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Abstract

This paper provides a strategy for portfolio risk management by inferring extreme

movements in financial markets. The core of the provided strategy is a statistical model for

the joint tail distribution that attempts to capture accurately the data generating process

through an extremal modelling for the univariate margins and the multivariate dependence

structure. It takes into account the asymmetric behavior of extreme negative and positive re-

turns, the heterogeneous temporal and cross-sectional lead-lag extremal dependencies among

the portfolio constituents. The strategy facilitates scenario generation for future returns, es-

timation of portfolio profit-and-loss distribution and calculation of risk measures, and hence,

enabling us to answer several questions of economic interest. We illustrate the usefulness of

our proposal by an application to stock market returns for the G5 economies.
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1. Introduction

Financial returns are in general serially uncorrelated although they are not indepen-

dent. They exhibit pronounced volatility clustering which manifests itself through the sig-

nificant autocorrelations of the squared and absolute returns. The unconditional distribu-

tions of financial returns are typically leptokurtic and heavy-tailed (see e.g., Cont, 2001;

Mikosch, 2001). Financial returns across assets and markets tend to move together during

stress periods, a phenomenon that has attracted a lot of attention in the empirical research

(see e.g., Longin & Solnik, 2001; Hartmann et al., 2004). The latter two features naturally

introduce extreme value theory (EVT) as a modelling tool for financial returns.

Thus to provide a strategy that is well-suited for portfolio risk management, one needs

to represent as realistically as possible the data generating process of the corresponding re-

turn vector Rt by accounting for the empirical properties of financial returns and taking

into account that extreme events (represented by potential losses or substantial gains) typi-

cally constitute the primary interest. To this end, we adopt a strategy that integrates three

main aspects: return filtering, marginal modelling and dependence modelling. While the

econometric and statistical tools are well-developed to handling the first two aspects, deal-

ing with the third aspect (representing the key aspect of our strategy) is far from being a

trivial exercise due to the complex dependence structure and high dimensionality of financial

applications. In what follows, we briefly outline each aspect.

The temporal dependence and volatility clustering of financial returns preclude the

direct application of statistical methods that require independent and identically distributed

(IID) observations and make filtering financial returns a necessary first modelling step. We

use the ARMA-GARCH processes to obtain the filtered return vector Xt on which the

subsequent analysis is based upon (see e.g., Weiss, 1984; Li et al., 2002).

Since we are specifically interested in extreme (negative or positive) returns, we need an

extreme value model so that inferences can be made independently of the distribution of the

entire data and hence avoiding any bias that might be induced from the use of non-extreme
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values. For the marginal distribution, we make use of the generalized Pareto distribution

(GPD) with separate models for the lower and upper tails aiming at capturing the asymmetric

behavior of extreme negative and positive returns often found in financial data (see Chapter 6

in Embrechts et al., 1997). Next, in order to disentangle the marginal and dependence

aspects, we marginally standardize (using the probability integral transform) the filtered

return vector Xt to have a common distribution and denote the resulting vector by Yt. We

aim to model the (extremal) dependence structure of Yt.

The tail dependence coefficients (TDCs) - introduced by Sibuya (1960) - provide natural

measures to quantify the amount of dependence in the tail regions. They play a significant

role in the finance literature to assess the tendency of large negative (for the lower TDC) and

large positive (for the upper TDC) returns on two financial assets to occur simultaneously.1

For two continuous random variables Y1 and Y2 with a common marginal distribu-

tion FY , we define the lower and upper tail dependence coefficients respectively as

λ− = lim
q→0

Pr[Y2 < F−1
Y (q)|Y1 < F−1

Y (q)] and λ+ = lim
q→1

Pr[Y2 > F−1
Y (q)|Y1 > F−1

Y (q)], (1)

provided the limits exist.2 Here F−1
Y (q) = VaRq is the well-known quantile risk measure

Value-at-Risk. If λ† 6= 0 (respectively λ† = 0) then Y1 and Y2 are said to be asymptotically

dependent (respectively asymptotically independent) in the lower tail region (for † = −) or

in the upper tail region (for † = +).

In many multivariate statistical modelling approaches, asymptotic dependence is tra-

ditionally assumed once independence of the variables is rejected. However, it is important

to note that the resulting multivariate model will overestimate the probability of joint oc-

currence of extreme events if the variables of interest are asymptotically independent (see

1The concept of TDC has been extended for lagged dependencies within a time series in Ledford &
Tawn (2003) and between two time series in Zhang & Huang (2006).

2In Section 3.5 we introduce a finite-level multivariate version of the lower and upper TDCs.
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Ledford & Tawn, 1996; Coles et al., 1999; Poon et al., 2004). Thus it is important to

adopt a model that is able to accommodate both asymptotic dependence and asymptotic

independence.

The adopted model must also account for the asymmetric behavior in the extremal

dependence between financial return series which often takes the form of a stronger depen-

dence during market downturns than during market upturns (see e.g., Longin & Solnik, 2001;

Martens & Poon, 2001). Moreover, the model must capture the different extremal depen-

dencies among the portfolio constituent assets. Thus we require that the temporal extremal

dependence within each individual series as well as the cross-sectional contemporaneous and

lagged extremal dependencies over several consecutive days (representing the horizon of in-

terest) to be taken into account. Therefore, for any two assets i and j in the investment

dataset, the model characterizes the extremal dependence between Yi,t and Yj,t+` where ` is

a time lag. Furthermore, the model should facilitate extrapolation beyond the observations.

We are not aware of a statistical model fulfilling all the above demands. As a baseline to

develop such a statistical model, we use the conditional multivariate extreme value approach

of Heffernan & Tawn (2004) since it offers the flexibility of modelling both types of extremal

dependence (asymptotic dependence and asymptotic independence) that might arise and its

statistical inference is straightforward.

