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Abstract 
 
We study the treatment effect of grade retention, using a panel of French junior highschool 
students, taking unobserved heterogeneity and the endogeneity of grade repetitions into 
account. We specify a multi-stage model of human-capital accumulation with a finite number 
of types representing unobserved individual characteristics. Class-size and latent student-
performance indices are assumed to follow finite mixtures of normal distributions. Grade 
retention may increase or decrease the student’s knowledge capital in a type-dependent way. 
Our estimation results show that the Average Treatment effect on the Treated (ATT) of grade 
retention on test scores is small but positive at the end of grade 9. The ATT of grade retention 
is higher for the weakest students. We also show that class size is endogenous and tends to 
increase with unobserved student ability. The Average Treatment Effect (ATE) of grade 
retention is negative, again with the exception of the weakest group of students. Grade 
repetitions reduce the probability of access to grade 9 of all student types. 
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1 Introduction

Grade retention practices are common in the schools of some countries but absent from others.

Some educational systems have been designed to play the role of public certification agencies. If

this is the case, a student is promoted to the next grade only if her (his) test scores are sufficiently

high, and the students who can’t pass are tracked or retained. France and Germany are good

instances of such systems, in which grade retention is familiar. In contrast, social promotion, that

is, the practice of passing students to the next grade, regardless of school performance, seems

to prevail in more egalitarian societies, or in countries promoting mass education. Scandinavian

countries and the UK are good instances of the latter system. At the same time, grade retention

is a form of second-best remedial education; in some countries it is the main if not the only

form of remedial education, but it entails substantial costs. Grade repetitions consume resources,

since they permanently increase the stock of enrolled students. There are opportunity costs, since

grade repeaters could become productive sooner or have a longer productive life. There also exists

substantial costs in the long run, since grade repeaters tend to obtain lower wages on the labor

market, conditional on their highest credential1. Grade retention may also entail some benefits.

The mere presence of grade repetitions acts as an incentive device and may increase study effort.2

Finally, the distribution of skills in a given cohort of outgoing students may be improved if grade

repeaters benefit from a longer period of schooling. Yet, many important aspects of a cost-benefit

analysis are imperfectly known. As a consequence, in spite of its widespread use, it is hard to tell

if grade retention dominates social promotion, or which of the two systems has the highest value

as a social policy. As is well known, the question is hotly debated and international comparisons

show trends in both directions. For instance, in the recent years, France has relied less often on

grade repetitions, while in the US, grade retention has made a certain comeback, as an ingredient

of school accountability policies.

The consequences of grade retention are not easy to estimate. This is essentially due to the

endogenous character of the decision to hold a student back and to unobservable heterogeneity.

Many studies in the past may have found a negative impact of grade retention on various outcomes

because grade repeaters are a selected population with abilities below the average. In the sequel,

we propose a way of evaluating the treatment effects of grade repetition in French junior high

schools (grades 6 till 9), using a rich set of micro-data, and taking the endogeneity of retention

decisions and class size into account. We do not observe the students’ wages and focus on

educational outcomes.3

In a preliminary study of the data, we find that the local average treatment effect (i.e.,

the LATE4) of grade retention on value-added, defined here as the difference between grade-

9 and grade-6 scores, is significant and positive, using the quarter of birth as an instrument

for retention. But the result doesn’t seem to be very robust. We know that when treatment
1On this question, see Brodaty et al. (2012)
2On study effort, see De Fraja et al. (2010).
3 For a study of the impact of grade retention on wages, using French data, see Brodaty et al. (2012).
4On this concept, see Imbens and Angrist (1994)
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effects are heterogeneous, the linear Instrumental Variable (IV) estimator is a weighted average

of marginal treatment effects (see the work of Heckman and Vytlacil (2005); see also Heckman

(2010)). It follows that the IV estimates obtained with a particular instrument may not correctly

identify the relevant effects. Indeed, in the following, we show that the treatment effect of grade

repetition varies with unobserved characteristics of students, being positive for some individuals

and negative for others.

Taking our inspiration from the work of Heckman and his co-authors, we propose a tractable

model in which treatment effects are heterogeneous (see, e.g., Carneiro, Hansen, Heckman

(2003)). We assume the existence of a finite number of latent student types and that the ef-

fects of retention may vary from one type of individual to the next. Our approach is parametric:

the observed outcomes and the latent variables, such as unobserved test scores, are modeled as

finite mixtures of normal distributions. The model can then be used to compute counterfactuals

and treatment effects.

We take dynamics into account, exploiting the data’s panel structure. Our approach is similar

in spirit to that of Cunha and Heckman (2007, 2008) and Cunha, Heckman and Schennach (2010),

but different (and somewhat simpler) in a number of technical details. The educational outcomes

of the same individuals are observed recursively through time, either completely (quantitative

test scores) or partially (qualitative promotion decisions). The successive observations are used

to identify the model parameters and the latent student types. In particular, the coefficients of

student types, that is, their impact on the different outcomes, are identified under a limited set

of reasonable assumptions.

To be more precise, we specify a structural model of knowledge-capital accumulation in junior

high school. The model explains grade retention, class size, promotion decisions and test scores.

It is estimated using panel data, on scores in grades 6 and 9, information on class sizes and

on student transitions (promotion to next grade, retention and redirection towards vocational

education). The panel provides a rich set of control variables describing family background and

the environment of students. Repeated grades contribute to the accumulation (or destruction) of

human capital (or skills) in a specific and type-dependent way. We present estimation results for

a variant of our model with four unobserved student types or groups. Groups are clearly distinct

and a clear hierarchy appears in terms of student ability. Groups are ranked in the same way

if we use test scores in Math, in French, at the beginning of grade 6 or at the end of grade 9.

The ranking of groups explains a similar ranking in the students’ probabilities of grade retention

(or promotion to the next grade). In a parallel fashion, the weaker the group, the smaller the

class-size, in every grade. This result shows the endogeneity of class-size, which is used as a

remediation instrument. Finally, to assess the impact of grade repetition on test scores at the

end of grade 9, we compute the ATT and the ATE of the grade-repetition treatment. To this

end, with the help of the model, we compute the counterfactual class-size and test scores of grade

repeaters (resp. non-repeaters) that would be observed if they had not repeated a grade (resp. if

they had repeated a grade), averaging over students and all possible types of each student, using

their posterior probabilities of belonging to a group. We find that the ATE is negative, while the
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ATT is positive, but small and barely significant. The ATE and ATT are also computed within

each of the four groups separately. This confirms that treatment effects are heterogeneous: grade

retention is detrimental to able students but has some positive effects on the weakest students’

final test scores. It is also shown that grade repetition has a negative impact on the student’s

probabilities of access to grade 9. We conclude that grade retention should be replaced by some

other form of remediation.

There is a substantial literature on grade retention, but many early contributions did not

address endogeneity or selection problems in a convincing way (see, e.g., Holmes and Matthews

(1984), Holmes (1990)). Few contributions have managed to propose a causal econometric eval-

uation of grade retention. An early attempt, providing IV estimates on US High-School data is

due to Eide and Showalter (2001). Also in the US, Jacob and Lefgren (2004, 2009) use regression

discontinuity methods to evaluate grade repetitions in the Chicago Public-Sector Schools. Jacob

and Lefgren (2004) find some positive short-term effects of grade retention on test scores for

primary school children. Neal and Whitmore-Shanzenbach (2010) also propose an evaluation

of the 1996 reforms that ended social promotion in Chicago Public Schools. Ying Ying Dong

(2010) studies grade retention in Kindergarten and finds positive effects. The same data is used

by Fruewirth-Cooley, Navarro and Takahashi (2010) to estimate a multi-period structural model

in which the treatment effect of retention depends on the year of application. They also find

positive effects. Recently, Baert, Cockx and Picchio (2013) used a structural dynamic choice

model, estimated with Belgian data, and found that grade retention has a positive impact on the

next evaluation, and persistent effects. On Latin American countries see, e.g., Gomes-Neto and

Hanushek (1984). Manacorda (2009) applies a regression discontinuity approach to Uruguayan

junior high-school data and finds negative effects on the dropout rate. In France, contributions

on this topic (with a causal approach) are due to Mahjoub (2007), Alet (2010), d’Haultfoeuille

(2010), Brodaty et al. (2012) and Alet, Bonnal and Favard (2013). Among these authors,

d’Haultfoeuille (2010) applies a new non-parametric method for the estimation of treatment ef-

fects to French primary education data and also finds positive effects. Finally, Brodaty et al.

