
Görtz, Christoph; Mirza, Afrasiab

Working Paper

On the Applicability of Global Approximation Methods for
Models with Jump Discontinuities in Policy Functions

CESifo Working Paper, No. 4837

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Görtz, Christoph; Mirza, Afrasiab (2014) : On the Applicability of Global
Approximation Methods for Models with Jump Discontinuities in Policy Functions, CESifo Working
Paper, No. 4837, Center for Economic Studies and ifo Institute (CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/102199

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/102199
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

On the Applicability of Global Approximation 
Methods for Models with Jump Discontinuities 

in Policy Functions 
 
 
 

Christoph Görtz 
Afrasiab Mirza 

 
 

CESIFO WORKING PAPER NO. 4837 
CATEGORY 6: FISCAL POLICY, MACROECONOMICS AND GROWTH 

JUNE 2014 
 

 
 
 

An electronic version of the paper may be downloaded  
• from the SSRN website:              www.SSRN.com 
• from the RePEc website:              www.RePEc.org 

• from the CESifo website:           Twww.CESifo-group.org/wp T 

http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.de/


CESifo Working Paper No. 4837 
 
 
 

On the Applicability of Global Approximation 
Methods for Models with Jump Discontinuities 

in Policy Functions 
 
 

Abstract 
 
We show that the standard Value Function Iteration (VFI) algorithm has difficulties 
approximating models with jump discontinuities in policy functions. We find that VFI fails to 
accurately identify the location and size of jump discontinuities while other methods - such as 
the Endogenous Grid Method (EGM) and a Finite Element Method (FEM) - are much better 
at approximating this class of models. We illustrate differences across methods using a 
standard plant-level investment model with both variable and fixed capital adjustment costs. 
We find that the policy functions generated by VFI are quite different from those generated 
by EGM and FEM. Importantly, these differences are economically significant: for our 
baseline parameterization VFI generates investment spikes that are 5-8% larger in comparison 
to the other two methods. The choice between EGM and FEM depends on the context. While 
EGM is faster than FEM, it is much more difficult to implement. For larger models, the 
modifications necessary to apply EGM can lead to high code complexity. On the other hand, 
FEM can accommodate larger models with minimal implementation differences and its high 
scalability can reduce computation time significantly. 
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1 Introduction

We examine differences in the answers produced by global approximation methods

for solving dynamic economies where agents face non-concave problems (i.e. non-convex

choice sets). Non-concave problems can result from the inclusion of fixed adjustment

costs that are empirically relevant in many circumstances.1 For such problems, agents

make decisions by comparing the option values associated with different adjustments. In

the presence of fixed adjustment costs, a kink arises in the value function at the inter-

section of these option values and implies a jump discontinuity in the policy function.

While differences across approximation methods have been extensively studied for dy-

namic economies where policy functions are continuous (e.g. McGrattan (1996), Santos

(2000), Aruoba et al. (2006), Santos and Peralta-Alva (2012)), the literature provides lit-

tle guidance about applicability of computational methods when policy functions exhibit

jump discontinuities.

We document that the exact intersection of the option values — and thereby the

jump discontinuity in the policy function — is difficult to determine using Value Function

Iteration (VFI). The algorithm’s restriction to a finite grid on state and control variables

limits VFI to approximating the option values as step functions. This results in multiple

intersections of these values and subsequently leads to an imprecise determination of the

jump discontinuity. Sufficient mitigation of this problem requires very fine grids that are

infeasible in many applications due to the curse of dimensionality.

To our knowledge this problem has not been documented in the literature. We explore

its implications and show that two alternative global approximation methods are more

suitable for solving models with jump discontinuities in policy functions. Specifically,

we solve the model using a Finite Element Method (FEM), and an adaptation of the

1The relevance of fixed adjustment cost is highlighted for example in studies of investment (e.g. Ca-
ballero et al. (1995), Doms and Dunne (1998), Power (1998), Cooper et al. (1999), Nilsen and Schiantarelli
(2003) and Cooper and Haltiwanger (2006), Whited (2006), Bayer (2006), Khan and Thomas (2008),
Bloom (2009), Wang and Wen (2012)), consumer-durables choice (e.g. Jose Luengo-Prado (2006), Ba-
jari et al. (2013)), portfolio choice models with transaction costs and asset prices (e.g. Vayanos (1998)),
costly technology adoption (e.g. Khan and Ravikumar (2002)) and optimal dynamic capital structure
choice (e.g. Hennessy and Whited (2005)).
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Endogenous Grid Method (EGM).2 These methods overcome the limitations of VFI as

they both approximate the option values using piece-wise linear functions — effectively

approximating these values using an infinite set of points — that lead to a single crossing

and therefore a unique determination of the jump discontinuity in the policy function.

We illustrate differences across approximation methods for non-concave problems us-

ing a partial equilibrium model of a plant where investment is subject to both variable

and fixed capital adjustment costs and investment is irreversible. This model is well es-

tablished in the literature and nests the standard Q-theory model as a special case. In

the presence of fixed costs the plant determines its investment strategy each period by

comparing the option value of remaining inactive (not investing) with the option value

of becoming active (investing). The optimal investment strategy follows an (S, s) adjust-

ment process whereby the plant does not make any investment until capital depreciates

below a threshold level at which point the plant makes a substantial investment to re-

build its capital stock. The threshold is determined by the intersection of the plant’s

option values. To correctly capture the dynamics of investment it is crucial to determine

this threshold accurately.

While we find that the approximation of the threshold in the policy function for

investment is nearly identical for EGM and FEM, it is substantially different for VFI.

Through simulations we show that this difference is economically significant by comparing

key moments. For example, in our baseline setting VFI implies the size of the investment

spike is 8% (5%) larger than when approximating the model with EGM (FEM). VFI

also underestimates the average level of capital by approximately 1.4% relative to both

EGM and FEM. Differences between VFI and the other methods persist even for very

fine capital grids and are robust also for alternative parameterizations.

While EGM and FEM can overcome the limitations of VFI, there are tradeoffs when

choosing between the two methods to solve problems with jump discontinuities in policy

functions. While EGM is by far the fastest of the three solution methods, it is also the

2Given that we consider non-concave problems, we focus on piece-wise linear approximations and do
not implement methods that involve higher order polynomial approximations.
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most complex to implement as it requires a number of adaptations to be applicable to our

model. The original EGM algorithm introduced by Carroll (2006) is limited to models

with at most one control and one endogenous state variable. The literature has proposed

numerous extensions to accommodate more complex models as the applicability of EGM

is context dependent.3 Importantly, Fella (2014) shows how to extend EGM to non-

smooth and non-concave problems such as ours. We adapt the algorithm – exemplified

by Fella (2014) for a consumption model that involves fixed adjustment costs for durable

goods – to our model of a plant with fixed capital adjustment costs.

