Hamermesh, Daniel S.; Stancanelli, Elena G. F.

Working Paper
Long Workweeks and Strange Hours

IZA Discussion Papers, No. 8423

Provided in Cooperation with:
IZA – Institute of Labor Economics

Suggested Citation: Hamermesh, Daniel S.; Stancanelli, Elena G. F. (2014) : Long Workweeks and Strange Hours, IZA Discussion Papers, No. 8423, Institute for the Study of Labor (IZA), Bonn

This Version is available at:
http://hdl.handle.net/10419/102325

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Long Workweeks and Strange Hours

Daniel S. Hamermesh
Elena Stancanelli

August 2014
ABSTRACT

Long Workweeks and Strange Hours*

American workweeks are long compared to other rich countries'. Much less well-known is that Americans are more likely to work at night and on weekends. We examine the relationship between these two phenomena using the American Time Use Survey and time-diary data from 5 other countries. Adjusting for demographic differences, Americans’ incidence of night and weekend work would drop by about 10 percent if European workweeks prevailed. Even if no Americans worked long hours, the incidence of unusual work times in the U.S. would far exceed those in continental Europe.

JEL Classification: J22, J08

Keywords: night work, weekend work, shorter hours

Corresponding author:

Daniel S. Hamermesh
Royal Holloway University of London
Department of Economics
214 Horton Building
Egham, Surrey TW20 0EX
United Kingdom
E-mail: Daniel.Hamermesh@rhul.ac.uk

* We thank Gerald Oettinger and Stephen Trejo for helpful comments.
I. Introduction—The Question

It is well known that workers in the United States now work more hours than those in other wealthy countries. As Table 1 shows, this represents a sharp change from what was observed in the fairly recent past. A substantial and rising fraction of the labor force also works long hours (Kuhn and Lozano, 2008). The causes of these changes no doubt include rising wage inequality and many other phenomena (see Bell and Freeman, 2001), but our interest here is not in the source of this striking change. Rather, we examine its relationship to another, much less well-known phenomenon: The greater propensity of American workers to be working on weekends and at night than workers elsewhere (Burda et al, 2008).

Working at night or on weekends makes one’s non-work time less desirable because it is asynchronous with that of others’ with whom one might wish to socialize (Jenkins and Osberg, 2005). Evidence for the inferiority of night and weekend work is its disproportionate performance by people with fewer skills and by minorities, and that it offers wage premia to otherwise identical workers to elicit a sufficient labor supply to meet demand (Kostiuk, 1990; Shapiro, 1995). American workers appear to be performing more work at less desirable times as well as working longer hours than their counterparts in other wealthy countries.

If someone works 120 hours per week, some work must be performed at night, and it is nearly certain that some will be performed on weekends. Almost nobody reports that many weekly hours; but with Americans reporting longer hours than workers in other wealthy countries, a reasonable question is: To what extent is the high incidence of work on weekends and at night related to Americans’ long work hours? Put in the context of policy, how much work would be performed at night or on weekends in the United States if the country enacted policies that reduced weekly and annual hours of work, such as the laws limiting overtime and mandating
vacations that exist in many continental European economies? Answering these questions is now possible because the creation of the American Time Use Survey (ATUS) has generated large amounts of information on American workers’ timing of work, and because the Multinational Time Use Study (MTUS) allows for some comparability with time-use studies in other countries.1

II. Measuring the Amount and Timing of Work

The ATUS and the country studies included in the MTUS contain two types of information on work time: 1) Recall information on hours of work in the past week, similar or identical to information available in the American Current Population Survey (CPS); and 2) A time diary of activities undertaken by the individual in the previous twenty-four hours. In addition to the ATUS from 2003 through 2011 for the U.S., we use the MTUS information for Germany, 2001-02; the Netherlands, 2000 and 2005; Spain, 2002-03, and the United Kingdom, 2000-01.2 We also use information from the original time-diary survey for France for 1998-99, giving us data from five industrialized nations to compare to the U.S.3

The upper panel of Table 2 provides information on the percent distributions and the averages of weekly work hours of employees under age 65 in the U.S. and the five European countries. (The self-employed are excluded throughout this study.) The weekly averages of hours worked corroborate the longer work years in the U.S. that are suggested by Table 1. Indeed, the

1See Hamermesh et al (2005) and Gershuny and Fisher (2014) for descriptions of the ATUS and MTUS respectively.

