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Abstract 
 
I extend multi-unit auction estimation techniques to a setting in which firms can express cost 
complementarities over time. In the context of electricity markets, I show how the auction 
structure and bidding data can be used to estimate these complementarities, which in these 
markets arise due to startup costs. I find that startup costs are substantial and that taking them 
into account helps better explain firm bidding strategies and production patterns. As in other 
dynamic settings, I find that startup costs limit the ability of firms to change production over 
time, exacerbating fluctuations in market prices. These fluctuations can induce estimates of 
market power that ignore dynamic costs to overstate markup volatility, with predicted 
markups that can be even negative in periods of low demand. I show how accounting for 
startup costs can provide a natural correction for these markup biases. 
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1 Introduction

Auctions are used to allocate goods in many markets. Among the most commonly studied auction
settings, there are first and second price auctions for single goods, and discriminatory and uniform
price auctions for multiple goods (Athey and Haile, 2007). Whereas most of the literature has
focused on the study of these auction formats, our understanding of more complex mechanisms is
still limited. However, in many applications, the auction process departs from these simple rules.
Auctions are often augmented with rules that couple complementary bidding mechanisms with
more traditional designs.

The introduction of complementary bidding mechanisms is often motivated by the presence of
complementarities across goods. Additional bidding mechanisms are introduced to allow partic-
ipants to express their preferences more explicitly. A well known example of such auctions are
combinatorial auctions, in which bidders not only bid on single goods, but also on combinations
of goods known as “packages”. Such procedures are used in several procurement auctions, e.g. for
spectrum and transportation.1

In the energy sector, many wholesale electricity markets use complementary bidding mecha-
nisms to allow firms to express their intertemporal cost complementarities, which arise due to the
presence of startup costs.2 Some examples of markets with such mechanisms are the Pennsylvania-
New Jersey-Maryland (PJM) market, the Californian market, the Irish market and the Spanish mar-
ket. Even though the specifics of each mechanism can vary, they all share the same feature: they
extend traditional auction formats to allow firms to express their startup costs more explicitly.

Electricity markets provide a unique environment in which to analyze firm behavior in the
presence of dynamic costs. The richness and high frequency of the bidding data allows to observe
not only equilibrium outcomes, but also firms’ detailed strategies. Furthermore, it presents the
advantage that dynamic decisions (startup) take place at a higher frequency (daily) than in other
applied settings. Using a model of strategic bidding as a framework to interpret the data, I show
how to elicit firms’ dynamic costs exploiting the full richness of the data.

These markets also create an opportunity to study the interaction of dynamic costs and market
power. Similar to other markets, dynamic costs constrain the ability of firms to modify their output
levels over time. This has important implications on how markups are measured. Typical markup
estimates that ignore dynamic costs will tend to overstate markup volatility. Through the lens of a
static framework, a firm would appear to be producing “too much” when demand is low, and “too
little” at periods of high demand, exaggerating the apparent volatility of markups. The methods
that I develop provide a correction for these markup calculations, which are an important object in

1See Cramton, Shoham and Steinberg (2006) for a comprehensive treatment of tools and applications.
2Startup costs are a fixed cost incurred when a unit is turned on. It refers to costs uncurred to warm up a power

plant before it can safely produce electricity.
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market power analysis.
The major contributions of the paper are twofold. First, I extend the estimation of multi-

unit auctions by adapting current techniques to a setting with augmented forms of bidding and
dynamic costs. I show how these augmented bids can be used to identify cost complementarities
in the production function of the firms. To my knowledge, this is the first paper that exploits
a complementary auction mechanism to identify startup costs or, more broadly, fixed costs that
generate dynamic complementarities. Second, in the context of electricity markets, this is the first
paper to structurally estimate startup costs in the presence of market power. I show that startup
costs help reconcile observed bidding strategies and production patterns, and how it provides a
correction for market power estimates.

