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1. Introduction

Efficient markets hypothesis (EMH) is one of the cornerstones of the modern financial
economics. Since its introduction in 1960s [14, 15, 38], EMH has been a controversial topic.
Nonetheless, the theory still remains a stable part of the classical financial economics. Re-
gardless of its definition via a random walk [14] or a martingale [38], the main idea of EMH
is that risk-adjusted returns cannot be systematically predicted and there can be no long-
term profits above the market profits assuming the same risk. The EMH definition is also
tightly connected with a notion of rational homogenous agents and Gaussian distribution
of returns. Both these assumptions have been widely disregarded in the literature [8].

In the econophysics literature, EMH has been most frequently studied with respect
to the correlation structure of the series. There are several papers ranking various finan-
cial markets with respect to their efficiency. Research group around Di Matteo [11–13]
finds that the correlations structure of various assets (stocks, exchange rates and interest
rates) is connected to the development of the specific countries and stock markets. The
importance of long-term memory and multifractality in the financial series is then further
discussed in the subsequent research of the group [1, 33, 34]. In the series of papers, Ca-
jueiro & Tabak [4–7] study the relationship between the long-term memory parameter H
and development stages of the countries’ economy. Both groups find interesting results
connecting persistent (long-term correlated) behavior to the least developed markets but
also anti-persistent behavior for the most developed ones. Lim [30] investigates how the
ranking of stock markets based on Hurst exponent evolves in time and reports that the
behavior can be quite erratic. Zunino et al. [45] utilize entropy to rank stock markets to
show that the emergent/developing markets are indeed less efficient than the developed
ones. Even though the ranking is provided in these studies, the type of memory taken
into consideration (either long-term memory or entropy/complexity) is limited and treated
separately.

In this paper, we utilize the Efficiency Index proposed by Kristoufek & Vosvrda [26]
incorporating long-term memory, fractal dimension and entropy to control for various types
of correlations and complexity using a single measure. Basing the definition of the market
efficiency simply on no correlation structure, we can state the expected values of long-term
memory, fractal dimension and entropy for the efficient market to construct an efficiency
measure based on a distance from the efficient market state. Introduction of the entropy
measure into the Efficiency Index is novel compared to the original one [26] and it sub-
stitutes the short-term memory effect of the Index which turned out to be a rather weak
component of the Index. Short-term memory inefficiency is still controlled for by inclusion
of the fractal dimension. As it turns out, the inclusion of the entropy measure has a strong
effect on the final efficiency ranking. The procedure is applied on 38 stock indices from
different parts of the world and we show that the most efficient markets are indeed the
most developed ones – the Western European markets and the US markets – and majority
of the least efficient ones are situated in the Latin America and South-East Asia.

The paper is structured as follows. In Section 2, we provide brief description of used
methodology focusing on long-term memory, fractal dimension, entropy and efficiency mea-
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sure. Section 3 introduces the dataset and describes the results. Section 4 concludes.

2. Methodology

2.1. Long-term memory
Long-term memory (long-range dependence) is usually characterized in time domain

by a power-law decay of autocorrelation function and in frequency domain by a power-law
divergence of spectrum close to the origin. More specifically, the autocorrelation function
ρ(k) with lag k of a long-range correlated process decays as ρ(k) ∝ k2H−2 for k → +∞,
and the spectrum f(λ) with frequency λ of a long-range correlated process diverges as
f(λ) ∝ λ1−2H for λ → 0+. The characteristic parameter of the long-term memory Hurst
exponent H ranges between 0 ≤ H < 1 for stationary processes. The breaking value of 0.5
indicates no long-term memory so that the autocorrelations decay rapidly (exponentially or
faster). For H > 0.5, the series is persistent with strong positive correlations characteristic
by a trend-like behavior while still remaining stationary. For H < 0.5, the series is anti-
persistent and it switches the direction of increments more frequently than a random
process does.