2We selected these countries to have representative coverage of different types of institutional contexts, with concerns for sample size and the years when the time diaries were collected. The U.K. labor market is not heavily regulated; France has a highly regulated labor market; Spain’s labor market is less regulated than the French; Germany has very structured labor markets, in which vocational training is much more widespread than in other European countries, and the Netherlands has an intermediate level of labor-market regulation. Unfortunately, given their small sample sizes we could not include time-use surveys from any Scandinavian countries.

3Calculating the statistics and doing the estimation on the MTUS data for France yielded essentially identical results.
rankings by length of weekly or annual work time of the four countries on which both tables
present data are identical. Not only is the average workweek longest in the U.S.: Table 2 shows
that, except for the U.K., it has a much higher percentage of employees working 45+ hours—
nearly double that of Germany, and more than double those of France, the Netherlands and
Spain.

In describing the timing of work in the ATUS and the MTUS components we deal only
with paid work time, ignoring commuting time, time spent off the job in job search, and unpaid
work.4 We consider a sample respondent as working on weekends if s/he completed a diary on a
Saturday or a Sunday and reported performing any paid work. Table 2 indicates that work on
weekends is more common in the U.S. than in the other countries, although the U.K. approaches
the U.S. in the incidence of such work.5

The second category of “strange” work that we examine is work at night, defined here as
any work performed between 10PM and 6AM inclusive, using the information from the diary on
the time when activities are performed, which is consistent across the countries considered.6 On
a typical day of the week, one-quarter of American workers perform some work during this
period (the overwhelming majority of them at its fringes). As Table 2 shows, such work is much
more common in the U.S. than in continental Europe, and also more prevalent than in the U.K.
(which throughout these comparisons is most similar to the U.S.).

4Throughout this study we use sampling weights to account for both differential participation in the survey of
sampled respondents by their demographic characteristics and, more important in some of the surveys, including the
ATUS, for the purposely uneven sampling of respondents across days of the week.

5The statistics should be interpreted as indicating whether the typical respondent works at all on either Saturday or
Sunday. Because the ATUS only collects time diaries for one day per respondent, we cannot examine the incidence
of working on both weekend days.

6We include spells of paid work that began at or after 10PM or before 6AM, and those that ended after 10PM or at
or before 6AM. The MTUS data for Germany for 2001-02 do not have information on time of day, so we linked
those data to the raw German data for that survey to obtain the incidence of night work.
While both types of strange work are more widely observed in the U.S. than in the other countries we have considered, conditional on performing such work its intensity differs little between the U.S. and those countries. Indeed, while American employees are more likely to work nights and weekends than their European counterparts, in neither of those categories is the amount of such work that each performs higher than in all of the other five countries. The American labor market is unique in the incidence of strange work, not in its intensity.

III. The Determinants of “Strange” Work in the U.S.

We estimate the probability that a respondent in the ATUS 2003-11 works on the weekend and/or at night on a typical day as determined partly by the CPS-based information on the length of the workweek that is included with the time diaries. Thus our focus is on a vector of indicators of hours worked the previous week: 1-19 hours, 20-34, 35-44, 45-54, 55-64, and 65+. We also include a number of demographic measures, since we assume in our simulations that these would not change if the distribution of hours worked changed. These include indicators of gender, marital status and an interaction of the two. Also held constant is the age of the youngest child in the household (two indicators), immigrant status, public employment and residence in an urban area. Educational attainment is divided into five categories: Less than 12 years of schooling, 12, 13-15, 16 and 16+ years. Age is indicated by three categories: 34 or less, 35-49 and 50-64. We also include a vector of indicators for the year of the survey.