Our approach is a generalization of McNeil & Frey (2000) who propose an extreme value

approach for estimating the tail-related risk measures. While their approach is basically

univariate, ours is truly multivariate. Our work is also closely related to that of Zhang &

Huang (2006) who propose a model that combines a three-state Markov chain controlling

the changes in return signs with two separate M4 processes (see Smith & Weissman, 1996 for

details) representing the dynamics of negative and positive returns. Despite the flexibility of

their proposal, its application is restricted to the situation when the variables of interest are

asymptotically dependent. Nyströum & Skoglund (2002) present a multivariate approach

4



that differs from ours as the full dependence structure is modelled by the copula function.3

Although copulas are widely used tools, there is generally no clear approach for specifying

the appropriate copula in practice. Furthermore, dependence in the main body of the data

may differ from that of extreme events and most of the copulas used in practice are not

consistent with multivariate EVT (see e.g., Bouye, 2002). For example, the normal copula

is a model of tail independence and considered as a benchmark model in risk management.

However, the normality assumption for the dependence structure of financial data is often

rejected due to the simultaneous drawdown across assets observed in stress periods (see e.g.,

Mashal & Zeevi, 2002; Breymann et al., 2003). The Student’s t-copula accounts for this

phenomenon by allowing tail dependence between the variables of interest. A comparison

between these two copulas with our strategy will be given in Section 4.

To illustrate our strategy empirically, we apply it for a stock portfolio diversified among

the G5 economies. Specifically, we utilize daily returns measured at closing times on five

international stock market indices, namely, S&P 500, FTSE 100, CAC 40, DAX 30 and

NIKKEI 225. Selected pairwise scatter plots of the return series are displayed in Figure 1,

showing different degrees and types of extremal dependence. While the French-Germany

stock market pair exhibits persistent extremal dependence in the sense that simultaneous

large negative/positive returns are realized, this behavior is much weaker for the US-Japan

stock market pair.

3A d-dimensional copula is a function C : [0, 1]d −→ [0, 1] with standard uniform margins. The existence
of such a function is due to the fundamental theorem of Sklar (1959). Let X be a d-dimensional random
vector with joint distribution FX and continuous marginal distributions FXi

for i = 1, ..., d. There exists a
unique d-dimensional copula C such that for every x ∈ Rd we have

FX (x1, ..., xd) = C (FX1(x1), ..., FXd
(xd)) .

Conversely, for every u ∈ [0, 1]d we have

C (u1, ..., ud) = FX

(
F−1

X1
(u1), ..., F−1

Xd
(ud)

)
.

Thus the copula C represents the dependence structure of X. See Nelsen (1999) for details and Embrechts
et al. (2003) regarding financial applications.
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Figure 1: Selected scatter plots for daily returns of the G5 stock market indices spanning the period
from January 04, 2000 to December 31, 2009.

The remainder of the paper is organized as follows. Section 2 describes the strategy

adopted in the study. The subsequent section deals with the empirical analysis. More

specifically, Section 3.1 introduces the data to be analyzed and provides descriptive statistics.

Section 3.2 addresses the filtering step of the investigated return series, while the marginal

modelling step is addressed in Section 3.3. The (extremal) dependence modelling is the

subject of Section 3.4. Section 3.5 ends the study with a numerical example concerning risk

assessment for an international portfolio as a demonstration for the practical relevance and

the economic significance of our approach. Section 4 compares the proposed strategy with

some typical strategies in risk management. Section 5 summarizes the study findings and

provides several possible extensions to the current work.

2. Strategy

Consider a sample of n observations of returns on d financial assets, say Rt = (R1,t, ..., Rd,t)

for t = 1, ..., n. The following subsections describe the three aspects of our strategy for rep-

resenting the data generating process of Rt.
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2.1. Return filtering

To produce approximately IID return observations, we filter each return series under

consideration by the ARMA-GARCH processes. For the analyzed data, the AIC criterion

suggests using the ARMA(1,1)-GARCH(2,1) model. Specifically, we model the dynamics of

a generic random variable Rt representing stock market returns as follows

Rt = µt + σt ·Xt,

µt = µ+ ψ ·Rt−1 + θ · εt−1,

σ2
t = ω + α1 · ε2

t−1 + α2 · ε2
t−2 + β · σ2

t−1,

εt = Rt − µt,

Xt ∼ N (0, 1).

For stationarity and invertibilty of the conditional mean µt, we impose the constraints |ψ| < 1

and |θ| < 1. Moreover, ω > 0, α1 ≥ 0, α2 ≥ 0, β ≥ 0 and α1 + α2 + β < 1 are as-

sumed to ensure positivity and stationarity of the conditional variance σ2
t . Model param-

eters are estimated jointly via quasi-maximum likelihood method to obtain a sequence of

estimates {(µ̂t, σ̂t), t = 1, ..., n}. The corresponding filtered returns are extracted as

Xt =
Rt − µ̂t
σ̂t

,

with Xt are assumed to be IID over t.

2.2. Marginal modelling

2.2.1. Structure

Let X be a generic random variable with the same distribution as Xt and denote its

distribution by FX . The intention is to approximate the unknown marginal distribution FX ,

while bearing in mind that the tails of the distribution constitute the primary interest. It is

natural then to adopt a semi-parametric approach in which only the tails of the distribution
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are modelled parametrically. More precisely, we use the generalized Pareto distribution for

both the lower and upper tails of FX and consider the empirical distribution in the central

part of FX . This representation of the marginal model was proposed by McNeil & Frey (2000)

and independently by Daníelsson & de Vries (1997) but specific to heavy-tailed data.