There are many different estimators of the long-term memory parameter H in both
frequency and time domains [2, 39–41]. However, the estimators are usually affected by
short-term memory bias [23, 41], distributional properties [2, 22, 23] or finite-size effect
[9, 29, 42, 43] causing the estimates to have rather wide confidence intervals for these
specific cases. Therefore, the estimated Hurst exponents deviating from the theoretical
value of 0.5 do not necessarily indicate presence of the long-term memory. To distinguish
between the true long-term memory and various effects named earlier, several long-term
memory tests have been proposed in the literature [18, 24, 31, 32]. We introduce the
Efficiency Index, which is described later in the text, as a ranking procedure to compare
efficiency levels of various stock markets based on a distance of the actual market state
with respect to an ideal efficient market. The fact that the distance is based on squared
deviations from the ideal state helps to mitigate a potential problem of wrongly finding
long-term memory as small deviations are suppressed and large deviations are accentuated.
This is true also for the other measures introduced in the following sections.

We utilize two estimators from the frequency domain – the local Whittle and GPH
estimators – which are appropriate for rather short financial series with a possible weak
short-term memory [39, 40] and moreover, they have well-defined asymptotic properties –
consistency and asymptotic normality. Efficiency Index is then based on these estimators
of Hurst exponent H.

Local Whittle estimator
The local Whittle estimator [37] is a semi-parametric maximum likelihood estimator

– the method utilizes a likelihood function of Künsch [28] and focuses only on a part of
spectrum near the origin. The periodogram I(λj) = 1

T

∑T
t=1 exp(−2πitλj)xt is utilized as

an estimator of the spectrum of a series {xt} with j = 1, 2, . . . ,m where m ≤ T/2 and
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λj = 2πj/T . Assuming that series is indeed long-range correlated with 0 ≤ H < 1, the
local Whittle estimator is defined as

Ĥ = arg min
0≤H<1

R(H), (1)

where

R(H) = log

(
1

m

m∑
j=1

λ2H−1j I(λj)

)
− 2H − 1

m

m∑
j=1

log λj. (2)

The local Whittle estimator is consistent and asymptotically normal, specifically
√
m(Ĥ −H0)→d N(0, 1/4). (3)

GPH estimator
The GPH estimator, named after Geweke & Porter-Hudak [17], is based on a full

functional specification of the underlying process as the fractional Gaussian noise implying
a specific spectral form:

log f(λ) ∝ −(H − 0.5) log[4 sin2(λ/2)] (4)

Again, the spectrum needs to be estimated using the periodogram so that Hurst exponent
is estimated using the least squares method to the following equation:

log I(λj) ∝ −(H − 0.5) log[4 sin2(λj/2)] (5)

The GPH estimator is consistent and asymptotically normal [3], specifically
√
T (Ĥ −H0)→d N(0, π2/6). (6)

Asymptotically, the GPH estimator is thus infinitely more efficient than the local Whittle
estimator. However, this holds only if the true underlying process is indeed the fractional
Gaussian noise. In financial series, this is frequently not the case and the processes are
mostly combinations of short-term and long-term memory processes. The GPH estimator
then becomes biased. To overcome this issue, we base the GPH estimator only on a part
of the spectrum (periodogram) close to the origin to avoid the short-term memory bias.
The regression in Eq. 5 is then not run on all λj frequencies but only for a part based on
the same parameter m as for the local Whittle estimator.

2.2. Fractal dimension
Fractal dimension D is a measure of roughness of the series and can be taken as a

measure of local memory of the series [26]. For a univariate series, it holds that 1 < D ≤ 2.
For self-similar processes, the fractal dimension is connected to the long-term memory
of the series so that D + H = 2. This can be attributed to a perfect reflection of a
local behavior (fractal dimension) to a global behavior (long-term memory). However,
the relation usually does not hold perfectly for the financial series so that both D and
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H give different insights into the dynamics of the series. In general, D = 1.5 holds for
a random series with no local trending or no local anti-correlations. For a low fractal
dimension D < 1.5, the series is locally less rough and thus resembles a local persistence.
Reversely, a high fractal dimension D > 1.5 is characteristic for rougher series with local
anti-persistence. For purposes of the Efficiency Index, we utilize Hall-Wood and Genton
estimators [19, 20].

