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Abstract

We perform a careful spectral analysis of the correlation structures observed in real

and financial returns for a large pool of long-lived US corporations, and find that

financial returns are characterized by strong collective fluctuations that are absent

from real returns. Once the excessive comovement is subtracted from individual

financial time series, the behavior of real and financial returns is virtually identical

in both the cross-sectional and time series domains, thereby demonstrating the

inherently collective nature of excessive fluctuations. Put differently, if excess

volatility is to be reduced then one would do well to inhibit excess comovement

first. At any rate, the excessive behavior in volatility and comovement should no

longer be studied in isolation of each other.

Corresponding author:
Giacomo Livan, Systemic Risk Centre, London School of Economics and Political
Sciences, Houghton Street, WC2A 2AE London, United Kingdom

1



I. Introduction

The allocation of capital faces the fundamental choice between real economic ac-

tivity and financial investment. In the spirit of the efficient market hypothesis, the

financial returns of a corporation should reflect the returns from its real economic

activity, because sustained positive deviations between financial and real returns

would amount to a Ponzi scheme, while arbitrage considerations along Tobin’s q

theory of investment would eliminate sustained negative deviations. From a multi-

variate perspective, cross-correlations among stocks should therefore originate from

cross-correlations in real activity, measured here by the return on assets (ROA).

Since it is well known that stock prices exhibit excess comovement with respect to

other measures of fundamental value, like earnings flows or factor model estimates,

we expect a similar phenomenon in our comparison. But, more importantly, we will

show here that financial comovement in excess of our real benchmark is apparently

the single source of excess volatility. The two major methodological novelties with

respect to the existing empirical literature on excess comovement are (i) the use of a

reduced-form model of fundamentals (ROA) that produces estimated residuals with

remarkably neat statistical properties, and (ii) the use of random matrix theory to

robustly distinguish between genuine cross-correlations and noise in the spectra of

real and financial correlation structures.

II. Data and Methods

The data for our study are taken from Thomson Reuters Datastream and consist of

annual observations on the operating income I, total assets A, and market value M

of 475 US corporations that have been active in every year from 1980 to 2010. As a

proxy for the return to real economic activity, we use the return on assets (or profit

rate) of corporation i in year t and denote it by pit = Iit/Ait, while financial returns

are computed as logarithmic differences in market value, rit = logMit − logMi,t−1.

This leaves us with N = 475 different time series of length T = 30.
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The standard way of performing a correlation analysis on a set of N random

variables Xi (i = 1, . . . , N) is to collect T equally spaced observations in time

xit (i = 1, . . . , N ; t = 1, . . . , T ), compute their correlation matrix and inspect its

eigenvalue spectrum: large eigenvalues typically signal for the presence of strong

correlations among all or some of the variables under consideration. To fix notation,

let cij be the Pearson coefficient between the standardized series i and j, collected

in an N ×N cross-correlation matrix C. In our case, T < N and therefore the rank

of C is T . Principal component analysis informs us that, once normalized, xit can

be mapped onto a set of T orthogonal principal components e`:

zit = xit − µi

σi

=
T∑

`=1

√
λ`V

(`)
i e`t , (1)

where µi and σi are the mean and standard deviation of the N different time series,

λ1 ≥ λ2 ≥ . . . ≥ λT ≥ 0 denote the non-zero correlation matrix eigenvalues (given

the rank of C, N − T eigenvalues are equal to zero), and V
(`)

i denotes the i-th

component of the `-th normalized eigenvector. Seeking dimensional reduction, one

typically selects L < T of the large eigenvalues of C that account for a substantial

fraction of the variation in the original (normalized) series.

Most often, the choice of L is rather arbitrary. Here on the other hand we rely on

the Marčenko & Pastur (1967) distribution of random matrix theory, which describes

the eigenvalue density of purely random correlation matrices. Eigenvalues that are

larger than the density’s support accordingly identify large correlation structures

and endogenize the choice of L. The upper bound of the Marčenko-Pastur density’s

support is λ+ = (1 + √q)2/q, where q = T/N . Hence L represents the number of

eigenvalues (if any) that exceed λ+. If the original time series do not exhibit signif-

icant serial correlations, the L eigenvalues represent large-cluster cross-correlations

among the original data. Notice, however, that in the presence of serial correlations

one will observe eigenvalues that are larger than λ+ even in the case of vanishing

cross-correlations.
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Since financial returns do not exhibit significant serial correlations (in line with

the weak-form efficient market hypothesis), such a distinction appears superfluous

at first. Yet corporate profit rates are well known to exhibit significant positive serial

correlations (see, e.g., Mueller, 1977) that prevent a meaningful direct comparison

of the spectra of real and financial returns. Put differently, we do not know to which

extent the L eigenvalues of the profit rate spectrum contain information on cross-

correlation structures, or whether they are present at all. In order to disentangle

cross- and time correlation effects on the L eigenvalues of profit rates, we rely on

the following stochastic differential equation (SDE) to describe changes in the profit

rate of firm i

dpit = −Bi sign(pit −m)dt+Di dWit , (2)

where Bi > 0 is a mean-reverting parameter, Di > 0 is an idiosyncratic innovation

term, and dWit denotes Wiener increments. The parameter m ∈ R represents the

average rate of corporate profitability and applies across all firms in the sample.1