We concentrate on the incidence of work at strange times, because the incidence, not the intensity dimension, is where the U.S. labor market differs from others. The results of estimating

7The information on the previous workweek is obtained when the diary is completed.

8We re-estimated the models in this section with indicators reflecting alternative disaggregations of weekly work hours, with almost no changes in the substantive results obtained here. The same absence of change results if we use a cubic in hours instead of a vector of indicators.
these probits are presented in Table 3. Here we show only the probit derivatives/marginal effects of the indicators comprising the vector of hours worked. In both equations the probability of the particular time of work rises as hours increase beyond a standard workweek: Those with the longest hours are more likely than those with shorter (but still relatively long) hours to work at night or weekends. Indeed, the probability of working at night on a particular day of the week increases monotonically in the number of hours worked. That is not true for work performed on weekends: Those working a standard workweek are less likely to perform such work than those with shorter workweeks. In the U.S. the small (compared to those in the other countries shown in Table 2) part-time workforce is more likely to work on weekends than are full-time workers. The effects of differences in weekly hours on these probabilities are not small relative to the mean probability. Moving from the 50 percent of workers putting in a standard week (35-44 hours per week) to somebody among the 8 percent working 55-64 hours nearly doubles the incidence of both strange times of work.

While our focus is not on the other determinants of timing of work, the directions of their impacts is informative about the desirability of these types of work. Immigrants are more likely than otherwise identical natives to work on weekends, while those who are better educated or older are less likely to work then. Both findings suggest the undesirability of work at such times. The results on the incidence of night work are more mixed, but the predominant effect is a negative one of education on the incidence of night work, suggesting that it too is inferior on average.

9If we restrict the estimates to timing of work performed at the workplace, thus excluding work performed at home, there is little qualitative change in the results. (See Oettinger, 2011, for an examination of worked performed at home in the U.S., where such work is more common than in these European countries.)

10We do not distinguish hours worked on the main job from hours on second or additional jobs, so these patterns could also capture the fact that multiple job-holding more is more common in the U.S. than in Europe. Of course, this possibility does not contradict our argument that Americans work longer hours and more often at strange times.
IV. The Impacts of Shorter Hours on Strange Work

Using the probit coefficients (not the derivatives listed in Table 3), we can calculate how the incidence of each of these types of work would change if the demographic characteristics of the U.S. work force remained the same, but the distribution of work hours became what are observed in the other five countries. The first column of the upper panel in Table 4 repeats the incidence of the two types of work in the U.S., while each succeeding column shows by how much it would change if the distribution of actual work hours in the U.S. were replaced with that in the other country. Even with the highly standardized distribution of work hours in France and the absence of long hours in Spain, the declines in the incidence of night and weekend work in the U.S. would be fairly small. Only using the French distribution of work hours would any probability, that of weekend work, fall by 50 percent of the gap between the incidence in the U.S. and in that country. Taking the averages of the effects shown in the Table, the incidence of weekend and night work in the U.S. would fall by 1.9 and 2.3 percentage points respectively.

What if American employers were induced, perhaps by a graduated scheme of overtime penalties, to cut long work hours so that all of those now working 55 or more hours per week saw their work time cut back to 45-54 hours per week? In that case the percentages of workers performing work on the weekend or at night would drop by 2.2 and 1.0 percentage points respectively. Even if the workweeks of all those working 45 or more hours were cut back to 35-44 hours per week, the percentages would decline by only 5.5 and 1.8 percentage points.

As a check on these results, for most of the other countries and in most cases for both types of strange work we can ask how much more likely such work would be if the U.S. distribution of weekly work hours prevailed. Thus for both types of work for France, Germany, the Netherlands and the U.K. we estimate probits describing the probability of work on
weekends or at night. (For Spain we cannot estimate the probit describing the incidence of night work.)

In all five European countries the indicators for educational attainment are for less than secondary education, secondary education, or more. The probits estimated for the U.K. and Spain exclude immigrant status, while the Dutch and German results exclude that and the indicator of urban residence. All four are otherwise specified identically to the probits estimated for the U.S. and presented in Table 3, while the French probits are specified identically to the U.S. equations. For each country we also include indicators for the second year in the survey(s).