In this paper, I study the properties of the complementary bidding mechanism used in the
Spanish wholesale electricity market. The mechanism used in the Spanish electricity market takes
the form of an augmented set of uniform price auctions.3 For every hour of the day, firms submit
offers to produce electricity with increasing step bids for each production unit, as they would
in a uniform price auction. These bids are called simple bids. In addition, each unit can also
express a variable and a fixed cost component that needs to be recovered within the day, defining
an implicit daily revenue requirement, which constitutes its complex bid. This minimum revenue
requirement makes the simple bids contingent: if the daily gross revenue of a generator is not at
least as large as its minimum requirement, its hourly simple bids are taken out from the auction and
the generator is not assigned any quantity. Because the revenue requirement applies to the whole
day, the mechanism allows firms to express their preference regarding joint realizations of demand
over the day.

Figure 1 illustrates the effects of complex bids on the market supply curve. The figure plots
demand and supply for a given hour of the day. The solid supply curve S represents the original
simple bids made by the firms. Yet, at the original hourly prices defined by the crossing of the
two solid lines, several units do not recover their revenue requirement. These units are taken out
iteratively from the aggregate supply curve, shifting the supply curve inwards to S ′, until the price
is such that the market clears and all minimum revenue requirements are satisfied.

I develop a multi-unit auction model to understand the impact of such auction design on firm
behavior. In the model, I take into account the non-convex nature of the production function as
well as its short-run dynamics, which are essential elements affecting optimal bidding. The model
allows me to estimate marginal production costs and startup costs using the first order conditions
implied by firm profit-maximizing behavior.

In a first stage, I use simple bids to estimate marginal costs and financial contracts (also known
3In a uniform price auction, the auctioneer crosses demand and supply. The market price is determined by the

intersection of the two. All supply units with prices lower or equal to the market price are scheduled to produce.
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Figure 1: A uniform auction in which offers are discarded

The augmented bidding procedure used in the Spanish electricity market discards
those units for which the minimum revenue requirement is not satisfied, shifting
the supply curve to the left (S to S’).

as forward contracts), which are unobserved to the econometrician.4 Whereas previous literature
had focused on identifying either marginal costs (Wolak, 2007) or financial contracts (Hortaçsu
and Puller, 2008; Allcott, 2012), I develop a strategy that allows to estimate both of them jointly.
The identification strategy relies on the fact that, whereas marginal costs are realized at the power
plant level, forward contracts are common at the firm level.

In a second stage, I use complex bids to identify startup costs. In line with the auction literature,
the information contained in the bidding data can be useful in estimating valuations, compared to
the case in which only revealed outcomes (i.e. only price or output data) are observed.5 Due to the
sealed bid format of the auction, by which all offers (winning or not) are observed, the contingent
nature of the minimum revenue requirement allows the econometrician to observe what the firm
would have liked to do under alternative uncertainty realizations, even if only one outcome is
observed ex-post. This is particularly useful in the case of discrete choices, like starting up, that
might not happen very frequently in practice.

Finally, once the fundamentals of the model are obtained, I conduct policy experiments to un-
derstand the interaction between market power and cost complementarities. I show that accounting
for startup costs can help better explain the behavior of strategic firms. I also show that the intro-
duction of startup costs in the structural model can help reconcile strategic markups across hours,

4Financial contracts are an important institutional feature of electricity markets. See section 2 for details.
5For single good auctions, Athey and Haile (2002) show how bidding data can be used to relax the assump-

tions needed to ensure identification if only revealed outcomes are observed. For multi-unit auctions, Hortaçsu and
McAdams (2010) show that, under some assumptions, the distribution of valuations can be non-parametrically esti-
mated even with data from a single auction.
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which had been shown to exhibit a downward bias during night hours (Bushnell, Mansur and Sar-
avia, 2008; Mansur, 2008). Finally, I show that the presence of startup costs limits the ability of
a strategic firm to price discriminate across hours, with implied markups that are smoother than
those obtained with a model without startup costs.

The paper is mostly related to two streams of research: the empirical auctions literature and
the market power literature in wholesale electricity markets. The paper follows the methods in
the empirical auctions literature to estimate valuations from underlying bidding data using im-
plied optimality conditions (Guerre, Perrigne and Vuong, 2000). It is closely related to work in
the context of to multi-unit auctions (McAdams, 2008; Hortaçsu and McAdams, 2010; Gans and
Wolak, 2008; Kastl, 2011), extending estimation techniques to a setting with complementary bid-
ding mechanisms and dynamic costs.