Let u−X be an appropriate low threshold that indicates the beginning of the lower tail

of FX such that the excesses
{

(u−X −Xt) : Xt < u−X
}
are approximately distributed according

to the GPD with scale and shape parameters ϕ− > 0 and ξ− ∈ R, respectively. Similarly,

let u+
X be a high threshold that indicates the beginning of the upper tail of FX such that

the excesses
{

(Xt − u+
X) : Xt > u+

X

}
are approximately distributed according to the GPD

with scale and shape parameters ϕ+ > 0 and ξ+ ∈ R, respectively. Therefore, the adopted

marginal model is given by

F̂X(x) =


F̃X(x) if x ∈

[
u−X , u

+
X

]
,

F̃X
(
u−X
) [

1 + ξ−(u−X − x)/ϕ−
]−1/ξ−

+
if x < u−X ,

1− F̃X

(
u+
X

) [
1 + ξ+(x− u+

X)/ϕ+
]−1/ξ+

+
if x > u+

X ,

(2)

where F̃X(x) =
∑n

t=1 I (Xt ≤ x) /n is the empirical distribution function of the variable X

and F̃X(x) = 1− F̃X(x) denotes the corresponding survivor function.

2.2.2. Estimation

There exists a wide variety of statistical methods to estimate the GPD parameters,

though the most widely used method is the maximum likelihood. As shown by Smith (1985),

provided that ξ > −0.5, the familiar regularity conditions hold so that the maximum like-

lihood estimators possess the desirable asymptotic properties of consistency, normality and

efficiency. Since the case ξ ≤ −0.5 rarely occurs in statistical applications, the method of

maximum likelihood provides an attractive choice for estimating the GPD parameters.

The marginal threshold u†X for † ∈ {−,+} is chosen at the lowest possible level for
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efficient estimation of the GPD parameters such that statistical inferences are insensitive

to any increase of threshold level. Several diagnostic methods are available to aid marginal

threshold selection (see e.g., Davison & Smith, 1990; Embrechts et al., 1997; Coles, 2001;

Choulakian & Stephens, 2001). Here we primarily follow the latter diagnostic method by

using the Anderson-Darling statistic.

2.2.3. Standardization

Finally we transform the marginal distribution of the original vector X to another

vector Y having a common marginal distribution FY . Following Hilal et al. (2011), we

transform our variables to have approximately standard Laplace margins. Thus we define

Y = F−1
Y

[
F̂X(X)

]
=

 log
[
2F̂X(X)

]
F̂X(X) ≤ 0.5,

− log
[
2
(

1− F̂X(X)
)]

F̂X(X) > 0.5.
(3)

Now define the following random variable:

†Yt =

 (−1)× Yt if † = −,

(+1)× Yt if † = +.

Note that both variables −Yt and +Yt have the same marginal distribution due to the

symmetry property of Laplace distribution. It is also important to note that the dependence

structure (copula) of the original vector X is preserved under the above transformation due

to the invariance property of the copula function under strictly increasing transformations

of the margins. The focus in the remainder of this section is on characterizing and modelling

the extremal dependence structure of the transformed vector Y.
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2.3. Dependence modelling

2.3.1. Formulation

Let {Yt = (Y1,t, ..., Yd,t) : t = 1, ..., n} be the sample of transformed (on Laplace scale)

filtered returns on the d financial assets under study, of which (Yt) constitutes a strictly

stationary process. Then, for some horizon H, we would like to develop a model that allows

us to capture the extremal dependence structure of the system (Yt−H+1, ...,Yt, ...,Yt+H−1).

However, it might be reasonable to conjecture that extreme return fluctuations are short-

lived events in the sense that their impact on future returns will not last for a long time

(see Chapter 4 in McNeil et al., 2005). To substantiate this conjecture, we set H = 2,

that is, the developed model intends to capture the dependence structure of the reduced

system (Yt−1,Yt,Yt+1) whenever one of its variables experiencing an extreme (large negative

or large positive) observation.

Our aim could be stated more formally as follows. Let ` ∈ {−1, 0, 1} be a time

lag. We want to capture the dependence structure of the variables Yi,t and Yj,t+` when the

former is extreme (large in modulus). Note that only the time lag ` matters rather than the

actual time t due to the stationarity of the process (Yt). Moreover, we want to allow for

asymmetric behavior in this dependence structure by differentiating between the cases when

the conditioning variable Yi,t is negative and when it is positive.

We would like to formulate a statistical model that identifies the behavior of quantiles

of the distribution of Yj,t+`|†Yi,t = y for large y. We denote such a conditional extremal

dependence model by M
(`)†
j|i , while the collection of all these models comprises what we refer

to as the dependence model.

To develop the model M
(`)†
j|i , we exploit the conditional approach of Heffernan &

Tawn (2004) for Laplace transformed variables. For tail region † and component i denote

by ∆†i all possible combinations (j, `) ∈ {{1, ..., d} × {−1, 0, 1}}\{(i, 0)}. We then make

the modelling assumption that there exist normalizing constants α(`)†
j|i ∈ [−1, 1] and β(`)†

j|i ∈
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(−∞, 1) such that for all fixed z =
(
z

(`)†
j|i

)
∈ R3d−1 and y > 0 the following condition holds:

lim
u→∞

Pr

†Yi,t − u > y,
Yj,t+` − α(`)†

j|i †Yi,t

†Y
β

(`)†
j|i

i,t

≤ z
(`)†
j|i : (j, `) ∈ ∆†i

∣∣∣∣∣∣ †Yi,t > u


= exp(−y)G†|i(z), (4)

where the joint distribution G†|i has non-degenerate marginal distributions G(`)†
j|i satisfying the

property limz→∞G
(`)†
j|i (z) = 1.4 A direct consequence of this condition, given that †Yi,t > u

as u→∞, is the independence property of the variables †Yi,t − u and

Z
(`)†
j|i,t =

Yj,t+` − α(`)†
j|i †Yi,t

†Y
β

(`)†
j|i

i,t

,

for each (j, `) ∈ ∆†i with limiting distributions being standard exponential for the former

and G(`)†
j|i for the latter.

Thus our statistical model M
(`)†
j|i is motivated by the assumption that condition (4)

holds exactly and that the associated independence property is satisfied over u ≥ u
(`)†
j|i .

