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and volatile equity premium while a low and smooth risk-free rate, (2) agents’

fluctuating beliefs induce countercylical variation in equity premium and in the
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1 Introduction

In this paper, I develop a stochastic growth model with Bayesian learning and ambiguity attitude

to account for the dynamic behavior of equity premium and the expected volatility of equity returns

observed in the data. In the empirical literature, there exists abundant evidence that the equity

premium in US stock market moves countercyclically (see, for example, Fama and French (1988a),

Fama and French (1988b), Fama and French (1989) and Poterba and Summers (1988)), and the

stock market volatility exhibits countercylical variation as well (Schwert (1989)). In addition, em-

pirical studies also find that the stock market volatility is persistent and tends to cluster together,

featuring the well-documented GARCH behavior of returns (Bollerslev et al. (1992)). These dy-

namics properties of returns however, are difficult to explain in the standard dynamic stochastic

general equilibrium (DSGE) framework. Rouwenhorst (1995) finds that the standard neoclassical

growth model with a single source of uncertainty and frictionless markets is incapable of explaining

the dynamic behavior of returns over the business cycle. Neither does the standard model generate

an empirically plausible equity premium. Recent developments along the line including Jermann

(1998), Boldrin et al. (2001), Kaltenbrunner and Lochstoer (2010), Campanale et al. (2010) and

Croce (2010), among others, are still silent about the dynamic behavior of equity premium and

the expected return volatility.1 This paper aims to fill in the gap. I propose a nonlinear stochastic

growth model that takes into account learning about investment opportunities, the cautions atti-

tude toward model uncertainty (or rephrased as “ambiguity aversion”) and the separation between

risk aversion and the attitude toward intertemporal substitution.

Productivity growth is specified as a hidden Markov model (HMM). Economic agents cannot ob-

serve the hidden state governing regime switching but can learn about the hidden state based on the

historical productivity growth data. I assume there are a “high productivity growth” regime and a
1 Guvenen (2009) examines a general equilibrium model with limited stock market participation and different attitudes

towards intertemporal substitution. He finds that the model can produce countercyclical variation in equity premium
and its volatility.
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“low productivity growth” regime. The quantitative estimates of the hidden Markov model suggest

that the post-World War II US economy features transitory recessions and persistent booms. Due

to the difficulty in distinguishing the two regimes, agents are endowed with incomplete information

about the mean growth rate. This specification has been widely used in studying asset prices in

endowment economies, for example, by David (1997), Veronesi (1999) and Ju and Miao (2011). The

assumed hidden state provides us a tractable way to investigate the impacts of fluctuating beliefs

over time. The mechanism through endogenous Bayesian learning induces the time-varying evolu-

tion of the market price of risk and equity premia. But with Epstein-Zin recursive utility, which

allows for the separation between risk aversion and the attitude toward intertemporal substitution,

the model still cannot produce a high enough equity premium to be empirically plausible.

To generate a high equity premium, I also assume that economic agents exhibit ambiguity aver-

sion when they learn about the hidden state. Model uncertainty and the hidden state put agents

in a more cautious position to guard against uncertainty in possible probability distributions of

productivity growth rates. Agents do so by deviating from Bayesian filtered beliefs and assigning

more probability mass to lower continuation value states. This feature is accommodated by the

generalized recursive smooth ambiguity model recently proposed by Ju and Miao (2011) and ax-

iomatized by Hayashi and Miao (2011). The model extends the recursive smooth ambiguity model

of Klibanoff et al. (2009) by further disentangling risk aversion and the elasticity of intertemporal

substitution (EIS) in the spirit of Kreps and Porteus (1978) and Epstein and Zin (1989). In the

model, agents are ambiguity averse in the sense that they dislike any mean-preserving spread of the

conditional expected utility (or the continuation value, in recursive form) induced by state proba-

bilities. This attitude can be captured by imposing some concave transformation of the certainty

equivalent in the recursive formulation of the value function. As noted by Klibanoff et al. (2005),

this way of modeling ambiguity has the advantage of relaxing the tight link between ambiguity and
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ambiguity aversion.2

Here ambiguity is modeled by fluctuating uncertainty about the hidden state while ambiguity

aversion is reflected by effectively distorting agents’ beliefs towards the lower continuation value

states in a pessimistic way. When agents learn about the hidden state based on the historical data,

the formed posterior beliefs are naturally embedded into the generalized recursive ambiguity utility

model as “second-order probabilities” (Gollier (2011)). These state probabilities are updated in

Bayesian fashion. The certainty equivalent is obtained by taking expectation of the conditional

expected continuation value over posterior beliefs. Thus, unlike those asset pricing models with

pure Bayesian learning (for example Veronesi (1999)), the model with smooth ambiguity has that

the conditional distribution given a regime cannot be integrated over the posterior beliefs to yield

a predictive distribution.

Suppose the hidden state can be observed, then agents do not need to learn about it, and the

model reduces to the one examined by Jahan-Parvar and Liu (2011). In such a case, productivity

growth is regime-switching, and the second-order probabilities are not updated over time but instead

conform to the transition probabilities estimated from the data. Although their model is successful

in explaining salient features of asset-returns data such as a high and volatile equity premium and a

low and smooth risk-free rate, it generates counterfactually procyclical equity premia. The model in

this paper fundamentally reverses this pattern by introducing Bayesian state beliefs as an additional

state variable. In recessions, state beliefs deteriorates given a series of productivity shocks. As a

result, ambiguity-averse agents tend to be very uncertain about future investment opportunities.

The high state uncertainty, therefore, leads to a high conditional equity premium required to

compensate for the uncertainty arose and a high expected return volatility. Thus, the model

provides theoretical support to the hypothesis made by Merton (1980) that expected excess returns
2 The separation between ambiguity and ambiguity aversion, however, cannot be achieved in the multiple priors utility

framework. See for example Chen and Epstein (2002) Leippold et al. (2008) and Epstein and Schneider (2008).
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are proportional to the expected stock market volatility. In addition, since Bayesian state beliefs

are persistent and move slowly over time, the model implies persistent changes in the volatility of

equity returns, characterizing the well-known GARCH-type behavior of asset returns (Bollerslev

et al. (1992)). These findings are consistent with the results obtained from those endowment

economies studied by Veronesi (1999) and Ju and Miao (2011), where expected consumption or

dividend growth rate is assumed to follow a Markov switching process. In a production economy,

consumption and dividends are endogenously determined as the outcomes of equilibrium allocations.

Thanks to the regime-switching behavior of productivity growth and the mechanism of learning,

the model still implies that aggregate risks rise when state beliefs worsen during recessions.

Ambiguity aversion, on the other hand, raises the unconditional mean of equity premium to

an empirically plausible range and alters the time series evolution of the market price of risk as

well. The former effect is mainly through increased volatility of the marginal rate of substitution,

a mechanism similar to Jahan-Parvar and Liu (2011), Ju and Miao (2011) and Hansen and Sargent

(2010), among others. The latter effect is via changing the relationship between conditional equity

premia and state beliefs. Because ambiguity aversion induces pessimistic evaluation, a productivity

shock during recessions may lead to a higher equity premium required by ambiguity-averse agents

than ambiguity-neutral agents. This effect could significantly alter the cyclical variation of equity

premia.

