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Jozef Baruńık† Jiri Kukacka‡

Abstract

This paper develops a two-step estimation methodology that allows us to apply
catastrophe theory to stock market returns with time-varying volatility and to model
stock market crashes. In the first step, we utilize high-frequency data to estimate daily
realized volatility from returns. Then, we use stochastic cusp catastrophe on data nor-
malized by the estimated volatility in the second step to study possible discontinuities
in the markets. We support our methodology through simulations in which we discuss
the importance of stochastic noise and volatility in a deterministic cusp catastrophe
model. The methodology is empirically tested on nearly 27 years of U.S. stock market
returns covering several important recessions and crisis periods. While we find that the
stock markets showed signs of bifurcation in the first half of the period, catastrophe
theory was not able to confirm this behavior in the second half. Translating the re-
sults, we find that the U.S. stock market’s downturns were more likely to be driven by
the endogenous market forces during the first half of the studied period, while during
the second half of the period, the exogenous forces seem to be driving the market’s
instability. The results suggest that the proposed methodology provides an important
shift in the application of catastrophe theory to stock markets.
Keywords: stochastic cusp catastrophe model, realized volatility, bifurcations, stock
market crash
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1 Introduction

Financial inefficiencies such as under- or over-reactions to information as the causes of ex-
treme events in the stock markets attract researchers across all fields of economics. In one
recent contribution, Levy (2008) highlighted the endogeneity of large market crashes as a
result of the natural conformity of investors with their peers and the heterogeneity of the
investor population. The stronger the conformity and homogeneity across the market, the
more likely the existence of multiple equilibria in the market, which is a prerequisite for a
market crash to occur. Gennotte and Leland (1990) presented a model that shares the same
notions as Levy (2008) in terms of the effect of small changes when the market is close to
a crash point as well as the volatility amplification signaling. In another work, Levy et al.
(1994) considered the signals produced by dividend yields and assessed the effect of com-
puter trading, which is blamed for making the market more homogeneous and thus more
conducive to a crash. Kleidon (1995) summarized and compared several older models from
the 1980s and 1990s, and Barlevy and Veronesi (2003) proposed a model based on rational
but uninformed traders who can unreasonably panic. Again with this approach, abrupt
declines in stock prices can occur without any real change in the underlying fundamentals.
Lux (1995) linked the phenomena of market crashes to the process of phase transition
from thermodynamics and modeled the emergence of bubbles and crashes as a result of
herd behavior among heterogeneous traders in speculative markets. Finally, a strand of
literature documenting precursory patterns and log-periodic signatures years before the
largest crashes in the modern history suggested that crashes have an endogenous origin
in ‘crowd’ behavior and through the interactions of many agents (Sornette and Johansen,
1998; Johansen et al., 2000; Sornette, 2002, 2004). In contrast to many commonly shared
beliefs, Didier Sornette and his colleagues argued that exogenous shocks can only serve as
triggers and not as the direct causes of crashes and that large crashes are ‘outliers’.

Catastrophe theory provides a very different theoretical framework to understand how
even small shifts in the speculative part of the market can trigger a sudden, discontinu-
ous effect on prices. Catastrophe theory was proposed by French mathematician Thom
(1975) with the aim of shedding some light on the ‘mystery’ of biological morphogenesis.
Despite its mathematical virtues, the theory was promptly heavily criticized by Zahler and
Sussmann (1977) and Sussmann and Zahler (1978a,b) for its excessive utilization of qual-
itative approaches, the improper usage of certain statistical methods and for violations
of necessary mathematical assumptions in many of its applications. Due to these criti-
cisms, the intellectual bubble and the heyday of the cusp catastrophe approach declined
rapidly after the 1970s, although the theory was defended by some researchers, e.g., by
Boutot (1993) and the extensive, gradually updated work of Arnold (2004). Nonetheless,
the ‘fatal’ criticism was ridiculed by Rosser (2007, p. 3275 & 3257), who stated that “the
baby of catastrophe theory was largely thrown out with the bathwater of its inappropriate
applications”, and the author suggested that “economists should reevaluate the former fad
and move it to a more proper valuation”.
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The application of catastrophe theory in the social sciences has not been as extensive
as in the natural sciences, although it was utilized early in its existence. Zeeman’s (1974)
cooperation with Thom and his own popularization of the theory through the use of non-
technical examples (Zeeman, 1975, 1976) led to the development of many applications in
the fields of economics, psychology, sociology, political studies, and others. Zeeman (1974)
also proposed the application of the cusp catastrophe model to stock markets. Translat-
ing seven qualitative hypotheses about stock exchanges to the mathematical terminology of
catastrophe theory produced one of the first heterogeneous agent models for two main types
of investors: fundamentalists and chartists. Heterogeneity and the interactions between
these two distinct types of agents attracted wider attention in the behavioral finance lit-
erature. Fundamentalists base their expectations about future asset prices on their beliefs
about fundamental and economic factors such as dividends, earnings, and the macroeco-
nomic environment. In contrast, chartists do not consider fundamentals in their trading
strategies at all. Their expectations about future asset prices are based on finding historical
patterns in prices. While Zeeman’s work was only one qualitative description of observed
bull and bear markets, it contained a number of important behavioral elements that were
later used in the large volume of literature that focused on heterogeneous agent modeling.1

Today, the statistical theory is well developed, and parameterized cusp catastrophe models
can be evaluated quantitatively based on data.

The biggest difficulty in the application of catastrophe theory arises from the fact that
it stems from deterministic systems. Thus, it is difficult to apply it directly to systems that
are subject to random influences, which are common in the behavioral sciences. Cobb and
Watson (1980); Cobb (1981) and Cobb and Zacks (1985) provided the necessary bridge
and took catastrophe theory from determinism to stochastic systems. While this was
an important shift, there are further complications in the theory’s application to stock
market data. The main restriction of Cobb’s method of estimation was the requirement
of a constant variance, which forces researchers to assume that the volatility of the stock
markets (as the standard deviation of the returns) is constant. Quantitative verification of
Zeeman’s (1974) hypotheses about the application of the theory to stock market crashes was
pioneered by Barunik and Vosvrda (2009), where we fit the cusp model to two separate,
large stock market crashes. However, the successful application Barunik and Vosvrda
(2009) brought only preliminary results in a restricted environment. Application of the
cusp catastrophe theory on stock market data deserves much more attention. In the current
paper, we propose an improved method of application that we believe brings us closer to
an answer regarding whether cusp catastrophe theory is capable of explaining stock market
crashes.

Time-varying volatility has become an important stylized fact for stock market data,
and researchers have recognized that it is an important feature of any modeling strategy.