Denote by †Yi(t) for t = 1, ..., n
(`)†
j|i the observations of the variable †Yi,t that exceed the

threshold u
(`)†
j|i and denote by Yj(t+`) and Z

(`)†
j|i(t) the corresponding observations of the vari-

ables Yj,t+` and Z
(`)†
j|i,t respectively. The model M

(`)†
j|i is then assumed to be well-represented

by the following semi-parametric regression model:.

Yj(t+`) = α
(`)†
j|i †Yi(t) + †Y

β
(`)†
j|i

i(t) Z
(`)†
j|i(t),

Z
(`)†
j|i(t)

IID∼ G
(`)†
j|i and †Yi(t) independent of Z(`)†

j|i(t). (5)

Finally, the dependence structure of the variable Yj,t+` and extreme †Yi,t that is im-

4The formulation of the limiting condition (4) is slightly different from the one given in Heffernan &
Tawn (2004).
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plied by the model M
(`)†
j|i can be categorized into either asymptotic dependence class or

asymptotic independence class including the three sub-classes of the latter by the parame-

ters (α, β)
(`)†
j|i =

(
α

(`)†
j|i , β

(`)†
j|i

)
. More precisely, the variables (†Yi,t, Yj,t+`) are asymptotically

dependent when (α, β)
(`)†
j|i = (1, 0), otherwise the variables are asymptotically independent

and exhibit according to the following categories:

1. Positive extremal dependence if 0 < α
(`)†
j|i < 1 or

{
α

(`)†
j|i = 0, β

(`)†
j|i > 0

}
.

2. Negative extremal dependence if −1 ≤ α
(`)†
j|i < 0.

3. Near extremal independence if α(`)†
j|i = 0 and β(`)†

j|i ≤ 0.

These three categories respectively imply that the probability of both variables †Yi,t and Yj,t+`

being extreme is greater than, less than and equal to what would be expected under the case

of independence.

2.3.2. Inference

To facilitate statistical inference for the dependence model formulated in the preceding

subsection, we construct the samples Y(−1), Y(0) and Y(+1) which represent respectively

yesterday’s, today’s and tomorrow’s return observations on the d financial assets under con-

sideration. More specifically, for each time lag `, we define a d-variate sample as

Y(`) = {(Y1,t, ..., Yd,t) : t = `+ 2, ...., `+ n− 1} .

Then the samples
(
†Y(0),Y(`)

)
are used to fit the conditional extremal dependence model M(`)†

j|i

given by (5). Model parameters (α, β)
(`)†
j|i are estimated by the quasi-maximum likelihood

method assuming that model residuals Z(`)†
j|i(t) are normally distributed with finite mean µ(`)†

j|i

and standard deviation σ(`)†
j|i , that is, by maximizing the following log-likelihood:

logL = −
n

(`)†
j|i∑
t=1

log

{
σ

(`)†
j|i †Y

β
(`)†
j|i

i(t)

}
+

1

2

Yj(t+`) − α
(`)†
j|i †Y

(`)†
i(t) − µ

(`)†
j|i †Y

β
(`)†
j|i

i(t)

σ
(`)†
j|i †Y

β
(`)†
j|i

i(t)


2 ,
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where notation follows the earlier conventions.

The residual distribution G(`)†
j|i is then estimated empirically from the sample

Yj(t+`) − α̂
(`)†
j|i †Yi(t)

†Y
β̂

(`)†
j|i

i(t)

: t = 1, ..., n
(`)†
j|i

 .

Note that for all indices j and lags ` that were considered, the sample †Y(0) was used

to define the conditioning variable †Yi,t. Accordingly, we have n(`)†
j|i = n

(`′)†
j′|i for any in-

dices j, j′ ∈ {1, ..., d} and time lags `, `′ ∈ {−1, 0, 1} with the obvious constraint that i 6= j

(respectively i 6= j′) when ` = 0 (respectively `′ = 0).

2.3.3. Simulation

To be able to simulate from the proposed dependence model, we define three 2d-

dimensional vectors corresponding to d financial assets that are tracked over two consecutive

trading days as follows:

Y = (Yt,Yt+1) , L = (1, ..., d, 1, ..., d) , T = (0, ..., 0, 1, ..., 1) .

Then consider a common dependence threshold uY defined as uY = max
{
u

(`)−
j|i , u

(`)+
j|i

}
where

the maximum is taken over ` ∈ {−1, 0, 1} and i, j ∈ {1, ..., d} with i 6= j when ` = 0.

Therefore, decompose the space R2d into the following regions:

R−I =

{
Y ∈ R2d : max

J∈{1,...,2d}
|YJ | = −YI > uY

}
for I = 1, ..., 2d,

R+
I =

{
Y ∈ R2d : max

J∈{1,...,2d}
|YJ | = +YI > uY

}
for I = 1, ..., 2d,

R0 =

{
Y ∈ R2d : max

J∈{1,...,2d}
|YJ | ≤ uY

}
,
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with the associated probabilities

P−I = Pr
(
Y ∈ R−I

)
= Pr

[
Y ∈ R−I

∣∣− YI > uY
]

Pr(−YI > uY),

P+
I = Pr

(
Y ∈ R+

I

)
= Pr

[
Y ∈ R+

I

∣∣+ YI > uY
]

Pr(+YI > uY),

P0 = Pr (Y ∈ R0) = 1−
∑
I

{P−I + P+
I }.

Since the variable †YI is marginally distributed according to the standard Laplace distri-

bution, the marginal probability Pr(†YI > uY) = exp(−uY)/2. On the other hand, the

conditional probability Pr
[
Y ∈ R†I

∣∣∣ †YI > uY

]
can be replaced with its Monte Carlo ap-

proximation so that

P †I ≈

{
1

K

K∑
k=1

I
{

Ỹ
†
|I ∈ R†I

}}
,

where the K vectors Ỹ
†
|I =

(
†ỸI , Ỹ

†
−I

)
5 are generated according to the following algorithm:

Algorithm 1

1. Sample a (4d + 1)-dimensional vector of natural numbers
(
k0, k

−
I , k

+
I

)
I=1,...,2d

, such

that K = k0 +
∑

I{k
−
I + k+

I }, from a multinomial distribution with probability vec-

tor
(
P0, P

−
I , P

+
I

)
I=1,...,2d

.