Hall-Wood estimator
Hall-Wood estimator [21] is based on box-counting procedure and utilizes scaling of

absolute deviations between steps. Formally, let’s have

Â(l/n) =
l

n

bn/lc∑
i=1

|xil/n − x(i−1)l/n| (7)

which represents these absolute deviations for the series of length n within boxes of size l.
Based on the definition of the fractal dimension [19, 20], the Hall-Wood estimator is given
by

D̂HW = 2−
∑L

l=1 (sl − s̄) log(Â(l/n))∑L
l=1 (sl − s̄)2

(8)

where L ≥ 2, sl = log(l/n) and s̄ = 1
L

∑L
l=1 sl. Using L = 2 as suggested by Hall & Wood

[21] to minimize bias, we get

D̂HW = 2− log Â(2/n)− log Â(1/n)

log 2
. (9)

Genton estimator
Genton estimator is a method of moments estimator [19, 20] based on the robust esti-

mator of variogram of Genton [16]. Defining the variogram as

V̂2(l/n) =
1

2(n− l)

n∑
i=l

(xi/n − x(i−l)l/n)2, (10)

we get the Genton estimator as

D̂G = 2−
∑L

l=1 (sl − s̄) log(V̂2(l/n))

2
∑L

l=1 (sl − s̄)2
(11)

where again L ≥ 2, sl = log(l/n) and s̄ = 1
L

∑L
l=1 sl. Using L = 2 [10, 44] to decrease the

bias again, we get

D̂G = 2− log V̂2(2/n)− log V̂2(1/n)

2 log 2
. (12)
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2.3. Approximate entropy
Entropy can be taken as a measure of complexity of the system. The systems with

high entropy can be characterized by no information and are thus random and reversely,
the series with low entropy can be seen as deterministic [36]. The efficient market can be
then seen as the one with maximum entropy and the lower the entropy, the less efficient
the market is. For purposes of the Efficiency Index, we need an entropy measure which is
bounded. Therefore, we utilize the approximate entropy introduced by Pincus [35].

For each i in 1 ≤ i ≤ T −m+ 1, we define

Cm
i (r) =

∑T−m+1
j=1 1d[i,j]≤r

T −m+ 1
(13)

where 1• is a binary indicator function equal to 1 if the condition in • is met and 0 otherwise
and where

d[i, j] = max
k=1,2,...,m

(|xi+k−1 − uj+k−1|). (14)

Cm
i (r) can be thus seen as a measure of auto-correlation as it is based on a maximum

distance between lagged series. Averaging Cm
i (r) across i yields

Cm(r) =
1

T −m+ 1

T−m+1∑
i=1

Cm
i (r) (15)

which is connected to the correlation dimension

βm = lim
r→0

lim
T→+∞

logCm(r)

log r
(16)

which is in turn treated as a measure of entropy and complexity of the series [35]. βm
ranges between 0 (completely deterministic) and 1 (completely random).

2.4. Capital market efficiency measure
According to Kristoufek & Vosvrda [26, 27], the Efficiency Index (EI) is defined as

EI =

√√√√ n∑
i=1

(
M̂i −M∗

i

Ri

)2

, (17)

where Mi is the ith measure of efficiency, M̂i is an estimate of the ith measure, M∗
i is

an expected value of the ith measure for the efficient market and Ri is a range of the ith
measure. In words, the efficiency measure is simply defined as a distance from the efficient
market specification based on various measures of the market efficiency. In our case, we
consider three measures of market efficiency – Hurst exponent H with an expected value
of 0.5 for the efficient market (M∗

H = 0.5), fractal dimension D with an expected value of
1.5 (M∗

D = 1.5) and the approximate entropy with an expected value of 1 (M∗
AE = 1). The

estimate of Hurst exponent is taken as an average of estimates based on GPH and the local
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Whittle estimators. The estimate of the fractal dimension is again taken as an average
of the estimates based on the Hall-Wood and Genton methods. For the approximate
entropy, we utilize the estimate described in the corresponding section. However, as the
approximate entropy ranges between 0 (for completely deterministic market) and 1 (for
random series), we need to rescale its effect, i.e. we use RAE = 2 for the approximate
entropy and RH = RD = 1 for the other two measures so that the maximum deviation
from the efficient market value is the same for all measures.

3. Application and discussion

We analyze 38 stock indices from various locations – the complete list is given in Tab. 1 –
between January 2000 and August 2011. Various phases of the market behavior – DotCom
bubble, bursting of the bubble, stable growth of 2003-2007 and the current financial crisis –
are thus covered in the analyzed period. The indices cover stock markets in both North and
Latin Americas, Western and Eastern Europe, Asia and Oceania so that markets at various
levels of development are included in the study. Tab. 2 summarizes the basic descriptive
statistics of the analyzed indices – the returns are asymptotically stationary (according to
the KPSS test), leptokurtic and returns of majority of the indices are negatively skewed.