Equation (2) has recently been introduced by Alfarano et al. (2012), based on the

classical idea of capital reallocation in search of profit rate equalization. The SDE (2)

turns out to provide a useful description of the statistical properties of corporate

profit rates, because its stationary Laplace density coincides with the empirical

density of profit rates,2 and it also accounts for the observed persistence in their

autocorrelations that stems from the mean-reverting (deterministic) term of the

SDE. The deterministic term accounts for the systematic tendency of competition to

equalize profit rates, while the second (stochastic) term captures fluctuations in the

idiosyncratic destinies of individual corporations. Therefore the latter represents the

single genuine source of cross-correlation in profit rates if the reduced-form model (2)

is not misspecified.

1The average profit rate is remarkably stable over time and also reasonably similar across firms,
therefore we use the mode of the unconditional pooled profit rate distribution, m̂ = 9.5%.

2The ubiquity of Laplace distributions has also been observed in firm growth rates (see, e.g.,
Bottazzi & Secchi, 2003).
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Formally speaking, equation (2) provides a natural framework for the maximum

likelihood estimation of the parameters Bi and Di through its associated Fokker-

Planck equation that Toda (2012) has derived in closed form. After computing

the maximum likelihood estimates B̂i and D̂i, we extract the empirical Wiener

increments from the discretized version of (2)

∆Ŵit = 1
D̂i

(
∆pit + B̂i sign(pit − m̂)∆t

)
, (3)

where ∆t = 1 year, and ∆pit = pit − pi,t−1. The estimated residuals ∆Ŵ are

Gaussian, since we find that a Kolmogorov-Smirnov test indeed rejects the null hy-

pothesis of normally distributed residuals for only 15 out of 475 time series at the

5% significance level. Moreover, the residuals do not exhibit statistically significant

autocorrelations at the 5% level, in contrast to the original profit rate series (ma-

terial available upon request). The fact that the estimated residuals are normally

distributed and serially uncorrelated lends strong empirical support to the reduced-

form model of corporate profitability in equation (2). The filtering procedure (3) is

an important contribution of our letter because it copes with the problem of seri-

ally correlated profit rates, and therefore allows for a meaningful comparison of the

spectra of real and financial returns.

III. Results

Let M denote the N × T data matrix of standardized financial returns, and let W

denote the standardized residuals ∆W . Then we can form the N × N correlation

matrices

CW = 1
T

WWT, CM = 1
T

MMT , (4)

and compute their spectra. Table 1 reports the normalized values of the eigenvalues

exceeding the Marčenko-Pastur threshold λ+ for both matrices, and Figure 1 illus-

trates the component distribution of the eigenvectors associated with the largest

eigenvalues of both matrices. Notice that the top eigenvalue of CM accounts for
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almost 30% of the overall variation in financial returns, and that the components

of its corresponding eigenvector exclusively consist of entries with the same sign.

This is not the case for CW , however, whose top eigenvalue accounts for less than

10% of the overall variation in profit residuals, and whose corresponding eigenvector

components exhibit a 70/30 split between positive and negative signs.

[Result 1] The presence of a large top eigenvalue in CM that is coupled with a

corresponding eigenvector whose entries share the same sign has been firmly estab-

lished in the literature (see, for instance, Laloux et al. (1999) or Livan et al. (2011)

for details) and is typically interpreted as a market mode, i.e. a synchronous move-

ment of stocks in the same direction, analogous to the notion of excess comovement

in the empirical finance literature (see, e.g., Kallberg & Pasquariello, 2008). Since

CW does not exhibit a market mode, our spectral perspective also indicates excess

comovement.

[Result 2] Our spectral perspective allows us to isolate the contribution of the

market mode to the time series of financial returns. Remarkably, and perhaps rather

unexpectedly, it turns out that the mere removal of the largest spectral component is

by itself sufficient to reconcile the correlation structure of real and financial returns.