FEM is far less complex to implement for our model than EGM.4 FEM is a general

purpose method that requires only minimal changes to handle more complex models.

It has been introduced into economics by McGrattan (1996) and Aruoba et al. (2006)

but has since been used only for a limited number of applications. A drawback of this

method is that it is even more expensive in terms of computation time than VFI. But the

performance of FEM can be improved dramatically by making use of parallel computing.

As the computation time of FEM increases only linearly with the number of grid points, it

is particularly useful for approximating larger models with jump discontinuities in policy

functions.

Overall, our results suggest that the optimal choice of numerical method for problems

with jump discontinuities in policy functions depends on the context: EGM is applicable

in a limited class of smaller models where one can benefit from the algorithms’ speed

at cost of tolerable implementation complexity. FEM is best-suited to overcome the

drawbacks of VFI for any other class of models and through its scalability it is especially

applicable to models with a large number of state and control variables.

3These extensions often combine EGM with VFI. Barillas and Fernandez-Villaverde (2007) show how
to introduce additional control variables; Hintermaier and Koeniger (2010) demonstrate how to introduce
additional endogenous state variables in a durable goods model and Ludwig and Schön (2013) show how
to accommodate additional endogenous state variables in a human capital model.

4Our FEM code approximates the value function using piece-wise linear functions with weights up-
dated via iteration on the Bellman operator rather than minimization of the Galerkin residual as in
McGrattan (1996) and Aruoba et al. (2006). The latter approach has been exemplified for smooth prob-
lems and is faster but more complex to implement. However, for our problem with jump discontinuities
in the policy function we find that this approach is problematic as results are highly dependent on the
algorithm’s start values.
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The rest of the paper is organized as follows. The next section presents the model

we use to illustrate our results. We then provide descriptions of the three approximation

methods we use to solve the model. Section 4 discusses the parameterization which we

use for the analysis of solutions generated by the approximation methods in Section 5.

The final section concludes.

2 The Model

We consider a general class of models where in every period the agent makes both

a continuous and discrete choice (c′, d′) based on the state variable (c, d) consisting of

previous period’s choices. The set of possible states is denoted by Ω. The agent’s choice

set is constrained as follows:

(c, c′, d, d′) ∈ Γ.5

Importantly, this specification of the constraints includes the case where c or d are subject

to non-convex adjustment costs. The agent solves the following dynamic programming

problem:

V (c, d, A) = sup
(c′,d′)∈Γ(c,·;d,·;A)

u(c, c′; d, d′;A) + β
∑
A′∈A

π(A′|A)V (c′, d′, A′)

where A is the set of all possible shock realizations A ∈ A, π is the corresponding

transition matrix, the domain of V is Ω×A, the per-period utility function of the agent

is u, and the discount-factor is β. We assume that u(·, c′; d, d′;A) and u(c, ; d, d′;A) are

differentiable on int(Γ(·, c′; d, d′;A)) and int(Γ(c, ·; d, d′;A)), respectively. Importantly,

the value function V is non-concave in the presence of non-convex adjustment costs to

c or d. As a result, the agent compares the option values associated with choices of c′

and d′. A kink in the value function arises at the point of indifference between these

options and implies a jump discontinuity in the policy functions (see e.g. Clausen and

5We define particular subsets of Γ as follows: Γ(c, ·; d, ·) = {(c′, d′) : (c, c′, d, d′) ∈ Γ}, Γ(c, ·; d, d′) =
c′ : (c, c′, d, d′) ∈ Γ, Γ(·, c′; d, d′) = c : (c, c′, d, d′) ∈ Γ.
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Strub (2012)).

The general framework described above nests a number of important models with

jump discontinuities used in the literature. This includes models with costly technology

adoption (e.g. Khan and Ravikumar (2002)), durable consumption goods (e.g. Bajari

et al. (2013)), and firm-level investment (e.g. Cooper and Haltiwanger (2006), Wang and

Wen (2012)). We illustrate the applicability of different approximation methods using a

model that captures key elements of models in the firm-investment literature. Specifically,

we employ a partial equilibrium model of a plant in which capital adjustment is subject

to both fixed and variable adjustment costs that we describe in detail below.

The plant produces output Yt via the production function

Yt = AtK
α
t , 0 < α < 1, (1)

where Kt denotes capital and productivity At evolves according to the AR(1) process

logAt+1 = ρ logAt + εt, 0 < ρ < 1, (2)

where εt ∼ N(0, σε). The plant’s capital stock evolves according to the law of motion

Kt+1 = (1− δ)Kt + It, 0 < δ < 1, (3)

where It is investment. When the plant chooses to invest, it has to pay a price pI per

investment good as well as adjustment costs C(Kt, It). These are given by

C(Kt, It) =
γ

2

( It
Kt

)2

Kt + FKt, γ ≥ 0, F ≥ 0.

where the first term denotes convex variable investment adjustment costs and the latter

term the non-convex fixed costs. These are proportional to the capital stock to eliminate

any size effects. Further, investment is completely irreversible as we assume for simplicity
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that capital cannot be resold on a secondary market. Formally, we impose It ≥ 0 ∀ t.

Note that the model includes the standard Q-theory model of investment, in which

the value function is proportional to the stock of capital, as a special case.6 The plant’s

problem consists of choosing a sequence of investments {It}∞t=0 to maximize discounted

life-time profits:

V (K,A) = max
{It≥0}∞t=0

E0

∞∑
t=0

βt

[
AKα

t − pIIt − FI(It>0)Kt −
γKt

2

(
It
Kt

)2
]

(4)

subject to equations (1) and (2) and the constraint It ≥ 0, given an initial level of capital,

K0, and productivity, A0. I(It>0) is an indicator function that equals 1 if investment is

positive and zero otherwise. The constraint It ≥ 0 may bind in equilibrium when capital

is too costly relative to the increase in future profits from additional plant capacity.

Dropping time indices, we can write the problem recursively as:

V (K,A) = max{V a(K,A), V i(K,A)},

where V a(K,A) and V i(K,A) are the values to the plant to exercising its option to either

remain inactive (i.e. not invest) or active (invest). We can characterize the value of the

option to invest as follows:

V a(K,A) = max
I>0

[
AKα − pII − FK −

γK

2

(
I

K

)2

+ βEA′|AV (K(1− δ) + I, A′)

]
, (5)

where K ′ > K(1− δ). Similarly, we can characterize the value of the option to not invest

as

V i(K,A) = AKα + βEA′|AV (K(1− δ), A′),

6This is the case in our setup if the profits are proportional to the capital stock which is guaranteed
if the plant’s profit function is homogeneous of degree one (α = 1) and the adjustment cost function is
convex (F = 0).
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where K ′ = K(1 − δ) because I = 0. In each period, the plant computes the value of

these two options and chooses its investment strategy accordingly.