Let us now turn to the results. In Fig. 1, all the results are summarized graphically.
For the utilized three measures – Hurst exponent, fractal dimension and approximate
entropy – we present the absolute deviations from the expected values of the efficient
market for comparison. For the Hurst exponent estimates, we observe huge diversity –
between practically zero (for IPSA of Chile) and 0.18 (for Peruvian IGRA). Interestingly,
for some of the most developed markets, we observe Hurst exponents well below 0.5 (Tab.
3 gives the specific estimates) which is, however, in hand with results of other authors
[11, 13]. The results for the fractal dimension again vary strongly across the stock indices.
The highest deviation is observed for the Slovakian SAX (0.19) and the lowest for the
FTSE of the UK (0.02). In Tab. 3, we observe that apart from FTSE, all the other stock
indices possess the fractal dimension below 1.5 which indicates that the indices are locally
persistent, i.e. in some periods, the indices experience significant positively autocorrelated
behavior which is well in hand with expectations about the herding behavior during critical
events. The approximate entropy estimates are more stable across indices compared to the
previous two cases. The highest deviation from the expected value for the efficient market is
observed for the Chilean IPSA (0.98) and the lowest for the Dutch AEX (0.48). Evidently,
all the analyzed stock indices are highly complex as the approximate entropy is far from
the ideal (efficient market) value of 1 and such complexity is not sufficiently covered by the
other two applied measures. The inclusion of the approximate entropy into the Efficiency
Index thus proves its worth.

Putting the estimates of the three measures together, we get the Efficiency Index which
is also graphically presented in Fig. 1. For the ranking of indices according to their
efficiency, we present Tab. 3. The most efficient stock market turns out to be the Dutch
AEX closely followed by the French CAC and the German DAX. We can observe that the
most efficient markets are usually the EU (or rather Eurozone) countries followed by the
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US markets and other developed markets from the rest of the world – Japanese NIKKEI,
Korean KS11, Swiss SSMI. The least efficient part of the ranking is dominated by the
Asian and the Latin American countries. At the very end, we have the Slovakian SAX,
Venezuelan IBC and Chilean IPSA. The efficiency of the stock markets is thus strongly
geographically determined which is connected to the stage of development of the specific
markets.

To see the contribution of the separate parts of the Index to the overall ranking, we
present Tab. 4 where the rankings according to the Efficiency Index and its components
are compared. Evidently, the overall ranking is tightly connected to the ranking according
to the entropy measure. However, the correspondence is not perfect – Spearman’s rank
correlation between the two is equal to 0.94. For the fractal dimension and long-term
memory components, the rank correlations are 0.65 and 0.49, respectively. It thus turns
out that the stock indices are highly complex and this complexity plays the main role in
their potential inefficiency. It also makes good sense that the effect of entropy dominates the
ones of the fractal dimension and the long-term memory. In practice, it is hard to believe
that stock indices would be persistent as such persistence would be quickly arbitraged out
by profit-seeking traders. The fact that the fractal dimension has a stronger effect on the
overall inefficiency compared to the long-term memory component is well in hand with
the properties of the fractal dimension which tracks local, short-lived, correlations which
are present in the stock indices. However, such dominance of the entropy measure in the
overall Efficiency Index does not discredit utility of the Index itself as it turns out that such
dominance might be stock index specific – the Efficiency Index including entropy applied
on various commodity futures does not show such a strong position of entropy compared
to the other measures [27].