2. For each I = 1, ..., 2d, iterate the steps of Algorithm 2 until k†I simulated points Ỹ
†
|I

are accepted.

3. Sample with replacement k0 points from the observed data which fall within the em-

pirical region R0.

4. Randomize the order of the resulting sequence of simulated points.

Algorithm 2

1. Set †ỸI = uY + E where E ∼ Exponential(1).

5The subscript k of the generated vectors Ỹ
†
|I is suppressed for notational simplicity.

14



2. For each index pair (I, J) where J ∈ {1, ..., 2d}\{I}, find the corresponding index

pair (i, j) = (L[I],L[J ]) and time lag ` = T [J ] − T [I].6 Then consider using the

following estimates for the subsequent steps:

(
Â†J |I , B̂

†
J |I

)
=
(
α̂

(`)†
j|i , β̂

(`)†
j|i

)
and Ĝ†J |I = Ĝ

(`)†
j|i .

The latter is the empirical distribution associated with the residual sample

{
Z†J |I(t) = Z

(`)†
j|i(t) : t = 1, ..., n

(`)†
j|i

}
.

3. Denote by Â
†
|I and B̂

†
|I the (2d − 1)-dimensional vectors whose components are re-

spectively given by Â†J |I and B̂†J |I for J ∈ {1, ..., 2d}\{I}. Similarly, denote by Ĝ†|I
the (2d− 1)-dimensional distribution whose marginals are given by Ĝ†J |I .

4. Simulate Z̃
†
|I ∼ Ĝ

†
|I independently of †ỸI .

5. Obtain Ỹ
†
−I = Â

†
|I

{
†ỸI
}

+
{
†ỸI
}B̂†|I

Z̃
†
|I .

6. Reject the simulated point if Ỹ
†
|I =

(
†ỸI , Ỹ

†
−I

)
/∈ R†I .

3. Empirical analysis

3.1. Investment dataset

Our dataset consists of stock market indices for the G5 economies: United States (US),

United Kingdom (UK), France (FR), Germany (GR) and Japan (JP). Index values are in

terms of local currency and measured on a daily frequency at closing times (without ad-

justment for splits or dividends) collected from Datastream. The basic unit of analysis is

the daily logarithmic return (referred to as return thereafter) over the period from Jan-

uary 04, 2000 to December 31, 2009. Holidays and unscheduled market closures are treated

as missing values only if they are common to all investigated stock markets, otherwise they

6This is due to the stationarity of the process (Yt).
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are represented as zero returns. By doing so, we end up with a dataset comprising n = 2600

daily return observations per series, as shown in Figure 2. Visual inspection of the series

plots reveals that our data clearly possess non-stationarity in the variability.

US

Ja
n.

00

Ja
n.

01

Ja
n.

02

Ja
n.

03

Ja
n.

04

Ja
n.

05

Ja
n.

06

Ja
n.

07

Ja
n.

08

Ja
n.

09

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

UK

Ja
n.

00

Ja
n.

01

Ja
n.

02

Ja
n.

03

Ja
n.

04

Ja
n.

05

Ja
n.

06

Ja
n.

07

Ja
n.

08

Ja
n.

09

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

FR

Ja
n.

00

Ja
n.

01

Ja
n.

02

Ja
n.

03

Ja
n.

04

Ja
n.

05

Ja
n.

06

Ja
n.

07

Ja
n.

08

Ja
n.

09

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

GR

Ja
n.

00

Ja
n.

01

Ja
n.

02

Ja
n.

03

Ja
n.

04

Ja
n.

05

Ja
n.

06

Ja
n.

07

Ja
n.

08

Ja
n.

09

−
0.

05
0.

00
0.

05
0.

10

JP

Ja
n.

00

Ja
n.

01

Ja
n.

02

Ja
n.

03

Ja
n.

04

Ja
n.

05

Ja
n.

06

Ja
n.

07

Ja
n.

08

Ja
n.

09

−
0.

10
0.

00
0.

05
0.

10

Figure 2: Time series plot for the returns associated with the stock market indices: S&P 500 (US),
FTSE 100 (UK), CAC 40 (FR), DAX 30 (GR) and NIKKEI 225 (JP). The data span the period
from January 04, 2000 to December 31, 2009.

Summary statistics of the data are reported in Table 1 which are generally consistent

with previous studies. Average return is neither economically large nor statistically different

from zero (at 5% significance level) for each index. The variance estimates are comparable

among the five return series with the US and UK series having the lowest estimates. Over

the studied period, both the minimum and maximum return are realized for the Japanese

series. Finally, all series exhibit negative skewness and pronounced excess kurtosis relative to

the normal distribution and they show insignificant autocorrelations in their levels at almost
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all lags but positive and overwhelmingly significant autocorrelations in their absolute values

(cf. Figure 3).

Statistic Multiplier
US UK FR GR JP

Mean ×104 +2.175 +1.536 +1.312 +2.285 −2.510
Variance ×104 1.333 1.286 1.937 2.142 2.364
Kurtosis 9.541 6.830 4.978 5.261 5.708
Skewness ×10 −2.024 −1.135 −0.375 −1.338 −0.212
Minimum ×100 −9.470 −9.265 −9.472 −9.871 −12.111
Maximum ×100 10.957 9.384 10.595 10.797 13.235

Table 1: Summary statistics of the return series on the stock market indices: S&P 500 (US),
FTSE 100 (UK), CAC 40 (FR), DAX 30 (GR) and NIKKEI 225 (JP). The data span the period
from January 04, 2000 to December 31, 2009.

3.2. Return filtering results

As detailed in Section 2.1, our approach for filtering returns is market-specific in the

sense that the respective volatility process is expressed as a function of own past information

only through the use of the ARMA(1,1)-GARCH(2,1) process. It is evident from Figure 4

that standardizing return series by their respective estimated volatility processes successfully

filtered out the autocorrelation functions that were persistent in the absolute values of the

original return series. In view of this, we conclude that the filtered returns can be treated

as IID.