(2012) find negative signaling effects of grade retention on wages. None of the quoted papers use

the methods and the data employed in the present article.

In the following, Section 2 describes the data. Section 3 presents a preliminary analysis of

grade retention using linear IV methods. Section 4 presents our multi-stage skill accumulation

model. The estimation strategy is exposed in Section 5. Section 6 and 7 present the estimation

results and the average treatment effects. Concluding remarks are in Section 8.

2 Data

The data set used in this study is the 1995 secondary education panel of the French Ministry of

Education (DEPP5 Panel 1995), which follows 17,830 students in junior high-school (i.e., collège)

from grade 6 to grade 9 (grade 6 is the equivalent of the French classe de sixième) during the
5Département de l’Evaluation, de la Prospective et de la Performance
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Table 1: Individual Grade Histories

Grade History Count

1234 9403 71,58%

12334 732

12234 910

11234 684

Subtotal 2326 17,71%

1233V 33

1223V 114

1123V 154

123V 147

122V 146

112V 246

11V 7

12V 560

Subtotal 1407 10,71%

Total 13136

years 1995-2001. The principals of a sample of junior high-schools were asked to collect data on

all pupils born on the 17th day of each month, with the exception of March, July, and October,

and entering grade 6 in September 1995 — about 1/40th of the whole cohort. A recruitment

survey was conducted at the beginning of the first school year (1995-96). Then, a number of

follow-up questionnaires were filled by the principals in every subsequent year until 2001, and a

questionnaire was filled by the families in 1998 (with a response rate of 80%). Each student’s

junior high-school history was recorded without interruption, even when the student moved to

another school. For each pupil and each year, we know the attended grade (6 to 9), the size

of the class, and the promotion decision made by the teachers at the end of the year. In fact

there are three possible decisions: promotion to next grade, grade retention or redirection to

vocational education (i.e. “steering”). These transition decisions are made during the last staff

meeting (i.e., the conseil de classe), at the end of every school year, on the basis of test scores

and other more or less objective assessments of the pupil’s ability and potential in the next

grade. Test scores in Mathematics and French are available at the beginning of grade 6 and at

the end of grade 9. Grade 9 test scores are missing for the individuals who dropped out of general

education for apprenticeship or vocational training, and therefore never reached grade 9 in the

general (non vocational) middle schools. In addition, matching these data with another source

from the Ministry of Education, the Base Scolarité, we obtain further information on school

characteristics. In particular, total school enrollment and total grade enrollment (in each grade)

for each year during the 1995-2001 period. These data will allow us to compute instruments for

class-size, based on local variations of enrollment. There are some missing data, but the quality
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Table 2: Students Promoted, Retained or Redirected in Each Grade and Year

Year t Grade Initial Stock Promoted P Retained R Redirected V

t = 1 Grade 6 13136 12045 1091 0

t = 2 Grade 6 1091 1084 0 7

Grade 7 12045 10315 1170 560

t = 3 Grade 7 2254 1862 0 392

Grade 8 10315 9403 765 147

t = 4 Grade 8 2627 2326 0 301

Grade 9 9403

of the panel is very good. For example, initial test scores are known for 95% of the sampled

individuals. Discarding observations with obvious coding errors and missing data, and slightly

more than 450 histories of pupils registered in special education programs (for mentally retarded

children), we finally ended up with a sample of more than 13,000 individuals: 9,403 of them are

in grade 9 in 1999, 2,594 are in grade 8 and 250 in grade 7. The last subset contains the few

individuals who repeated a grade twice. We chose to discard these observations to reduce the

number of cases. The final sample has 13,136 Students, which amounts to almost 75% of the

individuals in the initial survey.

In the following, grades are denoted by g, and g ∈ {1, 2, 3, 4}, where g = 1 corresponds to

grade 6, and so on. The year is denoted t with t ∈ {1, 2, 3, 4, 5}, where t = 1 corresponds to year

1995, etc. Individuals are indexed by i. Let git denote the grade of individual i in year t. With

this notation system, a student i who doesn’t repeat any grade is such that git = t. A grade

repeater is such that git = t − 1. Table 1 gives the observed distribution of grade histories (in

junior high school). Each row corresponds to a different type of trajectory. Letter V stands for

vocational education. For example, the sequence 11234 means that grade 6 was repeated and

therefore, that the student is observed in grade g = 4 in year t = 5. The sequence 123V indicates

that the student was steered towards vocational education after grade 8. In total, about 30 % of

the pupils do not complete junior high-school in four years: 18% are retained in one grade, 11

% are redirected.

Individual histories are described by Table 2 and on Fig. 1. Table 2 presents two rows per

year, except in year t = 1. During the first year, all students are in grade 6. Out of the 13136

students initially enrolled in grade g = 1, 12045 are promoted, and 1091 are retained. In year

t = 2, we see that 1084 repeaters in grade g = 1 are promoted and only 7 students have been

redirected. In year t = 3 there are 2254 = 1170 + 1084 students in grade 7; 1170 students

repeating grade 7 and 1084 students that were in grade 6 the year before, etc. Figure 1 shows

that the 9403 non-repeaters constitute a majority of more than 70% of the students. Repeaters

amount to less than 9% of the latter cohort each year.
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Figure 1: Number of Repeaters in each Grade
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3 Preliminary Analysis : IV Estimates

We start our study of the causal effect of grade retention on educational achievement, using the

student’s quarter of birth as an instrument for grade retention, in a linear model. The quarter

or the month of birth has been used by various authors as an instrument (see, e.g., Angrist

and Krueger (1991)). Recent work has shown that the month of birth can have long-lasting

effects (see, e.g., Bedard and Dhuey (2006), Grenet (2010)). In his dissertation, and a recent

paper, Mahjoub (2007, 2009), used the quarter of birth as an instrument for grade retention.

This approach yields a positive impact of grade retention on value-added scores, defined as the

difference between standardized grade-6 and grade-9 scores, in Mathematics and in French. We

follow the same approach here, as a preliminary step.

Value added is higher for repeaters than for non-repeaters. This is true both in French

and Mathematics. There exists a strong link between the age of a child, as measured by the

month of birth, or quarter of birth, and the probability of grade repetition (for details, see the

Appendix). The probability of grade retention is clearly higher for children born later in the

year. In principle, children must be 6 years old on September 1rst of year t to be admitted in

primary school, grade 1, year t. First-quarter students tend to be relatively older in their class,

with an age difference that can reach 11 months, and relatively older children tend to perform

better. At the same time, teachers are reluctant to retain older children in a grade, as retention

may change a difference —being older— into a stigma —being too old.

It follows that the month, quarter or season of birth is a candidate instrument for the grade-

retention treatment, because it has good chances of being independent of the error term in an

outcome equation with many controls. Note, in addition, as emphasized by Mahjoub (2007), that

the value-added outcome being the difference of two test scores, possible specific and persistent

effects of the birth quarter are “differenced out”.

We now estimate the effect of grade retention on value added by 2SLS, using the quarter of

birth as an instrument for grade retention. Some descriptive statistics on value-added, as well

as further details on this IV approach are relegated in the Appendix. Scores are standardized to
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Table 3: Grade Retention Probability

Variables Grade retention

First quarter -0.0513***

(0.0110)

Second quarter -0.0459***

(0.00991)

Third quarter -0.0133

(0.0109)

R2 0.054

F statistic for instruments 31.74
Estimated by OLS. The dependent variable is the grade-
retention dummy here. The following list of control vari-
ables were included in the regressions: gender; number
of siblings; birth order (rank among siblings); parental
occupation; parental education; indicator of grade repe-
tition in primary school; total school enrollment. Stan-
dard errors are in parentheses; ***, ** and * indicate
significance at the levels of 1, 5, and 10%, resp.

have a mean of 50 and a standard deviation of 10 in grade 6 and in the whole sample (including

all redirected pupils). Scores in grade 9 are standardized in the same way, using the sub-sample

of individuals who reached grade 9. The first-stage is a linear regression of the grade-retention

dummy on birth quarter dummies and controls (the linear probability model). Results are

displayed in Table 3. The fourth quarter being the reference in the regressions, we see that

relatively older students have a significantly lower probability of being held back.