More precisely, we can construct a synthetic mean-centered time series of financial

returns from equation (1) that subtracts the market mode in CM (so the summation

now runs from ` = 2)

x̃it = σi

T∑
`=2

√
λ`V

(`)
i e`t (5)

and consider its corresponding cross-correlation matrix C̃M . The third column of

Table 1 illustrates that the non-random eigenvalues of C̃M are no longer significantly

different from those of CW , and since the components associated with the top eigen-

value of C̃M are almost evenly split between positive and negative values, a market

mode is indeed no longer present. In other words, the market mode quantifies the

degree of excess financial comovement from the real benchmark.
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[Result 3] Figure 2 plots annual averages across the 475 companies for finan-

cial returns, profit rates, and the synthetic financial return series from equation (5).

Interestingly, the mere subtraction of the market mode is sufficient to align the mag-

nitude of real and financial fluctuations in the time domain: upon subtraction of the

leading principal component, the aggregate annual fluctuations of synthetic finan-

cial returns decrease by one order of magnitude from 14.8% (standard deviation) to

1.2%, comparable in magnitude to aggregate profit rate fluctuations of 1.5%.

IV. Discussion and Conclusion

Our main idea is to use profit rate cross-correlations as a benchmark in the com-

parison with hitherto extensively studied financial cross-correlations. The use of

our reduced-form model for ROA dynamics turns out to be a very helpful device

because it allows us (i) to interpret the financial market mode as a measure of ex-

cess comovement, and (ii) to show that removing the market mode makes real and

financial returns consistent with each other both in the cross-sectional and the time

series domain. Hence it appears that excess volatility and excess comovement are

deeply intertwined. This result is not entirely trivial, as a counterexample illus-

trates: suppose that individual stocks exhibit excess volatility in the time domain,

but that their price changes are independent of each other. Then we would observe

excess volatility but not a market mode.

The more recent literature suggests various reasons for the existence of excess

comovement, for instance style investing (Barberis et al., 2005), or learning from in-

formation flows regarding corporate profitability (Patton & Verardo, 2012). While

our findings are consistent with these approaches, they cannot statistically discrim-

inate between them. On the other hand our results strongly indicate that excessive

fluctuations in the time domain (volatility) and the cross-sectional domain (comove-

ment) should not be studied separately.

Finally, one might object that our approach suffers from a conceptual flaw in that

higher financial volatility simply reflects a larger risk premium in financial invest-
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ments. But the average financial rate of return in our sample is around 9.2%, while

the average profit rate is around 9.5%, thus the Sharpe ratio of real investment dom-

inates its financial counterpart by one order of magnitude. Incidentally, Mundt et

al. (2014) corroborate that over longer horizons the real and financial rates of return

are on average equal across each of the forty largest economies in the world, and that

financial volatility is also an order of magnitude higher than its real counterpart. So

why would capital be invested financially in the first place?

From the perspective of capital owners, financial investments certainly provide

considerably more liquidity than the commitment to real economic activity, and

they also allow access to activities that might otherwise be outside the means of the

investor (trying to build and operate, say, one millionth of a power plant is obviously

a futile endeavor). Yet our results indicate that capital is paying rather dearly for

liquidity and access to large scale operations in the form of excessive volatility that

spans an order of magnitude.
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Table 1. Largest (normalized) eigenvalues of the cross-correlation matri-
ces for profit rate residuals, raw financial returns, and their synthetic
counterparts. Notice that the normalized eigenvalues can be directly
interpreted as the fraction of the overall sample variance contained in
the corresponding principal components of equation (1). As explained in
Section II, we only report eigenvalues that exceed the Marčenko-Pastur
threshold, in our case λ+ = 5.2%. Standard errors at the 5% significance
level are shown in parentheses and have been computed via conventional
bootstrapping techniques (material available upon request), demonstrat-
ing that the eigenvalues of profit rates and synthetic financial returns are
not significantly different.

CW (profit rates) CM (market value) C̃M (synthetic market value)
λ1/N 9.9(±1.5)% 27.4(±1.7)% 12.1(±1.3)%
λ2/N 6.8(±0.8)% 9.2(±1.1)% 7.9(±1.0)%
λ3/N 5.4(±0.4)% 5.9(±0.8)% 6.4(±0.7)%
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Figure 1. Empirical component distributions of the top correlation ma-
trix eigenvectors for financial returns (solid line), profit rates (dashed),
and synthetic returns from equation (5)
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Figure 2. Annual averages computed across the 475 companies for profit
rates (triangles), financial returns (squares), and synthetic financial re-
turns (circles). Notice that synthetic returns are by construction mean-
centered. Thus we have also mean-centered the other two series for visual
clarity because our focus is on the magnitude of fluctuations. Concerns
regarding potential differences in the levels of real and financial returns
are taken up in the final section.
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