1For a recent survey of heterogeneous agent models, see Hommes (2006). A special issue on heteroge-
neous interacting agents in financial markets edited by Lux and Marchesi (2002) also provides interesting
contributions.
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One of the most successful early works of Engle (1982); Bollerslev (1986) proposed in-
cluding volatility as a time-varying process in a (generalized) autoregressive conditional
heteroskedasticity framework. From that beginning, many models have been developed in
the literature to improve the original frameworks. As early as the late 1990s, high fre-
quency data became available to researchers, and this led to another important shift in
volatility modeling — realized volatility. A very simple, intuitive approach to compute
daily volatility using the sum of squared high-frequency returns was formalized by Ander-
sen et al. (2003); Barndorff-Nielsen and Shephard (2004). While the volatility literature is
immense,2 several researchers have also studied volatility and stock market crashes. For
example, Shaffer (1991) argued that volatility might be the cause of a stock market crash.
In contrast, Levy (2008) argued that volatility increases before a crash, even when no
dramatic information is revealed.

In this study, we utilize the availability of high-frequency data and the popular realized
volatility approach to propose a two-step method of estimation that overcomes the diffi-
culties in the application of cusp catastrophe theory to stock market data. Using realized
volatility, we estimate stock market returns’ volatility, and then we apply the stochastic
cusp catastrophe model on volatility-adjusted returns with constant variance. This ap-
proach is motivated by the confirmed bimodal distributions of such standardized data in
some periods, and it allows us to study whether stock markets are driven into catastrophe
endogenously or whether it is simply an effect of volatility. We also run simulations that
provide strong support for the methodology. The simulations also illustrate the importance
of stochastic noise and volatility in the deterministic cusp model.

Using a unique dataset covering almost 27 years of the U.S. stock market evolution, we
empirically test the stochastic cusp catastrophe model in a time-varying volatility environ-
ment. Moreover, we develop a rolling regression approach to study the dynamics of the
model’s parameters over a long period, covering several important recessions and crises.
This approach allows us to localize the bifurcation periods.

We need to mention several important works that provided similar results to ours.
Creedy and Martin (1993); Creedy et al. (1996) developed a framework for the estimation
of non-linear exchange rate models, and they showed that swings in exchange rates can
be attributed to bimodality even without the explicit use of catastrophe theory. More
recently, Koh et al. (2007) proposed using Cardan’s discriminant to detect bimodality and
confirm the predictive ability of currency pairs for emerging countries. In our work, we
bring new insight to the non-linear phenomena by including time-varying volatility in the
modeling strategy.

The paper is organized as follows. The second and the third sections examine the
theoretical framework of the stochastic catastrophe theory under time-varying volatility
and describe the model’s estimation. The fourth section presents the simulations that
support our two-step method of estimation, and the fifth section presents the empirical

2Andersen et al. (2004) provide a very useful and complete review of the methodologies.
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application of the theory on the modeling of stock market crashes. Finally, the last section
concludes.

2 Theoretical framework

Catastrophe theory was developed as a deterministic theory for systems that may respond
to continuous changes in control variables by a discontinuous change from one equilibrium
state to another. A key idea is that the system under study is driven toward an equilibrium
state. The behavior of the dynamical systems under study is completely determined by
a so-called potential function, which depends on behavioral and control variables. The
behavioral, or state, variable describes the state of the system, while control variables de-
termine the behavior of the system. The dynamics under catastrophe models can become
extremely complex and according to the classification theory of Thom (1975), there are
seven different families based on the number of control and dependent variables. We focus
on the application of catastrophe theory to model sudden stock market crashes, as qualita-
tively proposed by Zeeman (1974). In his work, Zeeman used the so-called cusp catastrophe
model, which is the simplest specification that gives rise to sudden discontinuities.

2.1 Deterministic dynamics

Let us suppose that the process yt evolves over t = 1, . . . , T as

dyt = −dV (yt;α, β)
dyt

dt, (1)

where V (yt;α, β) is the potential function describing the dynamics of the state variable yt
controlled by parameters α and β determining the system. When the right-hand side of
Eq. (1) equals zero, −dV (yt;α, β)/dyt = 0, the system is in equilibrium. If the system is
at a state of non-equilibrium, it will move back to equilibrium where the potential function
takes the minimum values with respect to yt. While the concept of potential function
is very general, i.e., it can be a quadratic function yielding equilibrium of a simple flat
response surface, one of the most applied potential functions in behavioral sciences, a cusp
potential function, is defined as

− V (yt;α, β) = −1/4y4
t + 1/2βy2

t + αyt, (2)

with equilibria at

− dV (yt;α, β)
dyt

= −y3
t + βyt + α (3)

being equal to zero. The two dimensions of the control space, α and β, further depend on
realizations from i = 1 . . . , n of the independent variables xi,t. Thus, it is convenient to
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think about α and β as functions

αx = α0 + α1x1,t + . . .+ αnxn,t (4)
βx = β0 + β1x1,t + . . .+ βnxn,t. (5)

The control functions αx and βx are called normal and splitting factors, or asymmetry
and bifurcation factors, respectively (Stewart and Peregoy, 1983), and they determine the
predicted values of yt given xi,t. Therefore, for each combination of values of independent
variables, there could be up to three predicted values of the state variable given by roots
of

− dV (yt;αx, βx)
dyt

= −y3
t + βxyt + αx = 0. (6)

This equation has one solution if

δx = 1/4α2
x − 1/27β3

x (7)

is greater than zero, δx > 0, and three solutions if δx < 0. This construction was first de-
scribed by the 16th century mathematician Geronimo Cardan and can serve as a statistic for
bimodality, one of the catastrophe flags. The set of values for which Cardan’s discriminant
is equal to zero, δx = 0, is the bifurcation set that determines the set of singularity points
in the system. In the case of three roots, the central root is called an “anti-prediction”
and is the least probable state of the system. Inside the bifurcation, when δx < 0, the sur-
face predicts two possible values of the state variable, which means that in this case, the
state variable is bimodal. For an illustration of the deterministic response surface of cusp
catastrophe, we borrow from Figure 2 in the simulations section, where the deterministic
response surface is a smooth pleat.

2.2 Stochastic dynamics

Most of the systems in behavioral sciences are subject to noise stemming from measurement
errors or the inherent stochastic nature of the system under study. Thus, for real-world
applications, it is necessary to add non-deterministic behavior into the system. Because
catastrophe theory was primarily developed to describe deterministic systems, it may not
be obvious how to extend the theory to stochastic systems. An important bridge was
provided by Cobb and Watson (1980); Cobb (1981) and Cobb and Zacks (1985), who used
the Itô stochastic differential equations to establish a link between the potential function of
a deterministic catastrophe system and the stationary probability density function of the
corresponding stochastic process. This approach in turn led to the definition of a stochastic
equilibrium state and bifurcation that was compatible with the deterministic counterpart.
Cobb and his colleagues simply added a stochastic Gaussian white noise term to the system

dyt = −dV (yt;αx, βx)
dyt

dt+ σytdWt, (8)
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where −dV (yt;αx, βx)/dyt is the deterministic term, or drift function representing the
equilibrium state of the cusp catastrophe, σyt is the diffusion function and Wt is a Wiener
process. When the diffusion function is constant, σyt = σ, and the current measurement
scale is not to be nonlinearly transformed, the stochastic potential function is proportional
to the deterministic potential function, and the probability distribution function corre-
sponding to the solution from Eq. (8) converges to a probability distribution function of a
limiting stationary stochastic process because the dynamics of yt are assumed to be much
faster than changes in xi,t (Cobb, 1981; Cobb and Zacks, 1985; Wagenmakers et al., 2005).
The probability density that describes the distribution of the system’s states at any t is
then

fs(y|x) = ψ exp
(

(−1/4)y4 + (βx/2)y2 + αxy

σ

)
. (9)

The constant ψ normalizes the probability distribution function, so its integral over the
entire range equals one. As the bifurcation factor βx changes from negative to positive, the
fs(y|x) changes its shape from unimodal to bimodal. Conversely, αx causes asymmetry in
fs(y|x).

