard macroeconomic instruments

12The full VAR(1) model is selected because it is also a way to provide an overall summary of the strength of the

predictability patterns in the data. The smaller VAR(1) model based on oil prices, is selected as a representative of typical

results of rolling window estimates because of its strong performance in terms of realized portfolio CERs and therefore reflects

some degree of hindsight on our part.
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for the subsequent behavior of financial markets tends to fit rather well earlier evidence reported by

Pesaran and Timmermann (2000) and Harris and Sanchez-Valle (2000). However, it must be noticed that

although generally non-significant, for a number of assets the estimated coefficients are relatively large so

it is conceivable that in the aggregate, recursive estimation of the model may indeed generate interesting

and potentially useful time-varying forecasts for the moments of real asset returns (in particular, their

means, see below for related comments). In fact, the deeper question that Figure 2 raises and that is

at the core of our paper is whether or not recursive estimation of a simple linear vector autoregressive

model may represent a sufficiently effective strategy to support optimal SAA decisions in the presence of

instability of the underlying economic relationships.

It may be objected that it is likely that the weak forecasting power of standard predictors that

emerges in Figure 2 may derive from the unwise choice of including all predictors simultaneously. If sets

of predictors tend to contain similar information on future investment opportunities, standard econometric

estimates will suffer from multicollinearity issues even though the model may yield valuable forecasts. To

guard against this possibility and to also showcase one qualitative example of the behavior of parameter

estimates in a rolling window implementation, Figure 3 shows instead recursive, rolling window estimates

and 90% confidence intervals for the coefficients in a VAR(1) model with = 1, the changes in log-oil spot

price. In this case there is only one predictor, and as such we can also afford to report recursive estimates

of intercepts and own- and cross-asset vector autoregressive coefficients, for a total of five panels. Within

each panel, coefficient estimates and their confidence bands are presented in a way similar to Figure 2.

Clearly, the inclusion of lagged real asset returns in our VAR models is far from irrelevant: real bond

returns are predicted by past stock returns (especially during the 1970s and 1980s); real bond returns are

also strongly serially correlated, with highly significant coefficients in the range 0.2-0.5; real bill returns

are also serially correlated, as one would expect from the empirical term structure literature. Interestingly,

there is now evidence that past log-changes in oil prices forecast subsequent real returns on both gilts and

bills with negative coefficients, and this evidence has grown stronger over time.

In unreported tabulations (available upon request from the Authors) we have also examined the relative

forecasting performance of different linear predictive models. Although an extensive analysis based on

standard statistical criteria may actually be misleading because this paper is focussed on a portfolio

choice-driven loss function, we have evidence of a rather poor average root mean squared forecast error

(RMSFE) across different linear models, especially as far as real bond returns are concerned. At short

forecast horizons, we obtain some evidence generally favorable to relatively large-scale (with  of at

least 3 or 4) VARs with long lags, once more with differences across models that are particularly large

especially for real equity return forecasts. However, at longer horizons and especially for cumulative real

asset returns (as an investor with a horizon of   1 month cares for the cumulant of real returns and

not for point forecasts), the balance shifts towards smaller models with  = 1 or 2. Interestingly, rolling

window schemes produce more accurate forecasts than the expanding window. Therefore, there is at least

preliminary evidence that for intermediate and long horizons, when cumulated asset returns matter, it is
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relatively lean, not overly parameterized models that generate the most accurate predictions. It remains

to be seen whether such fair forecasting performance may translate in realized OOS portfolio performances

that may compete with models that are explicitly designed to capture regimes.

4. Optimal Strategic Asset Allocation and Hedging Demands

4.1. Recursive Portfolio Weights

Table 3 reports summary statistics for the optimal SAA weights for the case  = 5. The table presents

three statistics computed on our (pseudo) OOS sample, 1972:01-2009:12: the mean recursive portfolio

weights, their sample standard deviation, and their 90% empirical range, i.e., the values of the weights

that leave 5% of the recursive weights in each of the two tails. Reporting the range avoids undue reliance

on sample standard deviations as measures of dispersion when the weights have distributions which are

highly non-normal. These statistics are computed and presented for the heteroskedastic MSIH model, its

homoskedastic counterpart (see below for additional comments), the Gaussian IID benchmark, and a vari-

ety of VAR models that are selected in consideration of their pseudo-out-of sample portfolio performance

at a 120-month horizon. It is immediately clear from Table 3 that different VAR models–depending on

the predictors they include, on the number of lags, and on whether they are estimated using either a rolling

window or an expanding scheme–fail to imply homogeneous summary statistics for portfolio weights. If

one focusses on a comparison of different VARs, it appears that everything is possible. For instance, while

a VAR(1) estimated on rolling data and that includes oil and the dividend yield as predictors implies

that on average a long-horizon investor with  = 5 should allocate 269% of her portfolio to gilts, 200% to

stocks, borrowing 369% of her wealth at the bill rate, a rich expanding window VAR(1) that includes all

predictors but oil implies that the same investor should on average invest 121% in bonds, 62% in stocks,

borrowing 53% of her wealth at the bill rate, which is a much less extreme set of SAA positions. This is of

course an exciting discovery for our main goal: because VARs seem to be flexible enough to generate many

alternative patterns for dynamic asset allocation, the question is then whether any of these VARs may

approximate (or out-perform) the OOS performance of the Markov switching framework(s). However,

Table 3 also illustrates the existence of structural differences across MSIH, the no predictability bench-

mark, and at least the best performing VARs, according to all types of summary statistics. The bull and

bear framework generally implies–and this applies also to short-horizon,  = 1 positions–less extreme

positions than VAR models. Contrary to common findings under linear predictability, VAR models do not

imply excessively high weights in stocks. Rather, in the case of recursive long-horizon mean weights, the

differences mostly concern long-term bonds: while the Gaussian IID benchmark implies that on average

gilts should be shorted (-70%) and MSIH suggests an even more extreme short position (-185%), the

best performing VARs estimated in this paper imply a very high and hardly plausible average weight for

bonds, between 152 and 419 percent, depending on the VAR specification examined.13 On the contrary,

13The weights mentioned in the main text are the 1-month optimal weights, since this allows a three-way comparison

involving the Gaussian IID results. However, most VARs imply a long-run demand for stocks that largely exceeds the
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while all VAR models yield a negative, large average demand for T-bills (i.e., a VAR investor ought to

leverage her portfolio to be able to invest more than 100% in stocks and especially bonds), MSIH delivers

portfolios that are only modestly short in T-bills.

Table 3 also reports sample measures of dispersion of recursive portfolio weights. Given its structure,

MSIH delivers bond and bill weights which are much less volatile than the VAR weights but this does

not apply to the weights computed for stocks. These findings also apply to the 90% empirical range of

optimal weights.As one should expect, the recursive Gaussian IID weights are always the least volatile for

all assets. These results are crucial because they show that the (a priori sensible and) widespread belief

that regime switching asset allocation frameworks may imply “excessively” volatile portfolio weights may

be misleading when applied to long-run SAA under realistic continuous, dynamic rebalancing.

4.2. Hedging Demands

Table 3 also computes average hedging demands–the difference between long- and short-horizon opti-

mal portfolio weights that ought to hedge portfolio performance against future, stochastic variation in

investment opportunities–over our back-testing period. As already characterized by Guidolin and Hyde

(2010) for US data, MSIH tends to imply rather small hedging demands which may be explained by the

fact that although the Markov chain underlying the three-state process described in Section 3.1 presents

some interesting persistence, over a 10-year horizon such persistence dissipates entirely so that the SAA

will be solely based on the ergodic probability distribution implied by the MSIH model.14 Although some

heterogeneity exists, most VAR models (especially those that perform best in OOS portfolio experiments)

yield positive and rather large (i.e., easily in excess of 50%) hedging demands for stocks, meaning that,

at least in relative terms, stocks are much less risky in the long- than in the short run. This is consistent

with the findings of Barberis (2000) when parameter uncertainty is ignored. On the contrary, under VAR

predictability the hedging demand for gilts tends to be predominantly negative. Finally, as far as bills are

concerned, the sign of the corresponding average hedging demands tends to be different–for instance, in

some cases positive on average and in other cases negative–across alternative VAR models.15 Because

linear predictability frameworks yield rather different implications as far hedging demands are concerned,

it is then possible to also interpret the key questions of this paper–whether or not simple VARs may be

flexible enough to characterize bull and bear states–as an attempt to see whether taking into account

the typical, non-negligible hedging demands reported in the literature may actually improve the ex-post,

realized OOS performance in SAA problems.

1-month weight and a long-run demands for 1-month T-bills that are negative and large.
14To complete our reasoning, in spite of the different state probability vector that governs the predicted MSIH dynamics at

 = 1 and 120 months, the resulting optimal weights will be similar because an investor that is allowed continuous rebalancing

will over-weight the portfolio implications of the regime(s) perceived as most likely in short-run, strongly discounting the

information that this very regime(s) contains as for the long-run dynamics of asset returns. See Guidolin and Timmermann

(2005) for additional details on how continuous rebalancing changes the nature of SAA problems under Markov switching.
15Hedging demands are zero by construction in the Gaussian IID case, when stochastic opportunities are assumed to be

constant over time.
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Figures 4-6 go beyond the mean hedging demands in Table 3 by plotting recursive optimal weights

at  = 1 and 120 months and the resulting hedging demands. In Figure 4, the typical regime switching

dynamic may be recognized in both short- and long-horizon portfolio weights. As a result, hedging

demands are relatively small and are at most characterized by occasional spikes (positive for bills and

negative for stocks) that tend to be associated with transitions from the third, gilt bull/high volatility

regime to the third, bear state. In the case of gilts, the resulting hedging demand is effectively almost

zero for long periods of time, especially those characterized by the second, bull state. In Figure 4 it is also

clear that although the changes in portfolio compositions implied by MSIH are occasionally large, as the

regimes are persistent, there are also long periods (e.g., 1991-1998) that are characterized by homogeneous

states, thus limiting the amount of portfolio re-shuffling that ends up being required. These decisions

of switching structure are of course also affected by the transaction costs  and . In particular, the

regime switching demand for stocks oscillates between approximately 0% in the bear state to 300-400%

in the bull state, with the third regime (and the rare periods of uncertainty on the prevalent state, like

early 2002) characterized by a lower demand for equities.

Figure 5 plots instead SAA weights and implied hedging demands for the two VAR models already

investigated above, i.e., a full VAR(1) estimated on an expanding window and 10-year rolling VAR(1)

in which oil log-price changes is the only predictor specified. Clearly, especially if the right-scales are

compared to those in Figure 4, both types of VAR models imply a strong time variation in the optimal

weights. Because linear predictability is largely driven by a few, highly persistent variables, in spite

of their high variability, optimal weights also tend to display strong persistence. As a result, hedging

demands are also large in absolute value, although persistent switches in their signs appear. Figure 6

completes the picture by comparing the dynamics of MSIH vs. VAR portfolio weights–in the latter case,

as represented by a model in which oil log-price changes are the only predictor–under two assumptions

concerning transaction costs: zero costs ( =  = 0 left axis scale) vs.  = 01%  = 05% (right axis

scale). In the case of regime switching weights (the three plots in the left-most column), the impact of

transaction costs is clearly limited, especially as far as long-term weights are concerned. The intuition is

that moderate costs can hardly dissuade investors from optimally re-shuffling their portfolios provided the

horizon over which such costs may be spread is sufficiently long. However, in the case of 1-month weights,

a few cases can be detected where the change in portfolio composition is either delayed or more timid;

when this occurs, we notice some important departures of long-term weights from short-term ones, which

would imply sizeable hedging demands not previously visible in Figure 4. Under linear predictability,

differences between the cases of zero vs. non-zero transaction costs are instead clearly visible in the three

plots in the right-most column of Figure 6. In this case, especially once the differences between the right

(when transaction costs are taken into account) and the left scales are taken into account the presence of

frictions produces a considerable impact on the structure and dynamics of portfolio weights. In any event,

the realized OOS portfolio performances reported in Section 5–the core of our paper–will be calculated

considering different hypotheses for the level of transaction costs, including the case of no frictions.
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5. Realized Recursive Portfolio Performance: Main Findings

Up to this point, we have shown that VAR models produce dynamic (short- and long-run) SAA weights

and hedging demands that depart from those that are typically implied by a (simple, three-state) model

that accounts for nonlinear patterns. Although this suggests that simple linear frameworks may miss

important predictability patterns in the data for applications, one should always exercise caution before

concluding that such differences between the SAA patterns deriving from linear vs. nonlinear models

mean that the former would cause a welfare loss to investors. As it is well-known from forecasting theory,

a better in-sample fit does not imply that a model will out-perform another in OOS experiments. Hence

a portfolio manager always needs to examine evidence on the recursive, OOS performance of both linear

and nonlinear SAA models before selecting one or actually concluding that neglecting nonlinearities in the

form of regimes may damage investors’ portfolios. This is exactly what we set out to do in this section:

use the recursive experiment outlined in Section 2.4 to assess whether VAR models can yield realized

OOS performances that are equivalent (or even superior) to MSIH’s.