Another main finding of this paper is that in spite of its key role in replicating equity premia

in relation to the business cycle, Bayesian learning is not crucial in raising equity premia as long

as time variation of investment opportunities is accounted for. In the presence of regime-switching

productivity growth, I find that Bayesian learning, in most cases, even lowers the unconditional

mean of equity premium. This observation is robust to various degrees of ambiguity aversion. It is

worth noting that the trivial role of learning in matching unconditional moments of asset-returns
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data is not a generic feature to most of consumption-based models but due to the production

economy environment considered in this paper. Productivity growth and the capital stock are also

state variables characterizing equilibrium allocations and asset prices.3

The rest of the paper is organized as follows. Section 2 presents the generalized smooth am-

biguity model employed to represent preferences and beliefs of agents. Section 3 describes the

production economy model and the market equilibrium. Section 4 discusses the calibration exercise

and the main findings. Section 5 concludes. A detailed explanation of the numerical algorithm

used in the paper is included in the Appendix.

2 The Smooth Ambiguity Model

In this section, we describe the framework that we use to model the agent’s preferences and beliefs.

This framework is embedded in a general equilibrium model with nontrivial production in the next

section. The static version of the utility preferences used in this paper is of the smooth ambiguity

type, introduced by Klibanoff et al. (2005). Klibanoff et al. (2009) develop the recursive version

of this class of preferences in a dynamic setting. In the spirit of Epstein and Zin (1989), Hayashi

and Miao (2011) further generalize the model by disentangling risk aversion and intertemporal

substitution. In this paper, we assume that the agent’s preferences and beliefs are characterized by

the generalized recursive smooth ambiguity model of Hayashi and Miao (2011). Interested readers

could refer to these papers for more details.

2.1 The static and recursive formulation

We start with a formulation ordinally equivalent to the smooth ambiguity model of Klibanoff et al.

(2005):

v−1Eζv
(
u−1 (Eπθ

u ◦ f)
) ≡ v−1

(∫

Θ
v

(
u−1

(∫

S
u (f) dπθ

))
dζ (θ)

)
(1)

3 In the consumption-based model studied by Ju and Miao (2011), Bayesian learning has a profound impact in matching
the key financial moments.
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where f is an act that maps states to decisions (for example, a policy function), E is an expectation

operator, u is a von Neumann-Morgenstern utility function, v is an increasing function, ζ is a

subjective probability measure over a set of parameters denoted by Θ in which each element induces

a probability measure πθ over the state space S. The decision maker prefers act f to act g if and

only if

v−1Eζv
(
u−1 (Eπθ

u ◦ f)
) ≥ v−1Eζv

(
u−1 (Eπθ

u ◦ g)
)
.

This formulation is ordinally equivalent to the model of Klibanoff et al. (2005) if we define φ ≡

v ◦ u−1. In the above formulation, πθ yields beliefs over outcomes given a certain parameter value,

while ζ reflects the decision maker’s uncertainty as to which probability distribution in the set of

probability distributions induced by Θ truly governs the state space. As noted by Klibanoff et al.

(2005), a key feature of the smooth ambiguity utility model is that it achieves a separation between

ambiguity, identified as a characteristic of the decision maker’s subjective beliefs, and ambiguity

attitude, identified as a characteristic of the decision maker’s tastes. In particular, ambiguity

is captured by multiplicity of the subjective set of probability measures induced by the set Θ.

Attitudes toward pure risk and ambiguity are characterized, respectively, by the shape of u and v.

The decision maker is risk averse if and only if u is concave, and he is ambiguity averse if and only

if v is a concave transformation of u. According to Klibanoff et al. (2005), ambiguity aversion is

defined to be an aversion to mean preserving spreads in the distribution over expected utility values,

Eπθ
u ◦ f , induced by ζ and the act f . This distribution represents the probabilities of different

evaluations of the act f under different probability measures deemed as relevant. Gollier (2011) call

this distribution the “second-order” distribution. This class of preferences implies that ambiguity

averse decision makers prefer acts whose evaluation is more robust to the possible variation in

probabilities than those who display risk aversion only. In addition, this class of preferences implies

the irreducibility of compound distributions. That is, the model does not impose the compound
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reduction between ζ and the πθs in the support of ζ. In the special case of φ being linear, such

reduction is feasible, and the decision maker displays ambiguity neutrality which is observationally

equivalent to a subjective expected utility decision maker with a subjective prior ζ.

Klibanoff et al. (2009) embed the static model (1) in a dynamic setting and develop a recursive

formulation of the smooth ambiguity model. In a discrete-time setting, the state space is denoted

by S. The decision-maker’s information in period-t is summarized by history st = {s0, s1, s2, ..., st}

with the root node s0 ∈ S given and st ∈ S. The decision maker chooses among consumption plans

C ≡ (Ct)t≥0, each of which maps a history st to a payoff. That is, Ct is adapted to st and is a

measurable function of st. The decision maker is uncertain as to which probability distribution

governs the full state space S∞. This uncertainty is represented by a parameter space Θ, a set of

candidate models or a state evolving over time according to a Markov chain. The decision maker is

allowed to make inference on the set of parameters (if unobservable) based on history st. Suppose

πθ

(
st+1|st

)
denotes the probability distribution that the next observation will be st+1, given the

parameter θ ∈ Θ and the history st. We denote by ζ the decision maker’s prior on the parameter

space Θ. Klibanoff et al. (2009) develop the following recursive version of the smooth ambiguity

model:

Vst (C) = u
(
C

(
st

))
+ βφ−1

[∫

Θ
φ

(∫

St+1

V(st,st+1) (C) dπθ

(
st+1|st

)
)

dζ
(
θ|st

)
]

(2)

where Vst (C) is a indirect value function, β ∈ (0, 1) is the subjective discount factor, ζ
(
θ|st

)
denotes

the Bayesian posterior updated given the history st, and u and φ are defined in the same way as in

the static model. Collard et al. (2011) study the asset pricing implications of ambiguity using this

model. The utility function (2) is always well defined for the specification φ (x) = − exp (−x/λ),

λ > 0. This specification has a straightforward connection with the robust control approach of

Hansen (2007) and Hansen and Sargent (2010). However, in such a case the utility function is not

homogeneous, which is a desirable property for numerical value function iteration.
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2.2 The generalized recursive smooth ambiguity model

In this paper, we use the generalized recursive smooth ambiguity model, which further extends

the recursive version of the smooth ambiguity model by allowing for the separation between risk

aversion and intertemporal substitution. This class of preferences is recently proposed by Ju and

Miao (2011) and axiomatized by Hayashi and Miao (2011). Inspired by Kreps and Porteus (1978)

and Epstein and Zin (1989), Ju and Miao (2011) propose the following formulation:

Vt (C) = W (Ct,Rt (Vt+1 (C))) , Rt (Vt+1) = v−1
(
Eζt

[
v ◦ u−1Eπθ,t

[u (Vt+1)]
])

(3)

where Vt (C) is the continuation value at date t, W is a time aggregator that associates period-

t continuation value to the payoff generated from period-t consumption plan and some certainty

equivalent of period-t+1 continuation value, Rt is an uncertainty aggregator that maps period-t+1

continuation value to its period-t certainty equivalent, and u and v have the same interpretation

as in the static setting. When v ◦ u−1 is linear, that is, the decision maker is ambiguity neutral,

we obtain recursive utility of Epstein and Zin (1989). In that case, we can integrate the proba-

bility distribution πθ,t+1 over the Bayesian posterior ζt to obtain a predictive distribution, which

is one of the fundamental concepts in Bayesian analysis. When v ◦ u−1 is nonlinear, the decision

maker displays aversion to uncertainty about which probability distribution governs the state space.

Allowing for non-indifference to the timing of the resolution of uncertainty, Ju and Miao (2011)

consider a time aggregator in the spirit of Kreps and Porteus (1978) and Epstein and Zin (1989)

in the following form:

W (c, y) =
[
(1− β)c1−ρ + βy1−ρ

] 1
1−ρ , ρ > 0, 6= 1 (4)
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with

u (x) =
x1−γ

1− γ
, γ > 0, 6= 1

v (x) =
x1−η

1− η
, η > 0, 6= 1

where ρ is the inverse of the EIS parameter ψ, γ is the relative risk aversion parameter, and η is

the ambiguity aversion parameter.