2.3 Cusp catastrophe under time-varying volatility

Stochastic catastrophe theory works only under the assumption that the diffusion function
is constant, σyt = σ, and the current measurement scale is not to be nonlinearly trans-
formed. While this assumption may be reliable in some applications in the behavioral
sciences, it may cause crucial difficulties in others. One of the problematic applications is
in modeling stock market crashes because the diffusion function σ, called the volatility of
stock market returns, has strong time-varying dynamics, and it clusters over time, which
is documented by strong dependence in the squared returns. To illustrate the volatility
dynamics, let us borrow the dataset used later in this study. Figure 4 shows the evolution
of the S&P 500 stock index returns over almost 27 years and documents how volatility
strongly varies over time. One of the possible and very simple solutions in applying cusp
catastrophe theory to the stock markets is to consider only a short time window and to
fit the catastrophe model to data where volatility can be assumed to be constant (Barunik
and Vosvrda, 2009). Although in Barunik and Vosvrda (2009) we were the first to quanti-
tatively apply stochastic catastrophes to explain stock market crashes on localized periods
of crashes, this assumption is generally very restrictive.

Here, we propose a more rigorous solution to the problem by utilizing the recently
developed concept of realized volatility. This approach allows us to use the previously in-
troduced concepts after estimating the volatility from the returns process consistently, and
we are able to estimate the catastrophe model on the process that fulfills the assumptions
of the stochastic catastrophe theory. Thus, we assume that stock markets can be described
by the cusp catastrophe process subject to time-varying volatility. While this approach
represents a great advantage that allows us to apply cusp catastrophe theory to different

7



time periods conveniently, the disadvantage is that the method cannot be generalized to
other branches of the behavioral sciences where high-frequency data are not available and
therefore realized volatility cannot be computed. Thus, our generalization is mainly re-
stricted to applications on financial data. Still, our main aim is to study stock market
crashes, and therefore the advocated approach is very useful in the field of behavioral fi-
nance. We now describe the theoretical concept, and in the next sections, we will present
the full model and the two-step estimation procedure.

Suppose that the sample path of the corresponding (latent) logarithmic price process
pt is continuous over t = 1, . . . , T and determined by the stochastic differential equation

dpt = µtdt+ σtdWt, (10)

where µt is a drift term, σt is the predictable diffusion function, or instantaneous volatility,
and Wt is a standard Brownian motion. A natural measure of the ex-post return variability
over the [t− h, t] time interval, 0 ≤ h ≤ t ≤ T is the integrated variance

IVt,h =
∫ t

t−h
σ2
τdτ, (11)

which is not directly observed, but as shown by Andersen et al. (2003) and Barndorff-
Nielsen and Shephard (2004), the corresponding realized volatilities provide its consistent
estimates. While it is convenient to work in the continuous time environment, empirical
investigations are based on discretely sampled prices, and we are interested in studying
h-period continuously compounded discrete-time returns rt,h = pt − pt−h. Andersen et al.
(2003) and Barndorff-Nielsen and Shephard (2004) showed that daily returns are Gaussian,
conditional on an information set generated by the sample paths of µt and σt, and integrated
volatility normalizes the returns as

rt,h

(∫ t

t−h
σ2
τdτ

)−1/2

∼ N
(∫ t

t−h
µτdτ, 1

)
. (12)

This result of quadratic variation theory is important to us because we use it to study
stochastic cusp catastrophe in an environment where volatility is time varying. In the
modern stochastic volatility literature, it is common to assume that stock market returns
follow the very general semi-martingale process (as in Eq. 10), where the drift and volatility
functions are predictable and the rest is unpredictable. In the origins of this stream of
literature, one of the very first contributions published regarding stochastic volatility by
Taylor (1982) assumed that daily returns are the product of a volatility and autoregression
process. In our application, we also assume that daily stock market returns are described
by a process that is the product of volatility and the cusp catastrophe model.

To formulate the approach, we assume that stock returns normalized by their volatility

y∗t = rt

(∫ t

t−h
σ2
τdτ

)−1/2

(13)
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follow a stochastic cusp catastrophe process

dy∗t = −dV (y∗t ;αx, βx)
dy∗t

dt+ dWt. (14)

It is important to note the difference between Equation (14) and Equation (8) because
there is no longer any diffusion term in the process. Because the diffusion term of y∗t is
constant and now equal to one, Cobb’s results can conveniently be used, and we can use
the stationary probability distribution function of y∗t for the parameter estimation using
the maximum likelihood method.

As noted previously, the integrated volatility is not directly observable. However, the
now-popular concept of realized volatility and the availability of high-frequency data pro-
vide a simple method to accurately measure integrated volatility, which helps us propose
a simple and intuitive method to estimate the cusp catastrophe model on stock market
returns under highly dynamic volatility.

3 Estimation

A simple, consistent estimator of the integrated variance under the assumption of no mi-
crostructure noise contamination in the price process is provided by the well-known realized
variance (Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2004). The realized vari-
ance over [t− h, t], for 0 ≤ h ≤ t ≤ T , is defined by

R̂V t,h =
N∑
i=1

r2
t−h+( i

N )h, (15)

where N is the number of observations in [t− h, t], and rt−h+( i
N )h is i−th intraday return

in the [t−h, t] interval. R̂V t converges in probability to the true integrated variance of the
process as N →∞.