3.3. Marginal modelling results

To make statistical inferences about the marginal tail behavior of the filtered return

data, we implement the method described in Section 2.2. The Anderson-Darling statistic

suggests that one can choose more or less the same threshold exceedance probability for the

five filtered return series. In particular, the GPD models fitted to the smallest/largest 78

observations (equivalent to 3% of the filtered return data) were found to provide a reasonable

approximation for the tails of the marginal distributions. The selected marginal thresholds
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Figure 3: The sample autocorrelation functions of the return series (thick bars) as well as the absolute
return series (thin bars) associated with the stock market indices: S&P 500 (US), FTSE 100 (UK),
CAC 40 (FR), DAX 30 (GR) and NIKKEI 225 (JP). The data span the period from January 04, 2000
to December 31, 2009. The bands of the 95% confidence intervals for the autocorrelations of IID
Gaussian noise are shown as dashed lines for reference.

and the associated parameter estimates of the GPD models are given in Table 2. Selected

quantile plots are shown in Figure 5 to reinforce our judgment about the fitted marginal

models.

For each series of filtered returns, the lower tail threshold has slightly larger magnitude

than the corresponding upper tail threshold indicating asymmetric marginal distribution.

The point estimates suggest that the marginal distributions of the US, French and German

series exhibit heavy lower tails and short upper tails with a clear similarity in the marginal

tail behavior of the French and German series. This is in contrast with the UK series.

The marginal distribution of the Japanese series, on the other hand, is characterized with
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Figure 4: The sample autocorrelation functions of the absolute values of the filtered return series
associated with the stock market indices: S&P 500 (US), FTSE 100 (UK), CAC 40 (FR), DAX 30
(GR) and NIKKEI 225 (JP). The data span the period from January 04, 2000 to December 31, 2009.
The bands of the 95% confidence intervals for the autocorrelations of IID Gaussian noise (given
by ∓2/

√
n where n is the sample size) are shown as dashed lines for reference.

both tails being heavy. However, these results are not conclusive since all shape parameter

estimates are not significantly different from zero (at 5% level).

3.4. Dependence modelling results

3.4.1. The model fit

An important assumption for the validity of the the conditional extremal dependence

model M
(`)†
j|i is the independence of its residuals from the value of the conditioning variable

used to define them. Thus the dependence threshold u(`)†
j|i can be chosen on the basis of this

feature besides assessing the stability of model parameter estimates over higher thresholds.

Ideally, we would like to go through these diagnostics for all the considered 140 models.
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Panel A. Lower Tail
i US UK FR GR JP
u−Xi

−2.093 −2.139 −2.007 −1.991 −2.022
ϕ−i 0.414 (0.069) 0.496 (0.089) 0.431 (0.078) 0.397 (0.070) 0.469 (0.086)
ξ−i 0.228 (0.126) −0.010 (0.138) 0.213 (0.142) 0.218 (0.137) 0.209 (0.146)
AD 0.656 0.356 0.121 0.203 0.280
CV 0.713 {0.867} 0.814 {0.997} 0.713 {0.867} 0.713 {0.867} 0.713 {0.867}

Panel B. Upper Tail
i US UK FR GR JP
u+
Xi

1.810 1.734 1.728 1.801 1.784
ϕ+
i 0.470 (0.076) 0.305 (0.051) 0.445 (0.065) 0.372 (0.067) 0.339 (0.056)

ξ+
i −0.185 (0.116) 0.068 (0.122) −0.066 (0.094) −0.077 (0.141) 0.074 (0.122)
AD 0.302 0.251 0.274 0.480 0.172
CV 0.852 {1.047} 0.781 {0.955} 0.814 {0.997} 0.814 {0.997} 0.781 {0.955}

Table 2: The marginal modelling results for the filtered returns on the G5 stock market indices over
the period from January 04, 2000 to December 31, 2009. The lower/upper tail marginal thresholds
all have empirical exceedance probability equals 3%. The maximum likelihood (ML) estimates of the
GPD parameters are obtained under cross-sectional independence of the investigated series and the
associated standard errors (between parentheses) are calculated based on the asymptotic normality
of the ML estimators. The last two lines in each panel report the Anderson-Darling AD statistics
and the corresponding (approximated) critical values CV at 10% level and {5%} level.

Since this is practically infeasible, we examine selected models in order to decide on the

appropriate threshold non-exceedance probability FY
(
u

(`)†
j|i

)
. The maximum value of these

probabilities will then be used to determine a common threshold uY above which all the

conditional extremal dependence models are fitted. In our implementation, the dependence

threshold is taken FY (uY ) = 0.9.

Although some insights into the characteristics of the extremal dependence structure

of the data can be gained by looking at the model parameter estimates (not reported),

it is important to stress that the interpretation of the results is not straightforward and

conclusions regarding the strength of the extremal dependencies among stock markets should

not be solely based on the relevant estimates of (α, β)
(`)†
j|i because this is likely to miss

the importance of the distribution of model residuals Z(`)†
j|i . To overcome this difficulty, in

Section 3.4.2 we introduce a convenient way to quantify the amount of association between
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Figure 5: Selected quantile plots for the marginal tails. The model-based quantiles estimated over a
range of threshold probabilities p ≥ 0.97 are shown by the solid line, while the empirical counterparts
are shown as points. The dashed lines in each plot represent the 95% confidence intervals calculated
based on the asymptotic normality of the maximum likelihood estimators.

the variables Yi,t and Yj,t+` when the former is attaining a large negative/positive value

(relative to the threshold uY ) under the assumption that the conditional extremal dependence

model M
(`)†
j|i provides a good description to this association.