Table 4 presents OLS and 2SLS estimates of the effect of grade retention on value-added

scores using the same set of controls. Instrumenting grade retention by the quarter of birth

has dramatic effects on the sign and the size of the effect. Grade retention increases the score

by about twice the standard deviation of value-added. These results confirm that the retention

decision is endogenous.

Now, trying to estimate the impact of grade repetition in variants of this model, we found

that the 2SLS results of Table 4 were not very robust, being very sensitive to the set of controls

introduced in the equation of interest. But it is well known that IV estimates can be difficult

to interpret when treatment effects vary with unobservable characteristics of individuals. To see

this, let R denote the grade retention indicator. The outcome variable Y is value added. Let

Y1, Y0 denote counterfactual outcomes for grade repeaters and non-repeaters. Let Z denote a

dummy variable indicating whether the student was born in the first half of the year or in the

second half. Z = 1 thus points at relatively older children. Let R1, R0 denote the counterfactual

grade retention dummies, conditional on the instrument Z being 1 or 0. Under monotonicity,

i.e., P(R1 ≤ R0) = 1, the IV estimator converges to the Local Average Treatment Effect :

LATE = E(Y1 − Y0|R1 −R0 = −1)

8



Table 4: OLS and IV Estimates of Grade-Retention Effects

OLS 2SLS

Dependent Variable Math VA French VA Math VA French VA

Grade repetition 1.757*** 1.899*** 21.94*** 14.79***

(0.200) (0.196) (5.391) (4.510)

R2 0.035 0.043
The table reports the estimated coefficient of the retention dummy in different re-
gressions. Gender is included as a control in all regressions in addition to number of
siblings; birth order (rank among siblings); parental occupation; parental education;
indicator of grade repetition in primary school; total school enrollment. Standard
errors are in parentheses; ***, ** and * indicate significance at the levels of 1, 5, and
10%, resp.

This measures the average value-added score for the individuals whose retention in a grade would

have been avoided, had they been born at the beginning of the year instead of at the end. The

question is whether these marginal individuals are representative of the whole sample or not.

To help answering this question, suppose that counterfactual scores follow a generalized Roy

model6:

Y = Y1 = m1 + U1 if Y1 − Y0 > c(Z) + V

= Y0 = m0 + U0 if Y1 − Y0 ≤ c(Z) + V,

where c(Z) is an increasing function of Z, interpreted as a cost. Assume that U1, U0 and V are

independent given Z and that they are normally distributed. It is easy to show that

LATE = m1 −m0 +
V ar(U1 − U0)

V ar(U1 − U0) + V ar(V )

(
φ(d0)− φ(d1)

Φ(d1)− Φ(d0)

)

with

dz = c(z)− (m1 −m0) , z = 1, 0,

where φ is the normal density and Φ is the normal c.d.f. The cost of grade retention is higher for

older individuals, so c(1) > c(0), hence, d1 > d0. Let us assume, for the sake of the argument,

that c(1) > m1 −m0 > c(0), so d1 > 0 > d0. It is clear in this case that the LATE may be

positive or negative, without this telling us anything certain about the sign of m1 −m0. The

LATE being a marginal effect, it may predominantly reflect cost parameters and may not be

informative about treatment effects. This is why, in the next section, we design a structural model

to uncover the mechanisms of grade repetition and their impact on educational attainment.

6see Heckman and Vytlacil (2005).
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4 A Model of Knowledge-Capital Accumulation

We construct a model of knowledge capital accumulation with unobserved heterogeneity. We

found a source of inspiration in a series of influential papers by James Heckman and his coauthors,

in which heterogeneity is captured by means of dynamic factor models. See, e.g., Cunha and

Heckman (2008) and Cunha, Heckman and Schennach (2010). Although close in spirit, the

present approach relies on a somewhat simpler model. We use a multi-period setting. We rely

on the idea that, in the educational process, inputs are imperfectly observed and outputs are

imperfectly measured, by means of test scores and teacher’s decisions. Unobserved heterogeneity

is modeled by means of a discrete set of unobserved individual types, generating finite mixtures

of normal distributions.

The model is designed to match the following data features. We observe test scores, in French

and Mathematics, but only at the beginning of grade 6 and at the end of grade 9. Promotion

decisions (promotion to the next grade, grade retention or redirection to vocational training)

are observed in all years. In addition to these test scores and transitions, we also observe class

size and total school enrollment. The students who do not drop off into vocational education

at some point reach the terminal grade after four or five years, depending on retention, during

the period 1995-2000. For children who never repeat a grade, we have observations in years

t = 1, 2, 3, 4. For those who repeat a grade once and are not redirected to a vocational track, t

can take all five values 1, 2, 3, 4, 5. Redirected children are the cause of attrition. Pupils are

indexed by i = 1, . . . , N . Let git ∈ {1, 2, 3, 4} denote the grade of student i in year t, and let

Sit ∈ {P,R, V } denote the promotion decision (i.e., promotion, retention and redirection) at the

last staff meeting of year t. gi,t+1 is missing if Sit = V . All students start in grade 6 in year

1 (gi1 = 1), so we set Si0 = P for all i. There is no redirection of children towards vocational

education in grade 6, so Si1 ∈ {P,R}.

4.1 Initial conditions

Initial scores in Mathematics and French measure initial knowledge-capital in Mathematics and

in French, denoted hm0 and hf0 respectively. We assume that individuals have four possible

unobservable types, or equivalently, belong to one of four possible groups. Let Gik denote the

dummy which is equal to 1 if i belongs to group k and equal to 0 otherwise. Let pk denote

the unconditional probability of belonging to group k and, of course, p1 + p2 + p3 + p4 = 1.

Knowledge-capital levels, at the beginning of grade 6, i.e., hm0 and hf0, have the following form:

hmi0 = cm01 + cm02Gi2 + cm03Gi3 + cm04Gi4, (1)

hfi0 = cf01 + cf02Gi2 + cf03Gi3 + cf04Gi4. (2)

In this formulation, Group 1 is the reference group. It follows that cm01 and cf01 are the

average initial levels of knowledge-capital in Mathematics, and French, respectively, for Group

1 individuals. Subscript m, resp. f , indicates a coefficient related to the initial Mathematics

10



capital, resp., the French language-capital equation. The average initial Mathematics-capital of

Group k is thus cm01 + cm0k, for k = 2, 3, 4, etc.

Human capital is therefore discrete, but this should not be taken literally. We could add

a random term with a continuous distribution, representing other unobserved inputs to the

expressions of hmi0 and hfi0, but the distribution of this term would not be identifiable, because

it could not be distinguished from the teachers’ “grading error", defined below. At this stage, we

could also have added a list of controls, including indicators of family-background characteristics,

but we omitted them, mainly to limit the number of parameters to be estimated. It follows that

the groups may capture some of the effects of family background. Family-background variables

and other controls will later be used to explain the probability of belonging to a given group, in

separate regressions. We suppose that the test scores in French, denoted yf , and in Math, denoted

ym, at the beginning of grade 6, are two different measures of the same knowledge-capital, that

is,

ymi = hmi0 + εmi0 (3)

yfi = hfi0 + εfi0. (4)

where εm0, εf0 are random variables with a normal distribution and a zero mean, representing

“grading” errors. The latter regression functions will identify the variance of εm0 and εf0.

During the schooling of each student, we observe different variables that we regroup in dif-

ferent categories. There are time-invariant characteristics of the individual, such as family back-

ground observations, denoted X0; time-varying characteristics of the individual denoted Xt,

t = 1, . . . , 5 and time-varying characteristics of the school, used as instruments for class size,

denoted Zt. The variables used in regressions are listed in Table 5.