Compared to the other studies mentioned in the Introduction section, our study pro-
vides a broader picture of treating the capital market efficiency. Most importantly, majority
of the efficiency ranking studies focus on the long-term memory characteristics of the cap-
ital markets [4–7, 11–13]. However, we show that the persistence or anti-persistence of
the series plays only a marginal role in the overall efficiency ranking. This is well in hand
with the assumption that any significant autocorrelations are quickly arbitraged away by
algorithmic trading and noise traders. Such short-term profit opportunities represented
by short-lived significant autocorrelations are captured by the fractal dimension which is
found to be a more important component of the Efficiency Index. The most important
role is attributed to the entropy, which makes our results partly comparable with the ones
of Zunino et al. [45] where the French CAC, German DAX and Italian MIB30 are, re-
spectively, detected as the most efficient ones compared to our most efficient triad of the
Dutch AEX, French CAC and German DAX in a descending order. However, the dataset
of the former study does not include the Dutch stock index. And even though the most
efficient triplets are very alike, the rest of the ranking differs more which we attribute to
more sources of inefficiencies taken into consideration by the Efficiency Index presented in
this study.
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4. Conclusions

We have utilized long-term memory, fractal dimension and approximate entropy as
input variables for the Efficiency Index [25, 26]. This way, we are able to comment on
stock market efficiency after controlling for different types of inefficiencies. Applying the
methodology on 38 stock market indices across the world, we find that the most efficient
markets are situated in the Eurozone (the Netherlands, France and Germany) and the
least efficient ones in the Latin America (Venezuela and Chile). The Efficiency Index thus
well corresponds to the expectation that the stock market efficiency is connected to the
development of the market.
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Figure 1: Hurst exponent, fractal dimension, approximate entropy and efficiency index for analyzed indices.
The centers of the circle represent no deviation from the efficient market both for the specific deviations
and for the Efficiency Index. The further the red line is from the center, the higher the deviation. The
figures are rescaled to make the results more evident. From the Efficiency Index, we find that the Slovakian
SAX, Venezuelan IBC, and Chilean IPSA are the least efficient markets whereas the Dutch AEX, French
CAC and German DAX are the most efficient ones.
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Table 1: List of the analyzed indices

Ticker Index Country

AEX Amsterdam Exchange Index Netherlands
ASE Athens Stock Exchange General Index Greece
ATX Austrian Traded Index Austria
BEL20 Euronext Brussels Index Belgium
BSE Bombay Stock Exchange Index India
BUSP Bovespa Brasil Sao Paulo Stock Exchange Index Brasil
BUX Budapest Stock Exchange Index Hungary
CAC Euronext Paris Bourse Index France
DAX Deutscher Aktien Index Germany
DJI Dow Jones Industrial Average Index USA
FTSE Financial Times Stock Exchange 100 Index UK
HEX OMX Helsinki Index Finland
HSI Hang Seng Index Hong-Kong
IBC Caracas Stock Exchange Index Venezuela
IGBM Madrid Stock Exchange General Index Spain
IGRA Peru Stock Market Index Peru
IPC Indice de Precios y Cotizaciones Mexico
IPSA Santiago Stock Exchange Index Chile
JKSE Jakarta Composite Index Indonesia
KFX Copenhagen Stock Exchange Index Denmark
KLSE Bursa Malaysia Index Malaysia
KS11 KOSPI Composite Index South Korea

MERVAL Mercado de Valores Index Argentina
MIBTEL Borsa Italiana Index Italy
NASD NASDAQ Composite Index USA
NIKKEI NIKKEI 225 Index Japan
NYA NYSE Composite Index USA
PX Prague Stock Exchange Index Czech Republic
SAX Slovakia Stock Exchange Index Slovakia
SET Stock Exchange of Thailand Index Thailand
SPX Standard & Poor’s 500 Index USA
SSEC Shanghai Composite Index China
SSMI Swiss Market Index Switzerland

STRAITS Straits Times Index Singapore
TA100 Tel Aviv 100 Index Israel
TSE Toronto Stock Exchange TSE 300 Index Canada

WIG20 Warsaw Stock Exchange WIG 20 Index Poland
XU100 Instanbul Stock Exchange National 100 Index Turkey
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Table 2: Descriptive statistics for the analyzed indices