In the presence of fixed costs (F > 0), it is optimal for the plant to follow an (S, s)

adjustment strategy for investment. In other words, investment will be zero for all periods

in which the capital stock exceeds a threshold level K̂(A). When capital has depreciated

below the threshold level the plant will make a substantial investment to build capital

up again. Hence, there is a jump discontinuity in the policy function for investment at

the threshold K̂(A).

The intuition behind the plant’s choice is the following: for capital stock levels below

K̂(A) the value of investing will be higher than the value of not investing: V a(K,A) >

V i(K,A). That is, the benefit from having a larger capital stock in the future exceeds

the costs of investing today. For capital stocks above K̂(A) the opposite is true: the

benefit from having an even larger capital stock tomorrow diminishes (due to decreasing

returns to scale in production) and is smaller than the costs of investment. In this case

V a(K,A) < V i(K,A) and the plant will not invest.

The convexity of the adjustment costs in investment and the monotonicity of the value

function V (K,A) in capital entail that V i(K,A) and V a(K,A) cross exactly at one point

for a given productivity, namely at K̂(A).7 This implies that the value function V (K,A)

exhibits a kink at K̂(A) and is globally non-concave which is illustrated in Figure 1 (see

also Clausen and Strub (2012)). As there is no closed form solution for the value function,

we need to approximate the solution numerically.

3 Solution Methods

We solve the model using three global approximation methods and provide brief de-

scriptions of these in this section. Additional details on the implementation of the meth-

ods are provided in the Appendix. For all solution methods we approximate the AR(1)

7Monotonicity of the value function in capital follows from the monotonicity of the Bellman operator.
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Figure 1: The left diagram shows the option values of active (V a, dotted line) and inactive
(V i, solid line) investment for a given level of productivity. The right diagram shows the
value function for the plant’s problem (V , in red) that results from choosing the maximum
value of the options V a and V i for each level of capital.

process for productivity using a discrete Markov chain as in Rouwenhorst (1995).

3.1 Value Function Iteration

We solve the model first using Value Function Iteration (VFI). To implement VFI, we

first discretize the state space by assigning a grid to the state and control variables. We

then iterate on the Bellman operator and compute an approximation of the value function

over the grid, i.e. for every grid point combination of the endogenous and exogenous state

variable. The Bellman operator in our case is:

TV (K,A) = max

{
AKα + βEA′|AV (A′, (1− δ)K), max

K′≥(1−δ)K
AKα − pI − FK

− γK

2

(
I

K

)2

+ βEA′|AV (K ′, A′)

}
(6)

K ′ = (1− δ)K + I

logA′ = logA+ ε

Note that this method requires the explicit computation of V i(K,A) and V a(K,A) at

each grid point combination of the state variables. The value function is then updated
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according to V (K,A) = max{V i(K,A), V a(K,A)}. The repeated application of the max

operator over the grid leads to an exponential increase in computing time with finer grids.

3.2 Finite Element Method

The main idea behind FEM is to approximate a function of interest using a number

of much simpler basis functions. Each of these basis functions are typically non-zero only

on a small part of the state space, or equivalently on a small number of elements. This

sparsity allows a large number of elements to be handled and the algorithm is well suited

for parallel computing.

Our FEM algorithm approximates the value function using a piece-wise linear approx-

imation. We partition the state space into rectangles of the form [Ki, Ki+1]× [Aj, Aj−1]

using an equally spaced grid for capital where Ki (Aj) is the ith (jth) grid point for cap-

ital (the shock). We then approximate the value function over the state space using a

piece-wise linear function over the grid points of the partition. Given an initial guess for

the value function V 0(K,A) at each grid point in the state space, we approximate the

value function as V̂ (K,A) =
∑

ij V̂ij(K,A) where

V̂ij(K,A) =


V 0
ij(K,A) +

V 0
i+1j−V 0

ij

Ki+1−Ki
(K −Ki) if K ∈ [Ki, Ki+1]

0 otherwise

(7)

so that we effectively use a piece-wise linear approximation for each value of productivity.

We then apply the Bellman operator (6) using V̂ (K ′, A′) as our guess for tomorrow’s value

function and update our initial guess V 0(K,A) on the grid points. Finally, we iterate to

convergence on V̂ (K,A).

The key difference between FEM and VFI is that with FEM tomorrow’s value function

can be evaluated at any point in the state space. Crucially, this implies that the optimal

choice of tomorrow’s capital is not restricted to be on the exogenous grid [K1, . . . Kn].

Therefore, the optimization step in the Bellman operator can be carried out using a stan-

9



dard constrained optimization routine that enforces the irreversible investment constraint

I ≥ 0. Hence, FEM permits an additional degree of freedom above VFI but it comes at

a cost as we are forced to employ the computational expensive constrained optimization

routine repeatedly. Note that the policy function generated by this procedure is also a

piece-wise linear function akin to (7). Our algorithm of FEM is no more difficult to im-

plement than VFI given that we do not rely on Galerkin weighting and given the built-in

optimization routines in MATLAB.8

3.3 Endogenous Grid Method

EGM as introduced by Carroll (2006) suggests assigning an exogenous grid over the

control variable K ′ rather than the state variable K. Then, the following first-order

condition allows us to determine an endogenous grid over K, given the exogenous grid

K ′ and the derivative of the value function with respect to K ′, VK′(K ′, A′),9

pI + γ
K ′ − (1− δ)K

K
= βEA′|AVK′(K ′, A′). (8)

Interpolating over the endogenous state space, and evaluating it at the exogenous grid

points, we can obtain a set of optimal control and state pairs that can then be used to

approximate the value function.

Crucially, this procedure requires a unique solution to the first-order condition when

solving for the endogenous grid over K. As shown in Figure 1, in our case fixed costs

introduce kink(s) in the value function resulting in jump discontinuities in the (otherwise

smooth and decreasing) slope of the value function, VK′(K ′, A′). As a result, the first-

order condition (8) does not imply a unique endogenous grid over K.10 Therefore, EGM

as introduced by Carroll (2006) is not directly applicable.

8For our case of jump discontinuities in the policy function we find that Galerkin weighting is not
suitable as it leads to results that are highly dependent on start values for the algorithm.