Applying the aggregator (4) to (3), we obtain

Vt(C) =
[
(1− β)C1−ρ

t + β {Rt (Vt+1 (C))}1−ρ
] 1

1−ρ

Rt (Vt+1 (C)) =
(
Eζt

[(
Eπθ,t

[
V 1−γ

t+1 (C)
]) 1−η

1−γ

]) 1
1−η

It is worth noting that the decision maker is ambiguity averse if and only if η > γ. If η = γ,

the decision maker is ambiguity neutral and his preferences are represented by recursive utility of

Epstein and Zin (1989) and Weil (1989).

In the limiting case ρ = 1, the utility model becomes

Ut = (1− β) ln Ct +
β

1− η
ln

{
Eζt exp

(
1− η

1− γ
ln (Eπθ,t [exp ((1− γ) Ut+1)])

)}

where Ut = ln Vt. Ju and Miao (2011) note that this specification is isomorphic to the risk sensitive

preferences studied by Hansen (2007) and Hansen and Sargent (2010). Specifically, the two risk

sensitivity adjustments for the distributions πθ

(
st+1|st

)
and ζt, which are both in the form of

“log-exp”, capture the decision maker’s concern about the misspecification in πθ

(
st+1|st

)
given a

parameter θ (or alternatively, a hidden state) and in the Bayesian posteriors ζt, respectively.

Now I adapt notations specific to the production economy to be examined in the next section.

The structure of the parameter set and the decision maker’s subjective beliefs is similar to that in

the endowment economy studied by Ju and Miao (2011). I assume that uncertainty is represented

by a hidden state z evolving over time as a Markov chain with transition probabilities given. The
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Markovian hidden state can switch between a finite number of regimes. Each possible regime corre-

sponds to a probability distribution over the state space. The representative agent cannot observe

regimes but can learn about the hidden state based on the current and past signals (productivity

growth data). Denote ζ
(
z | st

)
as the Bayesian posterior after the history st is observed. The

utility function has the following form:

Vt(C) =
[
(1− β)C1−ρ

t + β {Rt (Vt+1 (C))}1−ρ
] 1

1−ρ

Rt (Vt+1 (C)) =
(
Eζt

[(
Eπz,t

[
V 1−γ

t+1 (C)
]) 1−η

1−γ

]) 1
1−η

where πz,t is the probability distribution of St+1 ⊂ S∞ given a regime and the history st.

3 The Production Economy

This section presents the production economy model that is employed to examine the effects of

model uncertainty and ambiguity aversion on asset prices and other macroeconomic fundamentals.

For simplicity, I only present the social planner’s problem in which labor supply is kept constat. I

assume there exist convex capital adjustment costs, following the specification in Campanale et al.

(2010).

The representative agent has the following smooth ambiguity utility defined over aggregate

consumption

Vt(C) =
[
(1− β)C1−ρ

t + β {Rt (Vt+1 (C))}1−ρ
] 1

1−ρ (5)

Rt (Vt+1 (C)) =
(
Eζt

[(
Eπz,t

[
V 1−γ

t+1 (C)
]) 1−η

1−γ

]) 1
1−η

(6)

The consumption good is produced according to a constant return-to-scale Cobb-Douglas pro-

duction function:

Yt = Kα
t (AtNt)

1−α (7)

where Yt is the output, Kt is the capital stock, Nt is the amount of labor hours, and At is the level
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of aggregate productivity. Labor input is assumed to be exogenous and equal to N̄ . Uncertainty

in this economy is driven by stochastic productivity growth. The growth rate ∆at+1 ≡ log
(

At+1

At

)

follows a hidden Markov model with two different regimes

∆at = µ (st) + σεt, εt ∼ N (0, 1) (8)

where the hidden state st is unobservable and switch between two different values representing

possible states of the economy. I denote by st = 1 the high mean growth state (the good regime),

and by st = 2 the low mean growth state (the bad regime). The transition probability matrix is

given by

P =
[

p11 1− p11

1− p22 p22

]
. (9)

I assume that the volatility of the growth rate is constant and attempt to generate a rich set of

interesting results through endogenous Bayesian learning.4

The agent learns about the hidden state and update his beliefs in Bayes fashion. The Bayesian

posterior belief, or one-step-ahead conditional probability, is denoted by ζt and defined by ζt =

Pr (st+1 = 1 | It), where ‘1’ represents the high mean growth regime. Given that the prior belief ζ0

is known, the posterior beliefs are updated according to Bayes rule:

ζt+1 =
p11f (∆at+1 | z = 1) ζt + (1− p22) f (∆at+1 | z = 2) (1− ζt)

f (∆at+1 | z = 1) ζt + f (∆at+1 | z = 2) (1− ζt)

where f (s|i) = 1√
2πσ

exp
[
− (s− µi)

2 /
(
2σ2

)]
is the density function of the normal distribution

with mean µi and variance σ2.

The capital stock evolves according to

Kt+1 = (1− δk) Kt + It −G (Kt,Kt+1) (10)

G (Kt,Kt+1) =
∣∣∣∣
(

Kt+1

Kt
− ω

)∣∣∣∣
ι

Kt, ι > 1, ω > 0 (11)

4 Croce (2010) explores time variation in the conditional variance of productivity growth and examine the implication
for asset prices.
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where δk is the depreciation rate, It denotes investments, and G is a convex capital adjustment cost

function that introduces real market frictions. The functional form is adapted from Campanale

et al. (2010).5 The parameter ι determines the size of the marginal capital adjustment costs. A

lower ι implies higher adjustment costs. The idea of introducing capital adjustment costs dates back

to Jermann (1998), who finds that adjustment costs prevent endogenous consumption smoothing

from absorbing too much consumption volatility. Without capital adjustment costs, Tobin’s q

remains constant at 1.

Market equilibrium

In equilibrium, outputs are equal to the sum of consumption and investment:

Ct + It = Yt, (12)

In financial markets, the equilibrium condition requires that households hold all outstanding equity

shares and all other assets are in zero net supply. By solving the social planner’s problem, I can find

the equilibrium allocation in competitive markets. Once the social planner’s problem is solved, asset

prices and returns are then determined as outcomes of equilibrium allocations. The social planner’s

problem, in recursive form, is fully presented in the Appendix. The agent chooses consumption and

capital stock to maximize his welfare. Given that the generalized recursive smooth ambiguity utility

model satisfies homogeneity, the optimization problem can be formulated in terms of stationary

variables.

Ju and Miao (2011) shows that the pricing kernel for the generalized recursive smooth ambiguity

preferences is given by

Mzt+1,t+1 = β

(
Ct+1

Ct

)−ρ (
Vt+1

Rt (Vt+1)

)ρ−γ




(
Ezt+1,t

[
V 1−γ

t+1

]) 1
1−γ

Rt (Vt+1)




−(η−γ)

, (13)

where zt+1 = 1, 2, and Ezt+1,t denotes the expectation operator for the distribution of the consump-

5 In (11), ω is a constant that will be given a value in the calibration exercise.
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tion process conditioned on the history st and the period-t+1 state zt+1. If the agent is ambiguity

neutral (η = γ), the last term in (13) vanishes, and the pricing kernel has a similar form as in Croce

(2010) and Kaltenbrunner and Lochstoer (2010). Further, if the agent displays constant relative

risk aversion (γ = ρ), then we obtain the familiar pricing kernel for expected utility. The Euler

equation is

Et

[
Mzt+1,t+1R

e
t+1

]
= 1. (14)

where Et is the period−t conditional expectation operator for the posterior distribution of the

hidden state. The risk-free rate is the reciprocal of the expectation of the price kernel, Rf
t =

1/Et

[
Mzt+1,t+1

]
. The return on equity is denoted by Re

t (unlevered equity claim) and is given by

Re
t+1 =

Pt+1 + Dt+1

Pt

Re
t+1 =

Dt+1 + [1 + GKt+2(Kt+1,Kt+2)]Kt+2

[1 + GKt+1(Kt,Kt+1)]Kt+1
, (15)

where the subscript of G stands for the partial derivative, and dividends are equal to Dt = αYt− It

in equilibrium.