The instrument for class size exploits discontinuities induced by the application of a class-

opening threshold, as in Angrist and Lavy (1999) and Hoxby (2000). Let Nit denote total grade

enrollment in i’s school in year t. The theoretical class size in year t, denoted Zit, is the class

size that would obtain if the headmaster’s rule was to open a new class, as soon as total grade

enrollment in grade git became greater than τq and to minimize class-size differences, where τ is

the class-opening threshold and q is an integer. Given these definitions, the theoretical number

of classes in grade git, denoted κit, is by definition,

κit = int
[Nit − 1

τ

]
+ 1,

where int[x] is the largest integer q such that q ≤ x. The theoretical number of students per

class in grade git is simply

Zit =
Nit

κit
.

Piketty and Valdenaire (2006), Gary-Bobo and Mahjoub (2013) show how this function of total

grade enrollment fits the observed data in the French Educational system. We set the threshold

value τ = 25 because it seems to provide the best fit with Panel 1995. We will see below that

Zit has a strong effect in class-size regressions.
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Table 5: Sets of Variables

Time-invariant Time-varying Time-varying

characteristics characteristics instruments

X0 X1,X2,X3,X4,X5 Z1,Z2,Z3,Z4,Z5

Gender. Foreign language studied. Theoretical class size

Father’s occupation. Special education zone. (i.e., Maimonides’

Mother’s education. Number of foreigners in school. Rule)

Number of Siblings. Class size.

Grade retention in primary school. Total school enrollment.

Private sector in primary school. Size of the urban area.

Private sector.

4.2 Knowledge-capital accumulation

Knowledge, or human capital, accumulates according to the following equation:

hi1 = a1ni1 + b1Xi1 + c11 + c12Gi2 + c13Gi3 + c14Gi4, (5)

where ni1 denotes class size in individual i’s class, grade gi1 = 1. Again, in equation (5), Group

1 is the reference, so that c11 is the impact of Group 1 on hi1, and the impact of group k is

c11 + c1k for all k > 1.

Many studies have established that class size is an endogenous variable. In particular, avail-

able evidence for France shows that class size is positively correlated with student performance

because smaller classes are typically used to redistribute resources in favor of weaker students, or

in favor of schools located in areas targeted for special help in education (see Piketty and Valde-

naire (2006), Gary-Bobo and Mahjoub (2013)). We therefore model class size ni1 separately, as

follows. Using Group 1 as the reference, we have,

ni1 = α11Xi1 + α12Zi1 + β11 + β12Gi2 + β13Gi3 + β14Gi4 + ζi1 (6)

The random term ζi1 is an independent, normally distributed error.

Since we do not have any quantitative measure of performance at the end of grades g ∈
{1, 2, 3}, repeated or not, we define a single, latent education score for those years. In grade 6,

i.e., if git = 1, we define the latent variable,

yi1 = hi1 + εi1 (7)

where ε1 is an independent normal error with a zero mean.

An individual is promoted to grade 7, i.e., gi,2 = 2, if his(her) human capital is high enough,

and repeats a grade otherwise. The promotion decision is modeled as a simple Probit. Let C11

be a human-capital threshold above which students are promoted. We have,

Si1 =

P if y1i ≥ C11

R if y1i < C11.
(8)
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The distribution of ε1 is assumed to be standard normal, as usual in such a case, to identify the

coefficients of the latent index. Given our specification of h1 given by (5) above, we see that the

model will only identify the constant

δ11 = C11 − c11.

This is of course technically equivalent to normalizing C11, but, in principle, C11 is the human-

capital level above which students pass, while c11 is the specific mean level reached by Group 1

students in the hypothetical situation n1 = X1 = 0. In essence, our model identifies differences

between groups, not the absolute mean level of a group.

4.3 From second to fifth year

Similarly, still using Group 1 as the reference, in the second and third years, the human capital

has the following representation.

If git = t (non-repeaters),

hit = atnit + btXit + ct1 + ct2Gi2 + ct3Gi3 + ct4Gi4. (9)

If git < t (repeaters), we have

hit = atrnit + btrXit + ct1r + ct2rGi2 + ct3rGi3 + ct4rGi4. (10)

The class-size equations are specified as follows.

If git = t (non-repeaters), we have,

nit = αt1Xit + αt2Zit + βt1 + βt2Gi2 + βt3Gi3 + βt4Gi4 + ζit, (11)

where ζit is an independent normal random variable.

If git < t (repeaters), we have,

nit = αt1rXti + αt2rZit + βt1r + βt1rGi2 + βt3rGi3 + βt4rGi4 + ζitr. (12)

where ζitr is an independent normal random variable.

At the end of the second and third years, if the student has not repeated a grade before,

he or she can either pass to the next grade (P), repeat the year (R) or be redirected towards

a vocational track (V). We model these three different transitions with an Ordered Probit.

Promotion or retention decisions are made by the teachers’ staff meetings (i.e., the conseils de

classe), at the end of every school year. In essence, these staff meetings base decisions on the

student’s grade-point average (hereafter GPA) at the end of the year, and decide wether to

promote, to hold back, or to “steer" the student towards vocational education. Students with a

GPA above a certain threshold are promoted; students with a low record are “steered"; students

with a mediocre, below-the-average record repeat the grade, if the teachers’ committee thinks

that they can benefit from the repetition. It seems reasonable to assume that the promotion

decision is based on some average of the teachers’ assessments of the student’s cognitive capital,
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plus an unobserved individual effect, reflecting other unobservable factors that the members of

the teaching staff take into consideration. We have in mind that the student’s unobservable GPA

in year t is highly correlated with the latent capital hit, or to fix ideas, that hit is the GPA in year

t plus some random factor. We then model the unobservable capital hit as an educational output,

which is the result of some educational inputs: class-size, time-varying variables, and individual

ability, as captured by the group indicator Gik. Given this, and given the clear hierarchy of the

three possible decisions, it seems reasonable to use an Ordered Probit structure.

Define first the latent variable

yit = hit + εit,

where εt is an independent normal error. The decision Sit is then specified as follows,

Sit =


V if yit < Ct

R if Ct ≤ yit < Dt

P if yit ≥ Dt,

(13)

where Ct and Dt are the Probit cuts. We assume that εt has a standard normal distribution. As

above, the model in fact identifies only the differences,

δt1 = Ct − ct1, and δt2 = Dt − ct1.

In the sample, a student never repeats a grade twice. Thus, the model embodies the fact that, if

the student has already repeated a grade, he or she cannot repeat a second time. For repeaters,

the possible decisions are: promotion to the next grade or redirection. We model the two different

transitions with a simple Probit. We first define the latent variable,

yitr = hit + εitr,

where εtr is an independent normal error. The decision Sitr is then specified as follows,

Sitr =

P if yitr ≥ Ctr

V if yitr < Ctr,
(14)

where Ctr is a threshold, and we assume that εtr has a standard normal distribution. The model

identifies only the difference, δtr = Ctr − ct1r.
It follows from these assumptions that the latent human capital hit is affected by the promo-

tion and retention decisions, because all the coefficients are free to vary in expressions (9) and

(10), as well as in the auxiliary class-size equations (11)-12), to describe a different productivity

of inputs for students who repeated a grade.

The test scores in French, denoted yf4, and in Math, denoted ym4 are two different measures

of the final human capital. For non-repeaters, with obvious notations for the random error terms,

we have,

ymi4 = hmi4 + εmi4, (15)

yfi4 = hfi4 + εfi4, (16)
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where εm4 and εf4 are independent normal random variables. For repeaters, at the end of grade

9, test scores in French are observed in year t = 5 and denoted yf5. Similarly, test scores in

Mathematics are denoted ym5. We have two different measures of the repeaters’ final human

capital, with obvious notations for the independent random error terms,

ymi5 = hmi5 + εmi5, (17)

yfi5 = hfi5 + εfi5. (18)

The functions hmit and hfit, with t = 4, 5 have the same specification as hit (as given by (9)

above), with coefficients amt, bmt, cmt and aft, bft, cft, etc., that may be different for Mathematics

and French. Our model is now fully specified.