9The derivation of the first-order condition is shown in the Appendix.
10Clausen and Strub (2012) show that at the optimum the first-order condition holds and the envelope

condition is valid.
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Instead, we employ a modification of EGM proposed by Fella (2014) and implement

the following steps for our case with fixed capital adjustment costs:

1. We begin by assigning an (exogenous) grid onK ′ and an initial guess for VK′(K ′, A′).

2. We then proceed to generate an endogenous grid for K using the first-order condi-

tion (8).11

3. We split our endogenous state space into two regions: one where the value function

is concave (VK′(K ′, A′) is smooth) and another where the value function is not

concave (VK′(K ′, A′) exhibits jump discontinuities).

(a) We apply the algorithm by Carroll (2006) in the region where the value func-

tion is concave.

(b) We apply VFI in the region where the value function is non-concave to identify

and retain only the global optimums.

4. We then proceed to interpolate over the endogenous state space and construct

optimal (K,K ′) pairs in both the active and inactive cases.

5. We use these pairs to construct an approximation of the values to being active and

inactive and thereby the overall value function.

6. We use the slope of this value function to construct the endogenous grid as in step

2. Steps 2-5 are repeated until the value function is deemed to have converged.

The computationally most demanding task of this algorithm is the interpolation step

which is far less expensive than the maximization/optimization steps in VFI or FEM.

Note however that the applicability of EGM is context dependent, for example it cannot

necessarily accommodate additional variables. The reason is that EGM’s applicability

rests on finding a unique solution of the first-order conditions for the endogenous grids.

The literature shows how to accommodate additional variables for specific classes of

11Note that this implies that the endogenous grid changes in every iteration.
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models by often combining EGM with VFI steps (see for example Barillas and Fernandez-

Villaverde (2007), Hintermaier and Koeniger (2010), Fella (2014), and Ludwig and Schön

(2013)).

4 Parameterization

Our choice of the model parameters is based on estimates by Cooper and Haltiwanger

(2006). Using annual plant level data of the Longitudinal Research Database, they esti-

mate the above model with convex and non-convex capital adjustment costs and find that

a combination of these fits the data well.12 The estimates of Cooper and Haltiwanger

(2006), that we use to calibrate the model, are summarized in Table 1. Importantly,

they find evidence for substantial fixed adjustment costs of roughly 4% of the average

plant-level capital stock.

We approximate the stochastic process for productivity by a four-state Markov chain.

Assigning the values [e−0.1116, e−0.0372, e0.0372, e0.1116] for the states of the shock implies a

standard deviation σε = 0.03 consistent with the estimate by Cooper and Haltiwanger

(2006). We match their estimate for the shock’s persistence, 0.885, by using the method

proposed by Rouwenhorst (1995).

Conditional on our choice of model parameters, we approximate the value function

for all solution methods over the same state space for capital. The state space is chosen

so that capital does not hit any boundaries during our simulations. Convergence is

evaluated by considering the largest absolute distance between corresponding points of

the value function of two consecutive iterations. If this absolute distance falls below 10−4

the algorithm is deemed to have converged.

As a baseline scenario we use 420 (VFI) and 60 (EGM and FEM) capital grid points,

12For the sake of simplicity of exposition we do not include the possibility of selling capital considered
by Cooper and Haltiwanger (2006). Selling plant’s capital stock at a price smaller than pI would introduce
an additional kink in the value function. The solution methods can be adjusted to accommodate the
additional choice, but as our findings can be generalized to these additional kinks we assume irreversibility
of capital for ease of exposition.
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which is representative for many practical applications. This choice generates comparable

average log-absolute Euler equation errors across methods (see Table 2).13 As conven-

tional in studies which consider the performance of different approximation methods we

use an equally spaced grid for capital.

Table 1: Model Parameters (based on Cooper and Haltiwanger (2006))

β 0.95 discount factor
δ 0.069 capital depreciation rate
pI 1 price to buy capital
α 0.592 returns of capital
ρ 0.885 persistence of plant specific shock
σε 0.03 standard deviation of plant specific shock
γ 0.049 convex adjustment costs
F 0.039 fixed adjustment costs

5 Results

As noted in Section 2, theory predicts that the policy function exhibits a jump dis-

continuity at the threshold separating the active (positive investment) and inactive (no

investment) regions. Theory also predicts additional jump discontinuities in the policy

function in the active region due to the interaction between fixed and convex variable

adjustment costs (see e.g. Clausen and Strub (2012)). The variable costs penalize the

plant for making large adjustments while fixed costs penalize the plant for making small

and frequent investments. The result is that the active region of the policy function

consists of concave parts that are separated by jump discontinuities.

Figure 2 shows the policy functions for tomorrow’s capital generated by VFI, EGM and

FEM at a common level of accuracy as measured by average log-absolute Euler equation

errors (baseline scenario). This figure highlights that while EGM and FEM deliver nearly

identical policy functions, these differ substantially from the one approximated by VFI

13As the Euler equation is a necessary but not a sufficient condition in our setup, Euler equation error
statistics are calculated across policy functions for all shocks (using equation (A.1)) in the area of the
state space in which all approximation methods imply positive investment.
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in two important dimensions. First, the threshold separating the active and inactive

regions is not uniquely determined by VFI. Second, the concave parts and the jump

discontinuities in the active region are inaccurately approximated.

To clearly see the problems that arise in the determination of the threshold with VFI,

we show in the top panel of Figure 3 the values to the plant of being active and inactive

for increasingly finer capital grids. The intersection of these values determines the capital

threshold, K̂(A), below which the plant is active and above which the plant is inactive.

While theory predicts a single intersection of these functions, however VFI generates

multiple intersections as a result of approximating these values using step functions. The

reason for these steps is that only a finite set of points can be used to approximate the

values of being active and inactive because VFI limits the choices for both the values of

the endogenous state and the control variable to a fixed grid.14

The inaccurate determination of the threshold shows up directly in the corresponding

policy functions for tomorrow’s capital which are shown in the bottom panel of Figure

3. For instance, for the capital grid consisting of 200 points, VFI predicts the threshold

to be between 30.5-36.9 capital units. As we make the grid finer, the prediction clearly

improves: however, while the baseline capital grid of 420 points implies a threshold be-

tween 33.28-34.96, even with a grid of 2050 points the threshold cannot be approximated

to within one decimal place. We can only say that it lies in range of 32.94-34.96. As one

can see from Figure 3, this problem can only be mitigated through very fine grids that

are typically infeasible in most applications due to the curse of dimensionality.