The full information case: Jahan-Parvar and Liu (2011)

Suppose the hidden state is fully observable, that is, in each period, the agent know the current

regime of the economy but is still uncertain as to which regime the mean growth rate will switch

to in the next period. In this case, the model reduces to the one examined by Jahan-Parvar and

Liu (2011). The utility function becomes

Vzt,t(C) =
[
(1− β)C1−ρ

t + β
{Rzt,t

(
Vzt+1,t+1 (C)

)}1−ρ
] 1

1−ρ

Rzt,t

(
Vzt+1,t+1 (C)

)
=

(
Ezt

[(
Eπz ,t

[
V 1−γ

zt+1,t+1 (C)
]) 1−η

1−γ

]) 1
1−η

where Vzt,t(C) is the period-t continuation value of consumption plans C given period-t state, and

Rzt,t

(
Vzt+1,t+1 (C)

)
is the certainty equivalent of future continuation value given period-t state.
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The Euler equation is given by the Euler equation

Ezt

[
Mzt+1,t+1R

e
t+1

]
= 1. (16)

where Ezt is the period−t conditional expectation operator for the current state being zt.

4 Calibration and Results

In this section, I first summarize stylized facts about historical asset-returns data. Then I calibrate

the production economy model to closely replicate unconditional moments of asset returns typically

observed in the data. Under the calibrated parameter values, I further examine cyclical variation

in the equity premium and the volatility of returns. In the analysis of properties of unconditional

and conditional moments of asset returns, I also perform comparative statics analysis by changing

the degree of ambiguity aversion.

Due to nonlinearities, the model does not admit an explicit analytical solution. Thus, the model

is solved using numerical methods. In particular, the value function iteration is employed to solve

the representative agent’s consumption-saving problem, and unconditional and conditional moments

of financial and macroeconomic fundamentals are calculated using Monte Carlo simulations. A

detailed description of the numerical procedure is included in the Appendix.6

4.1 Data and calibration

I begin by summarizing the key properties of asset-returns data documented in the empirical asset

pricing literature. Data on financial variables (equity returns, risk-free interest rates, dividends

and price-dividend ratios) and consumption are downloaded from Shiller’s website.7 All nominal

variables are deflated using the Consumer Price Index (CPI) data. I use the post-war annual

data 1951–2009 for calibration. Data on productivity are drawn from a data set on total factor

productivity (TFP) available in Fernald (2009). To keep consistency, the data also span from 1951
6 The computer code is written in Compaq Visual FORTRAN 6.6 and available upon request from the author.
7 I thank Robert Shiller for making the data available.
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to 2009.

I calibrate the model at the annual frequency and focus on the model’s ability to reproduce

annual statistics calculated from the data. To estimate parameters in the productivity growth

process (8), I apply the expectation maximization (EM) algorithm of Hamilton (1990) to the

quarterly productivity growth data for the period 1951–2009 and then annualize the estimates.

The parameter estimates are displayed in Table 2. The results suggest that the hidden Markov

model clearly identifies two distinct regimes for productivity growth. The good regime is highly

persistent with a transition probability of p11 = 0.94 and a positive mean growth rate of 0.0178,

while the bad regime is relatively transitory with a transition probability of p22 = 0.58 and a

negative mean growth rate of -0.0234. The existence of economic regimes is also well documented

in Hamilton (1989), Rouwenhorst (1995) and Cagetti et al. (2002), among others.

Table 2 also other parameter values that are held invariant throughout the calibration exercise

unless otherwise stated. As in the standard literature on DSGE models, I set the capital share (α)

to 0.35, and the annual depreciation rate of capital to δ = 0.06. Labor hours, which is assumed

to be constant, is fixed at 0.20. The exponent parameter in the capital adjustment costs function,

ι, is set at 1.09 to match the standard deviation of consumption growth for the sample period

1951–2009. The annual subjective discount factor β is set at β = 0.975. The relative risk aversion

parameter γ is fixed at γ = 3.

4.2 Calibration results: unconditional moments

In the calibration exercise, the EIS parameter, ψ, is set at 1.5, following Bansal and Yaron (2004)

and Ju and Miao (2011). As will be seen below, an EIS greater than 1 is crucial to generate

countercylical variation in conditional equity premium and conditional volatility of equity returns.

The ambiguity aversion parameter η is set such that the model-implied mean equity premium can

closely match with the data. In the light of works by Ju and Miao (2011) and Chen et al. (2011),
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the value of η considered in the benchmark calibration is modest (η = 33).

Table 3 reports the unconditional moments of the key macroeconomic and financial variables

generated from the benchmark calibration (labeled “Model I”) and compares the results with the

data to see the performance of the model. I also do comparative statics analysis by considering

two other alternative values for the ambiguity aversion parameter, η = 20 (labeled “Model II”)

and η = 3 (labeled “Model III”).8 The latter case corresponds to Epstein-Zin recursive utility with

ambiguity neutrality.

The statistics calculated from the data are displayed in Table 3. The macroeconomic statis-

tics include the volatility and the first autocorrelation of consumption growth where consumption

growth is defined as the percentage change in real consumption goods. Data on US per capital real

consumption (1951–2009) suggest that consumption growth is not volatile in the post-war period,

with the standard deviation being equal to 1.8 percent. On the other hand, the mean equity pre-

mium remains high at 5.9 percent while the mean risk-free rate is low at 1.98 percent. Moreover,

the stock market exhibits much volatility with the standard deviation of excess market returns

being equal to 16.50 percent, but the risk-free rate is not volatile at all, and its standard deviation

is only 2.46 percent.9 Overall, the Sharpe ratio for US stock market is about 0.36. These stylized

facts are well-documented in the literature (see Campbell (1999) for a survey). Although there

have been numerous efforts in explaining these puzzles in the consumption-based framework (see

Campbell and Cochrane (1999), Cecchetti et al. (2000), Bansal and Yaron (2004) and Ju and Miao

(2011), among others), doing so in a production economy poses further challenges as consumption

and dividends are endogenously determined. The habit persistence models developed by Jermann

(1998) and Boldrin et al. (2001) can explain the equity premium puzzle but generate excessive

volatility in risk-free rates. Kaltenbrunner and Lochstoer (2010) use Epstein-Zin preferences and
8 Each set of results is generated from 10,000 simulations, where each simulation containing 100 periods.
9 Jahan-Parvar and Liu (2011) consider a much lower target level for the volatility of risk-free rates.
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can reproduce Sharpe ratio observed in the data, but their model is unable to generate a high mean

equity premium even under the counterfactual assumption that the subjective discount factor β is

greater than 1. Croce (2010) relies on long-run productivity risk and Epstein-Zin utility but can

only generate a 3 percent mean equity premium when the coefficient of relative risk aversion is 30.

The benchmark calibration (Model I) represents a significant improvement over the existing

production economy models in terms of asset pricing implications. The benchmark model produces

both a low mean risk-free rate and a low level of risk-free rate volatility. The unconditional mean

of risk-free rates is 1.92 percent, which is very close to the data. The model, on the other hand,

under-predicts the volatility of risk-free rates, with a standard deviation of 0.5 percent generated

in the simulation. This level is rather low compared to the data (2.46 percent). Thus, the model

avoids producing excessive volatility in the risk-free rate. Both the attitude toward intertemporal

substitution and the attitude toward model uncertainty affect moments of the risk-free rate. A high

EIS or a high degree of ambiguity aversion decreases the risk-free rate in all states of the economy.