Before proceeding to the analysis, two considerations are relevant, that we formulate in the form of

questions, followed by a few related comments. First, how strong an OOS realized under-performance by

VAR models should we expect before concluding that in simply modeling linear predictability patterns one

has to withstand a loss relative to regime switching frameworks that are useful in detecting and forecasting

bull and bear states? Second, at what horizon should such evidence (if any) be most troublesome to real-

life investors and portfolio managers? As for the first question, given the multitude of VAR models

examined in our research design, using that standard frequentist inferential logic that admits a type-I

error in formal tests of hypotheses, we may expect that at least by sheer chance, at least  percent among

all the VAR models ought to be able to out-perform the MSIH benchmark, even when the underlying

data generating process does in fact contain bull and bear patterns of switching moments. For instance,

if we were to pick  = 5% as commonly done in applied empirical work, then one would expect that out

of a total of 390 VAR models, approximately 20 may outperform MSIH by chance; a tighter  = 1%

should anyway deliver that at most 4 models may still outperform MSIH by sheer luck. Obviously, this

makes a possible finding that none of the 390 VAR models out-performs MSIH even more impressive. As

for the horizon, our explicit goal consists of the realized, OOS evaluation of the potential welfare costs

of mistakenly assuming that multivariate linear frameworks may be rich enough to surrogate the features

of bull and bear cycles. Therefore in what follows we explicitly focus on realized OOS performance at

 = 60 and 120 months expecting–under the null that bull and bear states are really characterizing

the time series dynamics of U.K. asset returns–that at most 4-20 VAR models among the rich set of

390 entertained in our research design may eventually outperform MSIH in terms of standard criteria of

welfare used in the applied portfolio management literature.16

16The reason for entertaining both  = 60 and 120 months is that, as already discussed in Section 2.3, the actual recursive

evaluation of realized portfolio performance can only be implemented for portfolio formed between 1978:01 through 2009:12

minus  months. Because stopping our evaluation in 1999:12 may be considered not as representative as the case in which

one stops the evaluation at least on 2004:12, in what follows considerable space is also devoted to  = 60 months strategies.
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Table 4 reports the key results of the paper.17 The table refers to the baseline case of   = 01%

 = 05%. For the case of  = 5, we report the best 10 performing models (plus a few additional

benchmarks, if required) when all models are ranked according to their realized, OOS real CER. The

top panel concerns the 120-month horizon, the middle panel the intermediate 60-month horizon, and the

lower panel the 1-month horizon. In the view of a long-horizon investor, MSIH ranks second out of 393

alternative models (390 plus the no predictability IID benchmark and two regime switching models) with

an annualized CER of 2.4%; the attached 95% confidence interval is relatively tight, [2.2%, 2.6%], which

means that it is likely that a  = 5 investor would be ready to pay at least an annualized real, constant

return of over 2% to perform SAA using the MISH model.18 In fact, the best performing model is the

Gaussian IID model–where an investor may ignore predictability altogether–with a real CER of 6.8%

and a relatively narrow confidence interval. All VAR models consistently rank below both the bull and

bear frameworks and the Gaussian IID model, with the best VAR yielding a negative CER of -2.7%. Such

a negative compensatory welfare measure means that an investor would be ready to pay to be spared the

experience of having to invest for the long run using a multivariate linear framework. This means that our

set of VARs never includes any model that is capable of producing CERs which exceed the CER of MSIH.

In terms of the top ranking VARs at the long-horizon there is evidence of clear structure. They are very

parsimonious ( = 1) and typically include either oil price inflation or the dividend yield as predictors.

Also they are most frequently estimated using the rolling window scheme. For instance, a rather simple

rolling VAR that includes only lagged real asset returns and oil price inflation as predictors of future

real returns turns out to be best among all VARs and produces a CER of -2.7% with a bootstrapped

95% confidence interval of [-2.7%, -2.2%]. Therefore, even the two confidence intervals for MSIH and

the best VAR fail to overlap. On the other hand, Table 4 also shows the median performance statistics

for all expanding window VAR models and rolling window VAR models entertained in our paper. For

long horizon investors, they both imply highly disappointing negative CERs of -2.8 percent, that is, the

investor would need to be paid to follow the median strategy.

Table 4 also shows that the MSIH delivers a rather moderate long-horizon annualized real mean return

(6.7%) in comparison to the best mean return from a VAR (12.3%) and yet a relatively high volatility

(44.1% per annum vs. 36.7% for the best VAR). Consequently the MSIH yields a relatively disappointing

Sharpe ratio (0.11 in monthly terms vs. 0.29 for the best VAR) and this is considerably lower than the

Sharpe ratio that a Gaussian IID investor would have been able to secure (0.48) by ignoring predictability.

While it should not be surprising that a power utility investor attaches a higher CER to the MSIH despite

the Gaussian IID delivering a higher Sharpe ratio, it is also important to understand what may account for

this difference. This derives from the role of higher-order moments ignored by the mean-variance investor.

Over the long horizon, the MSIH has a large and positive excess kurtosis (2.2) that is in excess of the tail

17In Table 4, the reported 95% confidence bands have been bootstrapped by applying a block bootstrap to each series of

recursive, realized performance statistics.
18Although this is a small real welfare gain measure, it still exceeds the annualized 1.8% real bill rate for our full-sample

period that we may want to use as an estimator of the long-run, real riskless rate for the UK economy that an investor may

earn by leaving 100% of her wealth in cash.
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thickness exhibited by the best VAR models or the no predictability model (between -1.2 for the Gaussian

IID model and 1.4). However, MSIH also implies a high positive skewness (1.7) that the VARs and no

predictability model cannot generate; in fact, both the VAR and the no predictability models generate

approximately symmetric long-horizon portfolio returns. Because positive skewness (right asymmetries)

in realized portfolio returns benefits a power utility investor, the implication is that MSIH is rewarded by

a relatively high CER not because of its pure mean-variance reward ratio, but because MSIH is a way for

a long-run investor to enjoy the potential benefits of large and positive realized performances occurring

with a higher probability than negative realized performances.

The middle panel of Table 4 shows instead results for the intermediate  = 60 month horizon. These

are results are even stronger than those commented above and are largely consistent with what Guidolin

and Hyde (2010) have reported for US data:19 MSIH in this case is the best performing strategy with a

rather strong annualized real CER of 9.9% (the 95% bootstrapped confidence interval is [9.1%, 10.8%])

that tops the 7.3% yielded by the no predictability, Gaussian IID model (with confidence interval [6.8%,

7.8%]). In fact, because the two confidence intervals fail to overlap one may even interpret this evidence

as inconsistent with the null hypothesis that–when statistical uncertainties are taken into account–the

two strategies fail to yield different realized performances. The best performing VARs appear to be

very distant from both MSIH and the IID model: the best performing rolling VAR(1) in which past

oil log-price changes forecast asset returns imply a real CERs of 0.3%, with a confidence interval that

includes zero CERs. Also for  = 60 the median performance of both expanding (-0.6%) and rolling

(-0.5%) window VARs are largely disappointing. Many other findings already commented in the case of

 = 120 extend to the intermediate horizon: for instance, MSIH has in this case a relatively high monthly

Sharpe ratio (0.44) that however fails to exceed the ratio for the no predictability benchmark (0.75), but

MSIH implies a high, positive excess skewness that explains how its real CER may dominate although

the Sharpe ratio does not. The lower panel of Table 4 reports model performances for the best 10 models

when the investor’s horizon is short. Although this is admittedly less interesting for our paper, MSIH still

comes in first in a ranking that compares it to VAR models, with a real CER of 2.1% per annum. Once

more, the first best realized recursive performance is obtained when all predictability patterns (linear and

nonlinear) are simply ignored: the Gaussian IID real annualized CER is 4.4%. At short horizons, the

CER performance from all the VAR models turns again negative and gravely disappointing, in the sense

that the top 10 VAR models paradoxically include models with real CERs below -10% per year and with

confidence intervals so wide to span real CERs as small as -20%; moreover, the median real annualized

CER of all VAR models are in the order of -67%, which is of course the poorest of the performances. Even

to short-horizon investors, it seems that ignoring bull and bear dynamics in favor of VAR models may

be highly dangerous, with large performance losses possible.20 Although the results in the lower panel of

19Some Readers may in fact find these results more convincing as these derive from recursive realized performances also

computed over the OOS period 2000:01-2004:12. Eventually, it may be a matter of taste whether a 5-year horizon may be

considered sufficiently long to be qualified as a realistic long horizon.
20The good real CER performance of MSIH is now generated by properties of portfolio returns which are different from

those commented for the  = 60 and 120 month cases. Now MSIH gives the best annualized mean performance among all
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Table 4 strengthen our earlier conclusion that it is hard for VARs to compete with models that take into

account regimes, we leave for future research the task of exploring why and how ignoring predictability

may actually lead to superior 1-month recursive performance.

Table 4 also reports adjusted turnover coefficients which clearly show that one potential source of

out-performance of both MSIH and the IID benchmark over linear predictability models is given by the

high turnover of the latter. For all the horizons in the table, the ranking is clear: as one would expect,

given the implied slow updating of sample moments, the no predictability framework implies negligible

turnover and hence, transaction costs (e.g., the index is 0.13 when  = 120 months);21 MSIH yields

intermediate, but still rather plausible values of turnover (e.g., 0.41 for  = 120 even though this more

than 3 times the index value obtained for the Gaussian IID case); VAR models require instead absurd

values of turnover (e.g., the median expanding window VAR gives an adjusted turnover index of 5.7; the

median rolling window VAR of 4.6) and are as such heavily penalized by transaction costs (even when

these are accounted for ex-ante, i.e., as part of an investor’s optimization).

6. Additional Tests and Robustness Analysis

We perform robustness checks of the key result of Section 5 that no VAR model may produce a realized

OOS performance comparable to that of bull and bear models. In Section 6.1, we examine the ranking

of alternative models based on performance criteria different from realized, real CER. In Section 6.2,

we comment on backtesting results obtained for a simpler three-state MSI homoskedastic framework. In

Section 6.3, we return to the performance criteria examined in Section 5, but assuming different preferences

for our investor. In Section 6.4, we deepen our understanding for the role played by transaction costs and

examine configurations with lower (in fact, no) transaction costs as well as with higher (fixed) costs.

6.1. Other Performance Criteria

Table 5 has a structure similar to Table 4 and it is based on identical assumptions concerning the pa-

rameters ,  , and . However, in each of its three panels, strategies are sorted on the basis of their

recursive OOS bias-corrected Sharpe ratio, computed as:
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The motivation for the correction in the Sharpe ratio displayed in the formula above lies in Jobson and

Korkie’s (1981) proof that the standard Sharpe ratio computed as the ratio between the sample mean

excess return and sample variance is an (upward-) biased estimator of the true but unknown reward-to-risk

ratio in finite samples, even when it is assumed that portfolio returns are normally distributed. Moreover,

models (18%), although its volatility is comparable to those typical of VARs (e.g., 36% vs. 52% for the best VAR). This

delivers MSIH Sharpe ratios that are higher than the typical VAR yearly Sharpe ratios (0.45 vs. odd, negative ratios).
21The turnover index for the Gaussian IID model is different for different values of  in Table 4 because the recursive

OOS assessment in each of the panels is based on different back-testing samples.
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Table 5 offers evidence on three additional realized performance measures: first, what is commonly called

the Sortino ratio, defined as a Sharpe ratio in which the mean excess portfolio return at the numerator is

divided by the portfolio downside semi-standard deviation (see Fishburn, 1977);22 second, we also show

the success rate, which is the fraction of the OOS months used in our backtesting design in which a given

strategy outperforms the IID benchmark, which is when an investor gives up on trying to exploit any

kinds of predictability patterns.