For similar reasons, VFI is also unable to correctly approximate the jump disconti-

nuities and concave parts of the policy function in the active region. However, while the

threshold is crucial for the dynamics of the model, the poor approximation of the active

region is only of larger importance when the persistence of the technology shock is low.

The problems of VFI in approximating policy functions with jump discontinuities can be

14Such approximations are particularly prone to error when the slope of the underlying function is
steep. In our problem, the slope of the value to being inactive is much larger than the slope of the value
to being active. Hence, as shown in Figure 3, the approximation of the value of being inactive is much
worse than the approximation of the value of being active.
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Figure 2: Policy Function for capital (given A = e0.0372) implied by different approxi-
mation methods. The green dashed line indicates the no investment decision (1 − δ)K.
The baseline capital grid (VFI: 420, FEM: 60, EGM: 60) generates comparable average
log-absolute Euler equation errors across methods.
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Figure 3: Approximation using Value Function Iteration. Top panel: Option values to
the plant of being active (red dashed) and inactive (blue solid) for different capital grids
(zoomed in to show multiple intersections). Bottom panel: Policy functions for capital
for different capital grids. In all sub-plots the shock is fixed at A = e0.0372.

overcome by using FEM or EGM. Figure 2 shows that FEM and EGM are able to very

precisely determine the threshold value of capital. Both methods yield an estimate of

33.55 capital units for the threshold (while VFI estimates it be in the range of 33.28-34.96

capital units). Also, the approximation of the active (and inactive) regions by EGM and

FEM are almost identical.

To understand the economic relevance of differences between approximated policy

functions we compare key moments based on simulations. Table 2 shows the spike rate

of investment (i.e. the share of periods in which investment exceeds 20% of the capital

stock), the size of the investment spikes and the mean of capital in a deterministic set-

ting.15 This experiment allows us to focus on the impact of the position of the threshold

K̂(A) and the size of the jump discontinuity as these directly impact both the spike rate

15We fix productivity at A = e−0.116. All moments are calculated from the dynamics implied by this
shock value to avoid that differences in moments average out across shock values. However, other values
of A generate differences across methods comparable to the ones shown in Table 2.
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and the size of the investment spike. These two statistics are often used to calibrate

models with (S, s) adjustment of capital to the data. The mean of capital is a popular

measure for firm size.

For our baseline scenario (see Figure 2 for the policy functions), we report that mo-

ments differ substantially between VFI and the other two approximation methods. Table

2 shows that the spike rate delivered by VFI (9%) is substantially lower than approx-

imations with EGM and FEM (both 10%). Further, VFI overestimates the size of the

investment spikes (23.11) by 8% relative to EGM (21.47) and by 5% relative to FEM

(21.92) and underestimates the mean of capital by 1.4% relative to the other two meth-

ods. Hence, EGM and FEM determine a very similar position and size of the threshold,

while VFI implies economically very different values.

Table 2 also shows that even for a small number of grid points, both EGM and FEM

very quickly converge to nearly identical moments. These moments change only very little

for even much finer grids, reflecting the precise determination of the threshold. On the

other hand, VFI requires very fine grids to produce a comparable spike rate. However, this

measure is only of limited value for comparison as its variation is bounded by the number

of simulation periods. Even for very fine grids (VFI: 2050, EGM: 500, FEM: 2000) that

deliver very small Euler equation errors (absolute average log-error approximately -7.20),

the investment spike size and the mean of capital produced by VFI still differ from the

other two methods. It is important to understand that in many practical applications

(e.g. with more endogenous state variables or more shock grid points) such fine capital

grids for VFI are infeasible due to the curse of dimensionality. However, for our purpose

these rather accurate solutions offer useful guidance for comparison as the model – and

typically non-concave models in the literature – cannot be solved analytically.

While we use a specific model to exemplify the problems of VFI to accurately iden-

tify a jump discontinuity in policy functions, note from the exposition above that these

problems will be present in any application in which the location of discontinuities are

determined by the intersection of option values. The economic significance of the dif-
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ferences between VFI and the other two methods clearly depends on specific model and

the parameterization. Note that our parameterization is relatively conservative. Differ-

ences between VFI and the other two methods would be even more pronounced for other,

widely used, parameter values in the literature. For example, our value for the parameter

determining the returns of capital, α = 0.592, is at the upper bound of used values. Lower

values for α emphasize the problems of VFI to identify the threshold as it leads to flatter

option values V i and V a.16 Appendix A.5 shows that the problems of VFI to accurately

identify jump discontinuities are economically relevant for various parameterizations.

Trade-offs between EGM and FEM The discussion above suggests that both, EGM

and FEM can overcome VFI’s problems in approximating policy functions with jump

discontinuities. However, there are pros and cons between EGM and FEM in terms of

computation time and implementation complexity. We ran all programs on an Intel i7-

3770 (3.4 GHz) Processor with 4 active cores and 16 GB of memory running Windows

7. As we implemented all methods using Matlab, we can directly compare running time

across methods and the number of code lines can serve as a measure of implementation

complexity.

Table 2 summarizes the running time for our baseline scenario. EGM solves the

model much faster than FEM (and VFI) as it does not rely on expensive root finding

operations but instead on repeated linear interpolation which is much less expensive.

The performance of FEM can be improved dramatically as the root-finding operations

can benefit from parallel computing.17 For example, FEM is highly scalable and with 4

processing units we can reduce the running time in the baseline case by up to 60%. We

also find that computing time for FEM increases nearly linearly with additional capital

grid points (see Table 2), while it increases exponentially with VFI and EGM.

While the adapted EGM method is by far the fastest, it is also the most complex

16Commonly used values are between 0.30 and 0.42, see for example Gomes (2001), Görtz and
Tsoukalas (2013) and King et al. (1988).

