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Abstract

Concentrating on speculative flow rather than stock demand, the pa-
per puts forward a deterministic continuous-time model of the equity
market that is compatible with a growing and inflationary economy. In-
stead of the systematically rising equity price, the central state variable
is now Tobin’s q, which makes it necessary to consider explicitly the
financing of fixed investment in the real sector. Integrating a number
of suitable re-specifications and fixing the variables in the real sector,
the model succeeds in re-establishing (almost) the same mathemati-
cal structure as the elegant two-dimensional Lux (1995) model, which
implicitly was set up in the usual stationary and non-inflationary en-
vironment. Thus a speculative dynamics is obtained that can generate
persistent oscillations as well as bubble equilibria and a rich sequence of
local and global bifurcations. The model is ready to be combined with
the growth cycles in a real sector, where the short-term fluctuations of
Tobin’s q may then also affect aggregate demand.
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1 Introduction

In a long-term perspective, this paper seeks to contribute to an integration
of a speculative stock market dynamics into models of the real sector that
exhibit growth cycle behaviour and positive inflation. The problem that we
perceive is with the modelling of the stock market. While in this respect
three main approaches may be distinguished in the existing literature, we
know of no fully satisfactory example that could be directly adopted for such
an integration.

A first approach can be viewed as an extension of the old textbook LM
framework to more financial assets than just money and bonds, two seminal
articles being Brainard and Tobin (1968) and Tobin (1982).1 Subsequent
work has shown its elegance and that growth and inflation pose no particular
problems; see, e.g., Taylor and O’Connell (1985) or Asada et al. (2010). On
the other hand, the specification of demand on the financial markets as
the agents’ desired holdings—as opposed to the desired changes in their
positions—is not a convincing foundation for a theory of speculation.2 In
addition, the typical architecture of these models sets up links between the
real and financial sector which are so tight that all variables would oscillate
with the same period (clearly demonstrated in Franke and Semmler, 1999).

Originating with Blanchard (1981), a second line of research puts more
emphasis on the expectations about future capital gains and so, dependent
on the specific assumptions and, in particular, their nonlinearities, could give
rise to some volatility (an introduction into this kind of modelling is Chiarella
et al., 2009, Chapters 2, 6, 7). An explicit representation of demand and
supply of the financial assets is here, however, absent; by way of arbitrage
arguments, share prices are assumed to react instantaneously or with a delay
to the differential between expected equity returns and the rate of interest.
Heterogeneity of agents is possible in this setting, but only with respect
to the capital gains expectations (Chiarella et al., 2009, p. 221), not with
respect to different principles of the formulation of demand.

With the archetypes of fundamentalist and chartist traders, the latter
is indeed at the heart of the many agent-based asset pricing models that
have been developed since Beja and Goldman (1980).3 There are also a few
recent papers that combine such a model with a real sector (Lengnick and
Wohltmann, 2011, and Westerhoff, 2012).4 Unfortunately, despite its rich-

1Although LM may also refer to equities, this has no further consequences since they
and bonds are assumed to be perfect substitutes.

2Taylor and O’Connell (1985, p. 875) explicitly state that their “wealthholders try to
look through Wall Street”.

3For surveys of this burgeoning field of research, see Hommes (2006), Lux (2009) and
Westerhoff (2009), to name a few.

4Proaño (2011) has set up a model with interactions between a real sector and an
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ness, all of this literature explicitly or implicitly refers to a stationary real
sector without inflation. For example, the fundamental value is (occasion-
ally) an exogenous random walk or (most often) a constant derived from a
constant stream of dividends.5

Given the limitations of the first two approaches, the stationarity as-
sumption in the otherwise very fruitful agent-based modelling presents a
challenge that it is high time to accept. We therefore take a well-established
agent-based model from the shelf, for which we choose the two-dimensional
speculative dynamics put forward by Lux (1995) because of its elegance and
its potential for persistent cycles and locally stable bubble equilibria. It
is our aim to respecify the model such that it can account for growth and
inflation in the real sector, and such that the original structure is essentially
preserved.

In this new context, the stock prices and their fundamental value have
to be converted into a stationary variable, which means they have to be
scaled by goods prices and a measure of economic activity. In this way
Tobin’s q as the ratio of stock market valuation and the replacement value
of the capital stock will be one of our key variables. For its theoretical
underpinning we propose a structural framework with corporate firms in its
centre who may issue equities to finance part of their fixed investment, or
who may systematically buy them back from the market. As it will turn
out, a classical value q⋆ = 1 could again make perfect economic sense as an
objective fundamental value, although due to heterogeneous perceptions of
the traders it need not necessarily constitute a long-run equilibrium. In any
way, the determination of Tobin’s q on the stock market is influenced by some
variables from the real sector, while regarding our perspective mentioned
at the beginning, it could also be easily employed as a variable affecting
aggregate demand on the goods market, which would give us a feedback
channel in the opposite direction.

The remainder of the paper is organized as follows. Section 2 describes
the single components of the stock market model. Treating the real sector as
exogenously given, Section 3 puts them together and thus arrives at a two-
dimensional differential equations system that shows a close resemblance to
the Lux model. Three propositions summarize what can be mathematically
inferred about its dynamic properties. Section 4 is concerned with a nu-
merical study. It puts up a benchmark scenario for persistent oscillations,
studies the impact of a ceteris paribus variation of a herding parameter on

agent-based exchange rate market.
5A certain exception is Chiarella et al. (2013), who principally allow the dividends to

grow over time. However, their price equation (which is only sloppily explained) takes no
account of possible changes in the number of shares, and persistent stock price inflation
would imply persistent excess demand, so that the so-called market maker would run out
of his inventory.
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the dynamics, which gives rise to a rich sequence of local and global bifurca-
tions (richer than in the original Lux model), and finally takes a quick look
at the motions induced by some regular exogenous oscillations in the real
sector. Section 5 concludes. A number of finer details are relegated to five
appendices.

2 The stock market model

2.1 The financing of fixed investment and Tobin’s q

Since we do not want to limit ourselves to a constant stock of outstanding
shares, we need to consider the issuance policy of the firms in the real sector
and its connection to the dividends payed out to the shareholders. These
components are linked through the finance equation according to which fixed
investment is financed by a combination of internal and external sources. Re-
garding the former, a fraction σf of the firms’ profits are retained, while the
issuing of new shares is supposed to be the only external source. Assuming
a one-good economy, profits are given by r pK, where K denotes the capital
stock in place, p the general price level, and r the rate of profit. The number
of shares is designated E, pe is their current price, and Ė their instantaneous
rate of change.6 With I the level of net investment, the finance identity in
continuous time reads,

pI = σf r pK + peĖ (1)

Firms need not permanently issue new shares; for a certain period of time
they may also buy them back from the market, so that both Ė ≥ 0 and
Ė < 0 are admissible. Likewise, the retention rate σf need not necessarily
be nonnegative; it might fall below zero if Ė is high enough. In any case,
however, if besides investment and the profit rate, it is Ė that is predeter-
mined by some rule, σf is residually determined and vice versa. Following
much of the macroeconomic literature, we assume a hierarchy where external
finance takes a higher level than internal finance. Correspondingly, the rate
of growth ge of equities (ge = Ė/E) is treated as a predetermined variable.7

Introducing the capital growth rate g = I/K and (average) Tobin’s q,

q =
peE

pK
(2)

and noting that peĖ/pK = (peE/pK) (Ė/E) = q ge, it is easily seen from
solving (1) for σf that the retention rate varies with Tobin’s q,

σf = σf (q) = (g − q ge) / r (3)

6For a dynamic variable x we write ẋ = dx/dt for its derivative with respect to time
and, further below, x̂ = ẋ/x for its instantaneous growth rate.