The finding already commented in Section 4 re-appears, as it should be, in Table 5: at a  = 120

month horizon, no Markov switching model appears among the top 10 performing models. In fact, MSIH

turns out to be among the worst models we have experimented with in this paper, with a corrected

(annualized) Sharpe ratio of 0.11 that needs to be contrasted to a 0.37 from the Gaussian IID benchmark

and 0.31 from the best performing VAR model, in this case an expanding VAR(1) in which there is only

one predictor (the dividend yield). In fact, when they are compared with the 95% bootstrapped confidence

interval for the MSIH corrected Sharpe ratio of [0.12, 0.32], the confidence intervals for the Gaussian IID

model ([0.35, 0.39]) and the best VAR models ([0.29, 0.33]) point to the possibility that hypotheses of

identical Sharpe ratios between MSIH and the other models may be easily rejected. The Sharpe ratios of

the median expanding (rolling) window VAR models is 0.19 (0.22) and as such they appear to be in line

with the ratio obtained for MSIH. Of course, this is additional bad news for MSIH as this implies that

even selecting at random any model among the VARs, one may be obtain an OOS realized Sharpe ratio

that is very similar to the one from MSIH. However–on this the bias correction has a very little effect–

this hardly surprising as we have understood already how an investor may extract utility-relevant welfare

from holding MSIH portfolios: from the benefits of roughly identical volatilities, slightly lower realized

means, but considerably higher skewness. Of course, faced with such a menu of trade-offs, a mean-variance

investor who is not concerned with skewness or any other higher order moments, will instead select VAR

portfolios.23 Yet, it is difficult to under-emphasize the fact that even the VAR SAA weights underlying

Table 5 have been computed assuming the investor is characterized by CRRA preferences with  = 5

and that his “felicity function” depends on real consumption flows and not real terminal wealth: for a

long-run investor, it is not completely clear why to such an investor the (corrected) realized Sharpe ratios

computed on portfolio returns ought to matter when a power utility objective implies that the entire

realized density of portfolio returns are important.

When shorter investment horizons are considered, Table 5 gives a less stark contrast with Table 4. In

particular, for  = 60 even though the no predictability benchmark keeps yielding the highest corrected

Sharpe ratio (0.74), MSIH comes in second with an adjusted ratio of 0.44. VAR models yield good

22When portfolio returns are normally distributed, total variance and semi-variance (which conditions on returns being

below their mean) are identical. Deviations from normality imply instead that total and downside semi-variance differ. As

such the Sortino ratio will contain information that is supplementary to that in the Sharpe ratio only if portfolio returns are

sufficiently non-normal.
23Moreover, because we understand (see e.g., Campbell and Viceira, 2002) that for short horizons and when asset returns

have a normal distribution, power utility is locally mean-variance, it is not surprising to find that under the Gaussian IID

benchmark the resulting portfolio may turn out to be maximing the resulting Sharpe ratio. However, note that our power

utility objective depends on consumption and not wealth, which makes this intuition only partially appropriate.
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corrected Sharpe ratios that however are systematically inferior to those that a Markov switching model

guarantees. For  = 1 month, we find that real CER and corrected Sharpe ratios rankings are very

similar, with MSIH outperforming both a no predictability IID model and all VARs.24

However, also for long investment horizons, Table 5 returns to give strong indications in favor of

bull and bear frameworks when strategies are ranked on the basis of the Sortino ratio. For instance,

at  = 120 months, MSIH gives one of the best 5 Sortino ratios (1.23 vs. 0.87 for the Gaussian IID

benchmark) which is considerable higher than the ratios typical of median of expanding (0.46) and rolling

window (0.55) strategies. Not even the VAR strategies with the highest Sortino ratios achieve at best

ratios of 0.7-0.8). Of course, given the earlier evidence that MSIH yields realized portfolio returns that are

strongly skewed to the right, this is hardly surprising, as a positively asymmetric distribution for realized

portfolio returns may easily imply a lower variability below the mean than above it. These rankings are

confirmed–and get even stronger–in the case of  = 60 and 1 month. This is evidence that as soon as

realized OOS performances are assessed on the basis not of symmetric mean-variance related criteria, but

of asymmetric criteria, including those implied by power utility preferences, MSIH becomes hard or even

impossible to outperform by VAR models that ignore the existence of regimes. The last three columns of

Table 5 show that for most VAR models, the source of their under-performance does not come from their

inability to yield higher returns than the Gaussian IID benchmark, but instead from the fact that they

occasionally under-perform it causing large realized losses.

6.2. Constant Variances and Correlations

One sensible objection to the evidence presented in Tables 4 and 5 is that so far our research design

has compared the realized OOS performances from a large set of homoskedastic VAR models with a

heteroskedastic regime switching model in which the Markov state variable drives not only the time

variation in mean real asset returns but also their covariance matrix. Although we have found the

data strongly requesting such a three-state heteroskedastic specification, it may be objected that the

incapability of VAR models to perform as well as the MSIH does may derive from their homoskedastic

nature. Therefore, even though the bulk of the SAA literature has reported results that suggest that

time-varying stochastic volatility would only exercise second-order effects on optimal portfolio decisions

(see e.g., Chacko and Viceira, 2005), we have also proceeded to estimate a three-state MSI model in which

only mean real asset returns are Markov switching.25 Figure 7 shows in a way comparable to Figure 4

recursive optimal SAA weights from the homoskedastic regime switching model. For comparison, we also

24As a matter of fact, while in Table 4 MSIH failed to outperform the Gaussian IID model in real CER terms, in Table 5

MSIH generates a corrected, annualized Sharpe ratio of 0.28 that exceeds the 0.09 of the Gaussian IID model.
25Such a model is rejected on our U.K. data both by the information criteria and by standard likelihood-ratio tests of

the restriction of a constant, regime-independent covariance matrix. Interestingly, it can be shown that even though the

covariance matrix is constant over time, a MSI model is anyway heteroskedastic because of the dependence of variances

and covariances from the regime-dependent means. Empirically, such a MSI model is characterized by regimes that have an

economic interpretation that is very similar to that reported in Section 3. However, the three regimes are considerably less

persistent. Detailed parameter estimates are available from the Authors upon request.
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plot the same Gaussian IID weights that have been used already in Sections 3-5. Transaction costs are

imposed according to the baseline specification already commented above. As far as the MSI weights

are concerned, the patterns are qualitatively similar to those shown already in Figure 4, although the

oscillations in portfolio structure appear to be slightly more abrupt and larger than in Figure 4, especially

as far as stocks are concerned. Another important difference between MSI and MSIH is that the former

model implies a larger higher mean weight to stocks and lower weights to gilts and also bills. In essence,

the fact that MSI cannot capture regimes in variances and covariances, seems to make stocks look less

risky than under MSIH. Finally, as Table 3 shows, MSI entails larger (in absolute value) hedging demands

than MSIH does; such hedging demands are on average positive for bills and gilts, and negative for stocks

that hence under MSI stocks look increasingly risky as the horizon grows.

Tables 4 and 5 have reported already realized OOS performances for MSI in addition to MSIH. MSI

always ranks below MSIH, but–consistently with earlier findings in the literature–the distance to MSIH

is generally modest. In particular, at  = 120 months, MSI ranks third in general and still above all

VAR models that have examined in this paper. Its annualized real CER is 2.04% vs. 2.40% for MSIH;

however, the 95% bootstrapped confidence intervals for the two regime switching frameworks do not

overlap (they are [1.94%, 2.15%] and [2.24%, 2.57%]) which may be taken as an indication that the

two performance measures are distinguishable in a statistical sense. In fact, the Sharpe ratio of MSI

is extremely disappointing (0.05) even more so than the ratio for MSIH and the explanation for such a

divergence between MSI and MSIH has the same explanation offered in Section 6: in the long run, MSI

yields a disappointing mean, a relatively high variance and excess kurtosis (this are due to the massive long

positions in stocks that tend to dominate over time, as shown in Figure 6), but also a positive and high

excess skewness that benefits the average, perceived welfare of an investor. Clearly, MSI implies a higher

adjusted turnover than MSIH does, although the level achieved (0.70) remains between one fourth and

one fifth the turnover typical of VARs. Similar results extend to the  = 60 and 1 month panels in Table

4, where MSI always follows MSIH in terms of realized OOS performance measures, but at a rather short

distance and always performing better than all the VAR models we have experimented with here.26 Table

5 reinforces this idea that MSI delivers slightly worse performance than MSIH, although its basic ranking

properties vs. VAR models are the same as those commented in Section 6.1. For instance, at  = 120 MSI

has a dismal corrected Sharpe ratio of 0.08 but an excellent Sortino ratio of 0.70. All in all, we conclude

that there is no evidence that our focus on a heteroskedastic MSIH affects the results in a qualitative sense:

none (or at most, very few) of the linear predictability-based strategies represents a serious competitor to

bull and bear frameworks, which is a powerful indication that regime shifts characterized the dynamics of

U.K. returns and that VARs cannot surrogate such a dynamics neither by expanding the set of predictors

involved () nor by using an increasing number of lags ().

26At  = 60 months, MSI also outperforms the Gaussian IID benchmark: its real CER is 8% vs. 7.3% for the no

predictability benchmark. However, its Sharpe ratio (0.32) is almost half the the Gaussian IID ratio (0.74).
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6.3. Transaction Costs

So far, we have assumed  = 01%   = 05% and allowed an investor to take such costs into account

ex-ante, i.e., before deciding her optimal portfolio shares. It is natural to ask whether our key finding

that VAR models cannot surrogate the realized performance of nonlinear models that take bull and bear

states into account may be affected by our peculiar choices of the parameters  and . Table 6 starts

by presenting results for the case in which no transaction costs are imputed, i.e.,  =  = 0 similarly to

Guidolin and Hyde (2010). Our conclusions hold intact and the only minor difference is that for  = 1

we see the homoskedastic MSI model outperformed by a 4 different VARs. However, for intermediate

and long horizons, we find the usual result that no linear framework can produced realized OOS real

CERs comparable to those offered by the nonlinear models (and the Gaussian IID benchmarks). As one

would expect, in the absence of transaction costs all realized performance measures are sensibly higher

than when frictions are taken into account:27 for instance, at a 120-month horizon, MSIH yields a real

annualized CER of 5.4%, MSI of 5.1% and both measures are on the one hand inferior to the performance

of the Gaussian IID model (8.9%) but also exceed by far the real CER of the best VAR (0.8%), which is

again a rolling window model that only includes oil log-price changes as the non-return predictor.28

Table 7 focusses instead on the case of  = 05%  = 1% i.e., when variable transaction costs are

doubled and fixed transaction costs are raised by five times. This is obviously the most relevant case

for a retail investor that as such pays very high (even unrealistically so, although it is difficult to sort

through the myriad of costs that retail traders pay on their operations) costs. For simplicity, Table 7

shows results only for the two extreme cases  = 120 and 1 month, although results for  = 60 were

qualitatively similar to those reported for the long-horizon case. The effects of raising transaction costs

are counter-intuitive on the surface: the biggest impact is indeed recorded on the adjusted turnover rates,

which decline by approximately one-quarter in the case of both regime switching and VAR models. This

means that higher frictions taken into account on an ex-ante basis do make investors extremely cautions

before trading which, in the presence of high transaction costs especially of fixed type, end up improving

the realized ex-post real CER performance of the Markov switching models: at  = 120 months, MSIH

scores now a real CER of 5% (the 95% bootstrapped confidence interval is [3.7%, 4.1%] which is slightly

better than the no predictability benchmark (4.7% with confidence interval [3.4%, 3.7%]) and once more

than all the VAR models we have entertained in this paper. The Sharpe ratios of MSIH and MSI do

remain inferior to those provided by the Gaussian IID model, but the difference is now smaller while the

Markov switching ratios are now very similar to the best mean-variance trade-offs of the best VARs.