R̂V t,h
p→
∫ t

t−h
σ2
τdτ, (16)

As observed, the log-prices are contaminated with microstructure noise in the real
world, and the literature has developed several estimators. While it is important to consider
both jumps and microstructure noise in the data, our main interest is in estimating the
catastrophe theory and addressing the question whether it can be used to explain the
deterministic portion of stock market returns. Thus, we restrict ourselves to the simplest
estimator, which uses sparse sampling to deal with the microstructure noise. The extant
literature showed support for this simple estimator; most recently, Liu et al. (2012) ran
a horse race for the most popular estimators and concluded that when simple realized
volatility is computed using 5-minute sampling, it is very difficult to outperform.
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In the first step, we estimate realized volatility from the stock market returns using 5-
min. data as proposed by the theory, and we normalize the daily returns to obtain returns
with constant volatility. While using the daily returns, h = 1, and we henceforth drop h
for ease of notation.

r̃t = rtR̂V
−1/2

t (17)

In the second step, we apply the stochastic cusp catastrophe to model the normalized
stock market returns. While the state variable of the cusp is a canonical variable, it is an
unknown smooth transformation of the actual state variable of the system. As proposed
by Grasman et al. (2009), we allow for the first order approximation to the true, smooth
transition allowing the measured r̃ to be a

yt = ω0 + ω1r̃t, (18)

with ω1 as the first order coefficient of a polynomial approximation. The independent
variables are

αx = α0 + α1x1,t + . . .+ αnxn,t (19)
βx = β0 + β1x1,t + . . .+ βnxn,t, (20)

Hence, the statistical estimation problem is to estimate 2n+2 parameters {ω0, ω1, α0, . . . , αn, β0, . . . , . . . , βn}.
We estimate the parameters using the maximum likelihood approach of Cobb and Watson
(1980) as augmented by Grasman et al. (2009). The negative log-likelihood for a sample of
observed values (x1,t, . . . , xn,t, yt) for t = 1, . . . , T is simply the logarithm of the probability
distribution function in Eq. (9).

3.1 Statistical evaluation of the fit

To assess the fit of the cusp catastrophe model to the data, a number of diagnostic tools
have been suggested. Stewart and Peregoy (1983) proposed a pseudo-R2 as a measure of
the explained variance. However, a difficulty arises here because for a given set of values
of the independent variables, the model may predict multiple values for the dependent
variable. Because of bimodal density, the expected value is unlikely to be observed because
it is an unstable solution at equilibrium. For this reason, two alternatives for the expected
value as the predictive value can be used. The first method chooses the mode of the density
closest to the state values, which is known as the delay convention; the second method uses
the mode at which the density is highest, which is known as the Maxwell convention. Cobb
and Watson (1980) and Stewart and Peregoy (1983) suggested using the delay convention
where the variance of the error is defined as the variance of the difference between the
estimated states and then using the mode of the distribution that is closest to this value.
The pseudo-R2 is defined as 1− V ar(ε)/V ar(y), where ε is error.

While pseudo-R2 is problematic due to the nature of the cusp catastrophe model, it
should be used in a complementary fashion to other alternatives. To rigorously test the
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statistical fit of the cusp catastrophe model, we use following steps. First, the cusp fit
should be substantially better than multiple linear regression. The cusp fit could be tested
by means of a likelihood ratio test, which is asymptotically chi-squared distributed with
degrees of freedom equal to the difference in degrees of freedom for two compared models.
Second, the ω1 coefficient should deviate significantly from zero. Otherwise, the yt in Eq.
(18) would be constant, and the cusp model would not describe the data. Third, the cusp
model should show a better fit than the following logistic curve:

yt =
1

1 + e−αt/β
2
t

+ εt, (21)

for t = 1, . . . , T , where εt are zero mean random disturbances. The rationale for choosing
to compare the cusp model to this logistic curve is that this function does not possess
degenerate points, while it possibly models steep changes in the state variable as a function
of changes in the independent variables mimicking the sudden transitions of the cusp.
Thus, a comparison of the cusp catastrophe model to the logistic function serves as a
good indicator of the presence of bifurcations in the data. While these two models are
not nested, Wagenmakers et al. (2005) suggested comparing them via information criteria,
where a stronger Bayesian Information Criterion (BIC) should be required for the decision.

4 Monte Carlo study

To validate our assumptions about the process of generating stock market returns and our
two-step estimation procedure, we conduct a Monte Carlo study where we simulate the
data from the stochastic cusp catastrophe model, allow for time-varying volatility in the
process and estimate the parameters to see whether we can recover the true values.

We simulate the data from the stochastic cusp catastrophe model subject to time-
varying volatility as

rt = σtyt (22)
dσ2

t = κ(ω − σ2
t )dt+ γdWt,1, (23)

dyt = (αt + βtyt − y3
t )dt+ dWt,2 (24)

where dWt,1 and dWt,2 are standard Brownian motions with zero correlation, κ = 5, ω =
0.04 and γ = 0.5. The volatility parameters satisfy Feller’s condition 2κω ≥ γ2, which
keeps the volatility process away from the zero boundary. We set the parameters to values
that are reasonable for a stock price, as in Zhang et al. (2005).

In the cusp equation, we use two independent variables

αt = α0 + α1xt,1 + α2xt,2 (25)
βt = β0 + β1xt,1 + β2xt,2 (26)
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Figure 1: An example of a simulated time series where the cusp surface is subject to noise only, yt, and
noise together with volatility, rt. (b) simulated returns yt (a) kernel density estimate of yt (c) simulated
returns rt contaminated with volatility (d) kernel density estimate of rt.

with coefficients α2 = β1 = 0. Hence xt,1 drawn from the U(0, 1) distribution drives the
asymmetry side, and xt,2 drawn from the U(0, 1) distribution drives the bifurcation side of
the model. The parameters are set as α0 = −2, α1 = 3, β0 = −1 and β2 = 4.

In the simulations, we are interested in determining how the cusp catastrophe model
performs under time-varying volatility. Thus, we estimate the coefficients on the processes
yt = rt/σt and rt. Figure 1 shows one realization of the simulated returns yt and rt. While
yt is the cusp catastrophe subject to noise, rt is subject to time-varying volatility as well. It
is noticeable how time-varying volatility causes the shift from bimodal density to unimodal.
More illustrative is Figure 2, which shows the cusp catastrophe surface of both processes.
While the solution from the deterministic cusp catastrophe is contaminated with noise in
the first case, the volatility process in the second case makes it much more difficult to
recognize the two states of the system in the bifurcation area. This result causes difficulty
in recovering the true parameters.