7Appendix A proposes a straightforward rule for choosing ge.
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Whether the relationship is positive or negative depends on the sign of ge.
Incidentally, eq. (3) can be interpreted as a variant of the Cambridge equa-
tion, which is here adjusted to a framework where part of investment is
financed by issuing equities.

The changes of Tobin’s q are readily obtained from logarithmic differen-
tiation, q̂ = p̂e + Ê − p̂− K̂. With the definition of the growth rates ge and
g and writing π for the rate of inflation in the real sector, they read,

q̂ = p̂e + ge − π − g (4)

A state of the stock market where share prices change such that Tobin’s q
remains constant will be of particular importance. This special value of p̂e
(when g, ge and π are predetermined) provides an objective benchmark for
stock price inflation, which may be designated π

⋆
e ,

π⋆
e := p̂e|q̂=0 = π + g − ge (5)

The equation tells us that in the presence of ge < g, stock prices tend to rise
faster than goods prices. with positive inflation in the real sector, π > 0,
π
⋆
e will be strictly positive, and π

⋆
e = π prevails if and only if the number of

shares increases at the same rate as the real capital stock.

Equities themselves are held because of the dividend payments (1−
σf ) r pK and the capital gains p̂e. Thus, taking account of (3), the in-
stantaneous (or ‘daily’) rate of return on equities, re, is given by

re =
(1−σf ) r pK

peE
+ p̂e =

r − g

q
+ ge + p̂e (6)

2.2 The price adjustment equation

Regarding the principle governing the evolution of stock prices, let us start
from the basic idea adopted in so many asset pricing models that there is a
so-called market maker who raises (lowers) the price if demand exceeds (falls
short of) supply. The present context, however, requires a modification of
the standard specification when inflation in the real sector is neglected. This
is most directly seen when considering the notion of an equilibrium position,
where Tobin’s q should be constant.

From eq. (5) we know that stock price inflation will then be typically
positive. The standard approach would therefore imply a permanent excess
demand on the market. According to the usual story, the excess of demand
over supply is served by the market maker, so that sooner or later he would
run out of his inventory and this mechanism breaks down (presupposing
that he would not be willing to replenish the inventory at his own cost).
Hence, in order to guard against this tendency, the market maker would
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have to increase the market price even when demand and supply balance.
To this end, we assume that he continues to adjust prices in the direction
of excess demand but, in addition, employs a benchmark rate π̃m

e of stock
price inflation. Furthermore, a possible longer growth or decline of equities
is taken into account by normalizing the volume of excess demand by the
number of outstanding shares. In this way, the price equation becomes

p̂e = π̃m
e + β̃e × total excess demand /E (7)

where β̃e is a positive price impact factor (the two tildes will be removed
shortly below, after a convenient transformation). The market maker’s
benchmark inflation π̃m

e may or may not be equal to the objective benchmark
π
⋆
e from eq. (5).

There is a great variety of agent-based models working with just two
groups of speculative traders (though most of them are formulated in discrete
time). One of them are the fundamentalists, who bet on an eventual return

of the market price to some fundamental value pfe and thus buy (sell) if pe is

below (above) pfe . Now neglect the other traders for a moment and suppose a
positive growth rate of equities. In an equilibrium the fundamentalists would
consequently have to have a positive excess demand in order to absorb them,
which in turn means market prices prevail that are persistently below their
fundamental values (both of which may increase over time). This type of
behaviour which supports an equilibrium with persistent misalignment may
not appear fully consistent and we would have to reveal a second motive to
make sense out of it. An analogous reasoning would apply to the second
group of traders, depending on their specific strategies.

We prefer to make such an additional motive explicit and attribute it to
an extra group of traders.8 Their actions are related to absorbing the shares
newly issued if ge > 0, and to provide shares if firms are buying them back,
ge < 0. We may call these agents short-term fundamentalists, in contrast to
the ‘normal’ fundamentalists with their medium-term trading horizon. The
basic idea is as follows. If stock prices currently change at a rate such that
the resulting equity rate of return re is equal to the (risk-adjusted) rate of
interest, then the short-term fundamentalists are indifferent between buying
or selling shares. More specifically, under these circumstances their demand
is just equal to the change in equities, Ė. If the returns re are higher (lower)
than the bond rate, their demand is proportionately higher (lower) than in
the situation just described.

The idea is formulated in detail in Appendix B. It is an advantage of
our continuous-time framework that the original price equation (7) can then
be simplified such that the short-term fundamentalists remain in the back-

8Of course, a single trader may split up his capital (and his personality, so to speak)
and simultaneously follow different rules.
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ground. In the total excess demand on the market, the demand for and
supply of new equities cancels and what is left is just the demand of the
truly speculative traders. Taking up the types of traders considered by Lux
(1995) and adjusting them somewhat to the present setting, these are the
fundamentalists with (net) demand df and the so-called sentiment traders
with (net) demand ds, where df and ds may be positive as well as negative.
With a new benchmark rate of stock price inflation πm

e , which results from
a suitable transformation of π̃m

e , and a new positive price impact factor βe,
which results from a suitable transformation of the original β̃e in (7), we can
then work with the following, more convenient, price adjustment equation,

p̂e = πm
e + βe (d

f + ds) /E (8)

(compare this equation with eq. (A1) in Appendix B.) Under a certain and
not too implausible condition, πm

e in this reduced form is given by the market
maker’s benchmark π̃m

e in (7). We will nonetheless be indifferent in this
regard and, for simplicity, refer directly to the present πm

e as the market
maker’s benchmark for stock price inflation.

2.3 Fundamental value and fundamentalists

The fundamentalists in the usual sense, identified by a superscript ‘f ’, have
longer time horizons and base their demand on the differences between the
current price and what they perceive as the fundamental value. Even though
they might expect the gap between the two prices to widen in the immediate
future, they do not trade on these short-run expectations. Instead they
choose to place their bets on an eventual rapprochement.

The fundamental value adopted in the formulation of their demand de-
rives from the equity rate of return rfe that is relevant for them. The latter
means that they use a smoother measure of the capital gains in its spec-
ification than the rather volatile values of p̂e. In fact, they replace the
instantaneous capital gains p̂e in (6) with a constant benchmark rate πf

e ,
that is,

rfe =
(1−σf ) r pK

peE
+ πf

e =
r − g

q
+ ge + πf

e (9)

The fundamentalist traders are indifferent between holding equities or gov-
ernment bonds if this rate of return is equal to the interest rate i plus a
risk premium ξ. Equality is brought about by a suitable value of Tobin’s q.
Solving the equation rfe = rfe (q) = i+ ξ for q, this fundamental qf is derived

from πf
e as

qf =
r − g

i+ ξ − ge − πf
e

(10)
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and the corresponding fundamental price is

pfe = qf pK/E (11)

Fundamentalists view equities as undervalued and therefore have a positive
demand for them if the market price pe is presently below this fundamental
value pfe , and a negative demand if presently pe exceeds pfe .9 Letting β̃f be
a measure of their general aggressiveness and/or their capital in the market,

we posit the simple rule df/E = β̃f (p
f
e − pe)/p

f
e . This expression can be

rewritten as β̃f (p
f
eE/pK − peE/pK)/(pfeE/pK) = β̃f (q

f − q)/qf . Since in
the present paper the variables determining qf are treated as fixed data, we
may put βf = β̃f/q

f . The demand of the fundamentalists is thus given by

df/E = βf (q
f − q) (12)

If in future work our stock market is combined with the business cycles in
the real sectors so that qf in (10) is varying over time, it might be convenient
to postulate (12) directly.