5 Estimation Method

The estimation method is a variation on the EM algorithm. Let Yi be the set of outcomes

observed for individual i : Yi = (ymi0, yfi0, Si1, ..., Si4, ymi4, yfi4). Let X = (X1, X2, X3, X4, X5)

and Z = (Z1, Z2, Z3, Z4, Z5). Then, we denote θ the vector of all model parameters, namely,

θ = (p1, p2, p3, p4, ai, bi, cij , αi, . . . ). We replicate each individual i in the sample to create 4

different artificial observations of i. Student i’s replicas differ by the unobserved type, or group

k only, but the values of Xi, Yi and Zi are the same for each replica. We arbitrarily choose

initial values for the unconditional prior probabilities of the groups pk, k = 1, . . . , 4, and for the

posterior probabilities of belonging to a certain group knowing the observed characteristics of i,

that is, pik = P(Gik = 1|Y,X,Z). They will be updated after each iteration.

The estimation algorithm can be described as follows.

1. We first run 20 weighted regressions and Ordered Probits.

(a) Two regressions for the initial test scores in Math and French.

(b) Two regressions of class size by grade: one for the repeaters and one for the non-

repeaters (except for the first year, because there are only non-repeaters in year t = 1

and for year t = 5, because there are only repeaters). This amounts to 8 regressions.

(c) One simple Probit to model the transition at the end of grade 6 in year t = 1. Two

Ordered Probits to model the decision at the end of grades 7 and 8 for non-repeaters.

Three simple Probits to model steering decisions relative to repeaters in grades 6, 7

and 8. There are 4 Probits and 2 Ordered Probits in total.

(d) Two final test-score regressions in Math and French, for repeaters and non-repeaters

(4 regressions).

2. We obtain an estimation of θ by means of our system of weighted regressions and weighted

Probits.
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3. The residuals of regressions and the probabilities of passing to the next grade are collected

to compute the individual contributions to likelihood, that is, by definition,

li(X,Z, Y, θ) =

K∑
k=1

pkli(Y,X,Z, θ | Gik = 1). (19)

4. Individual posterior probabilities pik of belonging to a group are then updated, using Bayes’

rule and the likelihood as follows,

pik = P(Gik = 1|Y,X,Z, θ) =
pkli(Y,X,Z, θ | Gik = 1)∑K
j=1 pjli(Y,X,Z, θ|Gjk = 1)

. (20)

These individual probabilities are then averaged to update the prior probabilities pk, as

follows,

pk = P(Gk = 1) =
1

N

N∑
i=1

pik. (21)

5. A new iteration begins until convergence of the estimated unconditional probabilities.

All standard deviations have been bootstrapped, using 50 drawings with replacement in the

sample.

The estimation method used here has been advocated and justified by various authors (see,

e.g., Arcidiacono and Jones (2003), Bonhomme and Robin (2009)).

6 Estimation Results

6.1 Distribution of groups

The results of the algorithm, using K = 4 groups, are given by Table 6. We chose to use only 4

groups because of weak identifiability and computational problems when K > 4. In Table 7, we

compare the most likely groups of individuals, estimated with the full model, called Classification

1, with the results of a limited sub-model, based on grade 6 entry scores only, called Classification

2. Both models have 4 unobserved types or groups. This has been done to try to assess the

impact of initial test scores on the individual’s posterior probabilities of belonging to a group.

In other words, are students fully predetermined by their initial stock of knowledge? We observe

that, according to Classification 2, 75% of Group 1 individuals are also most likely to become

members of Group 1, according to Classification 1 (the full model). Observing the grade 6 scores

Table 6: Estimated Group Probabilities

Group 1 Group 2 Group 3 Group 4

Probabilities 15.54 % 31.16 % 33.56 % 19.74 %

(0.69) (0.64) (0.58) (0.82)
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Table 7: Comparison of Two Classifications

Classification 2

Classification 1 Group 1 Group 2 Group 3 Group 4 Total

Group 1 74 % 1 % 0 % 3 % 2021

Group 2 24 % 59 % 2 % 61 % 4076

Group 3 0 % 38 % 48 % 34 % 4383

Group 4 2 % 2 % 50 % 2 % 2656

100 % 100 % 100 % 100 %

Total 2547 2883 4967 2739 13136

in Math and French only allows us to assign the student to the first group, to a large extent.

But Group 4 students are not predetermined by their entry test scores, since less that 2% of

the students assigned to Group 4 on the basis of the latter scores end up being members of

Group 4 in the full model. The corresponding percentages are 59% and 48% for Groups 2 and

3, respectively. We conclude that, with the exception of Group 1, unobserved types are far from

being perfectly predicted in year t = 1 (i.e., in grade 6). It seems that the weakest students are

easily detected from the beginning, but the brightest students are not. We will come back to

this point in the general discussion of estimation results below.

Table 8 presents the parameters obtained when we regress the individual posterior proba-

bilities of belonging to a certain group k, defined as pik above, on the socio-demographic and

family-background variables X0. We find that the probabilities of belonging to the two extreme

groups, Group 1 and Group 4, are quite well predicted by the social background, with an R2

superior to 14%. These results also show, among other things, that when the mother is edu-

cated and the father is an executive, the probability of belonging to Group 4 is significantly

increased. Group 2 and Group 3 are not so easy to distinguish on the basis of observed student

characteristics.

6.2 Group effects on test scores

We present here the estimated parameters of group effects and class size. Table 9 shows the

estimated coefficients for the initial test scores (at the beginning of grade 6) and the final test

scores (at the end of grade 9). Group 1 is the reference. We see how well the four groups

are defined. Scores in French and Math increase with group k and the estimated coefficients

yield the same ranking of ability groups in all columns, except the rightmost column of Table

9. More precisely, Group 4 has everywhere the highest scores, with the exception of Group 4

repeaters, in French, but the latter coefficient is estimated with less precision than the others.

Intuitively, this is because Group 4 students have a low probability of repeating a grade. Apart

from this exception, Group 4 is above Group 3, which in turn dominates Group 2, and Group 1

is unambiguously the lowest ability group.
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Table 8: Individual Group Probabilities and Family Background

Group 1 Group 2 Group 3 Group 4

Female 0.0493*** 0.0388*** -0.00773 -0.0804***

(0.00565) (0.00766) (0.00779) (0.00638)

Mother education: -0.0126 -0.0167 0.0234** 0.00594

Junior High School (0.00873) (0.0118) (0.0120) (0.00985)

Mother education: -0.0521*** -0.0175 0.0531*** 0.0165

Vocational Certificate (0.00937) (0.0127) (0.0129) (0.0106)

Mother education: -0.0901*** -0.103*** 0.0550*** 0.138***

High-School Graduate (0.0109) (0.0147) (0.0150) (0.0123)

Mother education: -0.0864*** -0.154*** 0.0832*** 0.157***

2 years of college (0.0118) (0.0160) (0.0162) (0.0133)

Mother education: -0.103*** -0.174*** 0.0240 0.253***

4 years of college and more (0.0142) (0.0192) (0.0195) (0.0160)

Father occupation: -0.0514*** -0.0373 0.0100 0.0786***

Executives and educated professionals (0.0181) (0.0245) (0.0250) (0.0204)

Father occupation: -0.00141 0.0674*** -0.0314 -0.0346*

White collars (0.0184) (0.0249) (0.0253) (0.0207)

Father occupation: 0.0557*** 0.0777*** -0.0696*** -0.0638***

Blue collars (0.0169) (0.0229) (0.0233) (0.0191)

More than three children in family 0.0845*** 0.0004 -0.0432*** -0.0418***

(0.00840) (0.0114) (0.0116) (0.00949)

Retention in primary school 0.206*** 0.0412*** -0.169*** -0.0781***

(0.00731) (0.00990) (0.0101) (0.00825)

Quarter of birth

Q2 0.0000 0.0144 -0.0193* 0.0049

(0.0077) (0.0105) (0.0107) (0.0087)

Q3 0.0198** 0.0256** -0.0331*** -0.0123

(0.0085) (0.0115) (0.0117) (0.0096)

Q4 0.0145* 0.0463*** -0.0260** -0.0349***

(0.0087) (0.0117) (0.0119) (0.0098)

R2 0.187 0.059 0.060 0.143
Linear regressions of probabilities pik on controls X0. Standard errors are in parentheses; ***, ** and
* indicate significance at the levels of 1, 5, and 10%, resp. There are 12,937 observations.
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Table 9: Estimated Impact of Groups and Class Size on Test Scores