Table 1 shows the results of the simulation. We simulate the processes 100 times and
report the mean and standard deviations from the mean3. The true parameters are easily
recovered in the simulations from yt when the cusp catastrophe is subject to noise only
because the mean values are statistically indistinguishable from the true simulated values
α0 = −2, α1 = 3, β0 = −1 and β2 = 4. The fits are reasonable because they explain
approximately 60% of the data variation in the noisy environment. Moreover, in the cusp
model, we first estimate the full set of parameters (α0, α1, α2, β0, β1, β2), and then we
restrict the parameters α2 = β1 = 0. The estimation easily recovers the true parameters
in both cases, while in the unrestricted case, the estimates α2 = β1 = 0 and fits are
statistically the same. In comparison, both cusp models perform much better than logistic
regression and linear models, which was expected. It is also interesting to note that ω0 = 0
and ω1 = 1, which means that the observed data are the true data, and no transformation
is needed. These results are important because they confirm that the estimation of the
stochastic cusp catastrophe model is valid, and it can be used to quantitatively apply the

3The distribution of the parameters is Gaussian in both cases, which makes it possible to compare the
results within the means and standard deviations.
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Figure 2: An example of simulated data where the cusp surface is subject to noise only, yt, and noise
with volatility, rt. Parts (a-b) show the cusp deterministic pleat simulated {x1, x2, yt} from two different
perspectives, and parts (c-d) show the cusp deterministic pleat simulated {x1, x2, rt} from two different
perspectives.
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(a) Estimates using yt = rt/σt (b) Estimates using rt

Cusp Linear Logistic Cusp Linear Logistic

Unrestricted Restricted Unrestricted Restricted

α0 -2.059 (0.143) -2.066 (0.141) -1.614 (3.352) -3.111 (0.531)
α1 3.083 (0.195) 3.084 (0.203) 4.355 (1.382) 4.540 (0.690)
α2 -0.009 (0.118) -1.126 (2.121)
β0 -1.016 (0.237) -1.018 (0.187) -7.088 (3.287) -5.428 (2.420)
β1 0.001 (0.319) 2.394 (1.806)
β2 4.003 (0.232) 4.006 (0.223) 5.821 (1.430) 5.544 (1.293)
ω0 -0.005 (0.035) -0.006 (0.025) 0.163 (0.305) -0.038 (0.053)
ω1 1.003 (0.021) 1.003 (0.021) 0.539 (0.155) 0.552 (0.154)

R2 0.609 (0.022) 0.608 (0.023) 0.397 (0.025) 0.462 (0.027) 0.378 (0.043) 0.379 (0.044) 0.345 (0.034) 0.401 (0.038)
LL -888.6 (24.3) -889.4 (24.1) -1323.3 (21.4) -1266.4 (23.5) -1109.4 (52.7) -1117.6 (57.6) -1471.7 (212.6) -1426.5 (211.4)
AIC 1793.1 (48.5) 1790.9 (48.3) 2654.7 (42.7) 2546.9 (47.0) 2234.8 (105.5) 2247.3 (115.3) 2951.3 (425.1) 2867.0 (422.9)
BIC 1832.4 (48.5) 1820.3 (48.3) 2674.3 (42.7) 2581.2 (47.0) 2274.0 (105.5) 2276.7 (115.3) 2970.9 (425.1) 2901.4 (422.9)

Table 1: Simulation results (a) according to the stochastic cusp catastrophe model and (b) according to the stochastic
cusp catastrophe model with process in volatility. The total sample based on 100 random simulations is used, and
the sample means and standard deviations (in parentheses) for each value are reported. All figures are rounded to
one or three decimal digits.

theory to the data.
The results of the estimation on the rt process, which is subject to time-varying volatil-

ity, reveal that the addition of the volatility process makes it difficult for the maximum
likelihood estimation to recover the true parameters. The variances of the estimated param-
eters are very large, and the means are far away from the true simulated values. Moreover,
the fits are statistically weaker, as they explain no more than 38% of the variance in the
data. It is also interesting to note that the logistic fit and the linear fit are much closer to
the cusp fit.

In conclusion, the simulation results reveal that time-varying volatility in the cusp
catastrophe model destroys the ability of the maximum likelihood estimator to recover the
cusp potential.

5 Empirical modeling of stock market crashes

Armed with the results from the simulations, we move to the estimation of the cusp catas-
trophe model on the real-world data from stock markets. We use long time span for the
S&P 500, a broad U.S. stock market index, that covers almost 27 years, from February 24,
1984 to November 17, 2010. Figure 3 plots the prices and depicts the several recessions
and crisis periods. According to the National Bureau of Economic Research (NBER), there
were three U.S. recessions during the periods of July 1990 – March 1991, March 2001 –
November 2001 and December 2007 – June 2009. These recessions are depicted as grey
periods. Black lines depict one-day crashes associated with large price drops. Namely,
these include Black Monday 1987 (October 19, 1987), the Asian Crisis Crash (October
27, 1997), the Ruble Devaluation of 1998 (August 17, 1998), the Dot-com Bubble Burst
(March 10, 2000), the World Trade Center Attacks (September 11, 2001), the Lehman

14



Brothers Holdings Bankruptcy (September 15, 2008), and finally the Flash Crash (March
6, 2010). Technically, the largest one day drops in the studied period occurred on October
19, 1987, October 26, 1987, September 29, 2008, October 9, 2008, October 15, 2008, and
December 1, 2008, recording declines of 20.47%, 8.28%, 8.79%, 7.62%, 9.03%, and 8.93%,
respectively.

Let us now look closer at the crashes depicted by Figure 3 and discuss their nature. The
term Black Monday refers to Monday, October 19, 1987 when stock markets around the
world from Hong Kong to Europe and the U.S. crashed in a very short time and recorded
the largest one-day drop in history. After this unexpected, severe event, many analysts
predicted the most troubled years since the 1930s. However, stock markets gained the
losses back and closed the year positively. There has been no consensus opinion on the
cause of the crash. Potential causes include program trading, overvaluation, illiquidity,
and market psychology. Thus, this crash seems to have had an endogenous cause. Stock
markets did not record any large shocks for the next several years until 1996, when the
Asian Financial Crisis driven by investors deserting overheated, emerging Asian markets
resulted in the October 27, 1997 mini crash of the U.S. markets. The next year, the Russian
government devalued the ruble, defaulted on its domestic debt and declared a moratorium
on payments to foreign creditors. These actions caused another international crash on
August 17, 1998. These last two shocks are believed to be exogenous to the U.S. stock
markets. During the period from 1997 – 2000, the so-called dot-com bubble emerged, when
a group of internet-based companies entered the markets and attracted many investors who
were confident in the companies’ profits, overlooking their fundamental values. The result
was a collapse, or burst bubble, during the period from 2000 – 2001. Another exogenous
shock was brought to stock markets in the 2001 when the World Trade Center (WTC)
was attacked and destroyed. While the markets recorded a sudden drop, it should not be
attributed to internal forces of the markets. The recent financial crisis of 2007 – 2008,
also known as the Global Financial Crisis, emerged from the bursting of the U.S. housing
bubble, which peaked in 2006. In a series of days in September and October 2008, stock
markets saw successive large declines. Many analysts believe that this crash was mainly
driven by the housing markets, but there is no consensus about the real causes. Finally,
our studied period also covers the May 6, 2010 Flash Crash, also known as The Crash of
2:45, in which the Dow Jones Industrial Average plunged approximately 1,000 points (9%),
only to recover its losses within a few minutes. It was the biggest intraday drop in history,
and one of its main possible causes may have been the impact of high-frequency traders or
large directional bets.