It should be emphasized that the concept of rfe , qf and pfe rests on a
subjective benchmark πf

e of stock price inflation. In particular, apart from
possible misperceptions, the specific value of pfe may depend on the trad-
ing horizon of the fundamentalists. On the other hand, from a long-term
perspective (which might be longer than the perspective of the fundamental-
ists) an appropriate benchmark would be the rate p̂e=π

⋆
e from (5) at which

Tobin’s q does not change. Substituting it for πf
e in (10) gives us a value

q⋆ that might seem a natural candidate for a long-run equilibrium value of
Tobin’s q,

q⋆ =
r − g

i− π + ξ − g
(13)

It is also the most natural value if it is taken into account that consistency of
a steady state position in the real sector requires the profit rate to be equal
to the real interest rate plus the risk premium, r = i− π+ ξ. On this basis,
the familiar value q⋆ = 1 is obtained. Nevertheless, it will be seen that q⋆

may not necessarily constitute a point of rest for the stock market. Even
the equality of q⋆ and the subjective benchmark qf of the fundamentalists
will not be sufficient for this.

2.4 The sentiment traders

The second group of the (truly) speculative agents are the sentiment traders.
These are agents who are either optimistic or pessimistic, and who can

9They do not expect pe to return to the current value of pfe , but that the gap between
the two will narrow; for example, if pfe as well as pe tend to rise in the near future.
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probabilistically switch between the two attitudes. If a+ denotes the share
of optimists and a− the share of pessimists (i.e., a++a− = 1), the difference
a between the two may define the so-called sentiment index, a = a+− a−.
By construction, −1 ≤ a ≤ 1, and there are as many optimists as pessimists
if the index is balanced, a=0.

It is assumed that an average sentiment trader buys, if he is optimistic,
a fixed (tiny) fraction β̃s of the shares currently outstanding, and he sells
it if he is pessimistic. Ns being the size of the group, aNs β̃sE represents
their total demand ds on the market. Putting βs = Ns β̃s,

ds/E = βs a (14)

The law of motion for the sentiment index a is basically dependent on a
so-called indicator of optimism za, higher values of which will be conducive
to optimism. Specifically, it incorporates two effects. The first is a herding
effect, meaning that a higher share of optimists make it more likely for an
agent to remain, or become, an optimist. Let the strength of this effect
be measured by a coefficient φa. The second effect is a trend effect, where
in the same sense optimism is fostered by excess capital gains. The latter
are assessed by a group-specific benchmark rate πs

e, and the strength of this
mechanism is governed by a coefficient φp. In sum, the indicator of optimism
is set up as

za = φa a + φp (p̂e − πs
e) (15)

and −za can be regarded as an indicator of pessimism. Equation (15) is the
direct counterpart of eq. (9) in Lux (1995, p. 887).10

It remains to specify how za acts on the sentiment index a. Here it is as-
sumed that a sentiment trader makes a new decision about his attitude with
a uniform and fixed probability ν per unit of time, and with probability (1−ν)
he sticks to his current attitude. If active in this way, a trader, irrespective of
his previous behaviour, chooses to be an optimist with probability P+(za) :=
exp(γza)/[ exp(γza) + exp(−γza) ], and to be a pessimist with the comple-
mentary probability P−(za) := exp(−γza)/[ exp(γza) + exp(−γza) ]. Inter-
preting the positive coefficient γ as the ‘intensity of choice’, these expressions
are well-known from discrete choice theory. As explained in Appendix C,
they lead to changes ȧ+ = ν [P+(za) − a+] and ȧ− = ν [P−(za) − a−], a
so-called logit dynamics. Subtracting the two derivatives, we arrive at the
following differential equation for the sentiment index,

ȧ = ν [ tanh(γza)− a ] (16)

The hyperbolic tangent in (16) is defined on the entire real line with tanh(0)
= 0, it is everywhere increasing, skew-symmetric around zero, and bounded

10His discussion points out that the coefficient φp incorporates a time dimension.
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between −1 and +1, where these values are asymptotically approached by
tanh(x) as x→−1 and x→+1, respectively. A pleasant implication of this
nonlinear shape is that if the indicator of optimism za remains bounded, the
boundaries a = ±1 are repelling (tanh(γza) eventually falls short of a and
thus renders ȧ < 0 as a → +1, and analogously for a → −1). Hence there
will always be a nondegenerate mix of optimists and pessimists.

It may be noted that eq. (10) in Lux (1995, p. 888), adjusted to the
present context and notation, reads ȧ = ν [tanh(γza) − a] cosh(γza). Since
the hyperbolic cosine is symmetric around zero and everywhere not less
than one, the information content of the two adjustment equations is quite
the same, although Lux derives his sentiment dynamics from a different
specification based on endogenously varying transition probabilities.11 We
prefer to work with (16) since it need not ‘bother’ about the somewhat
‘distorting’ cosine term.

3 Analysis of the model

3.1 The functioning of the stock market dynamics

In order to study the speculative dynamics on the stock market in its pure
form, we put the variables in the real sector to rest and treat r, i, π, ξ, g, ge
as fixed parameters. Before turning to a formal analysis, let us first con-
sider the general functioning of the market. As a starting point, suppose
Tobin’s q is below the fundamentalist benchmark qf and the mood of the
sentiment traders is balanced, a=0. Thus fundamentalists have a positive
demand according to (12) and the sentiment traders are temporarily inac-
tive according to (14). Stock prices consequently rise at a higher rate than
the market maker’s benchmark πm

e ; see eq. (8). Let us furthermore, for the
sake of the argument, assume that πm

e equals the objective benchmark π
⋆
e ,

so that eqs. (4) and (5) directly entail that Tobin’s q increases.

Regarding the sentiment traders, assume that their benchmark πs
e co-

incides with πm
e . Hence the indicator of optimism za in (15) is positive.

On account of eq. (16) a herding towards optimism sets in, which is then
reinforced by the positive excess capital gains (p̂e − πs

e) in (15). As a result,
the demand ds of the sentiment traders is rising. On the other hand, the
resulting rise of p̂e (and therefore q) diminishes the fundamentalist demand
df . Eventually, q will reach qf , when df becomes zero, and then rise above
qf , from when on df turns negative.

Total demand of the speculative traders is still positive but less than

11The relationship between the transition probability approach, the discrete choice ap-
proach and the present somewhat ‘smoothed’ discrete choice approach is considered in
detail in Franke (2013).
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before, which implies that the rise of the stock prices decelerates. This also
weakens the positive feedback in the sentiment dynamics. Even though the
sentiment index a may increase further, from the remark on (16) we know
that this motion will eventually be reversed. From here on, the sentiment
traders reduce their demand. Sooner or later not only df but total demand
as well will be negative, p̂e gets lower than πm

e = π
⋆
e , and Tobin’s q starts

falling; see (4) and (5).

What has just been described is a global stabilization mechanism, which
certainly works in both directions. After the turning point of, first, the sen-
timent index a and, subsequently, Tobin’s q, the stock market may converge
to an equilibrium position, adjustments that could take place in a mono-
tonic or a cyclical manner. Alternatively, there may be an overshooting of
the equilibrium in every new round so that persistent fluctuations come into
being. Lastly, it might even be the case that near a (positive) turning point
of a the negative df and the positive ds balance. In a neighbourhood of this
configuration a situation can arise where simultaneously ȧ = 0 and q̇ = 0.
Besides a balanced equilibrium regarding the sentiment traders, this would
establish another stock market equilibrium with a distinct majority of opti-
mists. More definite statements, however, about which of these possibilities
prevails—and under what conditions—require a mathematical analysis.