17This does not lead to any improvements in speed for EGM.
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Table 2: Statistics across different approximation methods

capital spike rate investment capital Euler equation error CPU
grid points (in %) spike size mean average maximum (seconds)

VFI 200 8.40 24.63 32.77 -6.05 -4.69 6.36
300 9.00 22.32 31.56 -6.43 -4.87 10.58
350 9.10 24.50 33.95 -6.47 -4.83 12.58
400 9.10 24.28 33.65 -6.53 -4.87 15.29

baseline: 420 9.00 23.11 32.02 -6.59 -4.88 16.00
500 11.10 19.69 33.15 -6.63 -4.84 21.66
600 9.00 23.34 31.86 -6.69 -4.89 26.56

1000 10.00 22.50 33.28 -6.94 -4.92 54.18
1500 10.00 21.03 30.92 -7.12 -4.94 99.40
2050 10.00 22.02 32.23 -7.19 -4.94 168.01

EGM 21 14.30 21.38 34.22 -6.09 -4.79 0.89
30 11.10 21.58 31.67 -6.29 -4.95 0.96
40 9.00 21.56 31.58 -6.33 -5.06 1.33
50 9.10 21.56 31.13 -6.42 -5.08 1.36

baseline: 60 10.00 21.47 32.48 -6.59 -5.07 1.72
80 10.00 21.48 31.93 -6.66 -5.05 2.38

100 10.00 21.57 31.25 -6.67 -5.04 3.53
200 10.00 21.64 31.50 -6.92 -5.04 12.96
400 10.00 21.63 31.48 -7.13 -5.03 56.51
500 10.00 21.67 31.35 -7.19 -5.03 77.71

FEM 25 12.50 22.19 33.33 -6.08 -4.68 35.26
30 11.10 20.99 31.67 -6.37 -5.01 39.71
40 9.00 21.46 31.58 -6.41 -5.06 48.76
50 9.10 21.74 31.13 -6.46 -5.06 58.49

baseline: 60 10.00 21.92 32.48 -6.57 -5.04 66.76
100 10.00 21.52 31.25 -6.66 -5.05 102.14
150 10.00 21.46 31.30 -6.72 -5.01 143.78
300 10.00 21.48 31.27 -6.93 -5.01 265.18
800 10.00 21.68 31.26 -7.13 -5.01 651.83

2000 10.00 21.66 31.37 -7.20 -5.00 1573.6

VFI: Value Function Iteration, EGM: Endogenous Grid Method, FEM: Finite Element
Method. The spike rate is calculated as the share of periods in which investment exceeds 20%
of the capital stock. Moments are calculated from 50 simulations over 1050 periods where
the first 50 periods are discarded. Euler Equation error statistics are calculated across policy
functions for all shocks in the area of the state space in which the Euler equation holds. CPU
time for FEM is reported utilising four processing units.
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to implement. For our implementation, both VFI and FEM were of comparable com-

plexity, each requiring 100-150 lines of code. On the other hand, EGM was by far the

most complex method requiring nearly 300 lines of code. Moreover, additional state and

control variables would make this complexity gap between EGM and the other methods

even larger. This is because VFI and FEM require minimal changes to handle more

complex models whereas EGM requires a number of intricate extensions that are often

problem specific (see for example Barillas and Fernandez-Villaverde (2007), Hintermaier

and Koeniger (2010), Fella (2014) and Ludwig and Schön (2013)).

Based on these observations, VFI’s problems in approximating policy functions with

jump discontinuities can be overcome by either EGM or FEM, however choosing one

over the other is problem dependent. EGM is best suited to specific cases with a limited

number of control and state variables. FEM is better suited to approximate larger and

more complex models.

6 Conclusion

We evaluate the applicability of global approximation methods for models with jump

discontinuities in policy functions. We find that using Value Function Iteration (VFI) can

be problematic as it fails to accurately identify the location and size of jump discontinu-

ities. Other methods such as the Endogenous Grid Method (EGM) or the Finite Element

Method (FEM) are far better at accurately approximating this class of models. As a

result, policy functions for FEM and EGM are nearly identical but differ considerably

from those generated by VFI. Using a standard manufacturing plant model with variable

and fixed investment adjustment costs, we find these differences are also economically

significant as evidenced through key moments of the model. Our results suggest that the

choice of numerical method is context dependent: While EGM is considerably faster than

FEM, it is more complicated to implement. For larger models the modifications necessary

to apply EGM can lead to high code complexity. On the other hand, the implementation

20



of FEM even for larger models is relatively straightforward and model alternations can

be accommodated with minimal implementation differences.
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A Technical Appendix

In this section, we provide additional details on the implementation of the three
approximation methods and derive the Euler equation when the plant is active.

A.1 Euler equation when plant is active

When the plant is active (I > 0), the optimal investment strategy can be characterized
by an Euler equation. Using equations (3) and (5) the plant’s problem in this case can
be formulated as

V (K,A) = max
K′

AKα−pI(K ′−(1−δ)K)−FK−γ
2
K

(
K ′ − (1− δ)K

K

)2

+βEA′|AV (K ′, A′).

Following Proposition 1 of Clausen and Strub (2012), at the optimal choice of capital
tomorrow the following first-order condition holds:

pI + γ
K ′ − (1− δ)K

K
= βEA′|AVK′(K ′, A′)

where VK′(·) denotes the function’s derivative with respect to K ′. The following Euler
equation characterizes investment dynamics when the plant is active

p+ γ
I

K
= βEA′|A

(
αA′(K ′)α−1 + p(1− δ)− F +

γ

2

( I ′
K ′

)2

+ γ(1− δ) I
′

K ′

)
, (A.1)

where K ′′ = (1 − δ)K ′ + I ′. Given that the plant in not active for all possible values of
the state variables, the above equation holds only when investment is strictly positive.

A.2 Value Function Iteration

We then implement value function iteration via the following algorithm:

1. Create an equally spaced grid for capital over an interval [Kmin, Kmax].

2. Approximate the AR(1) process for the log of productivity using a 4-state Markov
chain. Denote the set of states by A, and the transition matrix by π4. Note that
this implies that productivity is drawn from the set A ≡ eA.

3. Guess an initial value function V 0(Ki, Aj) = AjK
α
i and policy functionK ′0(Ki, Aj) =

0 at each point [Ki, Aj] on the grid where Ki ∈ [Kmin, Kmax] and Aj ∈ A.

4. Set the tolerance parameter tol = 10−4. This parameter is used to determine if the
value function has converged.

5. For each level of capital Ki ∈ [Kmin, Kmax] and productivity Aj in A:
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(a) compute the value of being inactive:

V ina(Ki, Aj) ≡ AjK
α
i + βEA′|Aj

V 0(Ki(1− d), A′)

(b) compute the value of being active:

i. for each possible K ′ ≥ (1− d)Ki ∈ [Kmin, Kmax] compute

Ṽ (K ′) ≡AjKα
i − p(K ′ −Ki(1− δ))− FKi −

γKi

2

(
K ′ −Ki(1− δ)

Ki

)2

+ βEA′|Aj
V 0(K ′, A′)

ii. the value of being active is V act(Ki, Aj) ≡ maxK′ Ṽ

(c) update the value and policy functions

i. if V ina(Ki, Aj) ≥ V act(Ki, Aj) then V 1(Ki, Aj) = V ina(Ki, Aj), K
′1(Ki, Aj) =