27Note however that there is no mathematical necessity in this statement because transaction costs are imputed not only

ex-post on the realized trading profits, but also ex-ante. Therefore, because frictions may dissuade an investor from trading

thus saving the related costs, it is in principle possible that performances may even enhanced by considering transaction

costs, if these lower the adjusted portfolio turnover. However, this never occurs in our paper.
28We have also investigated alternative performance criteria similar to those tabulated in Table 5, finding qualitatively

similar results. It remains the case that nonlinear models yield disappointing Sharpe ratios but excellent Sortino ratios,

which is consistent with the strong asymmetry properties of realized returns.
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6.4. Risk Aversion

Although the choice of  = 5 appears typical of most empirical finance literature, it is important to check

the robustness of our empirical results to changes in the coefficient of relative risk aversion imputed to

the investor. Table 8 returns to the baseline transaction cost specification ( = 01%  = 05%) of

Table 4, but concerns the case of  = 2 which is a relatively low degree of risk aversion destined to

make an investor that exploits predictability rather aggressive in exploiting any signal she may believe to

forecast subsequent asset returns. Moreover,  = 2 ought to justify a strong tilt of all optimized portfolios

towards the riskier assets, in our case, chiefly stocks. Table 8 shows that all these effects materialize in our

experiments and that these are especially obvious–as one should expect–in the  = 1 case. However,

in a long-run perspective it remains the case that only one VAR model (an expanding window model

with  = 4 and that includes the gilt/equity ratio, RPI inflation, and oil price inflation as predictors)

outperforms MSIH with a real annualized CER of 0.5%; all other models, including MSIH and the no

predictability benchmark imply negative realized CERs but do outperform the residual 99.7% of the VAR

models. In fact, low risk aversion makes investors so aggressive and adjusted turnover statistics so large

to generally yield rather disappointing performances, both in a CER and in a Sharpe ratio perspective.

It seems that aggressive investors should be really cautious before having their trades entirely driven by

any type of econometric framework, although MSIH remains better performing than all VARs but one.

Table 9 completes this robustness check presenting OOS realized performance statistics for the case

of  = 10 that corresponds instead to a rather high degree of risk aversion. In this case, at least for

a long-horizon investor, the results are qualitatively identical to those that have already appeared in

Table 4: MSIH yields the second best real CER (2%) just after the Gaussian IID benchmark (3.9%).

However, these findings come from much less active investors that become obviously very cautious both

in terms of following market signals and in terms of overall composition of their portfolios. For instance,

all the adjusted turnover statistics drop compared to Table 4. In any event, it is reassuring that the

key empirical finding of this paper–VAR models cannot easily surrogate bull and bear dynamics in

out-of-sample tests–are robust to changes in the selected risk aversion coefficients.

7. Conclusion

We have investigated whether it is possible for VAR models (linear predictability) to yield strategic

asset allocation decisions equivalent to those obtained from a simple regime switching model. Secondly

we have sought to establish whether the realized portfolio performance from this large family of linear

predictability models is any better than that provided by explicitly modeling nonlinearity. Using U.K.

asset return data on stocks, bonds and T-bills over the long period 1957-2009 we show that VAR models

with linear predictability are unable to generate outcomes similar to those from a simple three-state

Markov switching model. We have therefore concluded that regimes (more generally, nonlinearities) are

not only statistical features of U.K. real stock and bond returns, but also that these generate optimal SAA
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decisions and economic values that cannot be simply replicated using näıve linear predictability models.

Although they were rather sharp and essentially robust to a number of robustness checks (concerning

risk aversion, the homoskedastic or heteroskedastic nature of the Markov switching framework, the per-

formance criteria used to rank models, and the exact configuration and level of transaction costs), our key

results are of course dictated by a number of choices that we have made. Though we have no specific prior

on the fact that any of these choices may affect our conclusions, a number of different parameterizations

would be interesting and represent interesting directions for future research. For instance, our nonlinear

benchmark could have been replaced by a more powerful and complex nonlinear model, such as Markov

switching models with ARCH effects and/or time-varying transition probabilities (if required by the data).

The set of VAR models on which we have based our analysis could have expanded to encompass many

more predictor variables than we have used in this paper. Finally, while in this paper we have considered

an investor that is actually contemplating resorting to a VAR modeling strategy to support her long-

horizon SAA decisions, it is very unlikely that this investor may actually decide to specify and estimate

one particular VAR model and to stick to it over time: An investor is likely to use statistical criteria

to judge the likely performance of competing VAR models at each point in time, with the possibility of

occasionally switching among different VARs.
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Appendix: Solution of asset allocation problems by Monte Carlo methods

Markov Switching Model

Given the optimization problem is solved backwards at each time  (since the portfolio can be rebal-

anced every month), such that (π
+1 + 1) is known for all values of  = 1 2      on a discretization

grid. Here () is not a function of the state variables Z+1 but the regime probabilities π+1. Computing

a Monte Carlo approximation of the expectation



h
{ωR+1}1− 

¡
π
+1 + 1

¢i
requires drawing  random samples of asset returns

©
R+1

¡
π
+1

¢ª
=1

from the  + 1 one-step joint

density conditional on the period- parameter estimates θ̂ =

µn
μ̂ Ω̂

o
=1

 P̂

¶
assuming that, at each

point π
 is updated to π+1(π


). The algorithm consists of the following steps:

1. For each possible value of the current regime  simulate  returns {R+1 (+1)}=1 in calendar
time from the regime switching model:

R+1 (+1) = μ+1
+ ε+1 ε+1 ∼ 

¡
0ΩSt+1

¢
The simulation enables regime switching as governed by the transition probability matrix P̂ For

example, starting in state 1, the probability of switching to state 2 between  and +1 is ̂12 ≡ e01P̂e
0
2,

while the probability of remaining in state 1 is ̂11 ≡ e01P̂e
0
1. Hence, at each point in time, P̂ governs

possible state transitions.

2. Combine the simulated returns {R+1}=1 into a random sample size , using the probability

weights contained in the vector π
:

R+1

¡
π


¢
=

X
=1

¡
π
e
¢
R+1 ( = )

3. Update the future regime probabilities perceived by the investor using the standard Hamilton-Kim

filtering formula

π+1(π

) =

¡
π


¢0
P̂¯ η

³
R+1

¡
π


¢
; θ̂

´
³¡
π


¢0
P̂¯ η

³
R+1

¡
π


¢
; θ̂

´´
ι
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This gives an × matrix
©
π+1(π


)
ª
=1
, whose rows correspond to simulated vectors of perceived

regime probabilities at time + 1.

4. For all  = 1 2      calculate the value π̃
+1 on the discretization grid ( = 1 2     ) closest

to π+1(π

) using the distance measure

P−1
=1 |π

+1e − π+1e |, i.e.

π̃
+1(π


) ≡ argmin

−1X
=1

|xe − π+1e |

Knowledge of the vector
©
π̃
+1(π


)
ª
=1

allows us to build
n
(π

()
+1  + 1)

o
=1
, where π

()
+1 ≡

π̃
+1(π


) is a function of the assumed, initial vector of regime probabilities π


.

5. Solve the program

max
(


)
−1

X
=1

n
[ωR+1]

1− 
³
π
()
+1  + 1

´o
For large values of this provides an arbitrarily precise Monte Carlo approximation to[{ωR+1}1−
(π

()
+1  + 1)]. The value function evaluated at the optimal portfolio weights ω̂(π


) gives (π


 )

for the th point on the initial grid. We also check whether ωR+1 is negative and reject all

corresponding sample paths.

The algorithm is applied to all possible values π
 on the discretization grid until all values of (π


)

are obtained for  = 1 2    . It is then iterated backwards. We take (π
 + 1) as given and use the

actual vector of smoothed probabilities π. The resultant vector ω̂ gives the optimal portfolio allocation

at time , while (π ) is the optimal value function. In our application,  is selected as 52 = 25 which

fits the standard formula 5−1 as in Guidolin and Timmermann (2008) and the number of Monte Carlo

simulations is 30,000.

VAR model

Again the optimization problem is solved by backward iteration for each point  so that (Z+1 +1).

A Monte Carlo approximation of the expectation



h
{ωR+1}1− 

¡
Z+1 + 1

¢i
now requires drawing  random samples of the state variables {Z+1}=1 from the + 1 one-step joint

density conditional on the period- parameter estimates θ̂ =
³
μ̂ Â Ω̂

´
. The algorithm is similar but

much simpler than for the Markov Switching model. The  returns
©
R+1

¡
Z
¢ª

=1
need to be simulated

from the VAR model. In this case  = 20 delivers quite accurate results (because of the linearity of the

prediction framework) and we set again  = 30 000.
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Table 1 

Summary Statistics for Portfolio Returns and Predictors 

 

Mean Median Std. Dev.
Uncond. 

Sharpe Ratio
MinimumMaximumSkewness Kurtosis J‐B test

Real Stock Returns 0.650*** 1.116*** 5.456 0.091 ‐27.00 51.40 0.766 16.148* 4,599***

Real Gilt Returns 0.253*** 0.251*** 1.610 0.063 ‐5.986 7.796 0.399 6.004** 253.50***

1‐month T‐bill Real Returns 0.152*** 0.216*** 0.582 0 ‐3.492 1.967 ‐1.541** 9.447*** 1,341***

Retail Inflation rate 0.464*** 0.043*** 0.640 ___ ‐1.622 4.309 1.720*** 10.208** 1,674***

Gilt/Equity Ratio 1.922*** 2.073*** 0.559 ___ 0.586 3.315 ‐0.296*** 2.152*** 28.074***

Riskless Term Spread (annualized) 0.996*** 1.034*** 1.761 ___ ‐4.175 6.729 0.208 3.687 16.931***

Oil Price Inflation 0.783** 0.000 8.407 ___ ‐32.70 134.6 6.589* 105.84* 282,196***

Industrial production growth 0.106* 0.102*** 1.358 ___ ‐7.752 9.748 0.037 12.848* 2,546***

Dividend Yield (annual 12‐month MA) 4.440*** 4.350*** 1.277 ___ 2.060 12.04 0.982** 6.360* 397.46***

Real Stock Returns 0.529 0.887* 6.300 0.088 ‐21.16 51.40 1.807 19.237* 3,021***

Real Gilt Returns ‐0.004 0.043 1.469 0.013 ‐5.957 6.671 0.040 6.670* 147.09***

1‐month T‐bill Real Returns ‐0.023 0.014 0.626 0 ‐3.492 1.967 ‐1.490* 8.919* 479.32***

Retail Inflation rate 0.570*** 0.495*** 0.714 ___ ‐1.622 4.281 1.421* 7.837* 343.58***

Gilt/Equity Ratio 1.772*** 1.571*** 0.649 ___ 0.779 3.110 0.233** 1.617*** 23.233***

Riskless Term Spread (annualized) 2.022*** 1.640*** 1.550 ___ ‐0.760 6.729 0.861*** 3.387 33.976***

Oil Price Inflation 0.807 0.000 8.517 ___ ‐2.280 134.6 14.949 234.18* 593,210***

Industrial production growth 0.211** 0.000 1.578 ___ ‐7.752 9.748 0.122 12.288 942.44***

Dividend Yield (annual 12‐month MA) 5.036*** 5.050*** 1.282 ___ 2.910 12.04 1.566* 8.729 465.34***

Real Stock Returns 0.737*** 1.305*** 4.772 0.097 ‐27.00 13.32 ‐0.951* 6.191 211.59***

Real Gilt Returns 0.436*** 0.412*** 1.682 0.095 ‐5.986 7.796 0.505 5.542* 114.75**

1‐month T‐bill Real Returns 0.277*** 0.291*** 0.515 0 ‐3.199 1.576 ‐1.558* 10.49* 1,010***

Retail Inflation rate 0.388*** 0.360*** 0.571 ___ ‐1.435 4.309 1.955* 13.29* 1,856***

Gilt/Equity Ratio 2.029*** 2.112*** 0.456 ___ ‐0.677 3.590 ‐0.677*** 3.590 33.409***

Riskless Term Spread (annualized) 0.265*** 0.211*** 1.523 ___ ‐4.175 3.783 ‐0.250 2.911 3.944

Oil Price Inflation 0.766*** 0.732*** 0.834 ___ ‐32.70 45.80 0.256 6.420 183.41***

Industrial production growth 0.030 0.103 1.173 ___ ‐6.980 7.503 ‐0.268 10.78 932.03***

Dividend Yield (annual 12‐month MA) 4.016*** 3.925*** 1.091 ___ 2.060 6.860 0.391** 2.539 12.646***

Full Sample Period (1957:03 ‐ 2009:12)

Recursive, Pseudo Out‐of‐Sample Period (1978:01 ‐ 2009:12)

Initial Training/Estimation Sample (1957:03 ‐ 1977:12)
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Table 2 

Full-Sample Estimates of Three-State Heteroskedastic Markov Switching Multivariate Model 
for Real Stock, Bond, and 1-month T-Bill Returns 

 