Score in Math Score in French

Initial Final Initial Final

Non-repeaters Repeaters Non-repeaters Repeaters

Class size t = 4 -0.25*** -0.25***

(0.03) (0.04)

Class size t = 5 -0.19*** -0.25***

(0.07) (0.05)

Group 2 10.44*** 8.14*** 5.32*** 10.82*** 9.10*** 5.80***

(0.27) (0.57) (0.67) (0.23) (0.65) (0.69)

Group 3 19.17*** 15.80*** 9.07*** 19.16*** 16.65*** 10.13***

(0.22) (0.62) (0.91) (0.30) (0.61) (0.73)

Group 4 25.42*** 26.18*** 16.05*** 25.60*** 27.50*** 9.22**

(0.25) (0.62) (5.24) (0.28) (0.68) (5.18)

Constant 35.34*** 41.88*** 43.31*** 35.20*** 40.87*** 44.29***

(0.24) (0.92) (1.71) (0.26) (0.94) (1.20)

R2 0.68 0.60 0.18 0.68 0.63 0.21
Standard errors are in parentheses; ***, ** and * indicate significance at the levels of 1, 5, and 10%,
resp.
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If we now focus on final scores, it is easy to see that Group 1 gets higher scores on average

when a grade was repeated (i.e., this is because the constant is higher). In contrast with Group 1,

individuals in Groups 3 and 4 who didn’t repeat a grade obtain higher scores than the repeaters

of these two groups. Take Group 3 for instance. To obtain the final score in Math of the average

Group 3 student who repeated a grade, we add the constant in the column, i.e., 43.31 to the

differential impact of Group 3, i.e., 9.07. The total is 52.38. But if we compute the corresponding

term for Group 3 non-repeaters, in Math, we obtain, 15.80 + 41.88 = 57.68. Grade repetition

seems detrimental to Group 3. The same is true with Group 4. For the latter group, the

corresponding additions yield 68.06 in the non-repeaters’ column and 59.36 in the repeaters’

column. However, individuals in Group 2 get approximately the same increase in their score,

whether they repeat or not.

6.3 Promotion decision model and effects of class size

If we now look at the top rows in Table 9, we find that increasing class-size has a negative impact

in grade 9 for all students. The standard deviation of class size is around 3. 7 It follows that the

estimated impact of a standard deviation of class size is around three quarters of a normalized

test-score point for non-repeaters, or 7.5% of the standard deviation of test scores. The significant

negative coefficient on class-size appears because we control for unobserved heterogeneity, and

therefore, for the endogeneity of this variable. Otherwise, the coefficient on class size would

be positive (we return to this question below, when we discuss the class-size regressions). This

being said, we do not find a very strong class-size effect on final scores (a quarter of a point, or

1/40th of the standard deviation of test scores, for a one-student reduction in class-size). Table

10 shows the main parameters of the promotion decision model. Dependent variables determine

rows, while the coefficients of a given explanatory variable in equations are displayed in the same

column. A higher group label means a higher average knowledge-capital. As a consequence, the

greater the group label, the greater the probability of passing to the next grade, for non-repeaters

as well as for repeaters, in each grade. The estimated coefficients reflect this ranking of groups

very clearly, again, with the exception of the impact of Group 4 in the Probit concerning grade

8 repeaters (i.e., S4 repeaters). The latter coefficient is not estimated with precision because

Group 4 students have a small probability of repeating a grade. Apart from this exception, all

other coefficients are estimated with good precision. The first column of Table 10 shows that

increasing class size decreases the probability of promotion to grade 7, but has a non-significant

(or even a positive impact) on pass rates in later grades.

6.4 Endogeneity of class size

Table 11 finally gives the coefficients of group dummies and of instruments in class-size equations.

Each row in the table corresponds to a dependent variable. One of the class-size instruments is
7To be precise, the standard deviation of class size in year t, denoted σnt has the following values σn1 = 3.02,

σn2 = 2.90, σn3 = 3.32, σn4 = 3.38.
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Table 10: Estimated Impact of Groups and Class Size on Promotion Decisions

Dependent Class size Group 2 Group 3 Group 4 Cut 1 Cut 2 Cut R

variable ↓ δt1 δt2 δtr

S1 −0.025∗∗∗ 0.67∗∗∗ 2.24∗∗∗ 2.45∗∗∗ −1.13∗∗∗

(0.007) (0.04) (0.12) (0.72) (0.16)

S2 repeaters 0.010∗∗ 4.29∗∗∗ 4.22∗∗∗ 3.17∗∗∗ −1.80∗

(0.04) (0.42) (0.61) (1.3) (1.12)

S2 −0.004 0.63∗∗∗ 1.62∗∗∗ 2.72∗∗∗ −0.85∗∗∗ −0.08

(0.006) (0.044) (0.057) (0.64) (0.14) (0.14)

S3 repeaters −0.016∗ 0.38∗∗∗ 0.92∗∗∗ 4.43∗∗∗ −0.93∗∗∗

(0.012) (0.017) (0.24) (1.37) (0.29)

S3 0.045∗∗∗ 0.33∗∗∗ 0.92∗∗∗ 1.67∗∗∗ −0.64∗∗∗ 0.34∗∗

(0.006) (0.05) (0.06) (0.17) (0.18) (0.16)

S4 repeaters 0.035∗∗∗ 0.33∗∗∗ 0.65∗∗∗ 0.55 −0.002

(0.01) (0.07) (0.12) (1.91) (0.24)

The promotion decisions St are modeled with the help of an Ordered Probit. They take the value 0 for
redirection, 1 for retention and 2 for pass. Standard errors are in parentheses; ***, ** and * indicate
significance at the levels of 1, 5, and 10%, resp.

Table 11: Estimates of Class-Size Equation Parameters

Dependent Maimonides’ Rule Constant Group 2 Group 3 Group 4 R2

variable ↓
Class size t = 1 0.32*** 16.09*** 1.12*** 1.75*** 1.78*** 0.20

(0.02) (0.36) (0.18) (0.15) (0.16)

Class size t = 2 0.49*** 14.81*** 0.68*** -5.75*** 3.15* 0.25

(repeaters) (0.05) (1.09) (0.27) (1.51) (2.35)

Class size t = 2 0.37*** 15.17*** 1.07*** 1.85*** 1.96*** 0.21

(0.02) (0.17) (0.30) (0.14) (0.16)

Class size t = 3 0.36*** 16.06*** 0.53*** 1.13*** -1.96* 0.18

(repeaters) (0.05) (0.91) (0.17) (0.32) (1.27)

Class size t = 3 0.35*** 13.66*** 1.87*** 2.90*** 3.10*** 0.24

(0.05) (0.40) (0.22) (0.20) (0.26)

Class size t = 4 0.33*** 15.61*** 0.95*** 2.00*** 1.85 0.19

(repeaters) (0.05) (0.90) (0.22) (0.29) (2.16)

Class size t = 4 0.35*** 14.05*** 1.62*** 2.62*** 2.94*** 0.26

(0.02) (0.46) (0.34) (0.26) (0.29)

Class size t = 5 0.26*** 16.34*** 0.91*** 2.67*** 0.32 0.22

(repeaters) (0.04) (0.73) (0.32) (0.31) (2.92)
Standard errors are in parentheses; ***, ** and * indicate significance at the levels of 1, 5, and 10%,
resp.
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theoretical class size (i.e., Maimonides’ rule), that is, the class size that would be experienced

by the student if a class-opening threshold of 25 was applied, given total grade enrollment. The

coefficient of this variable is significant and positive, as expected. We also find that class size

increases with the ability (i.e., the group) of students. The only exceptions are the coefficients on

Group 4 dummies, that cannot be estimated with precision among grade repeaters. These results

prove that class-size is strongly endogenous, and that it is used as a remediation instrument by

school principals.

Our estimates are robust if the group dummies are exogenous variables in each year. To

check this, we regressed the posterior probabilities of belonging to a group over a set of permanent

individual characteristicsX0 and the time-varying characteristicsX1, X2, X3, X4, X5. The results

of these latter regressions are not presented here, but they show that, if the coefficients on X0

are strongly significant, in contrast, time-varying characteristics are not significant. Thus, our

model seems well specified (and we found a confirmation of well-known results). A better social

background (that is, richer, more educated and more qualified parents) significantly increases

the initial capital and therefore, the probability of belonging to high-ability groups.