Using the estimated impacts of weekly work hours on these probabilities for each of the five countries, we impute the incidence of such work in each under the alternative assumption that the (longer) U.S. weekly workweek prevailed there. The bottom panel in Table 4 shows in each case the changes in incidence (subtracting the actual from the simulated incidence in each country). The average simulated changes in the incidence of weekend work and night work using these estimates are +1.5 and +0.8 percentage points respectively. The average increase in the incidence of weekend work is similar in size, but, as expected, of opposite sign, to that simulated using the U.S. structure and the other countries’ weekly work hours. That for night work, for which the data only allowed simulations for four of the five countries, is much smaller than the average simulated impact using the U.S. structure and the foreign work schedules. Both, however, reinforce the conclusion that most of the European-American differences in strange work timing are not due to the long American workweek.

V. Conclusions and Implications

Using data from time diaries for the U.S. and five European countries, we have shown how much greater the incidence of work on weekends and at nights is in the U.S. compared to
those in the other countries. Combining these data with information from the same surveys on
the lengths of workweeks, we have examined the relationship between the longer American
workweeks and the high incidence of what we have denoted as strange work.

Almost one in every three workers performs some weekend work in the U.S., compared
to one in every five in France, Germany or the Netherlands; and one in every four workers works
at night (between 10PM and 6AM, using a standard definition) in the U.S., compared to one in
eye every fourteen in France and the Netherlands. The U.K., while looking more like the U.S. than
the rest of Europe, is still surpassed by the U.S. in terms of strange hours.

The simulation results, both those using other countries’ distributions of work time and
those imposing the distribution of weekly work hours in the U.S. on their work patterns, suggest
that only a small part of the relatively high incidence of such work in the U.S. is due to
Americans’ long work weeks. The large majority of the differences between the U.S. and other
countries appears to result from differences in the way that work is structured in America.
Whether these fundamental differences result indirectly from some unique characteristics of
American and European culture or directly from their expression or absence of expression
through legislation or institutions is unclear.

Our first purpose here has been to expose a few facts that are not well known, in
particular, the very high incidence of work at unusual times in the U.S. compared to other rich
countries, coupled with roughly the same intensity of such types of work as elsewhere. Our
second purpose was to demonstrate how these high incidences relate to the well-known long
workweeks that exist in the U.S. This latter demonstration of the uniqueness of the American
labor market, independent of its long work hours, calls for an explanation of this additional
unusual aspect of work in the U.S. Whatever the explanations for the higher incidence of work
at night and weekends in the U.S. than in Europe, its consequences may be quite dramatic in terms of fewer interactions with others and possibly worse health outcomes for Americans than Europeans.
REFERENCES

<table>
<thead>
<tr>
<th>Country</th>
<th>1979</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>1832</td>
<td>1728</td>
</tr>
<tr>
<td>Canada</td>
<td>1841</td>
<td>1710</td>
</tr>
<tr>
<td>Denmark</td>
<td>1636</td>
<td>1546</td>
</tr>
<tr>
<td>Finland</td>
<td>1869</td>
<td>1672</td>
</tr>
<tr>
<td>France</td>
<td>1804</td>
<td>1479</td>
</tr>
<tr>
<td>Japan</td>
<td>2126</td>
<td>1745</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1556</td>
<td>1381</td>
</tr>
<tr>
<td>Sweden</td>
<td>1530</td>
<td>1621</td>
</tr>
<tr>
<td>U.K.</td>
<td>1813</td>
<td>1654</td>
</tr>
<tr>
<td>U.S.</td>
<td>1829</td>
<td>1790</td>
</tr>
</tbody>
</table>