Real 1‐month T‐bill 

Returns
Real Gilt Returns Real Stock Returns

1. Mean returns 0.1524** 0.2530** 0.6501**

2. Correlations/Volatilities

Real 1‐month T‐bill Returns 0.5822**

Real Gilt Returns 0.3450** 1.6104**

Real Stock Returns ‐0.0179 0.2662** 5.4556**

Real 1‐month T‐bill 

Returns
Real Gilt Returns Real Stock Returns

1. Mean returns

Bear State ‐0.4330** ‐1.4559** ‐2.9216*

Equity Bull/Low Volatility State 0.2353** 0.2649** 1.0382**

Gilt Bull/High Volatility State 0.0661 3.1809** 1.7514

2. Correlations/Volatilities

Bear State

Real 1‐month T‐bill Returns 0.9750**

Real Gilt Returns 0.1780* 1.8223**

Real Stock Returns ‐0.2773* ‐0.0251 7.0367**

Equity Bull/Low Volatility State

Real 1‐month T‐bill Returns 0.4407**

Real Gilt Returns 0.3875** 1.1578**

Real Stock Returns 0.0857 0.2264* 4.0477**

Gilt Bull/High Volatility State

Real 1‐month T‐bill Returns 0.7084**

Real Gilt Returns 0.3237** 2.1592**

Real Stock Returns ‐0.4291** 0.3916** 12.318**

3. Transition probabilities
Bear State

Equity Bull/Low 

Volatility State

Gilt Bull/High 

Volatility State

Bear State 0.6953** 0.2242** 0.0805

Equity Bull/Low Volatility State 0.0221 0.9575** 0.0204

Gilt Bull/High Volatility State 0.1422* 0.0867 0.6711**

Bear State
Equity Bull/Low 

Volatility State

Gilt Bull/High 

Volatility State

Ergodic Probabilities 0.1210 0.7998 0.0792

Average Duration (in months) 3.3 23.5 3.0

** = significant at 1% size or lower; * = significant at 5% size.

Panel A ‐ SINGLE STATE MODEL 

Panel B ‐ THREE‐STATE MODEL

Panel C ‐ MARKOV CHAIN PROPERTIES, THREE‐STATE MODEL
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Table 3 

Summary Statistics for Realized, Recursive Optimal Portfolio Weights Computed under 
Power Utility Preferences (γ = 5) 

T=1 T=120 Hedging T=1 T=120 Hedging T=1 T=120 Hedging

Model Lags

Gilt/Equity 

Yield Ratio

Term 

Spread
Inflation  IP

Oil Price 

Inflation
DY

1 MS Heteroskedastic 0 __ __ __ __ __ __ ‐0.111 ‐0.089 0.022 ‐1.849 ‐1.846 0.002 2.960 2.935 ‐0.024

2 MS Homoskedastic 0 __ __ __ __ __ __ ‐1.905 ‐1.674 0.231 ‐2.276 ‐2.174 0.102 5.187 4.853 ‐0.333

3 IID (No predictability) 0 __ __ __ __ __ __ 1.169 __ __ ‐0.697 __ __ 0.528 __ __

4 VAR Rolling 1 N N N N Y Y ‐2.671 ‐3.692 ‐1.022 3.271 2.688 ‐0.583 0.400 2.004 1.605

5 VAR Rolling 1 N N Y Y N N ‐2.994 ‐2.628 0.366 3.433 3.063 ‐0.370 0.561 0.565 0.004

6 VAR Rolling 1 N N N N Y N ‐3.555 ‐2.683 0.871 4.009 3.098 ‐0.911 0.546 0.585 0.040

7 VAR Expanding 1 Y Y Y Y N Y ‐0.530 ‐0.837 ‐0.307 1.517 1.213 ‐0.304 0.013 0.624 0.611

8 VAR Rolling 1 N N N Y N Y ‐2.697 ‐3.752 ‐1.055 3.266 2.708 ‐0.558 0.432 2.044 1.613

9 VAR Rolling 1 N Y N N Y N ‐3.706 ‐3.120 0.585 4.186 3.515 ‐0.671 0.519 0.605 0.086

101 VAR Expanding 4 N N N Y N N ‐1.723 ‐0.904 0.819 2.183 1.416 ‐0.767 0.540 0.487 ‐0.052

DY Short Term Def. Infl. IP grw.

1 MS Heteroskedastic 0 __ __ __ __ __ __ 0.222 0.225 0.048 1.978 1.975 0.050 1.820 1.818 0.072

2 MS Homoskedastic 0 __ __ __ __ __ __ 1.091 1.084 0.250 1.292 1.273 0.259 2.229 2.173 0.352

3 IID (No predictability) 0 __ __ __ __ __ __ 1.161 __ __ ‐0.662 __ __ 0.574 __ __

4 VAR Rolling 1 N N N N Y Y 6.714 6.636 1.441 6.518 5.883 0.888 1.086 2.085 1.434

5 VAR Rolling 1 N N Y Y N N 6.351 5.972 1.395 6.338 5.942 1.351 0.842 0.842 0.163

6 VAR Rolling 1 N N N N Y N 6.479 5.760 1.034 6.403 5.695 0.996 0.796 0.814 0.141

7 VAR Expanding 1 Y Y Y Y N Y 6.661 5.940 0.790 6.448 5.888 0.763 0.563 0.753 0.393

8 VAR Rolling 1 N N N Y N Y 6.643 6.747 1.470 6.538 6.036 0.809 0.984 2.021 1.443

9 VAR Rolling 1 N Y N N Y N 6.762 6.160 1.284 6.665 6.064 1.100 0.892 0.943 0.348

101 VAR Expanding 4 N N N Y N N 8.779 8.209 1.504 8.561 8.122 1.326 0.935 0.823 0.211

DY Short Term Def. Infl. IP grw.

1 MS Heteroskedastic 0 __ __ __ __ __ __ 0.777 0.784 0.091 5.179 5.155 0.079 4.957 5.051 0.133

2 MS Homoskedastic 0 __ __ __ __ __ __ 2.978 3.025 0.641 3.634 3.568 0.773 6.548 6.510 0.945

3 IID (No predictability) 0 __ __ __ __ __ __ 0.633 __ __ 0.725 __ __ 0.758 __ __

4 VAR Rolling 1 N N N N Y Y 21.761 20.784 3.649 21.260 19.744 2.755 3.104 5.665 3.654

5 VAR Rolling 1 N N Y Y N N 21.776 19.671 5.068 22.152 19.930 4.891 2.187 2.258 0.547

6 VAR Rolling 1 N N N N Y N 20.715 19.263 3.198 21.384 19.426 3.034 2.465 2.561 0.383

7 VAR Expanding 1 Y Y Y Y N Y 19.900 17.543 2.384 18.986 17.646 2.313 1.739 2.398 1.304

8 VAR Rolling 1 N N N Y N Y 20.633 20.625 3.518 20.757 19.205 2.621 2.839 5.747 3.549

9 VAR Rolling 1 N Y N N Y N 20.986 19.244 4.002 21.674 19.378 3.771 2.893 3.010 0.821

101 VAR Expanding 4 N N N Y N N 26.894 25.215 4.266 25.855 24.486 3.728 2.865 2.527 0.570

1‐month T‐bills Long‐term Bonds (Gilts) Stocks
Predictors Included

Sample Mean of Portfolio Weights

CER 

Rank

Sample Standard Deviation of Portfolio Weights

Empirical 90% Range
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Table 4 

Best Models Ranked According to Average Recursive Certainty Equivalent Return Obtained from Optimal Strategic Asset 
Allocation Choices Under Power Utility Preferences (γ = 5): Baseline Transaction Cost Level 

 

CER 

Rank
Model Lags

Gilt/Equity 

Yield Ratio

Term 

Spread
Inflation  IP

Oil Price 

Inflation
DY Horizon

Mean 

returns

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB
Volatility

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

Sharpe 

ratio

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

CER (% 

Ann.)

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

1 IID (No predictability) 0 __ __ __ __ __ __ 120 9.249 8.440 9.969 15.477 14.687 16.180 0.480 0.450 0.503 6.774 6.028 7.531 0.146 1.751 0.130

2 MS Heteroskedastic 0 __ __ __ __ __ __ 120 6.701 4.553 8.879 44.089 38.528 49.303 0.111 0.071 0.143 2.397 2.240 2.567 1.671 5.183 0.410

3 MSI Homoskedastic 0 __ __ __ __ __ __ 120 3.992 2.074 5.870 40.861 34.036 46.586 0.053 0.007 0.087 2.041 1.936 2.150 2.088 7.250 0.697

4 VAR Rolling 1 N N N N Y N 120 12.331 10.801 13.787 36.349 33.792 38.563 0.289 0.266 0.310 ‐2.669 ‐2.744 ‐2.183 ‐0.012 4.120 3.314

5 VAR Rolling 1 N N N N N Y 120 12.782 11.399 14.294 34.927 32.417 37.031 0.314 0.295 0.337 ‐2.676 ‐2.736 ‐2.327 ‐0.067 4.243 3.036

6 VAR Expanding 1 Y Y N N Y Y 120 12.567 10.740 14.306 40.778 37.645 44.080 0.263 0.237 0.283 ‐2.681 ‐2.739 ‐1.992 0.123 4.448 3.788

7 VAR Rolling 1 N N N Y Y N 120 11.774 10.190 13.278 37.012 34.129 39.324 0.269 0.245 0.291 ‐2.698 ‐2.754 ‐2.310 0.013 4.054 3.639

8 VAR Rolling 1 N N N N N Y 120 14.866 12.926 16.870 44.421 42.363 45.955 0.294 0.262 0.327 ‐2.699 ‐2.754 ‐2.312 ‐0.320 3.401 3.243

9 VAR Rolling 1 N N N Y N N 120 12.269 10.755 13.659 35.895 33.400 38.316 0.291 0.267 0.309 ‐2.700 ‐2.753 ‐2.421 ‐0.002 4.139 3.393

10 VAR Rolling 1 N N Y Y N N 120 12.611 11.032 14.201 37.435 34.850 39.551 0.288 0.264 0.313 ‐2.701 ‐2.756 ‐2.463 ‐0.022 4.026 3.682

120 9.715 8.106 11.293 40.661 37.839 43.093 0.194 0.166 0.220 ‐2.776 ‐2.802 ‐2.729 0.229 4.111 5.670

120 11.435 9.770 13.220 42.829 40.757 44.696 0.224 0.195 0.255 ‐2.773 ‐2.798 ‐2.723 ‐0.036 3.698 4.623

1 MS Heteroskedastic 0 __ __ __ __ __ __ 60 21.207 19.010 23.462 43.844 39.035 48.470 0.442 0.440 0.446 9.871 9.076 10.765 1.112 4.789 0.555

2 MSI Homoskedastic 0 __ __ __ __ __ __ 60 24.832 21.290 28.549 72.088 62.837 80.402 0.319 0.310 0.332 7.969 7.272 8.718 1.491 5.998 0.895

3 IID (No predictability) 0 __ __ __ __ __ __ 60 8.035 7.611 8.460 8.293 7.823 8.734 0.749 0.740 0.760 7.284 6.841 7.761 0.076 1.981 0.022

4 VAR Rolling 1 N N N N Y N 60 11.509 9.470 13.495 40.601 36.453 44.403 0.239 0.210 0.263 0.228 ‐0.059 1.590 0.340 3.766 3.586

5 VAR Rolling 1 N N N N N Y 60 10.910 9.203 12.796 35.558 32.240 38.442 0.256 0.229 0.285 0.076 ‐0.174 2.096 0.269 3.663 3.324

6 VAR Rolling 1 N N N N N Y 60 16.500 13.258 19.718 54.388 50.148 57.699 0.270 0.228 0.310 ‐0.178 ‐0.364 2.408 0.144 1.918 3.555

7 VAR Rolling 1 N N Y Y N N 60 10.464 8.305 12.589 38.638 34.744 42.035 0.224 0.187 0.256 ‐0.203 ‐0.381 1.615 0.286 3.618 4.045

8 VAR Rolling 1 N N N Y N N 60 10.390 8.418 12.249 36.216 32.908 39.600 0.237 0.200 0.263 ‐0.253 ‐0.407 1.152 0.278 3.719 3.769

9 VAR Rolling 1 N Y N N Y N 60 11.664 9.597 14.421 41.850 38.219 45.689 0.235 0.203 0.276 ‐0.277 ‐0.425 0.418 0.334 3.639 3.647

10 VAR Rolling 1 N N N Y Y N 60 11.046 8.980 13.497 41.174 37.441 44.880 0.224 0.191 0.260 ‐0.280 ‐0.417 0.959 0.333 3.693 3.996