3.4.2. The model summary

For an extreme level y > uY , we summarize the conditional distribution of Yj,t+`|†Yi,t =

y by its median ỹ under the fitted model M
(`)†
j|i which is given by

ỹ = α̂
(`)†
j|i y + yβ̂

(`)†
j|i median

{
Z

(`)†
j|i

}
.
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We then define the following summary measure

T(`)†
j|i (y) =

 Pr{†Yi,t > y}/Pr{Yj,t+` ≤ ỹ} if † = −,

Pr{†Yi,t > y}/Pr{Yj,t+` > ỹ} if † = +.

The above formulation of the summary measure implies that T(`)†
j|i (y) takes values between 0

and 1. Thus a value of T(`)†
j|i close to zero (close to one) can be interpreted as follows. Return

in stock market j is nearly independent of (almost identical to) the extreme return in stock

market i when the former is realized `-step from the latter.

We have evaluated T(`)†
j|i (y) for FY (y) ∈ {0.99, 0.999, 0.9999} with i 6= j. In what

follows, we discuss the results for zero-lag and one-lag ahead relationships only (i.e. ` ∈

{0, 1}) because of their obvious interpretation from a forecasting point of view. Overall, the

measure T(`)†
j|i (y) has small to moderate values that are steadily decreasing with the increase

of severity of the conditioning event y, indicating that asymptotic dependence is not an

appropriate description for the extremal dependence structure of the G5 stock markets.

Since results were found to be qualitatively similar over y, we decided to present those

associated with FY (y) = 0.99 only. We have plotted the corresponding values of T(`)†
j|i (y) in

Figures 6 and 7 along with their bootstrap-based confidence intervals.

The measure T(`)†
j|i (y) corresponding to the contemporaneous extremal dependencies

among the European stock markets takes values within the range (0.3, 0.6) in both tail

regions, pointing to a relatively strong degree of extremal dependence particularly when

the French and German series are concerned. The results regarding the lagged extremal

dependencies are mixed. For example, the Japanese stock market is fairly dependent on

extreme one-day lagged (negative or positive) returns originated in the other stock markets.

On the other hand, the US stock market appears to be only weakly dependent on the other

stock markets when conditioning upon their extreme one-day lagged returns. A similar

finding is obtained for the three European stock markets when conditioning on the Japanese

extreme one-day lagged returns.
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Figure 6: Summarizing the contemporaneous (` = 0) extremal dependencies among the G5 stock markets by the measure T(`)†
j|i (y) evaluated

at FY (y) = 0.99 with † = − for the upper panel and † = + for the lower panel. The vertical lines along the top of each bar represent
the 95% bootstrap confidence intervals calculated on the basis of 1000 replicates.
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Figure 7: Summarizing the lagged (` = 1) extremal dependencies among the G5 stock markets by the measure T(`)†
j|i (y) evaluated

at FY (y) = 0.99 with † = − for the upper panel and † = + for the lower panel. The vertical lines along the top of each bar represent
the 95% bootstrap confidence intervals calculated on the basis of 1000 replicates.
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3.5. Portfolio risk assessment

We introduce a multivariate version of the tail dependence coefficients defined in equa-

tions (1) to quantify the amount of dependence between portfolio constituent assets in the

tail regions. It should be noted, however, that the tail dependence coefficient is a limit prop-

erty that cannot be achieved in practice. For this reason, we focus our discussion on a finite

approximation. For two disjoint index sets I, J ⊂ {1, ..., d}, consider the following measures:

λ−
J(`J )|I(`I )(p|q) = Pr

{⋂
j∈J

{
Yj,t+`j < VaRp

}∣∣∣∣∣⋂
i∈I

{Yi,t+`i < VaRq}

}
,

λ+

J(`J )|I(`I )(p|q) = Pr

{⋂
j∈J

{
Yj,t+`j > VaRp

}∣∣∣∣∣⋂
i∈I

{Yi,t+`i > VaRq}

}
,

where `i, `j ∈ {−1, 0, 1} are time lags and p, q ∈ (0, 1) are probability levels. Given that losses

(gains) of each asset i ∈ I exceed their respective VaR on certain days, the first (second)

measure gives the probability that all the other relevant assets indexed by j ∈ J will realize

losses (gains) worse (better) than their respective VaR on some days which are specified by

the time lags used in the definition of the measure of interest. Moreover, when both index

sets reduce to single elements i, j such that the associated probability levels p, q are equal,

then λ†
j(`j)|i(`i)

(p|q) can be considered as a probability measure of dependence with values

less than, equal to and greater than q indicating that the associated variables are negatively

dependent, independent and positively dependent at the specified probability level p = q

and in the tail region †, respectively.

When empirical estimates of these measures are reliable, then a comparison of these

measures with their model-based counterparts can serve as a diagnostic tool to verify the

ability of the proposed dependence model to quantify the amount of dependence among

the variables of interest in the lower and upper tail regions. We have done this for our

data. More specifically, for all the possible combinations (i, j, †) ∈ {US,UK,FR,GR, JP}2×

{−,+}, we estimated the measures λ†
j(0)|i(0)(p|q) and λ†

j(1)|i(0)(p|q). Two typical values for

the conditioning probability level q have been considered so as to capture extreme market
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fluctuations, namely q = 0.1 when looking at the lower tail relationships (i.e. when † = −)

and q = 0.9 when looking at the upper tail relationships (i.e. when † = +). On the other

hand, we have set p ≤ q in the former case and p ≥ q in the latter.

Selected plots are displayed in Figure 8 which show that the model-based estimates

closely match their empirical counterparts, demonstrating that the model captures the ex-

tremal dependence structure of the data. It is also interesting to note that when p = q, the

corresponding estimates of the measure λ†
j(0)|i(0)(p|q) > 10%. This signifies the international

stock markets with positive contemporaneous extremal dependencies. More precisely, the

probability that two stock markets experiencing large negative/positive returns on a particu-

lar day is greater than what would be expected in the case of independence. The same is true

for the lagged extremal dependencies for which λ†
j(1)|i(0)(p|q) > 10% when conditioning on

large US returns (i = US) or when focusing on the Japanese stock market returns (j = JP).