Source: *OECD Employment Outlook, 2013*
<table>
<thead>
<tr>
<th>Hours:</th>
<th>Percent Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-19</td>
<td>5.2 5.8 8.4 17.0 9.4 13.3</td>
</tr>
<tr>
<td>20-34</td>
<td>12.5 16.6 17.5 27.1 21.5 15.8</td>
</tr>
<tr>
<td>35-44</td>
<td>50.5 74.0 56.5 40.9 62.7 39.7</td>
</tr>
<tr>
<td>45-54</td>
<td>19.6 2.6 10.6 10.1 4.8 17.8</td>
</tr>
<tr>
<td>55-64</td>
<td>8.3 0.6 5.0 3.7 1.0 8.4</td>
</tr>
<tr>
<td>65+</td>
<td>3.9 0.4 2.0 1.2 0.6 5.0</td>
</tr>
</tbody>
</table>

| Average Weekly Hours of Work: | 41.0 35.7 36.9 32.7 34.6 38.4 |

| Weekend Work: |
| Percent Working | 29.2 21.8 22.4 18.7 9.6 25.5 |

| Conditional Average (Hours/Day) | 6.0 5.2 4.5 5.2 6.5 5.9 |

| Night Work (10PM-6AM): |
| Percent Working | 26.6 7.2 13.0 6.9 ------ 18.6 |

| Conditional Average (Hours/Day) | 1.9 2.3 1.5 1.8 ------ 1.9 |

<table>
<thead>
<tr>
<th>Ind. Var.</th>
<th>Weekend Work</th>
<th>Night Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS Hours/Week:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-34</td>
<td>0.0660</td>
<td>0.0838</td>
</tr>
<tr>
<td></td>
<td>(0.0158)</td>
<td>(0.0143)</td>
</tr>
<tr>
<td>35-44</td>
<td>-0.0476</td>
<td>0.1784</td>
</tr>
<tr>
<td></td>
<td>(0.0133)</td>
<td>(0.0114)</td>
</tr>
<tr>
<td>45-54</td>
<td>0.0642</td>
<td>0.1995</td>
</tr>
<tr>
<td></td>
<td>(0.0149)</td>
<td>(0.0142)</td>
</tr>
<tr>
<td>55-64</td>
<td>0.2080</td>
<td>0.2697</td>
</tr>
<tr>
<td></td>
<td>(0.0181)</td>
<td>(0.0161)</td>
</tr>
<tr>
<td>65+</td>
<td>0.3886</td>
<td>0.3652</td>
</tr>
<tr>
<td></td>
<td>(0.0198)</td>
<td>(0.0174)</td>
</tr>
<tr>
<td>Pseudo-R²</td>
<td>0.049</td>
<td>0.036</td>
</tr>
<tr>
<td>N =</td>
<td>32442</td>
<td>64775</td>
</tr>
</tbody>
</table>

*The probit equations also include indicators for male, married, male and married, public-sector job, immigrant status, urban residence, vectors of indicators of the age of the youngest child in the household and of educational attainment, and indicators for the year of the survey. Standard errors are in parentheses.
Table 4. Changes in Probabilities of Weekend and Night Work

<table>
<thead>
<tr>
<th></th>
<th>Actual U.S.</th>
<th>France</th>
<th>Germany</th>
<th>Netherlands</th>
<th>Spain</th>
<th>U.K.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekend Work</td>
<td>0.293</td>
<td>-0.045</td>
<td>-0.018</td>
<td>-0.010</td>
<td>-0.034</td>
<td>0.010</td>
</tr>
<tr>
<td>Night Work</td>
<td>0.266</td>
<td>-0.015</td>
<td>-0.015</td>
<td>-0.041</td>
<td>-0.025</td>
<td>-0.017</td>
</tr>
</tbody>
</table>

Changes in Other Nations Using the U.S. Distribution of Hours:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekend Work</td>
<td>-0.001</td>
<td>0.025</td>
<td>0.013</td>
<td>0.039</td>
<td>-0.001</td>
<td></td>
</tr>
<tr>
<td>Night Work</td>
<td>0.008</td>
<td>0.006</td>
<td>0.009</td>
<td>-----------</td>
<td>0.009</td>
<td></td>
</tr>
</tbody>
</table>