60 9.133 6.533 11.757 46.023 41.469 50.040 0.159 0.114 0.199 ‐0.578 ‐0.618 ‐0.512 0.365 4.990 6.383

60 11.001 8.727 13.197 49.425 44.609 52.971 0.186 0.155 0.215 ‐0.535 ‐0.585 ‐0.439 0.254 4.170 5.418

1 IID (No predictability) 0 __ __ __ __ __ __ 1 2.619 ‐0.759 6.205 7.832 6.986 8.672 0.102 ‐0.370 0.505 4.359 4.070 4.637 ‐0.249 5.555 0.179

2 MS Heteroskedastic 0 __ __ __ __ __ __ 1 18.117 12.459 23.633 36.234 32.065 29.040 0.450 0.332 0.751 2.136 ‐0.650 4.827 ‐0.339 4.428 0.573

3 MSI Homoskedastic 0 __ __ __ __ __ __ 1 21.457 12.672 30.289 42.914 50.837 46.563 0.457 0.213 0.611 ‐0.787 ‐4.244 3.078 0.006 3.545 1.077

4 VAR Rolling 2 N N N Y N N 1 ‐42.777 ‐54.411 ‐31.635 51.500 72.125 60.089 ‐0.866 ‐0.780 ‐0.557 ‐0.995 ‐7.659 6.878 0.677 13.267 4.298

5 VAR Rolling 2 N Y N Y N N 1 ‐44.934 ‐56.169 ‐35.635 54.091 81.958 66.735 ‐0.864 ‐0.708 ‐0.561 ‐5.206 ‐13.531 3.885 1.695 22.236 4.542

6 VAR Expanding 2 Y Y Y N N Y 1 ‐47.151 ‐58.219 ‐37.451 48.142 65.101 56.910 ‐1.017 ‐0.922 ‐0.690 ‐5.618 ‐13.791 9.033 0.307 9.015 5.002

7 VAR Rolling 2 N Y Y N N N 1 ‐45.324 ‐55.760 ‐33.418 50.870 63.072 56.974 ‐0.927 ‐0.913 ‐0.619 ‐6.308 ‐13.037 5.596 ‐0.572 5.864 3.943

8 VAR Rolling 2 N N N Y N Y 1 ‐48.604 ‐58.763 ‐35.003 54.193 76.990 65.579 ‐0.931 ‐0.787 ‐0.562 ‐8.448 ‐14.898 3.680 0.879 16.288 4.686

9 VAR Expanding 2 Y Y Y Y N Y 1 ‐49.139 ‐59.328 ‐39.247 50.345 64.437 57.255 ‐1.012 ‐0.949 ‐0.717 ‐10.409 ‐21.011 8.108 0.130 7.960 4.889

10 VAR Expanding 2 Y Y Y N N N 1 ‐47.822 ‐59.070 ‐37.549 49.626 64.646 56.791 ‐1.000 ‐0.942 ‐0.693 ‐11.051 ‐23.251 8.472 0.208 8.793 5.087

1 ‐45.003 ‐55.522 ‐35.429 57.308 49.544 65.134 ‐0.817 ‐1.157 ‐0.572 ‐66.588 ‐67.647 7.943 ‐0.068 9.533 4.680

1 ‐42.993 ‐54.850 ‐32.519 62.163 52.023 72.415 ‐0.721 ‐1.089 ‐0.474 ‐66.588 ‐67.647 6.237 0.554 13.796 4.244

Skewness Kurtosis

Average 

turnover 

(adjusted)

Median Expanding VAR performance

Median Rolling VAR performance

Median Expanding VAR performance

Predictors Included Annualized Mean Annualized Volatility Sharpe Ratio Annualized CER

Median Rolling VAR performance

Median Expanding VAR performance

Median Rolling VAR performance  
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Table 5 

Best Models Ranked According to Average Long-Horizon Recursive Sharpe Ratio Obtained from Optimal Strategic Asset 
Allocation Choices Under Power Utility Preferences (γ = 5): Baseline Transaction Cost Level 

 

CER 

Rank
Model Lags

Gilt/Equity 

Yield Ratio

Term 

Spread
Inflation  IP

Oil Price 

Inflation
DY Horizon Ratio

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB
Ratio

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB
Ratio

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB
Rate

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

1 IID (No predictability) 0 __ __ __ __ __ __ 120 0.468 0.445 0.486 0.480 0.450 0.503 0.874 0.862 0.947 __ __ __

2 VAR Expanding 1 N N N N N Y 120 0.314 0.288 0.332 0.315 0.288 0.333 0.656 0.632 0.696 0.385 0.325 0.444

3 VAR Expanding 1 N N N N Y Y 120 0.310 0.287 0.337 0.311 0.288 0.338 0.679 0.640 0.698 0.265 0.209 0.328

4 VAR Rolling 1 N Y N N N N 120 0.312 0.286 0.336 0.313 0.287 0.337 0.617 0.575 0.660 0.227 0.178 0.274

5 VAR Rolling 1 N N N N N N 120 0.313 0.295 0.336 0.314 0.295 0.337 0.583 0.566 0.612 0.531 0.470 0.593

6 VAR Rolling 1 N N Y N N N 120 0.310 0.291 0.333 0.311 0.292 0.334 0.594 0.557 0.643 0.592 0.537 0.648

7 VAR Expanding 1 N N N Y N Y 120 0.298 0.271 0.326 0.299 0.272 0.327 0.638 0.589 0.674 0.531 0.468 0.583

8 VAR Expanding 1 Y N N N N Y 120 0.297 0.273 0.322 0.298 0.274 0.323 0.621 0.593 0.659 0.508 0.442 0.569

245 MS Heteroskedastic 0 __ __ __ __ __ __ 120 0.105 0.095 0.119 0.111 0.071 0.143 1.228 0.751 1.660 0.577 0.523 0.635

268 MSI Homoskedastic 0 __ __ __ __ __ __ 120 0.080 ‐0.041 0.178 0.053 0.007 0.087 0.696 ‐0.436 1.279 0.527 0.482 0.674

120 0.194 0.166 0.219 0.194 0.166 0.220 0.464 0.424 0.508 0.463 0.406 0.524

120 0.224 0.194 0.254 0.224 0.195 0.255 0.554 0.516 0.608 0.500 0.441 0.558

1 IID (No predictability) 0 __ __ __ __ __ __ 60 0.741 0.739 0.745 0.749 0.740 0.760 0.785 0.760 0.815 __ __ __

2 MS Heteroskedastic 0 __ __ __ __ __ __ 60 0.441 0.439 0.445 0.442 0.440 0.446 1.613 1.590 1.614 0.753 0.703 0.803

3 MSI Homoskedastic 0 __ __ __ __ __ __ 60 0.318 0.309 0.332 0.319 0.310 0.332 1.831 1.733 1.950 0.613 0.562 0.662

4 VAR Rolling 1 Y N N N N N 60 0.277 0.246 0.313 0.277 0.247 0.314 0.714 0.607 0.808 0.575 0.522 0.631

5 VAR Rolling 1 N N N N N Y 60 0.269 0.227 0.309 0.270 0.228 0.310 0.854 0.735 0.962 0.503 0.448 0.554

6 VAR Expanding 1 N N N N Y Y 60 0.269 0.239 0.298 0.270 0.240 0.299 0.794 0.709 0.900 0.516 0.463 0.566

7 VAR Rolling 1 N N N N Y Y 60 0.265 0.231 0.298 0.265 0.232 0.299 0.846 0.734 0.952 0.503 0.446 0.559

8 VAR Expanding 1 N N N N N Y 60 0.269 0.230 0.298 0.269 0.231 0.299 0.771 0.659 0.872 0.522 0.463 0.572

9 VAR Rolling 1 Y N Y N N N 60 0.266 0.231 0.292 0.267 0.232 0.293 0.697 0.595 0.790 0.556 0.512 0.605

10 VAR Rolling 1 Y N N N Y N 60 0.265 0.236 0.297 0.266 0.237 0.298 0.705 0.618 0.809 0.528 0.482 0.575

60 0.158 0.113 0.198 0.159 0.114 0.199 0.450 0.323 0.575 0.397 0.343 0.452

60 0.185 0.154 0.214 0.186 0.155 0.215 0.535 0.458 0.611 0.438 0.387 0.489

1 MS Heteroskedastic 0 __ __ __ __ __ __ 1 0.277 0.136 0.259 0.339 0.294 0.680 0.380 0.179 0.382 0.668 0.619 0.714

2 MSI Homoskedastic 0 __ __ __ __ __ __ 1 0.208 0.069 0.200 0.257 0.253 0.560 0.307 0.100 0.310 0.620 0.572 0.670

3 IID (No predictability) 0 __ __ __ __ __ __ 1 0.094 ‐0.241 0.430 0.102 ‐0.370 0.505 ‐0.078 ‐0.087 0.005 __ __ __

4 VAR Rolling 1 N Y Y N N N 1 ‐0.662 ‐0.656 ‐0.673 ‐0.404 ‐0.795 ‐0.188 ‐0.862 ‐0.842 ‐1.014 0.148 0.107 0.194

5 VAR Rolling 1 N Y N N N N 1 ‐0.786 ‐0.699 ‐1.120 ‐0.359 ‐0.732 ‐0.149 ‐0.984 ‐0.953 ‐1.374 0.166 0.127 0.203

6 VAR Rolling 1 Y Y N N N N 1 ‐0.788 ‐0.741 ‐1.025 ‐0.361 ‐0.602 ‐0.155 ‐1.070 ‐1.064 ‐1.450 0.185 0.142 0.224

7 VAR Rolling 1 N Y Y Y N N 1 ‐0.623 ‐0.652 ‐0.503 ‐0.467 ‐0.872 ‐0.255 ‐0.808 ‐0.778 ‐0.821 0.132 0.094 0.163

8 VAR Rolling 1 Y Y N Y N N 1 ‐0.721 ‐0.726 ‐0.777 ‐0.408 ‐0.714 ‐0.192 ‐0.972 ‐1.013 ‐1.141 0.187 0.144 0.226

9 VAR Rolling 1 N Y N Y N N 1 ‐0.721 ‐0.766 ‐0.807 ‐0.414 ‐0.741 ‐0.214 ‐0.921 ‐1.030 ‐1.078 0.174 0.132 0.213

10 VAR Rolling 1 N Y N N Y N 1 ‐0.688 ‐0.726 ‐0.772 ‐0.441 ‐0.806 ‐0.205 ‐0.960 ‐1.075 ‐1.178 0.145 0.105 0.182

1 ‐0.670 ‐0.733 ‐0.653 ‐0.817 ‐1.157 ‐0.572 ‐0.870 ‐0.957 ‐0.864 0.119 0.086 0.152

1 ‐0.565 ‐0.672 ‐0.469 ‐0.721 ‐1.089 ‐0.474 ‐0.798 ‐0.882 ‐0.740 0.142 0.106 0.178Median Rolling VAR performance

Median Expanding VAR performance

Median Expanding VAR performance

Median Expanding VAR performance

Predictors Included Corrected Sharpe Ratio Sharpe Ratio

Median Rolling VAR performance

Median Rolling VAR performance

Sortino Ratio Success Rate
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Table 6 

Best Models Ranked According to Average Long-Horizon Recursive Certainty Equivalent Return Obtained from Optimal 
Strategic Asset Allocation Choices Under Power Utility Preferences (γ = 5): No Transaction Costs 

 

CER 

Rank
Model Lags

Gilt/Equity 

Yield Ratio

Term 

Spread
Inflation  IP

Oil Price 

Inflation
DY Horizon

Mean 

returns

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB
Volatility

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

Sharpe 

ratio

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

CER (% 

Ann.)