We have also looked at assessing risk of a portfolio diversified among the G3 (the US,

UK and Japanese) stock markets. These markets open and close almost sequentially. This

special time structure of the three markets should be accounted for when assessing how

likely are extreme events generated from any two of these markets to exert extreme events in

the remaining market. For example, valuable information for UK investors comes from the

Japanese stock market on the same day as well as that coming from the US stock market on

the previous day. Thus the following measures are of interest:

λ−
UK(0)|(JP(0),US(−1))

(p|q) = Pr {YUK,t < VaRp| (YJP,t < VaRq) ∩ (YUS,t−1 < VaRq)} ,

λ†
(UK(0),JP(0))|US(−1)

(p|q) = Pr {(YUK,t < VaRp) ∩ (YJP,t < VaRq)|YUS,t−1 < VaRq} .

In our empirical analysis, these measures have been estimated at the same probability

levels p and q that were previously considered. The corresponding plots, displayed in Fig-

ure 9, are fairly acceptable with a good agreement between the model-based and empirical

estimates.
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Figure 8: The plots display empirical estimates (shown as points) versus model-based estimates (shown as continuous lines) of the
measures specified above where the time lag ` = 0 (contemporaneous relationships) for the black colored plots and ` = 1 (one-day lagged
relationships) for the gray colored plots.
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Figure 9: The plots display empirical estimates (shown as points) versus model-based estimates
(shown as continuous lines) of the measures specified above.

4. Risk management strategies

The emphasis here is on the economic value of adequately capturing the extremal

dependence structure of the data at hand. Three strategies are considered to model the joint

distribution of financial asset returns, all identical in the filtering and marginal models but

differing in their assumptions regarding the (extremal) dependence structure. The competing

dependence models are our extreme-value-based model (referred to as EV-strategy) and two

copula-based models which use the normal copula (NC-strategy) or Student’s t-copula (TC-

strategy).
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By working with these two copulas, we impose a constraint on the type of tail depen-

dence for each pair of the variables under study. The extreme-value-based model, on the

other hand, incorporates both types of tail dependence and allows for heterogeneity among

the different pairs.

To illustrate the differences between the three strategies, we estimate the one-day joint

and conditional loss probabilities for the G5 stock market index returns. The day of interest

is January 04, 2010 (the first trading day in the year 2010) and will be denoted by t∗. To be

more precise, define the following Bernoulli random variables:

Ii(q) := I {Ri,t∗ < µi,t∗ + σi,t∗ × FXi
(q)} ∼ Bernoulli(q),

where i ∈ {US,UK,FR,GR, JP} and q ∈ {1%, ..., 10%}. Interest lies in estimating the

following probabilities:

λjoint(q) = Pr

{∑
i

Ii(q) = 5

}
,

λcond(q) = Pr

{∑
i

Ii(q) = 5

∣∣∣∣∣∑
i

Ii(q) ≥ 1

}
.

To this end, we have implemented the three strategies using return observations from Jan-

uary 04, 2000 through December 31, 2009. After estimating the dependence model upon

which a specific risk management strategy is based, a K-sample of transformed filtered re-

turns {Ỹi,t∗(k) : k = 1, ..., K} is generated by Algorithms 1 and 2. The corresponding sample

of original returns is given by

R̃i,t∗(k) = µ̂i,t∗ + σ̂i,t∗ × F̂−1
Xi

[
FY

(
Ỹi,t∗(k)

)]
.
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It is this sample which we use to estimate the probabilities of interest. Specifically,

λ̂joint(q) =
1

K

K∑
k=1

{∑
i

I(k)
i (q) = 5

}
,

λ̂cond(q) =

∑K
k=1

{∑
i I

(k)
i (q) = 5

}
∑K

k=1

{∑
i I

(k)
i (q) ≥ 1

} ,
where

I(k)
i (q) := I

{
Ri,t∗(k) < µ̂i,t∗ + σ̂i,t∗ × F̂Xi

(q)
}
.

The results are displayed in Figure 10 along with the estimates obtained under exact

independence and perfect dependence. If the EV-strategy represents the true data generat-

ing process, then Figure 10 shows that the NC-strategy (tail independence strategy) tends

to underestimate the loss probabilities whereas the TC-strategy (tail dependence strategy)

tends to overestimate them. It is also apparent from the figure (left plot) that the de-

pendence inferred by each strategy is inconsistent with the exact independence and perfect

dependence.

5. Discussion

We have proposed a statistical model based on multivariate extreme value theory that

is amenable to financial applications. The model incorporates several empirical properties

of financial returns with respect to their marginal and dependence tail behavior. It provides

flexibility in modelling both asymptotically dependent and asymptotically independent asset

returns in a unified framework. The proposed model was subsequently used to analyze

the extremal interdependencies across the world’s five major economies over 10 years of

market activity. The model was shown to be successful in representing the observed extremal

dependence structure of the analyzed data in terms of several performance measures.

We have considered one-day ahead forecast in this work, but the generalization is
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Figure 10: The estimated one-day (January 04, 2010) joint loss probability λjoint(q) (left plot) and
conditional loss probability λcond(q) (right plot) for the G5 stock market index returns evaluated at
different probability levels q and under several degrees/types of dependence: lower dashed line ≡
exact independence; upper dashed line ≡ perfect dependence (scaled by 10); light-gray line ≡ tail
independence (NC-strategy); black line ≡ modelled dependence (EV-strategy) and dark-gray line
≡ tail dependence (TC-strategy). The parameters pertain to the marginal models as well as to the
latter three dependence models were estimated using return observations from January 04, 2000
through December 31, 2009.

straightforward by extending the investment horizon H though the computational burden

will increase. Moreover, despite the flexibility of the proposed model, it suffers from different

levels of uncertainty surrounding its estimation. This is a typical problem in extreme value

analysis. The problem is intensified when one considers a multivariate situation. These

uncertainties can be naturally accounted for by Bayesian methods. However, details of such

improvement are left for future research.
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