The former effect is through the intertemporal substitution effect, and the latter via the endogenous

pessimistic evaluation of the future continuation value. Both effects increase savings motive and

lower the mean risk-free rate in equilibrium. The low volatility of risk-free rates implied by the model

is driven by (1) a high EIS and (2) the strong persistence of Bayesian updated beliefs. Previous

results (Jermann (1998), Kaltenbrunner and Lochstoer (2010) and Campanale et al. (2010)) suggest

that a rather low EIS tends to imply a very volatile risk-free rate. In addition, because state beliefs

are highly persistent in the model, the strong persistence translates into the conditional expectation

operator applied to the pricing kernel. Panel A of Figure 2 plots one sample path of simulated

state beliefs. It shows that the state probability ζt spends most of time at high levels. Occasional

productivity shocks temporarily drive down the state probability, but it reverts back to high levels

immediately. The agent’s beliefs are thus characterized by a persistent and slow-moving state
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probability. Recall that the risk-free rate is the reciprocal of the conditional expectation of the

pricing kernel. As a result, slow movements in Bayesian beliefs lead to low volatility of the risk-free

rate.

Turning to the mean equity premium, Table 3 shows that a higher degree of ambiguity aversion

results in a higher mean equity premium.10 In the benchmark calibration, the mean equity premium

implied by Model I is 5.88 percent, which is extremely close to the level observed in the data (5.90

percent). The other two models with lower degrees of ambiguity aversion cannot produce a realistic

mean equity premium. Under Epstein-Zin recursive utility (γ = 3, η = 3, ψ = 1.5), Model III can

only generate a mean equity premium of 1.18 percent. This finding is consistent with Croce (2010)

where the mean equity premium is 3 percent when productivity growth consists of a persistent

component and a GARCH component, and the relative risk aversion is very high at γ = 30 in the

calibration. Due to capital adjustment costs, the model is able to generate volatile enough equity

returns, with the standard deviation of equity premium being equal to 16.96 percent, which also

replicates the observation in the data (16.50 percent). With no adjustment costs, Tobin’s q remains

constant, and the variation of equity returns is only driven by changes of dividends. In such a case,

the volatility of equity returns could be very low. In the light of these results, it is not surprising

to see that among Model I–III, the benchmark calibration produces a Sharpe ratio (0.36) closest

to the data (0.35).

The implied high Sharpe ratio is attributed to the increased price of risk under ambiguity

aversion. Table 3 shows that under ambiguity neutrality (γ = η = 3), the price of risk is almost

negligible (σ (M) /E (M) = 0.07). Thus, the pricing kernel (or the marginal rate of substitution)

is too smooth to deliver a sizable risk premium. In the benchmark calibration, the volatility of

the pricing kernel increases dramatically to yield a high price of risk (σ (M) /E (M) = 1.39). The

enlarged variation of the pricing kernel is mostly driven by the last multiplicative term in (13),
10 Recall that the equity claim is defined as unlevered claim to aggregate dividends.
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which vanishes under ambiguity neutrality. To see it more clearly, Figure 1 shows the price of

risk plotted against the state probability ζt for different degrees of ambiguity aversion, where the

capital stock is set to its mean in the simulation and productivity growth to its stationary level.

Two observations are noteworthy. First, regardless of ambiguity aversion, the conditional price of

risk exhibits a hump-shape. Further, the shape looks almost symmetric under ambiguity neutrality.

This is a typical finding in asset pricing models with Bayesian learning. See Veronesi (1999) for

results in an endowment economy and Cagetti et al. (2002) in a nonlinear production economy.

The intuition is that the price of risk is high during periods of high uncertainty. This usually

happens in recessions when a series of bad shocks to productivity have occurred and Bayesian

filtered state probability drops toward 0.5. Second, ambiguity aversion increases the price of risk

for all possible state beliefs. In particular, this effect is more pronounced for ζ being close to

p11 = 0.937 where Bayesian state belief spends most of its time near around. Informally, this is to

say that ambiguity aversion leads to “negative skewness” of the price of risk against state beliefs.

The asymmetric shape can be intuitively explains in the following. Suppose the filtered probability

ζ is at its usual level around p11. Now a few small bad shocks to productivity occur. This will

lead to very modest downward revisions to the filtered probability through Bayesian updating. The

ambiguity-neutral agent does not deem this scenario as a strong indication of future investment

opportunities worsening. Thus, the price of risk rises but not in a great magnitude. However, the

ambiguity averse agent, whose attitude toward model uncertainty is manifested via endogenous

pessimism, effectively distorts Bayesian beliefs in such a way that more probability weights are

assigned to lower continuation value states. As a result, he seriously worries the possibility that

future investment opportunities become very bad, the price of risk, therefore, rises substantially.

The quantitative results regarding unconditional moments presented here are similar to those

of Jahan-Parvar and Liu (2011), where economic regimes are fully observable and Bayesian updat-
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ing is not permitted. Nevertheless, because of different information structure, the model in this

paper clearly distinguishes from Jahan-Parvar and Liu (2011). Here, the second-order probabilities

entering into the smooth ambiguity utility model are updated taking into account the most recent

available information, while in Jahan-Parvar and Liu (2011) these probabilities are not adapted

but conform to the transition probabilities. Moreover, the calibration exercise carried out in this

paper is not trivial for good reasons. First, the calibration can be used to screen out the impact

of learning on the mean equity premium and thus answer the question whether Bayesian updating

accounts for any risk premium. Second, the exercise can provide useful guidance on values of pref-

erence parameters that will be used to investigate the cyclical variation of equity premium and its

conditional volatility. Table 4 summarizes the impact of Bayesian updating on the mean risk-free

rate and equity premium. This exercise is executed by implementing the full information model of

Jahan-Parvar and Liu (2011) under the parameterization of this paper. It turns out that in all cases

learning even dampens the equity premium. Part of this effect comes from the higher mean risk-free

rate in the presence of learning. These results suggest that as long as investment opportunities are

time varying (for example, regime switching), introducing a hidden state and elements of learning

does not contributed to the explanation of the equity premium puzzle. However, the presence of

Bayesian learning is crucial to generate countercyclical equity premia.

4.3 Cyclical variation

The empirical literature has extensively documented that both equity premium and the volatility of

equity premium move countercyclically (Fama and French (1989), Poterba and Summers (1988) and

Schwert (1989)). Further, empirical studies (Merton (1980), French et al. (1987) and Ghysels et al.

(2005)) have found evidence of the “volatility feedback” effect, that is, movements in expected

returns are driven by changes in the expected future return volatility. In addition, changes in

return volatility tend to be persistent, and returns feature volatility clustering and GARCH-type
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behavior (see Bollerslev et al. (1992) for a survey). These dynamic regularities of returns are hard

to explain in the standard DSGE framework. For example, Rouwenhorst (1995) finds that the

standard neoclassical growth model hardly predicts any cyclical variation of equity premium and

equity volatility. This is due to the lack of two important ingredients. First, the volatility of equity

returns is too low in the absence of market frictions. Second, the standard model lacks additional

state variables that reinforce the link between time varying expected returns and productivity

shocks. In the present model, convex capital adjustment costs account for the former feature, and

highly persistent beliefs capture the latter aspect. I now examine the dynamic properties of expected

returns and the expected return volatility under the benchmark calibration (γ = 3, η = 33, ψ = 1.5).