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

1 IID (No predictability) 0 __ __ __ __ __ __ 120 10.342 9.445 11.136 15.531 14.585 16.368 0.548 0.523 0.569 8.926 8.171 9.692 0.143 1.631 0.195

2 MS Heteroskedastic 0 __ __ __ __ __ __ 120 7.721 5.304 10.183 49.359 42.856 55.425 0.119 0.081 0.151 5.406 5.249 5.577 1.998 4.907 0.430

3 MSI Homoskedastic 0 __ __ __ __ __ __ 120 4.726 2.563 6.849 45.953 37.964 52.727 0.063 0.019 0.095 5.046 4.940 5.157 2.077 5.096 0.942

4 VAR Rolling 1 N N N N Y N 120 16.492 14.807 18.075 36.831 34.636 39.058 0.398 0.375 0.416 0.835 0.767 1.447 ‐0.069 3.044 4.171

5 VAR Rolling 1 N N N N N N 120 16.902 15.055 18.374 34.968 32.198 37.501 0.431 0.411 0.441 0.833 0.766 1.380 0.002 3.148 3.754

6 VAR Expanding 1 Y Y N N Y Y 120 16.826 14.767 19.101 41.979 38.988 45.219 0.357 0.332 0.382 0.826 0.762 1.237 0.317 3.592 4.882

7 VAR Rolling 1 N N N Y Y N 120 15.844 14.018 17.676 37.459 34.903 39.448 0.374 0.349 0.402 0.804 0.747 1.399 0.161 2.962 4.658

8 VAR Rolling 1 N N N N N Y 120 19.105 16.932 21.451 45.327 43.144 46.880 0.381 0.350 0.419 0.804 0.756 1.364 ‐0.085 2.415 4.065

9 VAR Rolling 1 N N N Y N N 120 16.371 14.654 18.199 36.093 33.711 38.500 0.403 0.381 0.425 0.803 0.747 1.266 0.079 3.030 4.290

10 VAR Rolling 1 N N Y Y N N 120 16.768 14.947 18.601 37.615 35.071 39.931 0.397 0.374 0.420 0.802 0.739 1.237 0.076 2.979 4.724

120 15.392 13.156 17.565 44.423 42.095 46.500 0.299 0.283 0.370 0.726 0.698 0.783 0.083 2.575 6.260

120 15.530 13.268 17.616 44.392 42.082 46.476 0.311 0.284 0.354 0.728 0.699 0.788 0.081 2.583 6.134

1 MS Heteroskedastic 0 __ __ __ __ __ __ 60 23.778 21.321 26.297 51.260 45.616 56.720 0.428 0.427 0.431 12.458 11.654 13.369 0.470 4.782 0.594

2 MSI Homoskedastic 0 __ __ __ __ __ __ 60 27.873 23.919 32.015 84.033 73.302 93.602 0.310 0.301 0.323 10.528 9.821 11.291 0.686 4.793 0.958

3 IID (No predictability) 0 __ __ __ __ __ __ 60 8.999 8.530 9.470 9.593 9.047 10.105 0.748 0.741 0.757 9.935 9.489 10.414 ‐0.823 1.856 0.036

4 VAR Rolling 1 N N N N Y N 60 16.144 13.519 18.863 54.512 49.169 59.276 0.263 0.238 0.287 6.476 6.187 8.306 0.124 3.970 5.379

5 VAR Rolling 1 N N N N N N 60 15.368 13.007 17.756 48.979 44.033 53.374 0.277 0.254 0.298 6.401 6.082 8.240 0.109 3.948 4.986

6 VAR Rolling 1 N N N N N Y 60 21.594 18.191 25.162 71.954 67.210 76.045 0.275 0.244 0.307 5.839 5.639 9.083 ‐0.088 2.512 5.332

7 VAR Rolling 1 N N Y Y N N 60 15.039 12.433 17.685 52.748 47.588 57.397 0.251 0.223 0.276 5.825 5.633 8.105 0.025 3.881 6.068

8 VAR Rolling 1 N N N Y N N 60 15.007 12.573 17.478 50.164 45.046 54.765 0.263 0.239 0.286 5.803 5.621 7.668 ‐0.012 3.866 5.654

9 VAR Rolling 1 Y N N N N N 60 19.704 16.736 22.724 61.800 57.007 66.163 0.289 0.262 0.316 5.787 5.611 7.041 ‐0.154 2.837 5.137

10 VAR Rolling 1 N Y N N Y N 60 16.282 13.571 19.071 55.990 50.665 60.835 0.258 0.232 0.284 5.782 5.611 6.525 0.173 4.129 5.471

60 14.45016 11.248278 17.751575 63.475 57.620 68.567 0.206 0.174 0.244 5.429 5.386 5.501 0.148 3.403 9.574

60 15.84432 13.074664 18.744175 67.416 61.935 72.349 0.223 0.177 0.237 5.476 5.420 5.582 ‐0.075 2.806 8.127

1 IID (No predictability) 0 __ __ __ __ __ __ 1 5.624 2.312 8.832 9.335 8.330 10.349 0.407 0.059 0.677 5.401 1.972 8.717 ‐0.901 6.869 0.214

2 MS Heteroskedastic 0 __ __ __ __ __ __ 1 72.746 55.876 89.285 47.946 43.331 52.455 1.479 1.247 1.667 2.160 ‐31.980 34.563 ‐0.501 4.307 0.688

3 VAR Rolling 2 Y Y N N N N 1 51.466 25.985 79.301 76.345 55.865 98.969 0.650 0.432 0.783 1.259 ‐1.699 4.196 3.677 24.272 5.329

4 VAR Rolling 2 Y N N N N N 1 46.732 23.687 71.227 67.932 53.451 82.935 0.661 0.409 0.837 0.673 ‐2.855 4.209 2.474 23.635 5.054

5 VAR Rolling 2 N N N Y N Y 1 34.093 11.452 58.700 68.220 52.048 85.022 0.473 0.185 0.669 ‐1.414 ‐5.657 2.952 3.757 29.862 6.029

6 MSI Homoskedastic 0 __ __ __ __ __ __ 1 89.430 62.938 116.090 76.725 70.222 82.810 1.142 0.870 1.380 ‐2.360 ‐6.039 1.761 ‐0.207 3.466 1.723

7 VAR Rolling 2 N Y N Y N N 1 38.970 15.643 64.946 71.005 50.112 93.065 0.523 0.276 0.678 ‐2.429 ‐10.054 4.382 2.164 24.371 5.813

8 VAR Rolling 2 Y Y N Y N N 1 51.200 24.716 79.740 78.513 59.109 99.360 0.629 0.387 0.784 ‐3.701 ‐11.193 3.177 2.413 17.348 6.909

9 VAR Rolling 2 N N N Y N N 1 37.987 16.444 61.601 65.620 47.113 83.876 0.551 0.310 0.713 ‐3.763 ‐13.061 4.828 1.464 10.326 5.447

10 VAR Rolling 2 Y N N Y N N 1 46.755 22.445 72.133 71.452 57.373 86.130 0.629 0.359 0.816 ‐3.956 ‐9.966 2.473 1.754 17.708 6.069

1 49.574 26.679 73.741 67.028 49.898 83.076 0.773 0.505 0.930 ‐89.588 ‐90.647 6.537 2.931 26.026 6.020

1 37.558 14.734 62.054 68.188 50.172 85.050 0.519 0.254 0.775 ‐88.259 ‐89.637 4.080 2.005 22.630 5.365

Median Expanding VAR performance

Median Rolling VAR performance

Median Expanding VAR performance

Median Rolling VAR performance

Median Expanding VAR performance

Median Rolling VAR performance

Predictors Included Annualized Mean Annualized Volatility Sharpe Ratio Annualized CER
Skewness Kurtosis

Average 

turnover 

(adjusted)
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Table 7 

Best Models Ranked According to Average Long-Horizon Recursive Certainty Equivalent Return Obtained from Optimal 
Strategic Asset Allocation Choices Under Power Utility Preferences (γ = 5): Higher Fixed Transaction Costs 

 

CER 

Rank
Model Lags

Gilt/Equity 

Yield Ratio

Term 

Spread
Inflation  IP

Oil Price 

Inflation
DY Horizon

Mean 

returns

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB
Volatility

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

Sharpe 

ratio

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

CER (% 

Ann.)

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

1 MS Heteroskedastic 0 __ __ __ __ __ __ 120 9.754 3.853 7.513 37.575 25.171 32.211 0.211 0.081 0.177 5.021 3.740 4.067 1.544 3.540 0.324

2 MSI Homoskedastic 0 __ __ __ __ __ __ 120 5.853 1.755 4.967 31.099 22.237 30.436 0.130 ‐0.003 0.103 4.720 3.436 3.650 1.929 5.299 0.482

3 IID (No predictability) 0 __ __ __ __ __ __ 120 8.718 8.266 8.819 11.844 9.022 10.846 0.582 0.714 0.645 0.402 18.859 20.052 ‐1.025 5.343 0.014

4 VAR Rolling 1 0 0 0 0 1 0 120 12.859 8.101 10.340 38.262 33.792 38.563 0.288 0.186 0.221 ‐1.599 ‐1.744 ‐1.183 ‐0.176 3.793 2.404

5 VAR Expanding 1 1 1 1 0 0 1 120 12.317 8.044 10.618 41.447 36.965 42.934 0.253 0.168 0.205 ‐1.613 ‐1.763 ‐1.599 ‐0.005 4.078 2.794

6 VAR Expanding 1 0 1 1 1 1 1 120 12.041 7.234 9.639 42.174 37.463 44.107 0.242 0.144 0.177 ‐1.618 ‐1.779 ‐1.630 0.079 3.988 2.981

7 VAR Rolling 1 0 0 0 1 0 0 120 12.692 8.066 10.244 34.779 33.400 38.316 0.313 0.187 0.220 ‐1.662 ‐1.753 ‐1.421 ‐0.038 3.940 2.417

8 VAR Expanding 1 0 1 1 0 0 1 120 11.719 7.292 9.670 41.139 36.021 42.920 0.241 0.152 0.183 ‐1.663 ‐1.775 ‐1.610 0.138 4.193 2.683

9 VAR Expanding 1 0 1 0 1 0 1 120 12.198 8.548 11.192 41.888 38.576 43.845 0.248 0.174 0.214 ‐1.663 ‐1.774 ‐1.600 0.053 3.877 2.921

10 VAR Rolling 1 0 0 0 1 0 0 120 12.397 6.989 9.428 42.564 37.835 42.271 0.248 0.137 0.180 ‐1.664 ‐1.780 ‐1.663 ‐0.211 3.576 3.449

120 11.045 6.079 8.470 42.452 37.839 43.093 0.217 0.112 0.154 ‐1.747 ‐1.802 ‐1.729 0.012 3.687 4.103

120 12.091 7.328 9.915 43.107 40.757 44.696 0.238 0.135 0.181 ‐1.753 ‐1.798 ‐1.723 ‐0.173 3.576 3.360

1 MS Heteroskedastic 0 __ __ __ __ __ __ 1 18.226 9.344 17.725 29.626 25.623 30.919 0.554 0.293 0.514 3.217 ‐3.650 1.827 0.297 4.660 0.449

2 IID (No predictability) 0 __ __ __ __ __ __ 1 2.816 ‐1.751 3.104 9.099 8.087 10.068 0.109 ‐0.442 0.127 3.131 0.628 1.170 ‐0.097 4.190 0.030

3 MSI Homoskedastic 0 __ __ __ __ __ __ 1 22.823 9.504 22.717 44.159 41.085 48.401 0.476 0.187 0.432 1.784 ‐6.244 9.105 0.134 3.426 0.728

4 VAR Expanding 1 1 1 0 1 0 1 1 33.609 ‐43.514 ‐33.216 73.891 12.981 17.677 0.430 ‐3.493 ‐1.982 0.485 ‐28.970 28.442 4.874 14.892 3.746

5 VAR Expanding 1 0 0 1 0 1 0 1 ‐2.223 ‐41.609 ‐30.917 41.068 13.894 19.023 ‐0.099 ‐3.126 ‐1.721 0.111 ‐29.142 28.011 8.243 48.797 3.004

6 VAR Expanding 1 1 1 0 0 1 1 1 12.756 ‐42.648 ‐32.237 61.123 13.102 18.910 0.179 ‐3.394 ‐1.801 ‐0.050 ‐29.326 27.741 6.473 25.837 3.039

7 VAR Expanding 1 0 0 0 0 0 0 1 ‐8.784 ‐40.621 ‐29.549 21.379 12.303 17.933 ‐0.496 ‐3.450 ‐1.749 ‐1.395 ‐30.146 26.798 3.212 12.443 3.316

8 VAR Expanding 1 0 0 0 1 0 0 1 12.312 ‐53.717 ‐43.409 63.099 15.628 20.106 0.166 ‐3.554 ‐2.250 ‐5.143 ‐32.645 20.546 5.919 22.864 4.472

9 VAR Rolling 1 0 0 0 0 0 0 1 9.827 ‐61.436 ‐47.153 54.036 18.240 22.798 0.148 ‐3.468 ‐2.148 ‐7.436 ‐21.509 4.943 4.855 19.084 5.256

10 VAR Rolling 1 0 0 1 1 0 0 1 ‐4.829 ‐43.286 ‐30.403 36.429 14.626 20.527 ‐0.183 ‐3.084 ‐1.570 ‐7.516 ‐34.227 19.962 5.929 26.009 2.797

1 ‐6.876 ‐57.015 ‐43.620 43.087 16.515 21.711 ‐0.202 ‐3.563 ‐2.093 ‐71.588 ‐71.941 ‐46.204 5.619 24.817 4.711

1 ‐4.831 ‐56.567 ‐41.679 47.777 17.341 24.138 ‐0.139 ‐3.367 ‐1.802 ‐48.657 ‐54.878 ‐33.530 5.376 22.823 4.308

Skewness Kurtosis

Average 

turnover 

(adjusted)

Median Expanding VAR performance

Median Rolling VAR performance

Predictors Included Annualized Mean Annualized Volatility Sharpe Ratio Annualized CER

Median Expanding VAR performance

Median Rolling VAR performance  
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Table 8 
Best Models Ranked According to Recursive Certainty Equivalent Return Under Power Utility Preferences (γ = 2) 

CER 

Rank
Model Lags

Gilt/Equity 

Yield Ratio

Term 

Spread
Inflation  IP

Oil Price 

Inflation
DY Horizon

Mean 

returns

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB
Volatility

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

Sharpe 

ratio

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

CER (% 

Ann.)