3.2 Stability and instability in the two-dimensional system

By virtue of the specifications in Section 2 it is possible to reduce the stock
market dynamics to a system of two differential equations. To this end,
substitute the demand terms in the price equation (8) by (12) and (14),
which yields

p̂e = πm
e + βe [βsa+ βf (q

f − q) ] (17)

The derivative of Tobin’s q is then readily obtained from (4) and (5),

q̇ = q
{

πm
e − π

⋆
e + βe

[

βsa+ βf (q
f − q)

] }

(18)

The second dynamic variable is the sentiment index a. Since only (a, q)
enter the stock price changes in (17), the indicator of optimism za in (15)
is a function of the same two variables, and this equally holds true for the
right-hand side of (16) governing the motions of a. Equations (16) and (18)
are thus seen to constitute the two-dimensional system that we aimed at.

It may also be noted that nothing changes if in the expression γza in (16)
the coefficient γ is multiplied by some positive number and φa, φp in za in
(15) by its reciprocal. Hence we can put γ = 1 without loss of generalization.
The same observation can be made for the coefficients βe, βs and βf in (18),
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so that βe can be likewise put equal to unity. With this type of scaling, our
stock market model finally reads as follows:

ȧ = ν { tanh [za(a, q)] − a }

q̇ = q [ (πm
e − π⋆

e) + βsa + βf (q
f − q) ] (19)

za(a, q) = φaa + φp [ (π
m
e − πs

e) + βsa + βf (q
f − q) ]

It is quite convenient for the analysis that the system exhibits only one
essential nonlinearity, namely, the hyperbolic tangent in the equation for
the sentiment index. As it has already been mentioned, this feature is of
the same kind as in Lux (1995) except that there the expression in curly
brackets is multiplied by a positive cosh term. Stock price changes in the
Lux paper are governed by a linear combination of the sentiment index and
the price misalignment, while here owing to the growth rate formulation of
Tobin’s q the relationship is quasi-linear.

Nevertheless, if one assumes identical benchmark rates πm
e = πs

e = π
⋆
e ,

system (19) and the Lux system produce the same isoclines for (in the
present notation) ȧ and q̇, that is, the same geometry in the phase plane
would prevail. Because of the slight modifications, however, the Jacobian
matrices in some of the equilibrium points will not be precisely identical.
In particular, parameter configurations might exist where an equilibrium is
stable in one system and unstable in the other, although from a practical
point of view such a parameter region would be rather small.

The two isoclines q̇ = 0 and ȧ = 0 in the (a, q) phase plane are indeed
the basis for an analysis of the stock market dynamics. Owing to the case
distinctions for the three benchmark rates of stock price inflation, the for-
mulation of the mathematical propositions that can be derived from them
will appear somewhat technical. Later, we will therefore add a numerical
study since its phase plots, and the changes they are undergoing when one
of the parameters is varied, will be more vivid.

Considering the two isoclines, the q̇-isocline is easily seen to be given by
a linearly increasing function q = qICq(a). Also the relationship ȧ = 0 can
be explicitly solved for q, although the corresponding function q = qICa(a)
is more involved.12 It can be shown that the two isoclines intersect at a
balanced sentiment a = ao = 0, which together with a suitable value qo of
Tobin’s q constitutes an equilibrium point of system (19).

The function q = qICa(a) is nonlinear and always tends to +∞ as a → −1
and to −∞ as a → +1. It can be everywhere strictly decreasing, in which
case (ao, qo) is the only point that the two isoclines have in common. On the
other hand, q = qICa(a) can be an increasing function over some medium
range of a. Here it depends on the relative slope of the two isoclines at

12For this and the other mathematical statements to follow, see Appendix D.
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(ao, qo) whether it remains the only equilibrium or whether in addition two
outer equilibria emerge. By virtue of the asymptotic behaviour of q =
qICa(a) for a → ±1, the latter happens if at (ao, qo) this function is steeper
than the other isocline q = qICq(a).

13 Maintaining the equality of the two

benchmark rates πs
e and π

⋆
e , there is a simple condition for the uniqueness

of the balanced equilibrium (ao, qo), and a symmetry statement for the case
of multiple equilibria.

Proposition 1. Suppose that the stock price inflation benchmark of the
sentiment traders πs

e is equal to the objective benchmark π
⋆
e from (5). Then

the following holds.

(a) The point Eo = (ao, qo) with ao = 0 and qo = qf + (πm
e −π

⋆
e)/βf

constitutes an equilibrium of system (19).

(b) The equilibrium Eo is unique if and only if the sentiment traders’
herding parameter φa is less than or equal to unity.

(c) If on the other hand φa > 1, two (and only two) additional equilibria
E1 = (a1, q1) and E2 = (a2, q2) emerge. They are symmetric around
Eo, that is, a1 < ao < a2, q1 < qo < q2, and a2 = −a1, q2 − qo =
qo − q1.

According to the remark on eq. (13), q⋆ = 1 appears to be a natural equilib-
rium value of Tobin’s q. The first part of the proposition shows that, except
for a fluke, it only constitutes a point of rest of the stock market dynamics
if the fundamentalists share this view, i.e. if q⋆ = qf , and if additionally the
market maker adopts the objective benchmark for stock price inflation, i.e.
if πm

e = π
⋆
e . Clearly, this observation has no counterpart in the Lux model.

Dropping the assumption on the stock price inflation benchmarks in
Proposition 1 and admitting different values of πm

e , πs
e, π

⋆
e leaves the shape

of the ȧ = 0 and q̇ = 0 isoclines unaltered. As shown by eqs. (A3), (A2) in
Appendix D, they are only shifted upward or downward in the (a, q)-phase
plane. Hence, as long as the differences between the benchmark rates are
not excessively large, the statements about the existence and location of
the equilibrium points remain qualitatively the same. In addition, the next
proposition tells us how the sentiment index in an equilibrium Eo is affected
by the changes in πs.

Proposition 2. Suppose that the difference between πs
e and π

⋆
e is not too

large. Then the following holds.

(a) Again, a unique equilibrium Eo = (ao, qo) exists if and only if φa ≤ 1,
where ao > 0 if πs

e < π
⋆
e and ao < 0 if πs

e > π
⋆
e .

13Examples of these cases are given in Figures 1 and 2 below.
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(b) If φa > 1, three equilibria Eo, E1, E2 exist with a1 < ao < a2 and
q1 < qo < q2. Here, for Eo = (ao, qo), ao < 0 if πs

e < π
⋆
e and ao > 0

if πs
e > π

⋆
e .

(c) In both cases, the equilibrium value of Tobin’s q at Eo is given by
qo = qf + [(πm

e −π
⋆
e) + βsa

o]/βf .

Not only the number of equilibria but also their stability properties are
crucially dependent on the sentiment traders’ herding parameter φa. It can
render Eo stable and unstable, and in the latter case Eo can be repelling
or a saddle point. Even the outer equilibria can be both unstable or stable,
or one may be stable and the other unstable. In the present limited setting
it is thus also possible that the stock market gets stuck in a self-stabilizing
bubble, or eventually such a bubble bursts.