Index mean min max SD skewness ex. kurtosis KPSS p-value

AEX -0.0003 -0.0959 0.1003 0.0157 -0.0183 6.1531 0.1084 > 0.05
ASE -0.0006 -0.1021 0.1343 0.0169 -0.0697 5.0812 0.3531 > 0.05
ATX 0.0002 -0.1025 0.1202 0.0150 -0.3410 8.2241 0.3141 > 0.05
BEL20 -0.0001 -0.0832 0.0933 0.0135 0.0694 6.7098 0.1381 > 0.05
BSE 0.0004 -0.1181 0.1599 0.0170 -0.1630 6.2487 0.1900 > 0.05
BUSP 0.0004 -0.1210 0.1368 0.0193 -0.0641 4.5410 0.1229 > 0.05
BUX 0.0004 -0.1265 0.1318 0.0169 -0.1105 6.3117 0.2860 > 0.05
CAC -0.0002 -0.0947 0.1060 0.0154 0.0594 5.3189 0.0944 > 0.05
DAX -0.0001 -0.0887 0.1080 0.0159 0.0025 4.7729 0.1681 > 0.05
DJI 0.0000 -0.0820 0.1051 0.0126 -0.0089 7.8817 0.0647 > 0.05
FTSE -0.0001 -0.0927 0.0938 0.0129 -0.1309 6.4856 0.1222 > 0.05
HEX -0.0003 -0.1441 0.1344 0.0193 -0.1933 5.2159 0.1886 > 0.05
HIS 0.0001 -0.1770 0.1341 0.0166 -0.2283 12.5630 0.1306 > 0.05
IBC 0.0008 -0.2066 0.1453 0.0155 -0.4151 25.8530 0.2665 > 0.05
IGBM -0.0001 -0.1875 0.1840 0.0153 0.0833 20.5300 0.1272 > 0.05
IGRA 0.0008 -0.1144 0.1282 0.0147 -0.3550 10.3010 0.3896 > 0.05
IPC 0.0005 -0.0727 0.1044 0.0144 0.0515 4.3402 0.1295 > 0.05
IPSA 0.0007 -0.0717 0.1180 0.0108 -0.0140 10.7400 0.1663 > 0.05
JKSE 0.0006 -0.1095 0.0762 0.0150 -0.6570 6.1905 0.3397 > 0.05
KFX 0.0002 -0.1172 0.0950 0.0137 -0.2594 5.7183 0.0939 > 0.05
KLSE 0.0002 -0.1122 0.0537 0.0092 -1.1810 15.4970 0.1591 > 0.05
KS11 0.0002 -0.1212 0.1128 0.0174 -0.4309 4.5849 0.1617 > 0.05

MERVAL 0.0006 -0.1295 0.1612 0.0214 -0.1235 5.6617 0.1006 > 0.05
MIBTEL 0.0002 -0.0771 0.0683 0.0108 -0.3979 5.7820 0.4301 > 0.05
NASD -0.0002 -0.1029 0.1116 0.0175 -0.1624 3.9587 0.2958 > 0.05
NIKKEI -0.0003 -0.1211 0.1324 0.0158 -0.3633 7.3242 0.1252 > 0.05
NYA 0.0002 -0.1023 0.1153 0.0140 -0.4233 10.5210 0.1514 > 0.05
PX50 0.0003 -0.1619 0.1236 0.0154 -0.6011 15.4230 0.4121 > 0.05
SAX 0.0007 -0.0882 0.0711 0.0120 -0.0481 6.5294 0.5215 > 0.05
SET 0.0000 -0.2211 0.1058 0.0158 -1.8111 26.2170 0.2975 > 0.05
SPX -0.0001 -0.0947 0.1096 0.0134 -0.1842 8.1808 0.0958 > 0.05
SSEC 0.0002 -0.1200 0.0903 0.0168 -0.2784 4.7064 0.1461 > 0.05
SSMI -0.0001 -0.0811 0.1079 0.0127 0.0331 6.2488 0.0918 > 0.05

STRAITS 0.0000 -0.2685 0.1406 0.0137 -2.2597 56.9590 0.1989 > 0.05
TA100 0.0003 -0.0734 0.0978 0.0141 -0.1535 3.2977 0.1157 > 0.05
TSE 0.0001 -0.0979 0.0937 0.0122 -0.6630 8.9915 0.0782 > 0.05

WIG20 0.0004 -0.0886 0.3322 0.0185 2.6452 52.0680 0.1909 > 0.05
XU100 0.0004 -0.1334 0.1749 0.0230 0.0039 4.5896 0.1105 > 0.05
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Table 3: Ranked stock indices according to the Efficiency Index

Index Country Hurst exponent Fractal dimension Approximate entropy Efficiency index