I use a random number generator to generate a long time series (100 years) artificial productivity

growth rates from the Markov switching process (8). Then I obtain filtered state beliefs as a result

of Bayesian updating, assuming that the prior belief ζ0 is in the stationary level. Equilibrium allo-

cations and Euler equation determine conditional equity premium and conditional return volatility

in each period. The results are plotted in Figure 2. Panel A reveals that simulated state beliefs

are highly persistent and slow-moving. During periods of high uncertainty when ζ drops from its

stationary level near to 0.5, both conditional equity premium and return volatility rise significantly.

It is important to note that even when state beliefs become modestly worse following a few small

shocks to productivity, conditional equity premium and return volatility react much more strongly

under ambiguity aversion. As noted above, if state beliefs start from being persistent and good, the

price of risk for the ambiguity averse agent increases substantially even there happens to be a small

decline in his beliefs, giving rise to the negatively skewed shape in Figure 1. Here, it is indeed this

effect that drives countercyclical movements in expected returns and the expected return volatility.

In this example, the correlation of conditional equity premium and return volatility with simulated

productivity growth are, respectively, -0.60 and -0.77. In addition, the expected return volatility
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displays persistence and clustering, where high volatility periods tend to cluster around relatively

bad state beliefs.

To investigate the performance of the model with application to historical data, I compute

equilibrium allocations and conditional moments of returns for the historical annual data on pro-

ductivity. Figure 3 and 4 plot consumption and dividends endogenously determined in the model

and compare the results with the data. Figure 3 shows that in most periods the level of consump-

tion growth implied by the model is less than in the data. In addition, the model correctly capture

the cyclical pattern in consumption growth data, and the contemporaneous correlation is high and

equal to 0.75. Dividend growth rates generated from the model, however, are not highly correlated

with the data (the correlation is 0.29). It is obvious from both figures that the model produces

dividend growth much more volatile than consumption growth. This is consistent not only with

the data but also with most of consumption-based asset pricing models with leverage ratios (see,

for example, Abel (1999), Bansal and Yaron (2004) and Ju and Miao (2011), among others).

Turning to predicted equity premium and return volatility, Figure 5 presents the results for the

historical data. Panel A plots total factor productivity growth rates and Hodrick-Prescott filtered

consumption growth rates during the period 1951–2009. The predicted conditional equity premium

and conditional return volatility for the sample period are plotted in Panel B and C. It reveals

that the agent tends to seek more risk premium compensation during periods including 1970s,

early 1980s and 1990s, and more recent recession times near 2008. The correlations of predicted

equity premium and conditional return volatility with HP-filtered consumption growth are equal

to -0.53 and -0.61 respectively. Furthermore, the equity premium predicted by the model has a

very high positive correlation with the expected return volatility, which is equal to 0.90. Thus, the

model provides theoretical support to the volatility feedback effect documented in the literature

and implies a significant risk-return tradeoff.
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4.4 Return predictability

The empirical literature has extensively studied predictability of returns by considering various

predictive regressions. See, for example, Campbell and Shiller (1988), Fama and French (1988a)

and Fama and French (1988b) and Welch and Goyal (2008) for a comprehensive review. Campbell

and Shiller (1988) derive the following log-linear relationship for the price-dividend ratio, dividend

growth and returns:

pt − dt = p− d +
∞∑

j=0

κjEt (∆dt+1+j)−
∞∑

j=0

κjEt (rt+1+j)

where p− d is the average price-dividend ratio in the long run, and |κ| < 1 is a positive approxima-

tion constant. Empirical evidence suggests that the price-dividend ratio forecasts returns, especially

at long horizons (Campbell and Shiller (1988), Fama and French (1988a) and Fama and French

(1988b)). Moreover, as expected, high prices relative to dividends predict future low returns. The

leftmost two columns labeled “Data (1951-2009)” in Table 5 present the results of regressing cumu-

lative log returns on the current log price-dividend ratio for different horizons. Panel A and Panel

B contain both the regression slopes and the R2’s, respectively, for equity returns and excess return

being the dependent variable. The results confirm previous findings in that both the magnitude of

the slope and R2 are increasing in the horizon.

The results generated from the simulation are presented in Table 5. I consider the benchmark

calibration (Model I) as well as the model with Epstein-Zin recursive utility (Model III) for a

comparison. To avoid small sample issues, which may bias the regression estimates and the R2, I

run predictive regressions on each simulated sample of the total 10,000 simulations. Table 5 reports

the average values of the two statistics for Model I and Model III. Model III based on Epstein-Zin

utility, unfortunately, is not able to generate significant predictability of returns. Results based on

the benchmark calibration, on the other hand, suggest predictability of returns, with the R2 being
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about 20% for different horizons. The implied predictability is much stronger than the finding of

Ju and Miao (2011) in their consumption-based model with learning and ambiguity aversion. The

slope has a negative sign in all cases, which implies that a high price today is associated with low

returns in the future. By comparing Panel A and Panel B, it reveals that the predictability is not

attributed to that of the risk-free rate because equity premium has even slightly better predictability

than equity returns. But the model generates the counterfactual result that the R2 is declining in

the horizon.

5 Conclusion

This paper explores how a representative agent’s aversion toward model uncertainty is embedded

in a production economy and affects asset prices. The agent learns about a hidden state that

governs the mean productivity growth regimes, giving rise to model uncertainty and fluctuating

beliefs. The agent’s averse attitude is manifested through distorting Bayesian updated beliefs in

a pessimistic way. This ambiguity aversion alters the time series evolution of the price of risk,

making the agent’s perception of aggregate risks more sensitive to productivity shocks. Thus, small

perturbations of persistent state beliefs in response to productivity shocks could lead to significant

changes in the price of risk and the equity premium in equilibrium. The calibration exercise shows

that in addition to matching the unconditional moments of the risk-free rate and equity premium

observed in the data, the model can generate countercyclical equity premia and expected volatility

of equity premia, which implies the volatility feedback effect. Moreover, the model captures the

volatility clustering and persistence behavior of returns.

This work can be extended in several ways. In this paper, I assume convex capital adjustment

costs to produce volatile equity returns. Alternative specifications of adjustment costs such as

the one proposed by Croce (2010) may also be investigated. Additionally, although this paper

focuses on the one-sector model, models with multiple sectors could be developed to produce richer
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implications of macroeconomic quantities including consumption, investment, output and human

wealth.
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6 Appendix

6.1 The Social Planner’s Problem

This section presents the social planner’s consumption-saving problem. Labor supply is assumed

to be inelastic. Define the following stationary variables:

{ct, it, yt, kt, vt} =
{

Ct

At−1
,

It

At−1
,

Yt

At−1
,

Kt

At−1
,

Ut

At−1

}

The social planner’s problem can be written as

v (kt,∆at, ζt) = max
ct,kt+1



(1− β) c1−ρ

t + βe(1−ρ)∆at

(
Eζt

[(
Ezt+1,t

[
v1−γ
t+1 (kt+1,∆at+1, ζt+1)

]) 1−η
1−γ

]) 1−ρ
1−η





1
1−ρ

(17)

subject to the following constraints:

ct + it = yt ≡ e(1−α)∆atkα
t n̄1−α (18)

e∆atkt+1 = (1− δk) kt + it −
∣∣∣∣
e∆atkt+1

kt
− ω

∣∣∣∣
ι

kt (19)

∆at = µ (st) + σεt, εt ∼ N (0, 1) (20)

ct ≥ 0, kt+1 ≥ 0 (21)

Ju and Miao (2011) show that the pricing kernel is given by

Mst+1,t+1 = β

(
Ct+1

Ct

)−ρ (
Ut+1

Rt (Ut+1)

)ρ−γ




(
Ezt+1,t

[
U1−γ

t+1

]) 1
1−γ

Rt (Ut+1)




−(η−γ)

, zt+1 = 1, 2
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which is equivalent to

Mst+1,t+1 = βe−ρ∆at

(
ct+1

ct

)−ρ (
vt+1

Rt (vt+1)

)ρ−γ




(
Ezt+1,t

[
v1−γ
t+1

]) 1
1−γ

Rt (vt+1)




−(η−γ)

, zt+1 = 1, 2

The conditional expectation operator Ezt+1,t is applied because the variable v1−γ
t+1 depends on the

history of state variables up to time t and also on the period-t + 1 state zt+1.