(1− d)Ki

ii. if V ina(Ki, Aj) < V act(Ki, Aj) then V 1(Ki, Aj) = V act(Ki, Aj), K
′1(Ki, Aj) =

arg max Ṽ

6. Check if ‖V 0 − V 1‖∞ < tol. If not set V 0 = V 1, K ′0 = K ′1 and repeat Step 5.

7. Verify that Kmin < K ′(Kmin, Aj) < K ′(Kmax, Aj) < Kmax for all j. If not, enlarge
grid and repeat Steps 1-6.

A.3 Finite Element Method

We implement a Finite Element Method approximation to the value function via the
following algorithm:

1. Set the tolerance parameter tol = 10−4.

2. Set the number of grid points for capital to n.

3. Fix the upper and lower bound for capital at [Kmin, Kmax].

4. Generate an equally spaced capital grid {Ki}ni=1 on [Kmin, Kmax].

5. Approximate the AR(1) process for the log of productivity using a 4-state Markov
chain. Denote the set of states by A, and the transition matrix by π4. Note that
this implies that productivity is drawn from the set A ≡ eA.

6. Guess an initial value function {{V 0
ij}ni=1}4

j=1 at each point [Ki, Aj] of the state
space. We set V 0

ij = AjK
α for all i, j.

7. We approximate the value function V (K,A) as V̂ (K,A), a piece-wise linear inter-
polation through the points {{V 0

ij}ni=1}4
j=1 where

V̂ 0
ij(K,A) =

{
V 0(Ki, Aj) +

V 0
i+1−V 0

i

Ki+1−Ki
(K −Ki) if K ∈ [Ki, Ki+1]

0 otherwise
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8. For each point in the capital grid find the value of being inactive V ina(K,A) where

V ina(K,A) = AKα + βEA′|AV̂
0(K(1− d), A′)

9. Find the value of being active, V act(Ki, Aj):

• first find K ′(Ki, Aj) = arg maxK′≥Ki(1−d) Ṽ (K,A) ≡ AKα
i − p(K ′ − Ki(1 −

δ))− FKi − γKi

2

(
K′−Ki(1−δ)

Ki

)2

+ βEA′|AV̂
0(K ′, A′)

• the value of being active is then V act(Ki, Aj) = Ṽ (K ′(Ki, Aj)).

10. Update the value and policy functions

(a) if V inv(Ki, Aj) ≥ V act(Ki, Aj) then V1(Ki, Aj) = V inv(Ki, Aj), K
′(Ki, Aj) =

(1− d)Ki

(b) if V inv(Ki, Aj) < V act(Ki, Aj) then V1(Ki, Aj) = V act(Ki, Aj), K
′(Ki, Aj) =

arg max Ṽ

11. Check if ‖V 0 − V 1‖∞ < tol. If not set V 0 = V 1 and repeat the steps above.

12. Verify that Kmin < K ′(Kmin, Aj) < K ′(Kmax, Aj) < Kmax for all j. If not, enlarge
grid and repeat Steps 1-12.

A.4 Endogenous Grid Method

We implement the Endogenous Grid Method as follows:

1. Set the tolerance parameter tol = 10−4.

2. Set the number of grid points for capital to n.

3. Fix the upper and lower bound for capital at [Kmin, Kmax].

4. Generate a capital grid {K ′i}ni=1 for tomorrow’s capital.

5. Approximate the process for productivity using a 4-state Markov chain over A.

6. Guess an initial value for EV (K ′, A′) at each point [Ki, Aj] of the state space and
construct a corresponding guess for EVK′(K ′, A′).

7. Construct an endogenous grid of capital points {Kend
i }ni=1 using the Euler equation

(8) to obtain n matching pairs {Kend
i , K ′i}ni=1.

8. Enforce irreversibility: if K ′/Kend
i < (1− δ) then set Kend

i = K ′i/(1− δ).

9. Identify the non-concave region

(a) identify the set of jumps in EVK′(K ′, A′)

(b) find the minimum and maximum of values of EVK′(K ′, A′) at these jumps:
V , V .
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(c) the non-concave region for tomorrow’s productivity A′j consists of all pairs

{Kend
i , K ′i} where EVK′(K ′i, A

′
j) ∈ [V , V ].

10. For each pair {Kend
i , K ′i} inside the non-concave region

(a) compute the value to being active for every K ′j 6= K ′i

(b) if the maximum does not occur at K ′i then discard the pair {Kend
i , K ′i}

11. Interpolate to recover new endogenous capital values for discarded values of K ′.

12. Compute values to being active and inactive at each grid point and construct the
new value function.

13. Update EV (K ′, A′) using the new value function and the transition matrix.

14. Check if value function has converged to within tol. If not repeat steps 7-14.

A.5 Results for alternative Parameterizations

Tables 3 - 5 show moments generated by VFI, EGM and FEM for alternative param-
eterizations. For each of these alternatives we deviate from the parameterization shown
in Table 1 by alternating one parameter. We evaluate commonly used values in the liter-
ature: a lower value of capital in the production, α = 0.4, a higher capital depreciation
rate, δ = 0.1, and a higher parameter for the convex capital adjustment costs, γ = 0.1.
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Table 3: Statistics across different approximation methods — alternative parameteriza-
tion: α = 0.4

capital spike rate investment capital Euler equation error CPU
grid points (in %) spike size mean average maximum (seconds)

VFI 200 10.00 3.55 5.71 -4.26 -2.87 6.09
300 10.00 3.65 5.69 -4.52 -2.91 9.61
350 11.10 3.12 5.36 -4.66 -3.00 11.61
400 11.10 3.45 5.85 -4.75 -2.99 13.81

baseline: 420 10.00 3.79 5.77 -4.73 -2.99 14.83
500 12.50 2.89 5.51 -4.84 -2.90 18.52
600 11.10 3.07 5.16 -4.82 -2.94 23.63

1000 11.10 3.30 5.43 -5.14 -3.00 46.37
1500 10.50 3.60 5.53 -5.31 -3.03 83.34
2050 11.20 3.43 5.58 -5.42 -3.04 139.14

EGM 31 12.50 3.43 5.53 -4.48 -3.06 0.93
41 10.00 3.37 5.58 -4.53 -3.17 0.98
50 10.00 3.44 5.34 -4.63 -3.16 1.05

baseline: 60 11.10 3.41 5.46 -4.73 -3.15 1.26
80 11.20 3.45 5.42 -4.89 -3.14 1.72

110 10.20 3.40 5.52 -4.91 -3.14 2.46
200 11.20 3.42 5.51 -5.22 -3.10 6.08
400 11.20 3.41 5.52 -5.46 -3.12 19.85