The bidding model and first-order conditions that I derive are related to previous work on
wholesale electricity markets (Wolak, 2000, 2003, 2007; Hortaçsu and Puller, 2008; Allcott, 2012).
The cost structure that I use is similar to the one used in Wolak (2007), to which I incorporate
startup costs. The paper is also related to previous studies that have considered the role of startup
decisions in competitive markets (Fowlie, 2010; Cullen, 2012a,b). Mansur (2008) pointed out that
ignoring dynamic costs could severely bias market power estimates and welfare analysis. This
paper proposes a structural methodology to compute market power estimates in the presence of
dynamic costs.

The rest of the paper is organized as follows. Section 2 describes the institutional features of
the Spanish electricity market and the data. Section 3 develops a multi-unit auction model with
complex bidding and derives optimality conditions. Section 4 presents the estimation strategy and
results. Section 5 details the policy experiments used to understand the interaction of dynamic
costs and the exercise of market power. Section 6 concludes.

2 Institutions and Data

The Spanish electricity market is a national market that produces between 15,000 and 45,000MWh
hourly, with around 85,000MW of installed capacity, serving more than 40 million people and
having an annual economic volume around 8Be. Similar to other electricity markets, it consists
of several important segments: generation, transmission, distribution and retailing, as represented
in Figure 2. Generating firms can sell their electricity either in centralized markets or by means of
production contracts. Firms can also use financial contracts to hedge price risks. Independently of
how the produced quantity is financially settled, all production decisions need to be centralized to
ensure the functioning of the overall system. The electricity is then delivered to final consumers
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Figure 2: Market structure
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by distributors and retailers.
The generating companies in the market make two main decisions. First, they decide their

financial position, usually weeks or months in advance, by means of financial contracts. Financial
contracts, also known as hedge contracts or contracts for differences, are firm-specific and imply
that a certain amount of produced electricity is hedged and, therefore, not subject to the market
price. These contracts avoid the risk implied by uncertain market prices.

Second, firms make decisions on how to operate their power plants. The decisions are whether
to have a power plant running or not, and, conditional on running, how much to produce. To make
these decisions, firms can use production bids in the centralized market or bilateral production
contracts that are arranged ex-ante. Bilateral production contracts account for about one-third
of the electricity produced in Spain. They are linked to a particular production unit and specify
that the unit will produce a certain amount of electricity during the day. On the contrary, bids
in centralized markets do not establish that a unit will produce with certainty; they establish a
willingness to produce at different prices, and the final outcomes are resolved in the daily auctions.

This paper takes financial and bilateral production contracts as given. Although I do not endo-
genize these contracts, I control for them in the empirical analysis. Bilateral production contracts
are observed in the data because they need to be communicated to coordinate the operation of the
electric system. Financial contracts are not observed, but they have been found to be a crucial factor
in determining the optimal bids of the agents (Wolak, 2000; Bushnell, Mansur and Saravia, 2008).
I estimate these contracts from the data in the empirical analysis, as in Wolak (2003), Hortaçsu and
Puller (2008) and Allcott (2012).

6



2.1 The day-ahead market

I study the most important auction of the centralized markets: the day-ahead market. Firms in
the day-ahead market offer electricity for each hour of the next day. Firms submit their bidding
strategies all at once and production for each hour is auctioned simultaneously. Therefore, the
day-ahead market is a set of twenty-four simultaneous multi-unit good auctions. Roughly 80% of
the electricity allocated in centralized markets is sold through this day-ahead market. Financial
contracts are also often indexed at this price, and therefore, the day-ahead market sets a reference
for a large amount of the electricity traded in the electricity market.

Focusing on the day-ahead market to understand firm strategic behavior is common in the
literature.6 There are other centralized markets that are potentially important: the market dealing
with congestion in the network (restrictions market) and the sequential intra-day markets. Both
the congestion market and the sequential markets open after the day-ahead market has cleared.
Whereas adjustments in the intra-day markets tend to be small, more substantial changes arise in
congested areas where firms enjoy local market power. The study of this additional markets is
beyond the scope of this paper.