7 The Treatment Effects of Grade Retention

We now turn to the key question of the present paper: the treatment effects of grade repetition.

The model will be used to compute counterfactuals.

7.1 Effect of grade retention on grade 9 scores

Each individual i has a posterior conditional probability pik of belonging to each of the four groups

k = 1, . . . , 4. For each individual and each of his (her) possible types, we compute a counterfactual

class size and a counterfactual final test score. Each individual has four counterfactual final scores

and four counterfactual final class sizes. Using the posterior probabilities, we can then compute

expected counterfactual grades.

For each group, and for each student who hasn’t repeated a grade,

1. we compute the class size he or she would have experienced in grade 9, if he or she had

repeated a grade.

To do this, we assume that the student doesn’t move to a different school and that his class

environment has the same characteristics (same number of foreigners, same foreign language

chosen, same size of the urban area, same sector (private or public), same classification as

priority education zone). However, we use the information that we have on total school

enrollment and total grade enrollment in the same school one year later.

2. we compute the grade predicted in grade 9 if the student had repeated a grade (this

counterfactual is denoted Y c
r ).

For each grade repeater and each group,
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1. we compute the class size predicted in grade 9 if the student had not repeated a grade;

2. we compute the student’s predicted grade in grade 9 if he or she had not repeated a grade

(this counterfactual is denoted Y c).

Let Nr denote the number of individuals who repeated a grade and let Np denote the number

of individuals who didn’t repeat a grade. Of course, we have, N = Np + Nr. Let yri be the

observed final grade of i, if i is a repeater. Let yi be the observed final grade of i, if i never

repeated a grade. We can now compute the following treatment effects.

The average treatment effect (i.e., ATE) is defined as follows.

ATE =
1

N

∑
i∈Np

4∑
k=1

(E(Y c
ri | Gik = 1)− yi)pik +

∑
i∈Nr

4∑
k=1

(yri − E(Y c
i | Gik = 1))pik

 , (22)

where pik = P(Gki = 1|X,Z, Y ) is i’s posterior probability of belonging to Group k. In the

above expression, E(Y c
ri|Gik = 1) and E(Y c

i |Gik = 1)) are the predictions of i’s final grades,

in the counterfactual situations of grade repetition and not repeating, respectively, using the

estimated regression functions, and conditional on belonging to Group k.

The average treatment effect on the treated (i.e., ATT ) is then,

ATT =
1

Nr

4∑
k=1

∑
i∈Nr

(yri − E(Y c
i | Gik = 1))pik. (23)

We also compute an ATE by group. For Group k, the average treatment effect ATEk is defined

as,

ATEk =
1

Npk

∑
i∈Np

(E(Y c
ri | Gik = 1)− yi)pik +

∑
i∈Nr

(yri − E(Y c
i | Gik = 1))pik

 , (24)

where pk = (1/N)
∑

i pik. The, ATT within group k, denoted ATTk, can be defined in a similar

way,

ATTk =
1∑

i∈Nr
pik

∑
i∈Nr

(yri − E(Y c
i | Gik = 1))pik. (25)

7.2 Effect of grade retention on the probability of access to grade 9

Individual i’s estimated probability of access to grade 9, knowing Group k, is denoted P9ik and

can be decomposed in the following way:

P9ik = Pr(Si1 = P | k) Pr(Si2 = P | k) Pr(Si3 = P | k) (does not repeat)

+ Pr(Si1 = P | k) Pr(Si2 = P | k) Pr(Si3 = R | k) Pr(Si4r = P | k) (repeats grade 8)

+ Pr(Si1 = P | k) Pr(Si2 = R | k) Pr(Si3r = P | k) Pr(Si4r = P | k) (repeats grade 7)

+ Pr(Si1 = R | k) Pr(Si2r = P | k) Pr(Si3r = P | k) Pr(Si4r = P | k), (repeats grade 6)
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Table 12: Counterfactuals required to compute the probabilities of accessing grade 9

Grade 7 Grade 6R Grade 8 Grade 7R Grade 8R

History Pr(S2) n2 Pr(S2r) n2r Pr(S3) n3 Pr(S3r) n3r Pr(S4r) n4r

1234 C C C C C C

12334 C C C C

12234 C C C C

11234 C C C C

1233V C C C C

1223V C C C C

1123V C C C C

123V C C C C C C

122V C C C C C C

112V C C C C C C

12V C C C C C C C C

11V C C C C C C C C
Letter C indicates that a counterfactual value has been computed. Letter R indicates that a grade-
repeater model is used. Pr(St) means the probability distribution of decision St ∈ {P, V,R}. nt denotes
class-size in year t. Subscript r indicates the specific model for grade repeaters, Str ∈ {P, V }.

where, to simplify notation, we denote Pr(Sit = X | k) = Pr(Sit = X | Gik = 1), for all

X = P,R, V . If the government decides to abolish grade retention (but keeps the possibility of

steering students towards the vocational track) then, the only way of reaching grade 9 is to pass

the three grades directly. Let P c
9ik be the counterfactual probability of accessing grade 9 when

grade retention is abolished. Given that no student is redirected to the vocational track at the

end of grade 6, this probability can be expressed as follows,

P c
9ik = Pr(Si2 = P | k) Pr(Si3 = P | k).

To find the average treatment effect of grade retention, we need to compute the individual

probabilities P9ik and P c
9ik for all the students in the sample, including those who have actually

been redirected. This requires the computation of many counterfactuals. For those who repeated

grade 6 and then passed or were redirected, we need counterfactual class sizes and counterfactual

school-environment characteristics for year 2 and 3, that they would have experienced, had they

not repeated a grade. For those who repeated grade 5 or have been redirected at the end of

grade 5, we need their counterfactual class size and counterfactual characteristics for year 3, as

if they hadn’t repeated this grade. Finally, for those who were never held back, we need the

counterfactual class size and characteristics that they would have experienced, had they repeated

a grade. Table 12 summarizes the counterfactual probabilities and the counterfactual class size

we computed for each different grade history. Then we can compute the following treatment
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Table 13: Average Treatment Effects of Grade Retention

Probability of

Mathematics French access to grade 9

ATE ATT ATE ATT ATE ATT

Group 1 2.43 2.45 3.09 3.20 −0.11 −0.11

(0.76) (0.76) (0.81) (0.80) (0.014) (0.014)

Group 2 0.12 0.36 0.18 0.47 −0.12 −0.12

(0.42) (0.42) (0.41) (0.42) (0.012) (0.012)

Group 3 −3.79 −2.92 −3.66 −2.77 −0.09 −0.10

(0.76) (0.75) (0.60) (0.59) (0.022) (0.023)

Group 4 −6.68 −14.08 −6.86 −14.22 −0.06 −0.06

(4.61) (4.53) (4.54) (4.52) (0.07) (0.07)

All −2.56 0.27 −3.73 0.71 −0.09 −0.11

(0.85) (0.31) (0.94) (0.33) (0.017) (0.008)

Standard deviations are in parentheses.

effects. The average treatment effect is,

ATE =
1

N

4∑
k=1

∑
i∈Nr

(P9ik − P c
9ik)pik +

∑
i∈Np

(P9ik − P c
9ik)pik

 .

The average treatment effect on the treated is then,

ATT =
1

Nr

4∑
k=1

∑
i∈Nr

(P9ik − P c
9ik)pik.

7.3 Results and discussion

Table 13 displays the results of the various computations. The last row in this table shows the

overall results. If we consider the final tests scores in Math and French (at the end of grade 9),

the ATT is positive, but small. Given that the mean value of the scores is 50 with a standard

deviation of 10, the effects are smaller than a tenth of a standard deviation and barely significant.

The ATE is clearly negative in Math and in French. As we will see, this is mainly due to the fact

that the most able students would suffer from grade repetitions. If we now look at the values

of ATEk and ATTk, the treatment effects within group k, it is easy to see that only Group 1

students benefit for grade repetitions. The effect of grade repetitions is not significantly different

from zero for Group 2 students. In contrast, in the case of Group 3, and Group 4, both the ATE

and the ATT are negative, in Math and in French. This shows that grade repetition hurts the
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students belonging to top groups.8 We conclude that grade repetitions have some usefulness for

the weakest students, with an effect of the order of a quarter of a standard deviation on the final

grades.