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

1 VAR Expanding 4 Y N Y N Y N 120 7.197 5.343 8.945 45.803 43.211 48.296 0.117 0.081 0.147 0.478 ‐38.949 14.118 0.122 2.820 4.708

2 IID (No predictability) 0 __ __ __ __ __ __ 120 8.195 6.401 9.851 40.876 37.568 43.601 0.156 0.122 0.184 ‐0.228 ‐1.656 1.410 0.409 3.312 0.226

3 MSI Heteroskedastic 0 __ __ __ __ __ __ 120 3.802 2.125 5.744 46.580 39.589 53.567 0.042 0.008 0.073 ‐0.853 ‐1.226 ‐0.411 1.648 7.069 0.390

4 MSI Homoskedastic 0 __ __ __ __ __ __ 120 6.493 3.886 8.933 61.830 52.477 68.744 0.076 0.039 0.103 ‐1.114 ‐1.490 ‐0.676 1.493 5.947 1.117

5 VAR Rolling 1 N N Y N N N 120 13.476 11.701 15.556 46.011 43.949 47.729 0.253 0.225 0.288 ‐4.302 ‐4.799 ‐3.287 ‐0.449 3.451 3.606

6 VAR Rolling 1 N N N N N N 120 13.735 11.819 15.516 45.453 43.278 47.231 0.262 0.231 0.290 ‐4.353 ‐4.886 ‐3.363 ‐0.473 3.457 3.525

7 VAR Expanding 1 N N Y N Y Y 120 9.972 8.189 11.793 45.749 43.297 47.865 0.178 0.147 0.208 ‐4.404 ‐4.811 ‐3.524 ‐0.045 3.703 3.779

8 VAR Rolling 1 N N N N Y N 120 12.346 10.073 14.374 45.204 42.899 46.895 0.233 0.192 0.268 ‐4.406 ‐4.905 ‐3.119 ‐0.336 3.523 3.710

120 8.441 6.505 10.404 45.775 43.135 47.912 0.145 0.109 0.179 ‐5.156 ‐5.356 ‐4.835 0.020 3.748 4.406

120 7.668 5.782 9.819 46.777 43.954 49.144 0.125 0.090 0.163 ‐5.403 ‐5.525 ‐5.206 0.002 3.711 4.230

1 MSI Heteroskedastic N __ __ __ __ __ __ 1 16.760 ‐0.461 33.768 35.371 32.146 38.552 0.422 ‐0.071 0.829 2.101 0.451 3.749 ‐0.343 4.174 0.475

2 MSI Homoskedastic N __ __ __ __ __ __ 1 37.814 8.845 66.069 58.342 53.559 62.873 0.617 0.131 1.022 0.112 ‐2.653 2.818 0.016 3.472 1.213

3 IID (No predictability) N __ __ __ __ __ __ 1 1.453 ‐6.437 9.206 16.057 14.302 17.849 ‐0.023 ‐0.578 0.414 0.108 ‐0.580 0.771 ‐0.107 5.957 0.074

4 VAR Expanding 1 Y N N Y Y N 1 3.177 ‐26.702 35.349 59.220 52.510 66.192 0.023 ‐0.543 0.506 ‐6.618 ‐21.520 6.914 0.046 6.474 6.403

5 VAR Expanding 1 Y N N Y Y Y 1 ‐3.279 ‐32.082 29.572 60.439 53.496 67.514 ‐0.084 ‐0.634 0.411 ‐7.269 ‐24.254 6.219 0.162 6.877 6.556

6 VAR Expanding 1 Y Y N Y Y N 1 ‐3.488 ‐38.914 26.501 59.788 52.938 67.084 ‐0.089 ‐0.770 0.368 ‐7.503 ‐25.266 5.557 0.115 7.043 5.257

7 VAR Expanding 1 N N Y Y Y Y 1 ‐7.710 ‐39.405 26.340 60.770 52.505 67.949 ‐0.157 ‐0.785 0.361 ‐7.553 ‐21.890 5.845 0.270 7.355 10.061

8 VAR Expanding 1 Y N N Y N N 1 4.300 ‐25.922 33.279 56.682 50.946 64.073 0.044 ‐0.545 0.491 ‐7.629 ‐24.741 7.106 ‐0.484 6.312 6.522

1 ‐77.035 ‐115.171 ‐43.525 66.942 59.122 73.840 ‐1.178 ‐1.979 ‐0.614 ‐26.487 ‐38.086 ‐9.402 0.062 7.002 9.221

1 ‐68.735 ‐110.874 ‐27.348 76.527 63.832 90.473 ‐0.922 ‐1.766 ‐0.322 ‐36.920 ‐44.725 ‐22.838 0.988 15.131 9.536Median Rolling VAR performance

Skewness Kurtosis

Average 

turnover 

(adjusted)

Median Expanding VAR performance

Median Rolling VAR performance

Median Expanding VAR performance

Predictors Included Annualized Mean Annualized Volatility Sharpe Ratio Annualized CER

 

Table 9 
Best Models Ranked According to Recursive Certainty Equivalent Return Under Power Utility Preferences (γ = 10) 

CER 

Rank
Model Lags

Gilt/Equity 

Yield Ratio

Term 

Spread
Inflation  IP

Oil Price 

Inflation
DY Horizon

Mean 

returns

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB
Volatility

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

Sharpe 

ratio

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

CER (% 

Ann.)

95% Conf. 

Int. ‐‐ LB

95% Conf. 

Int. ‐‐ UB

1 IID (No predictability) 0 __ __ __ __ __ __ 120 4.577 4.258 4.871 10.094 9.389 10.680 0.273 0.259 0.285 3.885 3.600 4.214 0.217 3.181 0.086

2 MSI Heteroskedastic 0 __ __ __ __ __ __ 120 8.929 7.244 10.863 55.490 49.209 61.885 0.128 0.110 0.146 2.048 1.886 2.228 1.393 4.567 0.570

3 MSI Homoskedastic 0 __ __ __ __ __ __ 120 6.953 4.874 9.302 72.944 61.977 84.733 0.070 0.049 0.088 1.288 1.237 1.350 0.182 8.881 0.619

4 VAR Rolling 1 N N N N Y Y 120 11.372 10.108 12.668 43.869 41.095 46.367 0.218 0.202 0.234 ‐0.177 ‐0.493 1.456 0.456 3.112 1.034

5 VAR Rolling 1 N N N N N Y 120 11.353 10.021 12.591 42.978 40.178 45.385 0.222 0.204 0.237 ‐0.195 ‐0.498 2.555 0.471 3.175 0.947

6 VAR Rolling 1 N N N Y Y Y 120 10.995 9.879 12.209 43.767 40.257 46.761 0.210 0.200 0.222 ‐0.448 ‐0.735 1.088 0.479 3.173 1.114

7 VAR Rolling 1 N N N Y N Y 120 11.049 9.737 12.267 43.108 39.847 45.914 0.214 0.199 0.227 ‐0.455 ‐0.755 0.996 0.502 3.239 1.039

8 VAR Expanding 1 Y N N Y N Y 120 10.642 9.538 12.019 41.677 38.793 44.624 0.212 0.199 0.228 ‐0.847 ‐1.150 1.013 0.530 3.382 1.175

120 8.659 7.346 9.895 42.406 38.827 45.439 0.161 0.142 0.178 ‐2.836 ‐2.851 ‐2.698 0.679 3.672 1.750

120 9.361 8.130 10.729 40.980 37.941 43.986 0.184 0.166 0.202 ‐2.729 ‐2.760 ‐1.582 0.527 3.503 1.440

1 IID (No predictability) 0 __ __ __ __ __ __ 1 2.262 0.626 3.910 4.720 4.200 5.234 0.093 ‐0.285 0.398 1.845 1.706 1.985 0.045 4.345 0.084

2 MSI Heteroskedastic 0 __ __ __ __ __ __ 1 15.400 0.712 30.068 29.335 26.466 32.200 0.463 ‐0.042 0.877 1.662 ‐4.983 10.211 ‐0.394 3.660 0.438

3 VAR Rolling 1 N N N Y N N 1 2.638 ‐12.165 12.926 23.736 19.109 27.836 0.034 ‐0.732 0.399 ‐1.354 ‐4.336 3.051 0.472 10.069 1.690

4 VAR Rolling 1 N N N N N N 1 13.062 1.340 24.161 22.069 17.771 26.542 0.509 ‐0.027 0.842 ‐1.469 ‐7.362 5.018 0.921 14.036 1.505

5 MSI Homoskedastic 0 __ __ __ __ __ __ 1 21.526 ‐2.553 45.604 47.805 43.692 51.781 0.412 ‐0.100 0.845 ‐1.477 ‐5.184 4.158 ‐0.098 2.911 0.631

6 VAR Rolling 1 N N N N N N 1 ‐6.065 ‐18.306 5.764 24.794 21.843 27.847 ‐0.318 ‐0.922 0.141 ‐1.795 ‐4.537 1.559 0.324 5.638 1.935

7 VAR Rolling 1 N Y N N N N 1 9.856 ‐2.325 22.227 24.930 19.562 30.730 0.322 ‐0.212 0.664 ‐2.098 ‐6.106 3.309 1.660 18.792 1.635

8 VAR Expanding 1 Y Y Y Y N Y 1 ‐3.891 ‐15.865 7.026 22.838 19.294 26.205 ‐0.250 ‐0.917 0.199 ‐3.371 ‐8.223 3.090 ‐0.086 6.687 1.955

1 0.142 ‐12.144 11.916 23.371 19.700 27.025 ‐0.072 ‐0.709 0.373 ‐29.167 ‐35.728 2.250 ‐0.535 10.132 1.931

1 2.760 ‐10.470 14.663 24.559 20.006 29.072 0.038 ‐0.615 0.442 ‐17.438 ‐24.444 2.266 ‐0.039 12.679 1.689Median Rolling VAR performance

Skewness Kurtosis

Average 

turnover 

(adjusted)

Median Expanding VAR performance

Median Rolling VAR performance

Median Expanding VAR performance

Predictors Included Annualized Mean Annualized Volatility Sharpe Ratio Annualized CER
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Figure 1 

Smoothed Regime Probabilities from Three-State Heteroskedastic Markov Switching Model 
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Figure 2 

Recursive Expanding Window Estimates and 90% Confidence Intervals for Coefficients 
Associated to Predictive Variables in a Full-VAR(1) Model 
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Figure 3 

Recursive Rolling Window Estimates and 90% Confidence Intervals for Coefficients in a 
VAR(1) Model with Oil Log-Price Growth Predictor 
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Figure 4 

Recursive Optimal Weights under Three-State Heteroskedastic Markov Switching ( =5) 
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Figure 5 

Recursive Optimal Weights under Two Representative Vector Autoregressive Models ( =5) 
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Figure 6 

Recursive Optimal Portfolio Weights with and without Transaction Costs: Comparing the Best 
Performing VAR vs. Markov Switching Models ( =5) 
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Figure 7 

Recursive Optimal Portfolio Weights under Three-State Homoskedastic Markov Switching vs. 
a No Predictability Gaussian IID Benchmark ( =5) 
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