If Eo is unique and repelling, the market does not diverge but will per-
sistently oscillate around Eo. Mainly responsible for this pleasant property
is the nonlinearity in the sentiment dynamics, which produces a suitable
shape of the ȧ = 0 isocline that allows us to apply the Poncaré-Bendixson
Theorem in a mathematical proof. A limit cycle could furthermore exist in
the presence of three equilibria. The conditions for stability and instability
are the least involved if we concentrate on the strictly symmetric case where
ao = 0 at Eo. Clearly, the mathematical statements are maintained when
ao 6= 0, only the conditions would be somewhat distorted.

Proposition 3. Suppose πs
e = π

⋆
e , so that ao = 0 in Eo = (ao, qo), and put

A = φpβs − βfq
o/ν. Then the following holds.

(a) If φa < 1−max{0, A}, the unique equilibrium Eo is (at least) locally
asymptotically stable. The inequality φa < 1 − φpβs is a sufficient
condition for its global stability.

(b) If A > 0 and 1 − A < φa < 1, the equilibrium Eo is repelling and
every trajectory outside of Eo converges towards a periodic orbit. At
the critical value φa = 1−A, the system undergoes a Hopf bifurcation.

(c) The equilibrium Eo is a saddle point if φa > 1. The two outer equilibria
E1, E2 may or may not be locally asymptotically stable, or E2 may be
stable but not E1. If both E1 and E2 are unstable, a locally stable limit
cycle exists; otherwise such a closed orbit may or may not exist.

Regarding the periodic orbit in Proposition 3b, the mathematical analysis
is not powerful enough to tell us whether or not it is unique. Likewise, there
are no handy conditions for the stability or instability of the outer equilibria,
and no conditions at all about the existence of one or several global orbits
around one of them, or both of them. Deeper insights into these dynamic
properties can be obtained by a numerical investigation, which will be the
subject of the next section.
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4 A numerical study

It is useful for a numerical analysis to start out from a benchmark scenario.
To this end, the parameter values in Table 1 are proposed. The underly-
ing time unit is one year, which affects the interpretation of the coefficients
ν, πm

e , πs
e, π

⋆
e .14 The scenario was chosen such that (a) there is a unique

equilibrium Eo = (ao, qo) with ao = 0, qo = qf = 1, and (b) the compos-
ite coefficient A results as A = 0.8333, which with 1−A < φa < 1 and
Proposition 3b implies that Eo is repelling and all (nondegenerate) motion
converges to a closed orbit. As a matter of fact, Figure 1 illustrates that
convergence occurs towards a unique limit cycle. Its period is moreover
exactly one year and hence considerably shorter than an ordinary business
cycle in the real sector.15 The upper and lower bounds between which the
two state variables oscillate are (roughly) a = 0 ± 0.60 and q = 1 ± 0.08.
The mechanisms driving such a cycle have already been sketched in Section
3.1.

In the remainder of this section we study how the dynamics is affected
by ceteris paribus variations of the central herding parameter φa. They will
give rise to a number of different topologies, brought about by a sequence of
local and also global bifurcations (regarding equilibrium points and closed
orbits, respectively). At the end, we return to the benchmark scenario and
introduce an exogenous regular business cycle motion in the real sector,
which will shift the stock market up and down with a period of about eight
years.

To begin with the variations of the herding parameter, we know from
Proposition 3b that the qualitative behaviour of Figure 1 is preserved as long
as φa < 1. The simulations assure us that this also includes the uniqueness
of the limit cycle. Quantitatively, as φa rises up to 0.99, its period increases
to roughly 1.6 years and the amplitudes to a = 0 ± 0.88 and q = 1 ± 0.14.
Figure 2, then, summarizes the most important findings as we let φa increase
above unity.

The effect of an increasing φa is that the ȧ = 0 isocline in Figure 2
becomes steeper and steeper in Eo. Eventually, it has a steeper slope than
the straight line q̇=0. This happens at φa = 1.00. By virtue of the nonlinear
shape of ȧ= 0, two (and only two) outer equilibria E1 and E2 come into
being when φa > 1.00. Eo itself turns from a repelling equilibrium into a
saddle point. Mathematically, it may therefore be said that the bifurcation

14The specific values of πm
e , πs

e , π
⋆
e play no role (cancel out in (19)) as long as these

three benchmark rates are equal. Unequal values would shift the isoclines ȧ= 0 and/or
q̇=0 and thus their points of intersection. Quantitatively, however, these effects would be
completely negligible; see eqs (A2) and (A3) in Appendix D, given that βf = 5.

15This seasonal pattern was motivated by the trading adage, “sell in May and go away”
(in order to get back in November).
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Table 1: Benchmark scenario of system (19).

Notation Values Description

Sentiment traders:

φa 0.38 herding parameter in za, eq. (15)

φp 1.25 reaction to price changes in (15)

ν 12 flexibility parameter in (16)

βs 1 reaction coefficient in (14)

Fundamentalists:

qf 1 subjective Tobin’s q in (10)

βf 5 reaction coefficient in (12)

Stock price inflation:

πm
e 0.02 market maker’s benchmark in (8)

πs
e 0.02 sentiment traders’ bench. in (15)

π
⋆
e 0.02 objective benchmark rate in (5)

Note: The corresponding composite parameter A from Proposition 3 is A =
0.8333, hence 1 > φa > φH

a = (1−A) = 0.1667, the Hopf bifurcation value
of the herding parameter, and Eo is repelling.

occurring at φa = 1.00 is an inverted, or unstable, pitchfork bifurcation.16

Table 2 below provides a succinct summary of this and the other bifurcations
to come.

Initially, as φa is sufficiently close to 1.00, the outer equilibria E1 and
E2 are unstable. With the Poincaré-Bendixson theorem it can again be
concluded that all (non-degenerate) trajectories converge to a periodic orbit.
Figure 2a demonstrates that this orbit is unique, too. It has arisen from the
limit cycle in Figure 1, which has gradually widened and now (necessarily)
encircles all three equilibria.

The value of φa = 1.1752 in Figure 2a is shortly below the critical value
φa = 1.1753 at which the optimistic bubble equilibrium E2 (but not E1)

16In an ordinary (supercritical) pitchfork bifurcation in IR2, both eigen-values are ini-
tially negative and one of them becomes positive, when simultaneously two outer equilibria
appear which are stable (Strogatz, 1994, pp. 246ff). In our case, both eigen-values are ini-
tially (real and) positive and one of them becomes negative, while the two new equilibria
are unstable (which is not a ‘subcritical’ pitchfork bifurcation).
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Figure 1: Unique equilibrium and convergence towards a unique limit cycle.
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becomes stable. As it was repelling before, this bifurcation is of the Hopf
type and E2 is approached in a cyclical manner. For φa = 1.2082, the shaded
area in Figure 2b represents the basin of attraction of E2. It is fenced off by
a closed orbit which is repelling from the inside and the outside, and which
has emerged from the (subcritical) Hopf bifurcation in E2. The big limit
cycle has not been affected by this local structural change.

Another Hopf bifurcation occurs for the pessimistic equilibrium in E1 at
φx = 1.2084. A small basin of attraction around E1 for a somewhat higher
value is shown in Figure 2c, in the lower-left corner (the isoclines are here
omitted in order not to overload the plot).

Regarding the increasingly larger basin of attraction of E2 as the herding
parameter rises, it must eventually touch the inner equilibrium point Eo.
Here, at φa = 1.2128 in Figure 2c, the unstable closed orbit around E2

becomes a homoclinic orbit. This means, the unstable saddle path that
springs from Eo in north-east direction bends around E2 from below and
then returns to Eo as a stable saddle path. A further increase of φa lets
the closed orbit (or the pseudo-closed orbit in the latter case) disappear; it
can no longer grow since the saddle point Eo cannot be contained in the
interior of the basin of attraction of another equilibrium. The homoclinic
bifurcation is therefore of a global type.