FEM 25 14.20 3.57 5.42 -3.98 -2.88 31.02
30 12.50 3.48 5.70 -4.25 -2.85 34.58
40 9.00 3.55 5.55 -4.41 -3.03 42.56
50 10.00 3.51 5.34 -4.47 -3.16 51.25
60 11.10 3.42 5.46 -4.59 -3.14 59.09

baseline: 85 11.20 3.43 5.51 -4.74 -3.12 82.36
100 10.50 3.48 5.44 -4.78 -3.12 92.57
150 11.20 3.39 5.50 -4.94 -3.12 132.22
300 11.10 3.44 5.52 -5.12 -3.11 249.09
800 11.20 3.45 5.56 -5.41 -2.98 614.13

2000 11.20 3.45 5.56 -5.43 -2.70 1559.57

VFI: Value Function Iteration, EGM: Endogenous Grid Method, FEM: Finite Element
Method. The spike rate is calculated as the share of periods in which investment exceeds 20%
of the capital stock. Moments are calculated from 50 simulations over 1050 periods where
the first 50 periods are discarded. Euler Equation error statistics are calculated across policy
functions for all shocks in the area of the state space in which the Euler equation holds. CPU
time for FEM is reported utilising four processing units.

29



Table 4: Statistics across different approximation methods — alternative parameteriza-
tion: δ = 0.1

capital spike rate investment capital Euler equation error CPU
grid points (in %) spike size mean average maximum (seconds)

VFI 200 12.5 14.96 20.13 -5.58 -4.13 6.18
300 12.5 13.30 17.54 -5.79 -4.25 10.12
350 14.3 12.48 18.48 -5.86 -4.31 12.34

baseline: 400 12.5 14.60 19.01 -5.97 -4.33 14.28
500 14.3 12.61 18.56 -6.04 -4.33 19.38
600 14.3 11.63 17.15 -6.10 -4.35 24.51

1000 14.3 12.47 18.12 -6.27 -4.41 49.47
1500 14.3 12.43 17.98 -6.43 -4.44 89.21

EGM 20 16.7 12.41 19.63 -5.42 -4.28 0.94
30 14.3 12.53 17.57 -5.79 -4.47 1.02
40 14.3 12.47 18.49 -5.86 -4.57 1.08
50 15.3 12.55 18.53 -5.82 -4.54 1.17

baseline: 58 14.3 12.57 17.97 -5.99 -4.57 1.33
80 14.3 12.49 18.12 -6.02 -4.56 1.71

100 14.3 12.49 18.14 -6.12 -4.54 2.44
200 14.3 12.55 18.03 -6.31 -4.53 7.70
400 14.3 12.52 18.03 -6.53 -4.51 27.01

FEM 25 14.3 12.73 18.73 -5.55 -4.47 33.86
30 14.3 12.30 17.57 -5.65 -4.53 38.48
40 14.3 12.55 18.49 -5.70 -4.57 47.35
50 15.3 12.57 18.53 -5.80 -4.40 56.81
60 14.3 12.62 18.52 -5.91 -4.55 65.76

baseline: 75 14.3 12.40 17.83 -5.97 -4.56 79.83
100 14.3 12.40 18.14 -6.19 -4.54 103.42
150 14.3 12.65 18.15 -6.24 -4.53 147.35
300 14.3 12.59 18.18 -6.27 -4.53 283.11
800 14.3 12.63 18.15 -6.49 -4.47 722.43

VFI: Value Function Iteration, EGM: Endogenous Grid Method, FEM: Finite Element
Method. The spike rate is calculated as the share of periods in which investment exceeds 20%
of the capital stock. Moments are calculated from 50 simulations over 1050 periods where
the first 50 periods are discarded. Euler Equation error statistics are calculated across policy
functions for all shocks in the area of the state space in which the Euler equation holds. CPU
time for FEM is reported utilising four processing units.

30



Table 5: Statistics across different approximation methods — alternative parameteriza-
tion: γ = 0.1

capital spike rate investment capital Euler equation error CPU
grid points (in %) spike size mean average maximum (seconds)

VFI 200 12.50 13.92 28.30 -6.19 -4.67 6.53
300 10.00 19.40 30.26 -6.53 -4.88 10.38
350 11.10 16.59 28.47 -6.68 -4.92 12.69
400 11.10 18.35 31.08 -6.67 -4.90 15.14

baseline: 420 10.00 20.33 30.94 -6.75 -4.90 15.91
500 11.10 19.60 32.99 -6.79 -4.91 19.80
600 11.80 18.53 31.13 -6.85 -4.93 25.16

1000 12.50 16.55 30.66 -7.19 -5.00 50.19
1500 11.80 19.01 31.46 -7.38 -5.05 91.06
1750 12.50 16.44 30.16 -7.43 -5.04 130.21

EGM 30 14.30 17.20 29.08 -6.15 -4.91 1.03
40 10.00 17.23 30.36 -6.41 -5.02 1.11
50 11.10 17.27 30.63 -6.47 -5.08 1.28
60 12.50 17.25 31.16 -6.55 -5.13 1.37

baseline: 70 12.50 17.24 30.05 -6.73 -5.10 1.56
80 11.80 17.27 30.63 -6.67 -5.11 1.83

100 12.50 17.26 30.82 -6.82 -5.12 2.29
200 12.50 17.26 30.42 -7.06 -5.11 7.61
400 12.50 17.25 31.20 -7.37 -5.10 29.74
450 12.20 17.27 30.46 -7.43 -5.10 44.82

FEM 25 16.70 16.84 30.25 -6.29 -4.79 33.16
30 14.30 17.23 29.08 -6.38 -4.89 36.94
40 10.00 17.52 30.36 -6.54 -5.14 47.65
50 11.10 17.43 30.63 -6.60 -5.13 60.74
60 12.50 17.13 31.16 -6.61 -5.11 68.25

baseline: 65 12.50 17.16 29.88 -6.74 -5.13 73.11
100 12.50 17.26 30.82 -6.91 -5.11 108.25
150 12.50 17.17 30.43 -7.11 -5.08 157.01
300 12.50 17.16 30.93 -7.27 -5.08 305.97
500 12.50 17.00 30.96 -7.42 -5.08 717.14

VFI: Value Function Iteration, EGM: Endogenous Grid Method, FEM: Finite Element
Method. The spike rate is calculated as the share of periods in which investment exceeds 20%
of the capital stock. Moments are calculated from 50 simulations over 1050 periods where
the first 50 periods are discarded. Euler Equation error statistics are calculated across policy
functions for all shocks in the area of the state space in which the Euler equation holds. CPU
time for FEM is reported utilising four processing units.
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