In terms of Zeeman’s (1974) hypotheses, cusp catastrophe theory proposes to model
the crashes as endogenous events driven by speculative money. Employing our two-step
estimation method, we estimate the cusp model to quantitatively test the theory on the
period that covers all of these crashes to determine whether the theory can explain the
crashes using our data. An interesting discussion may stem from studying the causality
between volatility and crashes. While Levy (2008) provided a modeling approach for
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Figure 3: S&P 500 price data. The figure highlights several important recession periods as grey periods
and crash events as black lines. The periods are more closely described in the text.

increasing volatility before crash events, the crashes are driven endogenously by speculative
money in our approach; thus, the sudden discontinuities are not connected to volatility.

5.1 Data description

For our two-step estimation procedure, we need two sets of data. The first set consists
of high-frequency trading data, which are used to estimate the volatility of returns. The
second set consists of data on sentiment. Let us describe both datasets used. For the re-
alized volatility estimation, we use the S&P 500 futures traded on the Chicago Mercantile
Exchange (CME)4. The sample period extends from February 24, 1984 to November 17,
2010. Although after the introduction of the CME Globex(R) electronic trading platform
on Monday, December 18, 2006, CME started to offer nearly continuous trading, we restrict
the analysis to the intraday returns with 5-minute frequencies within the business hours of
the New York Stock Exchange (NYSE) because the most liquidity of the S&P 500 futures
came from the period when the U.S. markets were open. We eliminate transactions exe-
cuted on Saturdays and Sundays, U.S. federal holidays, December 24 to 26, and December
31 to January 2 because of the low activity on those days, which could lead to estimation
bias.

Using the realized volatility estimator, we then measure the volatility of the stock
market returns as the sum of the squared 5-minute intraday returns. In this way, we obtain
6,739 daily volatility estimates. Figure 4 shows the estimated volatility 4(b) together with
the daily returns 4(a). It can be immediately observed that the volatility of the S&P 500
is strongly time varying over the very long period.

For the state (behavioral) variable of the cusp model, we use the S&P 500 daily re-
turns standardized by the estimated daily realized volatility according to Eq. (17). By

4The data were provided by Tick Data, Inc.
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Figure 4: S&P 500 (a) returns rt, (b) realized volatility RVt, and (c) standardized returns rtRV
−1/2
t . The

figure highlights several important recession periods as grey periods and crash events as black lines. The
periods are more closely described in the text.
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standardization, we obtain stationary data depicted in Figure 4(c).
In choosing the control variables, we follow the successful method from our previous

application in Barunik and Vosvrda (2009), where we compared several measures of control
variables and showed that fundamentalists, or the asymmetry side of the market, are
best described by the ratio of advancing and declining stock volume, and chartists, or
the bifurcation side of the model, are best described by the OEX put/call ratio5. The
variables related to the trading volume generally correlate with the volatility and therefore
are considered good measures of the trading activity of large funds and other institutional
investors. Trading volume indicators thus represent the fundamental side of the market and
can be used as a good proxy for fundamental investors. Therefore, the ratio of advancing
and declining stock volume should mainly contribute to the asymmetry side of the model.
Conversely, the activity of market speculators and technical traders should be well captured
by the measures of sentiment, precisely the OEX put/call ratio, which is the ratio of
daily put and daily call option volume with the underlying S&P 500 index. Financial
options are widely used and are the most popular instruments for speculative purposes.
Therefore, they serve as a good measure of speculative money in capital markets (see e.g.
Bates (1991), Finucane (1991), or Wang et al. (2006)) because they represent the data
about extraordinary premiums and excessive greed or fear on the market. Thus, they
should represent the internal forces that lead the market to bifurcation within the cusp
catastrophe model. Overall, we assume the OEX put/call option ratio mainly contributes
to the bifurcation side of the model. Moreover, we use a third control variable, the daily
change in total trading volume, as a driver for both the fundamental and speculative
money in the market. The daily change in the total volume indicator is generally related
to continuous fundamental trading activity, but it may also reflect elevated speculative
activity on the market as well. Therefore, we expect this variable to help the regression
not only on the asymmetry side but also on the bifurcation side. The time span for all
of these data matches the time span of the S&P 500 returns, i.e., February 24, 1984 to
November 17, 2010. The descriptive statistics for all of the data are in Table 4 in the
Appendix 6.

5.2 Full sample static estimates

In the estimation, we primarily aim to test whether the cusp catastrophe model is able to
describe the stock market data in the time-varying volatility environment and therefore
that stock markets show signs of bifurcations. In doing so, we follow the statistical testing
described earlier in the text.

Table 2 shows the estimates of the cusp fits. Let us concentrate of the left side of

Table 2(a), where we fit the cusp catastrophe model to the standardized returns rtR̂V
−1/2

t .
First, we do not make any restrictions, and we use all three control variables; thus, αx =

5The data were provided by Pinnacle Data Corp.
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(a) Estimates using rtdRV −1/2

t (b) Estimates using rt

Cusp Linear Logistic Cusp Linear Logistic

Unrestricted Restricted Unrestricted Restricted

α0 -2.378 *** 1.333 *** 5.008 *** 5.000 ***
α1 4.974 *** 3.369 *** 4.426 *** 2.730 ***
α2 0.062 *** 0.771 ***
α3 0.300 *** -0.064 *** -0.463 *** -0.534 ***
β0 -4.654 *** -1.334 *** -5.011 *** -5.000 ***
β1 -5.011 *** -1.201 ***
β2 0.139 *** -0.054 *** -1.138 *** -0.208 ***
β3 0.422 *** 0.299 *** 0.644 *** 0.683 ***
ω0 -0.700 *** 0.329 *** 0.786 *** 0.826 ***
ω1 0.492 *** 0.905 *** 0.407 *** 0.402 ***

R2 0.800 0.769 0.385 0.823 0.637 0.530 0.405 0.687
LL -4786.161 -4733.071 -7634.756 -5885.983 -7728.981 -8174.635 -7811.134 -5648.799
AIC 9592.321 9482.142 15279.512 11789.970 15477.960 16365.270 15632.270 11311.600
BIC 9660.209 9533.682 15313.456 11851.070 15545.820 16419.800 15666.350 11359.310

Table 2: Estimation results on the S&P 500 stock market data. The full sample extends from February 24,
1984 to November 17, 2010. The left side of the table presents the estimation results on the normalized

returns rtdRV −1/2

t , and the right side of the table presents the results for the original S&P 500 stock market
returns rt. Note: ***, **, *, ‘.’, and ‘ ’ denote significance levels of 0%, 0.001%, 0.01%, 0.05%, and 0.1%,
respectively.
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α0 +α1x1,t +α2x2,t +α3x3,t and βx = β0 + β1x1,t + β2x2,t + β3x3,t, where x1 is the ratio of
advancing and declining stock volume, x2 is the OEX put/call option ratio and x3 is the
rate of change of the total volume. The state variable is r̃t, and the returns are normalized
with estimated realized volatility. In terms of log likelihood, the cusp model describes the
data much better than the linear regression model. The ω1 coefficient is far away from zero,
although some degree of transformation of the data is needed. All of the other coefficients
are strongly significant at the 99% level. Most importantly, when the cusp fit is compared
with the logistic fit in terms of AIC and BIC, we can see that the cusp model strongly
outperforms the logistic model.