Let us next consider in Figure 2d what happens for φa > 1.2128 when
then big limit cycle is still present. A trajectory starting in its interior either
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Figure 2: The impact of a varying herding parameter φa.
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Note: Filled (empty) dots indicate stable (unstable) equilibria. The isoclines
in the last four panels are omitted (they look essentially the same as in the
first two panels).

converges to it, or to the lower equilibrium E1 (when starting in the ‘eye’
around E1, or to the optimistic equilibrium E2 (when starting in the shaded
area). The dotted line in the south-west part of the diagram is the lower
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part of the stable manifold of Eo. If we follow it backwards, it converges
towards the closed orbit around E1; after all, it must come from somewhere.
This saddle path is also kind of a separatrix: starting south-east of it, the
market steers directly in the direction of E2; starting north-west of it, it
first takes a course around the pessimistic bubble equilibrium E1.

The boundary of the basin of attraction of E2 is now given by the upper
branch of the stable manifold of Eo, the one that converges to Eo from the
north-west. If we follow it backwards, we may say that it ‘sprang’ from
point A (which could be shifted arbitrarily close to the lower stable saddle
path).

It should be noted that the saddle path starting in A leaves some space
to the big limit cycle (which in Figure 2d is so narrow that it is no longer
visible). As already observed, rising values of φa increase the basin of at-
traction of E2. At the same time, however, the big limit cycle does not
stretch out correspondingly. As a consequence, the two orbits must even-
tually collide, upon which the big cycle disappears. This is what happens
at φa = 1.2209, a global event that may be called a cyclic fold bifurcation
(Strogatz, 1994, p. 261). Perhaps it may be referred to as a semi-cyclic fold
since one of the two colliding trajectories is not a closed orbit proper.

Figure 2e for the higher parameter φa = 1.2459 shows two things. First,
as just described, the big limit cycle has disappeared. Second, the closed
orbit surrounding the basin of attraction of E1 has become a homoclinic
orbit, analogous to the situation for E2 in Figure 2c.

For the values of φa beyond this homoclinic bifurcation there are no more
closed orbits and the phase plane is divided into two adjacent regions from
where the market converges to one of the bubble equilibria, which continue to
be locally stable. Figure 2f for φa = 1.2511 illustrates that nevertheless these
regions will look quite different. Generally, without further information
about reasonable starting points, the pessimist equilibrium E1 has a smaller
basin of attraction than its optimistic counterpart E2. It is also no exception
that a trajectory converging to E2 first has to move around E1, even very
closely so.

By increasing φa above 1.2511, the global shape of the two basins of
attraction can still change in (mathematically) interesting ways. We sketch
this in Figure 4 in Appendix E. To conclude our investigation of the different
dynamic scenarios in the phase plane, the sequence of bifurcations induced
by the ceteris paribus changes of the herding parameter φa is summarized
in Table 2 together with the different regimes to which they give rise.

At the end of our numerical investigation we subject the stock market
to regular oscillations in the real sector. The feedback channel is given by
Tobin fundamental value qf as the fundamentalists perceive it; see eq. (10).
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Table 2: Different regimes of (19) under variations φa.

φa bifurcation Eo E1 E2 limit cycles

0.0000
stable — — —

0.1667 Hopf in Eo

repelling — — unique and stable
1.0000 inverted pitchfork

saddle unstable unstable unique and stable
1.1753 Hopf in E2

saddle unstable stable one stable, one
unstable around E2

1.2084 Hopf in E1

saddle stable stable one stable, two
unstable ar. E1, E2

1.2127 homoclinic
saddle stable stable one stable, one

unstable around E1

1.2209 semi-cyclic fold
saddle stable stable one unstable

around E1

1.2459 homoclinic
saddle stable stable —

2.0000

While, besides the fundamentalist benchmark rate of stock price inflation
πf
e , qf is composed of several key variables in the real sector varying over

the business cycle (though with phase shifts), it will be convenient here to
postulate that it is directly qf that follows a regular motion; a sine wave
with a period of 8.17 years and an amplitude qf = 1.00± 0.20, let us say.17

We are interested to see how these ups and downs affect the stock market,
i.e. Tobin’s q in the first instance (after an initial transient time interval is
discarded).

Three different values of the herding parameter φa are considered: the
one from the benchmark scenario and one higher, one lower. The top panel
of Figure 3 shows the case φa = 0.23. This value renders the amplitude of q
in the autonomous case so small that now the stock market closely follows
the exogenous sine wave of qf ; the intermediate cycles of q of less than one
year are rather insignificant.

17The 8.17 years was the result of a calibration of a business cycle model that incor-
porates a general business climate formally similar to (16) into the New Macroeconomic
Consensus.

19



Figure 3: The stock market under a regular oscillation of qf .
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Note: The regular long cycle is a sine wave of qf with a period of 8.17
years, the short cycles represent the market dynamics of Tobin’s q.

Underlying the second panel in Figure 3 is the benchmark value φa =
0.38, which gives rise to a larger amplitude. The stock market has thus more
life of its own, although every year at another scale and the distance between
a trough of q and the subsequent peak depends on the stage of the business
cycle, i.e. in particular, whether qf is presently rising or falling. Since the
period of the business cycle is not an integer multiple of the one-year stock
market cycle, the motion of q does not repeat itself from one business cycle
to another. From a practical point of view, however, it seems that q exhibits
a periodicity of five business cycles.

It will come as no surprise that a further increase of φa to 0.60 in the
bottom panel of Figure 3 yields even wider stock market fluctuations. The
influence of qf is nevertheless still visible. On the other hand, here we see no
obvious pattern that would reproduce itself over time, at least not within the
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75 years of the diagram. Near the lower turning points of the business cycle
qf there are sometimes one and sometimes two stock market cycles, but, on
the face of it, all of them with different trough values. In this sense the sine
wave business cycle and the intrinsic stock market dynamics generate some
form of “chaos”, albeit a fairly weak one. Our perspective is whether or not
these irregularities may become stronger when the motion of qf derives from
an endogenous business cycle of the real sector, and when q from the stock
market (reasonably in a smoother fashion) feeds back on aggregate goods
demand.

5 Conclusion

This paper makes a contribution in several respects. First of all, it advances
a speculation dynamics on the stock market that is compatible with growth
and inflation in the real sector, where the link between the two spheres is
provided by Tobin’s q. Second, treating the variables in the real sector as
given, the seminal two-dimensional Lux (1995) model with its stationary
background can be (essentially) recovered from the new stock market as a
special case. Apart from that, a new type of agents enter the scene, i.e.
absorbers or providers of equities newly supplied to, or withdrawn from,
the market. For simplicity, they can remain in the background, while in
extensions of the model with a finer market structure they may reappear
again. Third, the speculative agents may additionally differ in the bench-
mark rates of stock price inflation that they apply, which could render the
value of Tobin’s q in a (balanced) equilibrium different from unity.

As a fourth point, it is also shown (in the appendix) that the dynamic law
governing the evolution of a sentiment index can be derived in a straightfor-
ward manner, without having to invoke the apparatus of statistical mechan-
ics as in Lux (1995). Fifth but not least, depending on a herding parameter
the model can generate persistent cyclical behaviour, in the absence as well
as in the presence of an optimistic and a pessimistic bubble equilibrium.
Generally, ceteris paribus variations of this coefficient can give rise to a se-
quence of very different local and global bifurcations.