We now discuss the effect on the probability of access to grade 9. The treatment effects of

grade repetition on final scores rely essentially on the regression equations determining the final

test scores, and the latter equations are estimated with the subset of individuals who reached

grade 9. The fact that this population is selected is taken into account by the posterior individual

probabilities pik. But it is reassuring to derive results for an outcome that depends on the entire

structure of the model. This is the case of access to grade 9, because the probabilities P9ik,

defined above, depend on all the decision and class-size equations.

It is striking to see that in Table 13, the ATT s and ATEs of grade retention are all negative,

even if we consider within-group treatment effects. This means that introducing grade retention,

if grade retention does not already exists, will be detrimental to students, on average, and

detrimental to students of each group, taken separately. The effects are particularly strong for

Groups 1 and 2. To see this, we computed the distribution of the individual probabilities P9ik

and individual counterfactual probabilities P c
9ik in the student population. The histograms of

these distributions are displayed on Figure 2.

On Fig. 2 it is easy to see that the counterfactual probabilities have a mass near 1, meaning

that the abolition of grade repetitions would help many students to reach grade 9. Yet, there

are clearly subgroups of individuals that keep a low probability of access: these individuals

bear a high risk of being tracked in vocational programs. We will understand the effect of grade

repetition on access to grade 9 more fully if we compute the histograms of P9ik and P c
9ik separately

for each group. This is done in the following figures. Figure 3 gives the distributions of P9ik,

while Figure 4 displays the distributions of the counterfactual P c
9ik.

Comparing the histograms, it immediately comes to mind that when grade repetitions are

abolished, access to grade 9 becomes certain for Group 3 and Group 4 students. The effect of

abolition is less obvious for the weakest groups, 1 and 2, but in fact, these probabilities increase

and become more favorable. To sum up, these effects explain why the treatment effects of grade

repetitions on access to grade 9 are unambiguously negative. We see also that these effects are

very strong, since a drop of 11 or 12 points of probability, very roughly, amounts to 50% of the

best chances of access to grade 9 among Group 1 and Group 2 students.

The treatment effects are positive only for the weakest students, and these effects are weak

when they are positive. Given these results, and the results of Table 13 in general, it seems that

we can only recommend the abolition of grade retention. The results of Table 7 suggests a path

for reform. Coming back to this table, we see that the weakest (i.e., the Group 1) students are

more easily detected in grade 6 than other types. In cases of grade retention, forcing weaker
8Note that ATTk and ATEk should be equal for each k, if Group k was the only variable used to predict

counterfactual scores. But other control variables are used to predict these scores, such as class size, family

background characteristics, etc. This determines differences between ATTk and ATEk in Table 13. However, the

differences are neither large nor significant.
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Figure 2: Histogram of Individual Probabilities of Access to Grade 9
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Figure 3: Histograms of Probabilities of Access to Grade 9, by Group
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Figure 4: Histograms of Counterfactual Access Probabilities, by Group
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students to follow the same teaching twice is only a rough second best. It would be more efficient

to track these students from the start of junior high school, with additional remediation resources.

One could imagine a slow track and a fast track, with, say, a year of difference in duration to

reach the certification exams at the end of grade 9, and with flexible possibilities of track changes

in both directions. To avoid the stigma of tracking, the slow track should probably be the norm,

and students that seem promising would be steered towards the fast track. A system of that sort

would lead to a more efficient use of resources than grade repetitions. It would clearly give weak

students better chances of reaching the end of grade 9 with the required stock of knowledge and

skills.

8 Conclusion

Grade retention is difficult to evaluate because grade repeaters have been selected on the basis of

many characteristics that the econometrician doesn’t observe. The difficult problem is to find a

reasonable model to compute what would be the counterfactual performance of a student who has

repeated a grade, if instead of being held back, he or she had been promoted to the next grade.

To this end, we have assumed that the distribution of student test scores can be represented by a

finite mixture of normal distributions, conditional on observed covariates, during each year of the

observation period. The class size experienced by a student is also assumed to be distributed as

a mixture of normals. All such mixtures are relying on the same finite number of latent student

classes, called groups. In a flexible formulation, we show that class-size, probabilities of grade

retention and test scores all depend on the unobserved group in a non-trivial and consistent

way. We estimated a model with four groups and found that the four groups are unambiguously

ranked. The higher the group index, the larger the student’s ability, and the larger his class

size. This proves that class size is endogenous, smaller classes being used by school principals

to redistribute resources towards weaker students. With the help of our model, we computed

counterfactual test scores to evaluate the average treatment effect and the average treatment

effect on the treated of grade retention. We found that the ATE is negative, while the ATT is

generally positive, but small. We computed treatment effects in each student group separately,

and found that the ATE is positive for less able students and negative for more able students.

Finally we computed the ATT and ATE of grade retention on the probability of access to grade

9, and found that this effect is significant and negative. Grade retention is a form of remedial

education and seems to help the weakest students, insofar as it tends to increase their test scores

at the end of grade 9. But these effects are weak. It follows that grade retention could probably

be replaced by a form of tracking, or by different forms of remediation. Other studies have

shown that grade retention is a stigma, that repeated years are interpreted as a negative signal

by employers (on this point, see Brodaty et al. (2012)). The long-run effects of grade retention

seem to be detrimental. We can only conclude that grade retention is unlikely to be an efficient

public policy, because its impact on student performance — when positive — is weak.
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Table 14: Descriptive Statistics for Value Added

Math French

Standardized score Balanced samplea Repeaters Balanced samplea Repeaters

Grade 6 51.10 43.25 51.21 43.38

(9.55) (8.48) (9.47) (8.44)

Grade 9 50 43.37 50 43.46

(10) (8.23) (10) (7.87)

VA = Grade 9 − Grade 6 −1.10 0.11 −1.21 0.08

(8.55) (9.63) (8.39) (9.18)
Note a. Sample of all pupils for whom a test score is available both in grade 6 and in grade 9.

10 Appendix: Details on Quarter of Birth as an Instrument for

Grade Retention

Table 14 displays descriptive statistics on value-added. Scores in grade 6, ranging between 0 and

20, as is usual in French schools, are standardized to have a mean of 50 and a standard deviation

of 10 in the whole sample in grade 6 (including all redirected pupils). Scores in grade 9 are

standardized in the same way in the sample of individuals who reached grade 9. Table 14 shows

that value added, the sign of which is irrelevant because scores are measures of performance

relative to each grade, is nevertheless higher for repeaters than for non-repeaters. This is true

both in French and Mathematics. There exists a strong link between the age of a child, as

measured by the month of birth, or quarter of birth, and the probability of grade repetition. A

look at Figure 5 shows the frequency of grade retention by quarter of birth9. The probability of

grade retention is clearly higher for children born later in the year. In principle, children must

be 6 years old on September 1rst of year t to be admitted in primary school, grade 1, year t. In

practice, many 5-year-old children born between October and December are admitted, but the

5-year-old children born in the first quarter typically have to wait until the next year. It follows

that first-quarter students tend to be relatively older in their class, with an age difference that

can reach 11 months. Older children being more mature, they tend to perform better. At the

same time, teachers are reluctant to retain older children in one grade as retention may change

a difference —being older— into a stigma —being too old.

Figure 6 shows that initial (grade 6 entry) scores decrease with quarter of birth. The de-

creasing trend also exists for final scores but is less pronounced. Figure 7 shows that value-added

scores tend to be higher for relatively younger students, who seem to be catching up during their

junior high-school years. In a first attempt to check if this is attributable to grade retention, we

plot value-added by quarter of birth separately for repeaters and non-repeaters. Figure 8 clearly

shows that value-added age profiles are steeper for repeaters than for non-repeaters.

9Due to the survey protocol, there are no observations for students born in March, July and October.
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Figure 5: Probability of Grade Retention by Quarter of Birth
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Figure 6: Scores by Quarter of Birth
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Figure 7: Value Added by Quarter of Birth
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Figure 8: Value Added by Quarter of Birth for Repeaters and Non-Repeaters
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