AEX Netherlands 0.5358 1.4356 0.5246 0.0619
CAC France 0.5118 1.4592 0.5059 0.0628
DAX Germany 0.5334 1.4646 0.4807 0.0698
XU100 Turkey 0.5493 1.4350 0.4870 0.0724
FTSE UK 0.4470 1.5171 0.4500 0.0787
NYA USA 0.5348 1.4457 0.4418 0.0821

NIKKEI Japan 0.5063 1.4716 0.4285 0.0825
KS11 South Korea 0.5137 1.4204 0.4473 0.0829
SSMI Switzerland 0.5297 1.4617 0.3983 0.0929
BEL20 Belgium 0.5481 1.4574 0.3869 0.0981
MIBTEL Italy 0.5267 1.4728 0.3525 0.1063
NASD USA 0.5340 1.4526 0.3428 0.1114
SPX USA 0.5026 1.4437 0.3405 0.1119
KFX Denmark 0.5927 1.4665 0.3516 0.1148
DJI USA 0.4477 1.4685 0.3284 0.1165
BUX Hungary 0.6448 1.4844 0.3811 0.1170
TSE Canada 0.5626 1.4375 0.3272 0.1210
TA100 Israel 0.6536 1.4739 0.3648 0.1251
BUSP Brazil 0.6055 1.4142 0.3435 0.1262
JKSE Indonesia 0.6505 1.3657 0.3986 0.1311
WIG20 Poland 0.5232 1.4545 0.2790 0.1326
ATX Austria 0.6744 1.4455 0.3669 0.1336
HSI Hong-Kong 0.5945 1.4033 0.3033 0.1396
IPC Mexico 0.5550 1.3817 0.2991 0.1398
ASE Greece 0.6210 1.3926 0.2911 0.1518
SSEC China 0.6205 1.3698 0.3019 0.1533
IGBM Spain 0.5615 1.4581 0.1912 0.1691

STRAITS Singapore 0.5937 1.4500 0.2027 0.1702
PX Czech Rep 0.6124 1.4386 0.2053 0.1743

MERVAL Argentina 0.5850 1.3729 0.2225 0.1745
HEX Finland 0.5524 1.4385 0.1747 0.1768
BSE India 0.6139 1.4313 0.1842 0.1841
SET Thailand 0.5591 1.4311 0.1590 0.1851
KLSE Malaysia 0.5489 1.3620 0.1773 0.1906
IGRA Peru 0.6806 1.3435 0.2160 0.2108
SAX Slovakia 0.6673 1.3132 0.1534 0.2421
IBC Venezuela 0.5881 1.3308 0.0890 0.2439
IPSA Chile 0.4997 1.3187 0.0239 0.2711
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Table 4: Ranking of the indices according to the components

Index Country Efficiency Index Hurst exponent Fractal dimension Approximate entropy

AEX Netherlands 1 12 22 1
CAC France 2 4 10 2
DAX Germany 3 9 8 4
XU100 Turkey 4 15 23 3
FTSE UK 5 18 2 5
NYA USA 6 11 16 7

NIKKEI Japan 7 3 5 8
KS11 South Korea 8 5 26 6
SSMI Switzerland 9 8 9 10
BEL20 Belgium 10 13 12 11
MIBTEL Italy 11 7 4 15
NASD USA 12 10 14 18
SPX USA 13 2 18 19
KFX Denmark 14 25 7 16
DJI USA 15 16 6 20
BUX Hungary 16 33 1 12
TSE Canada 17 22 21 21
TA100 Israel 18 35 3 14
BUSP Brazil 19 28 27 17
JKSE Indonesia 20 34 33 9
WIG20 Poland 21 6 13 26
ATX Austria 22 37 17 13
HSI Hong-Kong 23 27 28 22
IPC Mexico 24 19 30 24
ASE Greece 25 32 29 25
SSEC China 26 31 32 23
IGBM Spain 27 21 11 31

STRAITS Singapore 28 26 15 30
PX Czech Rep 29 29 19 29

MERVAL Argentina 30 23 31 27
HEX Finland 31 17 20 34
BSE India 32 30 24 32
SET Thailand 33 20 25 35
KLSE Malaysia 34 14 34 33
IGRA Peru 35 38 35 28
SAX Slovakia 36 36 38 36
IBC Venezuela 37 24 36 37
IPSA Chile 38 1 37 38
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