The main motivation for proposing this stock market model was our
interest to combine it with a low-dimensional endogenous business cycle
model of the real sector, where Tobin’s q (directly and indirectly) acts in
both directions such that the distinct cycle frequencies in the two sectors
are basically maintained (and do not tend to synchronize). The exercise
of our exogenous oscillations of a real-sector variable gave us some reasons
to expect that the financial-real interaction of the two cycle mechanisms
has some potential for complex dynamics (‘chaos’), even in a deterministic
setting and in continuous time.
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Appendix

A. A simple rule to determine the equity growth rate

Consider the finance identity (1). In case of a positive growth of equities,
Ė > 0, the retention rate will ceteris paribus be lower if the new equities
can be sold at higher prices. Theoretically, it might even be negative, which
means that the dividend payments (1−σf ) r pK would be defrayed from the
profits as well as from part of the receipts from selling the equities, either
because the current equity prices are so favourable or the growth rate ge is
so high. However, the latter does not appear to be a policy that could be
maintained over a longer period of time. On the other hand, it is obvious
that if firms decide to buy back equities, Ė < 0, they will have to retain
more profits than given by the ratio g/r in (3) in order to finance a given
volume of investment. An extreme policy where −ge is so high that σf
would exceed unity is most likely to be accompanied by a cutting down of
investment, i.e. a suitable reduction of I in eq. (1) to restore σf ≥ 0.

Sensible values for a positive growth rate ge = Ė/E can be deduced
from the following argument. Suppose that as a benchmark, firms would
like to finance a fixed fraction χ of their investment by equities, peĖ =
χpI. However, this specification would make their equity growth rate de-
pendent on current stock prices, Ê = χ g / q (which results from qÊ =
(peE/pK) (Ė/E) = peĖ/pK = χpI/pK = χ g). Since firms will not want
to subject their equity policy to the volatilities of the stock market, they
may replace the actual value of q with a constant level qn that they consider
to be a ‘normal’ value of Tobin’s q. Correspondingly, firms may determine
their equity growth rate as

ge = χ g/qn

B. Derivation of the reduced-form price equation (8)

Let the short-term fundamentalists be identified by a superscript ‘fst’. As in-
dicated in the main text, they are indifferent between buying and selling eq-
uities (and correspondingly perhaps between selling and buying government
bonds) if the current rate of return on equities is equal to the risk-adjusted
interest rate,

re =
[ 1− σf (q) ] r

q
+ p̂e = i+ ξ

where ξ is the positive risk premium. Using (6), equality prevails if the
instantaneous capital gains p̂e coincide with the rate

πfst
e = πfst

e (q) := i + ξ −
r − g

q
− ge
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In this situation the excess demand dfst of the short-term fundamentalists
is just sufficient to absorb Ė from the firms (if Ė > 0) or to provide the
desired shares Ė to them (if Ė < 0). Higher (lower) capital gains than the

benchmark πfst
e induce a higher (lower) demand dfst.

The rate πfst
e (q) can be relatively volatile and the short-term fundamen-

talists may not wish to follow each and every change of q. We therefore
assume that they adopt a constant benchmark π̄fst

e . This value may, for
example, be obtained from considering some ‘normal’ value qn in the ex-
pression for πfst

e (q), i.e. π̄fst
e = πfst

e (qn). In addition, let us specify the
excess demand of the short-term fundamentalists as a linear relationship.
On the whole, this gives us

dfst = [ 1 + η (p̂e − π̄fst
e ) ] Ė

where η is a positive reaction coefficient. Now, total excess demand on the
market is dfst + df + ds − Ė. Plugging this into (7) yields

p̂e = π̃m
e + β̃e

[

η (p̂e − π̄fst
e )

Ė

E
+

df + ds

E

]

To be exact, underlying p̂e on the left-hand side is the forward derivative,
whereas p̂e on the right-hand side represents the backward derivative. Tech-
nically, however, this does not matter and we can solve the equation for p̂e,
where we suppose that the three coefficients β̃e, η, ge are so small that their
product is less than unity. In this way we end up with

p̂e =
π̃m
e − β̃e η ge π̄

fst
e

1− β̃e η ge
+

β̃e

1− β̃e η ge

df + ds

E
(A1)

To obtain eq. (8) it only remains to denote the first fraction πm
e and the

second fraction βe (which is also positive). Note that if, not implausibly, the
short-term fundamentalists use the same benchmark for stock price inflation
as the market maker, π̄fst

e = π̃m
e , the first term in the equation becomes π̃m

e

(and we could omit the tilde).

C. The law of motion for the sentiment index a

If a sentiment trader reconsiders his current attitude at time t, his new de-
cision is governed by the discrete choice probabilities P+(za,t) and P−(za,t)
mentioned in the text. In particular, they are independent of his previous
attitude. A single agent, however, makes this reconsideration only infre-
quently. Let ν be the fixed probability per unit of time for such a recon-
sideration (which is the same for all sentiment traders). In a discrete-time
setting with adjustment period ∆t, an agent’s probability of operating a
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random mechanism for P+ and P− between t and t+∆t is correspond-
ingly ∆t ν, the complementary probability for unconditionally sticking to
his present attitude being (1−∆t ν).

Ar the macroscopic level, the population shares of optimists and pes-
simist in the next period t+∆t, a+t+∆t and a−t+∆t, result like

a+t+∆t = (1−∆t ν) a+t + ∆t ν P+(za,t) = a+t + ∆t ν [P+(za,t) − a+t ]

a−t+∆t = (1−∆t ν) a−t + ∆t ν P−(za,t) = a−t + ∆t ν [P−(za,t) − a−t ]

Letting the adjustment period shrink to zero, ∆t → 0, and taking the spec-
ification of P± into account, the continuous-time formulation reads,

ȧ+ = ν
[ exp(γza)

exp(γza) + exp(−γza)
− a+

]

ȧ− = ν
[ exp(−γza)

exp(γza) + exp(−γza)
− a−

]

and the difference between the two derivatives is

ȧ = ν
[ exp(γza)− exp(−γza)

exp(γza) + exp(−γza)
− a

]

It remains to recall the definition of the hyperbolic sine, cosine and tangent,
sinh(x) = [exp(x)−exp(−x)]/2, cosh(x) = [exp(x)+exp(−x)]/2 and tanh =
sinh / cosh. The fraction in the last differential equation is thus seen to be
equal to tanh(γza). This completes the proof of eq. (16).

Regarding the numerical interpretation of the coefficient ν, two examples
may suffice: ν = 0.5 and ν = 12 with respect to an underlying time unit of
one year. The first number means the agents reconsider their attitude with
a probability of 1/2 per year, or on average every two years. In the second
case, ν cannot be directly interpreted as a probability. We reread it as a
reconsideration probability of, say, 12/24 = 1/2 over a time interval of 1/24
years. Accordingly, a reconsideration takes place every 2 × (1/24) = 1/12
years, or every month.

D. Proof of the mathematical statements

It is easily seen in (19) that under πs
e = π

⋆
e (and therefore πm

e −πs
e = πm

e −π
⋆
e),

a = ao = 0 and q = qo imply q̇ = 0, za(a, q) = 0, and ȧ = 0. Hence Eo in
Proposition 1a constitutes an equilibrium without further assumptions.