6.2 Value Function Iteration Algorithm

I first solve the full information model of Jahan-Parvar and Liu (2011) numerically, using value

function iteration. Then the numerical solution to the value function in the full information model

is used as an initial guess to solve the model with Bayesian updating in this paper. For completeness,

I present the algorithm for the full information model and extends it to incorporate learning.

Full Information Model

1. Compute the steady-state in the deterministic economy, assuming that the productivity

growth rate is constant and equal to ∆ass where ∆ass is the stationary growth rate and

given by

pss =
1− p22

2− p22 − p11

∆ass = Pssµ1 + (1− Pss) µ2

2. Discretization of the state space: I use (1) N∆a equidistant points for ∆a on the interval

[
∆a,∆a

]
=

[
∆ass − λaσ,∆ass + λaσ

]
where the constants λa and λa are set such that the

interval of the grid is wide enough to embrace Gaussian quadrature nodes; (2) Nk equidistant

points for k on the interval
[
k, k

]
= [0.1kss, 1.9kss] where kss is the value of capital at the

deterministic steady state.

3. In the VFI algorithm, the value functions v (∆a, k, 1) and v (∆a, k, 2) are arrays of Na ×Nk,

where 1 and 2 denote productivity regimes.
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4. To compute Ezt,t

[
v1−γ (kt+1,∆at+1, zt+1)

]
, note that

Ez

[
v1−γ

(
∆a′, k′, z′

)]
= p11Ez′

[
v1−γ

(
∆a′, k′, z′

) | z′ = 1
]

+(1− p11)Ez′
[
v1−γ

(
∆a′, k′, z′

) | z′ = 2
]

when z = 1

Ez

[
v1−γ

(
∆a′, k′, z′

)]
= (1− p22)Ez′

[
v1−γ

(
∆a′, k′, z′

) | z′ = 1
]

+p22Ez′
[
v1−γ

(
∆a′, k′, z′

) | z′ = 2
]

when z = 2

The conditional expectation Ez′
[
v1−γ (∆a′, k′, z′) | z′ = 1 or 2

]
can be approximated using

the Gauss-Hermite quadrature method. For example,

E
[
v1−γ

(
∆a′, k′, s′

) | s′ = 1
]

=
∫ ∆a

∆a
v1−γ

(
∆a′, k′, s′

) 1√
2πσ2

e−
(∆a−µ(1))

2σ2

2

d∆a′

where k′ is on the Nk grid. However, since quadrature nodes generally imply values of ∆a′

not exactly on the Na grid, I need to interpolate v1−γ (∆a′, k′, s′) (the initial guess and each

iteration only give the value of v (∆a, k, s) on the grid Na ×Nk). To do interpolation, I first

construct Chebyshev polynomials in ∆a and then for every k′ I regress log (v (:, k′, 1)) onto

the Chebyshev polynomials and obtain Chebyshev regression coefficients. These coefficients

allow me to interpolate log (v (∆a′, k′, 1)) for possible values of ∆a′.

5. Interpolate expectation with respect to capital. In solving the consumption-saving problem,

we need to choose the policy function k′ to maximize the value function. The usual numerical

optimization methods require the choice of k′ that may not be on the Nk grid. For this reason,

we need to evaluate the right-hand side of the recursion in (17) for every admissible value of
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the policy function k′. In particular, we need to approximate the following two expectations

Es′
[
v1−γ

(
∆a′, k′, s′

) | s′ = 1
]

Es′
[
v1−γ

(
∆a′, k′, s′

) | s′ = 2
]

To achieve this task, I first create Chebyshev polynomials in k′ on the Nk grid and then regress

the two expectations onto the created Chebyshev polynomials. The regression coefficients can

be used to interpolate the two expectations for every admissible k′.

6. Maximization and iteration. Given the states (∆a, k, s), the algorithm first searches for k′

on the Nk grid that maximizes the value function. To refine the optimal policy function, a

numerical optimization procedure is employed to search for the optimal k′. The objective

function is updated once an iteration is completed. The stopping rule is that the new value

function and the old value function has a standard sup-norm |v′−v|
|v| < 1.e− 8.

The Model with Bayesian learning and ambiguity aversion

When the representative agent cannot observe the hidden state, his belief about the economy is

summarized by the state probability ζt. The algorithm for the full information model is extended

to the current setup by introducing the belief updating step. The algorithm begins in a similar way

as Step 1, 2 and 3 in the full information case, with the exception that a discretized grid for ζ is

also created between 0 and 1.

The recursion requires the computation of the following expectation

Eζt

[(
Ezt+1,t

[
v1−γ
t+1 (kt+1,∆at+1, ζt+1)

]) 1−η
1−γ

]
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which can be rewritten as

Eζt

[(
Ezt+1,t

[
v1−γ (kt+1,∆at+1, ζt+1)

]) 1−η
1−γ

]

= ζt

(
Ezt+1,t

[
v1−γ (kt+1,∆at+1, ζt+1) |st+1 = 1

]) 1−η
1−γ

+(1− ζt)
(
Ezt+1,t

[
v1−γ (kt+1,∆at+1, ζt+1) |zt+1 = 2

]) 1−η
1−γ

Note that the expectations on the right-hand side are invariant with respect to ∆a (because ∆a is

integrated out). These two expectations can be approximated using Gauss-Hermite quadrature. In

particular, the expectation conditioned on next period’s regime being regime 1 is approximated in

the following

Ezt+1,t

[
v1−γ (ζt+1,∆at+1, kt+1) |zt+1 = 1

]

=
∫ ∆a

∆a
v1−γ (ζt+1,∆at+1, kt+1)

1√
2πσ2

e−
(∆at+1−µ(1))

2σ2

2

d∆at+1

where ζt+1 is updated from ζt by applying Bayes rule for each quadrature node ∆at+1. To this end, I

need to interpolate v (ζt+1,∆at+1, kt+1) on possible values of ζt+1 and ∆at+1. To do this task, I cre-

ate a tensor product of Chebyshev polynomials in ζ and ∆a for their grid values. Then for every kt+1

on the grid I regress log (v (:, :, kt+1)) onto the tensor product in ζ and ∆a, and obtain the Cheby-

shev regression coefficients. These coefficients are used to interpolate log (v (ζt+1,∆at+1, kt+1)) for

any possible value of (ζt+1,∆at+1). The interpolation of the expectations conditioned on regimes

with respect to k proceeds in the same way as in the full information case.