Our hypothesis is that the ratio of advancing and declining stock volume only con-
tributes to the asymmetry side, and the OEX put/call ratio, representing the measure of
speculative money in the market, contributes to the bifurcation side of the model. To test
this hypothesis, we set the parameters α2 = β1 = 0 and refer to it as a restricted model.
From Table 2(a), we can see that the log likelihood of the restricted model improves in
comparison with the unrestricted model. Additionally, in terms of the information criteria,
the fit further improves. All of the parameters are again strongly significant, and we can
see that they change considerably. This result can be attributed to the fact that x1,t seems
to contribute strongly to both sides of the market in the unrestricted model. Although
the β2 coefficient representing the speculative money is quite small in comparison with the
other coefficients, it is still strongly significant. Because this coefficient is the key for the
model in driving the stock market to bifurcation, we further investigate its impact in the
following sections. It is interesting to note that the ω1 parameter increases to very close
to one in the restricted model. This result means that the observed data are close to the
state variable.

When moving to the right (b) side of Table 2, we repeat the same analysis, but this
time, we use the original rt returns as the state variable. We wish to compare the cusp
catastrophe fit to the data with strongly varying volatility. In using the data’s very long
time span where the volatility varies considerably, we expect the model to deteriorate.
Although the application of the cusp catastrophe model to the non-stationary data can
be questioned, we provide these estimates to compare them with our modeling approach.
We see an important result. While the linear and logistic models provide very similar fits
in terms of the log likelihoods, the information criteria and R2 deteriorate in both the
unrestricted and restricted cusp models. The ω1 coefficient, together with all of the other
coefficients, is still strongly different from zero, but the important result is that the logistic
model not only describes the data better, but also the presence of bifurcations in the raw
return data cannot be claimed.

To conclude this section, the results suggest strong evidence that over the long period
of almost 27 years, the stock markets are better described by the cusp catastrophe model.
Using our two-step modeling approach, we have shown that the cusp model fits the data
well and the fundamental and bifurcation sides are controlled by the indicators for the
fundamental and speculative money, respectively. In contrast, when the cusp is fit to
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1987 2008

Cusp Linear Logistic Cusp Linear Logistic

Unrestricted Restricted Unrestricted Restricted

α0 -0.970 * -0.535 *** -3.938 *** -0.598 ***
α1 1.792 *** 1.794 *** 1.793 *** 1.798 ***
α2 -0.073 -1.322
α3 0.191 0.029 -0.814 0.005 ***
β0 0.562 * 0.322 * -0.542 *** -1.142 *
β1 -0.395 * -1.803 ***
β2 -1.255 ** -0.731 * -0.990 ** -0.031 ***
β3 1.648 *** 1.547 *** -0.803 0.282
ω0 0.453 *** 0.771 *** -0.637 *** 0.680 ***
ω1 0.561 *** 0.602 *** 0.476 *** 0.641 ***

R2 0.855 0.827 0.454 0.895 0.816 0.858 0.483 0.884
LL -85.971 -90.659 -208.557 -104.045 -88.054 -103.437 -185.150 -90.148
AIC 191.943 197.317 427.114 226.089 196.108 222.875 380.300 198.296
BIC 220.385 220.071 441.335 251.687 224.550 245.628 394.521 223.894

Table 3: Estimation results for the two distinct periods of the S&P 500 normalized stock market returns,

rtdRV −1/2

t . Note: ***, **, *, ‘.’, and ‘ ’ denote significance levels of 0%, 0.001%, 0.01%, 0.05%, and 0.1%,
respectively.

the original data with a strong variation in volatility, the model deteriorates. We should
note that these results resemble the results from the simulation; thus, the simulation also
strongly supports our modeling approach.

5.3 Examples of the 1987 and 2008 crashes

While the results from the previous section are supportive of the cusp catastrophe model,
the sample period of almost 27 years may contain many structural changes. Thus, we wish
to further investigate how the model performs over time. Therefore, we use the two very
distinct crashes of 1987 and 2008 and compare them to the localized cusp fits. There are
several reasons to study these particular periods. These crashes were distinct in time, as
there were 21 years between them, so they offer us an opportunity to determine how the
data describe the periods. On the one hand, the stock market crash of 1987 has not yet been
explained, and many analysts believe it was an endogenous crash. Therefore, it constitutes
a perfect candidate for the cusp model. On the other hand, the 2008 period covered a
much deeper recession, so it was very different from 1987. Finally, the two periods contain
all of the largest one-day drops, which occurred on October 19, 1987, October 26, 1987,
September 29, 2008, October 9, 2008, October 15, 2008, and December 1, 2008, recording
declines of 20.47%, 8.28%, 8.79%, 7.62%, 9.03%, and 8.93%, respectively. In the following
estimations, we restrict ourselves to our newly proposed two-step approach for the cusp
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catastrophe fitting procedure, and we utilize samples covering one-half year.
When focusing on the estimation results for the 1987 crash, we can see that both the

restricted and the unrestricted models fit the data much better than the linear regression.
The ω1 coefficients are significantly different from zero, and when the cusp models are
compared with the logistic model, they seem to provide much better fits. Thus, the cusp
catastrophe model explains the data very well, and we can conclude that the stock market
crash of 1987 was led by internal forces. This result confirms our previous findings in
Barunik and Vosvrda (2009), although a comparison cannot be made directly because we
used a different sample length in our previous study. When comparing the fits of the
unrestricted and restricted models, we can see that they do not differ significantly within
the log likelihoods, AIC and BIC. In addition, the coefficient estimates are close to each
other. The reason for this result is that the unrestricted model estimates the α2 coefficient,
which cannot be distinguished from zero, and the β1 coefficient is significant only at a 90%
level of significance. Thus, x1 is proven to drive the fundamentals, and x2 drives the
speculators. Note that the β2 coefficient is much larger in magnitude than on the fit for
the full sample in the previous section. Interestingly, x3 seems to drive the speculative
money in the 1987 crash, but it does not help to explain the 2008 behavior.

The data from the 2008 period present different results. While the cusp fits are much
better in comparison with the linear regression, they cannot be statistically distinguished
from the logistic model. Therefore, there is very weak evidence of discontinuities in this
period. This result is interesting because it may suggest that the large drops in 2008 were
not driven endogenously by stock market participants but exogenously by the burst of the
housing market bubble.