Let us then continue with the derivation of the two isoclines and their
shape. Solving the equality q̇ = 0 in (19) yields the straight line

q = qICq(a) := qf + (πm
e −π⋆

e) / βf +
βs
βf

a (A2)
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The equality ȧ = 0 prevails if tanh{φaa+φp[(π
m
e −π

s
e)+βsa+βf (q

f−q)]} = a.
Applying the inverse function arctanh(·) to both sides of this equation, using
the identity arctanh(a) = (1/2) · ln[(1+a)/(1−a)], and solving the resulting
equation for q, we obtain

q = qICa(a) := qf + (πm
e −πs

e)/βf + B1 a − B2 ln

[

1 + a

1− a

]

(A3)

where B1 = (φa + φp βs) /φp βf , B2 = 1 / 2φp βf

Clearly, the function tends to −∞ as a approaches 1, and to +∞ as the
sentiment index approaches −1 from the right. Its derivative is given by

d qICa(a)

d a
= B1 −

2B2

1− a2
(A4)

From this expression it can be inferred that the isocline ȧ = 0 is everywhere
strictly decreasing if the composite parameter B1 falls short of 2B2, which
is tantamount to φa + φp βs < 1. Otherwise the isocline has a positive slope
over an intermediate range of a, though it still decreases for a closer to
the ±1 boundaries. Equating the derivative (A4) to zero and solving it for
a, it is seen that in this case the isocline has exactly one local minimum
(maximum) at a negative (positive) value of the sentiment index.

In this way the two isoclines have two (and only two) additional points
of intersection E1, E2 if (and only if) at Eo the ȧ = 0 isocline is steeper than
the q̇ = 0 isocline, that is, if (and only if) B1 − 22 > βs/βf , a condition that
is equivalent to φa > 1. The symmetry property of E1 and E2 is obvious
from the skew-symmetry of q̇ = 0 and ȧ = 0 (the latter follows from (A4)).
This observation completes the proof of Proposition 1.

Turning to the proof of Proposition 2, note that the isoclines (A3) and
(A2) have been derived without any assumption on πm

e , πs
e, π

⋆
e . Thus also the

general problem of determining the equilibrium values of a can be reduced
to a single equation by equating the right-hand sides of (A3) and (A2). This
gives us

F (πs
e, a) := φp (π

⋆
e−πs

e) + φa a−
1

2
ln

[

1 + a

1− a

]

= 0

Since according to (A4) the derivative of the last term in F with respect
to a is 1/(1 − a2) ≥ 1, a sufficient (though not necessary condition) for a
unique solution of this equation is φa ≤ 1. Fixing π

⋆
e , the equilibrium value

ao can be viewed as a function of πs
e. Application of the Implicit Function

Theorem then yields

d ao

dπs
e

=
−∂F/∂πs

e

∂F/∂a
=

φp

∂F/∂a
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The denominator is negative if φa < 1, so that ao decreases with πs
e in this

case. On the other hand, at least when evaluated at πs
e = π

⋆
e , which by

virtue of Proposition 1a implies ao = 0, the denominator is positive under
φa > 1, in which case ao increases with πs

e. Lastly, the equilibrium value qo

of Tobin’s q is obvious from q̇ = 0 once ao is determined.

For the proof of Proposition 3 we note the following. Not for the local
but for a global stability analysis it is useful to define q̃ = ln q and rewrite
system (19) as follows:

ȧ = ν { tanh [za(a, q̃)] − a }

˙̃q = (πm
e − π⋆

e) + βsa + βf [q
f − exp(q̃)] (A5)

za(a, q̃) = φaa + φp {(π
m
e − πs

e) + βsa + βf [q
f − exp(q̃)] }

With tanh′ = 1/ cosh2, the Jacobian matrix is then generally given by

J = J(a, q̃) =







ν

{

φa + φpβs

cosh2[za(a, q̃)]
− 1

}

−ν φpβf q

cosh2[za(a, q̃)]

βs −βf q







where q = exp(q̃). It may be noted that for the Jacobian of system (19), the
lower diagonal entry would be j22 = ∂q̇/∂q = −βf q plus another term that is
zero in equilibrium but else different from zero, which makes an unambiguous
sign assessment for the trace more difficult or even impossible. Working with
(A5) avoids this complication and, defining C(a, q̃) := cosh2[za(a, q̃)], the
trace and the determinant result like

trace J(a, q̃) = ν [(φa + φpβs)/C(a, q̃)− 1]− βf q

detJ(a, q̃) = ν βf q [1− φa/C(a, q̃)]

The assumption ensuring ao=0 in Eo implies za(a
o, q̃o) = 0 and C(ao, q̃o) =

1. Hence detJ(ao, q̃o) > 0 if and only if φa < 1, and trace J(ao, q̃o) < 0 if
and only if φa < 1−A. This establishes the conditions for the local stability,
instability and saddle point behaviour of Eo in Proposition 3. Since upon a
ceteris paribus rise of φa the loss of stability occurs at some value φH

a < 1
where the determinant is still positive, φH

a constitutes a Hopf bifurcation.

Furthermore, because of C(a, q̃) ≥ 1 we can be sure that under φa <
1−φpβs, entry j11 and therefore the trace of J(a, q̃) is negative for all (a, q̃)
with −1 ≤ a ≤ 1, while the determinant is always positive. Moreover,
none of the entries changes its sign. From Olech’s Theorem it can thus be
concluded that Eo is also globally stable (cf. Gandolfo, 1997, pp. 354f).

Convergence towards a periodic orbit in case Eo is repelling can be
proved by means of the Poincaré-Bendixson Theorem. Returning to the
formulation of eq. (19), it suffices to realize that there is a rectangle in the
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(a, q)-plane such that every trajectory starting there remains there, and ev-
ery other trajectory eventually enters it. The rectangle is given by the two
vertical boundaries a = ±1, and the two horizontal lines q = qL and q = qH ,
where qL and qH are the two values of Tobin’s q where the linearly increasing
q̇ = 0 isocline hits the a = −1 and a = 1 axis, respectively (a diagram con-
structed in this way can be found in Franke, 2012, Figure 1). If qL happens
to be less than zero, the lower horizontal line is simply given by q = 0.

Note that the conclusion holds as well if Eo is a saddle, the closure of the
basins of attraction of the other equilibria do not fill out the entire plane,
and the trajectory does not start on a stable saddle path.

E. The phase plane for high values of the herding parameter

For situations where herding is so strong that there are no more prospects
for cyclical behaviour, the basins of attraction of the two bubble equilib-
ria E1 and E2 are adjacent and separated by the stable manifold of the
interior, balanced equilibrium Eo. Figure 4 illustrates that this separatrix
may nevertheless exhibit quite different features, although at such high val-
ues of Tobin’s q that they are only of mathematical interest. Regarding q,
panel (a1) of Figure 4 for φa = 1.2548 shows that the basin of attraction of
E1, BA(E1), is bounded from below, whereas BA(E2) has neither an upper
bound nor a strictly positive lower bound. Panel (a2) clarifies the latter for
extremely high values of q, and reveals that BA(E1) is also bounded from
above.

Panels 4 (b1) and (b2) demonstrate that a slight increase of φa to 1.2549
causes BA(E1) to be unbounded from above as well, without interfering with
the unboundedness of BA(E2) except that its horizontal width along the a-
axis is reduced. A further increase of φa lets this part of BA(E2) shrink
progressively more, until it eventually disappears. This has happened in
panels 4 (c1), (c2) at φa = 1.3001, where basin BA(E2) is bounded from
above and BA(E1) bounded from below.
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Figure 4: Basins of attraction of the two bubble equilibria as the herding
parameter φa gets (very) large.
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simistic bubble equilibrium E1
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