The VFI algorithm with three state variables takes a long time to achieve convergence. To

improve convergence, I employ a multigrid scheme, following ???. I first solve the model on a small

number of grids for k. Once the algorithm achieves convergence, it is extended to a larger number

of grids for k by first interpolating the value from the previous step onto the current finer grid

and then using the interpolated values as starting values for the new round of the algorithm. This

procedure continues until the grid of k is fine enough and the algorithm finally converges.
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Figure 1: Price of risk for different degrees of ambiguity aversion
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This figure plots the price of risk, defined as σt(M)/Et(M), against different state beliefs (denoted
as ζt) ranging from 0 to 1. The pricing kernel, M , is defined in (13). In plotting the series, the
capital stock is set to its mean in Monte Carlo simulations, and productivity growth is set to its
steady-state level.
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Figure 2: Simulated beliefs, equity premium and return volatility
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This figure plots simulated state beliefs (Panel A), conditional mean equity premium
(Panel B) and conditional expected volatility of equity premium (Panel C) for the bench-
mark calibration (γ = 3, η = 33, ψ = 1.5). To simulate beliefs, the prior belief ζ0 is
set at the steady state level (1 − p22)/(2 − p22 − p11), and artificial productivity growth
rates are simulated from the Markov-switching process (8). Posterior beliefs are updated
according to Bayes rule. Conditional mean equity premium and conditional expected re-
turn volatility are calculated as functions of the state variables. Conditional moments are
approximated using Gauss-Hermite quadrature method.
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Figure 3: Consumption growth: data and model
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This figure plots the historical data on real consumption growth rates and consumption
growth rates predicted by the benchmark model (Model I in Table 3) for the period 1951–
2009. The correlation between real consumption growth data and predicted consumption
growth is 0.75.
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Figure 4: Dividend growth: data and model
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This figure plots the historical data on real dividend growth rates and dividend growth
rates predicted by the benchmark model (Model I in Table 3) for the period 1951–2009.
The correlation between real dividend growth data and predicted dividend growth is 0.29.
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Figure 5: Predicted equity premium and return volatility
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Panel A plots Hodrick-Prescott filtered consumption growth rates and total factor pro-
ductivity growth rates for the period 1951–2009. Panel B and Panel C display, respec-
tively, conditional mean equity premium (Et

(
Re

t+1 −Rf
t

)
) and conditional expected re-

turn volatility (σt

(
Re

t+1 −Rf
t

)
) predicted by the benchmark model (Model I in Table 3).

The prior belief ζ0 is set at the steady state level. Posterior beliefs are updated according
to Bayes rule given the historical productivity data. Conditional mean equity premium
and conditional expected return volatility are calculated as functions of the state vari-
ables. Conditional moments are approximated using Gauss-Hermite quadrature method.
The correlations of Et

(
Re

t+1 −Rf
t

)
and σt

(
Re

t+1 −Rf
t

)
with the historical HP-filtered

consumption growth are equal to, respectively, -0.53 and -0.61. The correlation between
Et

(
Re

t+1 −Rf
t

)
and σt

(
Re

t+1 −Rf
t

)
is 0.90.
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Table 1: Maximum likelihood estimates of the productivity process

Parameter Description Estimate
µ1 Mean growth rate (regime 1) 0.0178
µ2 Mean growth rate (regime 2) -0.0234
σ Standard deviation 0.016755

p11 Transition probability (regime 1 to regime 1) 0.937
p22 Transition probability (regime 2 to regime 2) 0.582

This table reports the maximum likelihood estimates of the parameters in the Markov switching model for productiv-

ity. The estimates are obtained using Hamilton’s expectation maximization (EM) algorithm. The data for estimation

are quarterly total factor productivity growth rates for 1951–2009.

Table 2: Parameter values of model parameters

Parameter Description Value
δ Depreciation rate of capital 0.06
α Capital share 0.35
N̄ Exogenous labor input 0.20
ι Exponent of adjustment costs function 1.09
γ Coefficient of risk aversion 3
β Time discount parameter 0.975
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Table 3: Unconditional moments and comparative statics

Model I∗ Model II Model III
γ = 3 γ = 3 γ = 3

U.S. data η = 33 η = 20 η = 3
Statistic 1951–2009 ψ = 1.5 ψ = 1.5 ψ = 1.5
Panel A: Moments of consumption growth
σ∆C 1.80 1.77 1.78 1.82
Corr(∆Ct+1,∆Ct) 0.22 0.22 0.22 0.22
Panel B: Financial moments
E

(
Rf

)
1.98 1.92 2.66 3.30

σ
(
Rf

)
2.46 0.50 0.59 0.42

E (Rep) 5.90 5.88 3.83 1.18
σ

(
Rfep

)
16.50 16.96 16.63 15.15

Sharpe ratio 0.36 0.35 0.23 0.08
σ(M)/E(M) n.a. 1.39 0.65 0.07

This table reports the key moments for the calibrated model with different degrees of ambiguity aversion. Model I is

the benchmark calibration. The ambiguity aversion parameter η is set to 20 and 3, respectively, in Model II and III.

The relative risk aversion parameter γ is set to 3 across all the models. Other parameters are given in Table 1 and

Table 2. The equity claim is an unlevered claim on aggregate dividends. The calibration is in the annual frequency.

The statistics for Model I–III are calculated based on 10,000 Monte Carlo simulations, after equilibrium allocations

are solved using value function iteration. The macroeconomic moments reported include: (1) the standard deviation

of consumption growth σ∆C and (2) the 1st autocorrelation in consumption growth. The financial moments reported

include: (1) the mean risk-free rate E
`
Rf
´
, (2) the standard deviation of the risk-free rate σ

`
Rf
´
, (3) the mean

equity premium E (Rep), defined by E
“
Re

t+1 −Rf
t

”
, (4) the standard deviation of equity premium σ (Rep), defined

by σ
“
Re

t+1 −Rf
t

”
, (5) Sharpe ratio, defined by E (Rep) /σ (Rep), and (6) the price of risk, defined by σ(M)/E(M).

The statistics σ∆C , E
`
Rf
´
, σ
`
Rf
´
, E (Rep) and σ (Rep) are in percentage.

Table 4: Equity premium: the effect of Bayesian learning

γ = 3 γ = 3 γ = 3
η = 33 η = 20 η = 3
ψ = 1.5 ψ = 1.5 ψ = 1.5

Panel A: Unconditional mean of risk-free rate E
(
Rf

)
Bayesian learning 1.92 2.66 3.30
Full information 1.57 2.40 3.30
Panel B: Unconditional mean of equity premium E (Rep)
Bayesian learning 5.88 3.83 1.18
Full information 6.48 4.94 1.44

Panel A and Panel B report, respectively, the mean risk-free rate and the mean equity premium calculated from the

model in this paper and that in the full information model of Jahan-Parvar and Liu (2011). The results are for those

sets of the preference parameters in Table 3.
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Table 5: Long-horizon predictability: calibration results

Data Model I Model III
(1951–2009) γ = 3, η = 33 γ = 3, η = 3

ψ = 1.5 ψ = 1.5
Horizon(s) Slope R2 Slope R2 Slope R2

Panel A: re
t,t+s = a + b(pt − dt) + et+s

1 year -0.106 0.070 -0.472 0.216 -0.295 0.120
2 years -0.196 0.118 -0.493 0.205 -0.294 0.101
3 years -0.282 0.177 -0.510 0.197 -0.290 0.087
5 years -0.415 0.218 -0.538 0.184 -0.276 0.068
7 years -0.610 0.316 -0.560 0.174 -0.261 0.056
Panel B: re

t,t+s − rf
t,t+s = a + b(pt − dt) + et+s

1 year -0.098 0.059 -0.486 0.220 -0.306 0.120
2 years -0.172 0.099 -0.520 0.213 -0.316 0.103
3 years -0.241 0.146 -0.549 0.208 -0.322 0.090
5 years -0.333 0.172 -0.598 0.200 -0.330 0.073
7 years -0.484 0.261 -0.638 0.192 -0.335 0.062

This table reports predictive regression results for the benchmark calibration (Model I) and Model II (Epstein-Zin

recursive utility). The table presents the slope coefficients and the R2s estimated from regressing equity returns and

excess returns (both in log terms) onto the end-of-year log price-dividend ratio. Results are obtained by taking the

average of the OLS estimates in 10,000 simulations. The horizon of returns includes 1 year, 2, 3, 5 and 7 years. The

empirical estimates for the historical data (1951–2009) are also presented.
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