5.4 Rolling regression estimates

While the 1987 data are explained by the cusp catastrophe model very well and the 2008
data are not, we would like to further investigate how the cusp catastrophe fit changes
over time. With almost 27 years of data needed for our two-step method of estimation,
we estimate the cusp catastrophe model on one-half year rolling samples with a step of
one month. The one-half year period is reasonable because it represents enough data for
a sound statistical fit, but it is not a very long period, so we can uncover any structural
breaks in the data.6 In the estimation, we again restrict ourselves to our two-step estimation
procedure. To keep the results under control, we use the final restricted model, where we
assume that x1 controls the asymmetry side of the model, and x2 controls the bifurcation
side solely, while x3 contributes to both sides. Thus, α2 = β1 = 0.

Before we proceed to interpreting the rolling regression results, let us discuss the bi-
modality of the rolling samples. Stochastic catastrophe corresponds to a transition from a

6Various combinations of rolling sample lengths and steps had been used in the preliminary analysis
without affecting the overall aggregated results, e.g. comparing one day, and one month steps. The
outcomes of the preliminary analysis are available from authors upon request.
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Figure 5: Rolling values of BIC information criteria for the cusp catastrophe (in bold black) and the logistic
(in black) models.

unimodal to a bimodal distribution. Thus, we first need to test for bimodality to be able
to draw any conclusions from our analysis. To do this, we use the dip test of unimodality
developed by Hartigan (1985); Hartigan and Hartigan (1985). The dip statistic is the max-
imum difference between the empirical distribution function and the unimodal distribution
function, and it measures the departure of the sample from unimodality. Asymptotically,
the dip statistics for samples from a unimodal distribution approach zero, and for samples
from any multimodal distribution, the dip statistics approach a positive constant. We use
bootstrapped critical values for the small rolling sample sizes to assess the unimodality.
Figure 6 shows the histogram of all of the dip statistics, together with its bootstrapped
critical value 0.0406 at the 90% significance level. The results suggest that unimodality
is rejected at the 90% significance level for several periods, but for most of the periods,
unimodality cannot be rejected. Thus, we observe a transition from unimodal to bimodal
(or possibly multimodal) distributions several times during the studied period.

Encouraged by the knowledge that the bifurcations could be present in our dataset, we
move to the rolling cusp results. Figure 7 shows the rolling coefficient estimates together
with their significances. The ω1 is significantly different from zero in all periods, and the
α1 coefficient is strongly significant over the whole period, although it becomes lower in
magnitude during the latest years. Thus, the ratio of advancing and declining volume is
a good measure for fundamentalists driving the asymmetry portion of the model. Much
more important, however, is the β2 parameter, which drives the bifurcations in the model.
We can observe that until 1996, β2 was significant, and its value changed considerably over
time, but after 1996, it cannot be distinguished statistically from zero (except for some
periods). This result is very interesting because it shows that the OEX put/call ratio was
a good measure of speculative money in the market, and it controlled the bifurcation side
of the model. During the first period, the OEX put/call ratio drove the stock market into
bifurcations, but in the second period, the market was rather stable under the model. The
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parameter only started to play a role in the model again in the last few years and during
the recent 2008 recession. However, its contribution was still relatively small.

This result is also confirmed when we compare the cusp model to the logistic model.
Figure 5 compares the Bayesian Information Criteria of the two models, and we can see
that the cusp catastrophe model was a much better fit for the data up to 2003, while for
roughly 2003-2009, the cusp catastrophe model cannot be distinguished from the logistic
model or logistic model strongly outperforms the cusp model. In the last period after 2009
and before the Flash Crash, the cusp again explains the data better, but the difference
is not as strong as in the pre-2003 period. This result shows that before 2003, the stock
markets showed signs of bifurcation behavior according to the cusp model, but after 2003,
in the period of stable growth when participants believed that stock markets were stable,
the markets no longer showed signs of bifurcation behavior.

To conclude this section, we find that despite the fact that we modeled volatility in the
first step, the stock markets showed signs of bistability over several crisis periods.

6 Conclusion

In this paper, we contribute to the literature on the modeling of stock market crashes
and the quantitative application of the stochastic cusp catastrophe theory. We develop
a two-step estimation procedure and estimate the cusp catastrophe model under time-
varying stock market volatility. This approach allows us to test Zeeman’s (1974) qualitative
hypotheses on cusp catastrophe and bring new empirical results to our previous work in
this area (Barunik and Vosvrda, 2009).

In the empirical testing, we use unique, high frequency, and sentiment data on the
U.S. stock market covering almost 27 years. The results suggest that over a long period,
stock markets are well described by the stochastic cusp catastrophe model. Using our
two-step modeling approach, we show that the cusp model fits the data well and that the
fundamental and bifurcation sides are controlled by the indicators for fundamental and
speculative money, respectively. In contrast, when the cusp model is fit to the original
data with strong variations in volatility, the model deteriorates. We should note that these
results are similar to the results from a Monte Carlo study that we ran; thus, our simulation
strongly supports our analysis. Furthermore, we develop a rolling estimation, and we find
that until 2003, the cusp catastrophe model explains the data well, but this result changes
during the period of stable growth from 2003–2008.

In conclusion, we find that despite the fact that we modeled volatility in the first step,
the stock markets showed signs of bistability during several crisis periods. An interesting
venue of future research will be to translate these results to a probability of the crash
occurrence and its possible prediction.
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rt RVt rtRV
−1/2
t x1 x2 x3

Mean 0.00030 0.00697 0.15535 1.67051 1.16636 0.02029
Median 0.00059 0.00571 0.11005 1.12730 1.11000 0.00301
Std. Dev. 0.01175 0.00478 1.42534 2.21562 0.36245 0.21405
Skewness -1.32728 3.55338 0.13660 6.71651 1.37368 2.38477
Ex. Kurtosis 29.44420 23.96040 -0.02713 76.35370 4.87145 17.36620
Minimum -0.22887 0.00122 -5.21961 0.00187 0.30000 -0.76040
Maximum 0.10957 0.07605 5.45738 44.06780 4.56000 2.19614

Table 4: Descriptive Statistics of the data. The sample period extends from February 24, 1984 to November 17,
2010. The S&P 500 stock market returns rt, realized volatility RVt, daily returns normalized by the realized volatility

rtRV
−1/2
t and data for the independent variables {x1, x2, x3} are the ratio of advancing and declining stock volume,

the OEX put/call options and the change in total volume, respectively.

Figure 6: Histogram of the dip statistics for bimodality computed for all of the rolling window periods,
together with the bootstrapped critical value 0.0406 for the 90% significance level plotted in bold black.

Appendix I: Descriptive statistics

Appendix II: Bimodality
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Appendix III: Rolling regression estimates
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Figure 7: Rolling coefficients with their |z-values|. (a) Estimated ω1 coefficient values. (b) Estimated values
of asymmetry coefficients, α1 in bold black, α3 in black. |z-values| related to both coefficient estimates are
depicted as • and ∗, respectively. (c) Estimated values of bifurcation coefficients, β2 in bold black, β3 in
black. |z-values| related to both coefficient estimates are as • and ∗, respectively. Plots (b) and (c) also
contain the 95% reference z-value as a dashed black line.
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