2.2 Bidding in the market

Generating firms in the day-ahead market bid simultaneously for the 24 hours of the next day.
Firms submit bids for each production unit. Traditionally, these units are coal, gas or nuclear
generators. Nowadays, there are also renewable energy “aggregators,” which pool together wind
and solar resources at different locations. Each unit can have both simple and complex bids.

Simple bids are step functions for each generation unit that offer a quantity of electricity (in
MWh) at a certain price for a particular hour of the day. Each hourly step function can have up
to 25 steps per unit. The price bids need to be positive (or zero) and are capped at 180 e/MWh.
Furthermore, price bids need to be monotonically increasing. Each generating unit has its own
bid, which implies that the aggregate supply curve of a given firm can have potentially many steps.
For example, large companies such as Iberdrola or Endesa can submit aggregate supply functions
that have more than 500 hourly steps. In practice, agents do not use all the 25 steps for each unit;
generally the bids have at most 10 steps per unit.

Thermal units except for nuclear (coal, gas and oil generators) use complex bids.7 Complex

6See for example Kühn and Machado (2004) for the Spanish electricity market and Borenstein, Bushnell and Wolak
(2002) for the Californian electricity market.

7Even though any supply unit can use complex bids, other technologies do not appear to make use of them in the
data. Hydro, wind and other renewable sources do not have substantial startup costs. Nuclear plants have very high
startup costs, but they do not use complex bids because they usually stop at most once or twice per year, planning
those events well in advance.
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bids complement simple bids and are unique for the whole day. Any unit submitting a complex
bid for the whole day still has a simple bid for each hour of the day. Complex bids allow firms
to specify a unit-specific minimum revenue requirement characterized by two bidding parameters:
a variable and a fixed component.8 A given unit is called to produce only if the gross revenue
obtained by the unit during the whole day covers both the fixed and the variable component of the
complex bid. The unit is otherwise removed from the market clearing process, even if its hourly
simple bids are lower than the market price during some hours of the day.

When solving for the auction outcome, the market operator uses complex bids as constraints
to the simple bids in an iterative fashion. First, optimal quantities and prices are found based on
simple bids, crossing demand and supply for each hour of the day independently. Then, the market
operator checks that the minimum revenue requirement is satisfied for all units, by comparing their
gross revenue with the specified complex bids. If the requirements of some units are not satisfied,
they are withdrawn sequentially depending on the magnitude of the violations. The procedure is
repeated iteratively until none of the complex bids bind.9

2.3 Bidding Data

I construct a new data set using publicly available data from the market and the system operator
in Spain (Operador del Mercado Ibérico de Energı́a, Polo Español (OMEL) and Red Eléctrica de
España (REE), respectively). The central piece of the data set are the bidding data from the day-
ahead market, which are fully observed and can be mapped to the generating units in the market. I
map unit codes to additional data sets that contain characteristics such as type of fuel used, thermal
rates, age, and location. These data are coupled with auction outcomes, such as equilibrium prices
and winning quantities.10

In my empirical analysis, I use data from March 2007 until June 2007.11 During this period, the
two largest firms were Endesa and Iberdrola, with a generation market share of 27% and 21%, re-
spectively. The other bigger firms (Union Fenosa, Hidrocantábrico and Gas Natural, a new entrant)

8In practice, firms can also submit unit-specific ramping constraints (speed at which firms can change production
levels), although they do not make use of them very frequently. Only around 6% of the units use ramping constraints.

9Note that this iterative procedure needs not to be the optimal way to solve the market clearing problem. It also does
not guarantee a unique solution, which raises a winner’s determination problem. It was chosen due to its simplicity and
computational tractability when the market was originally conceived in 1996. Other liberalized markets use alternative
algorithms that compute the market clearing in one step, which have been enabled by recent computational advances.
For a more detailed description of the algorithm, see the online appendix A.

10A more detailed explanation of the data sources can be found in the online appendix B.
11The reason to look at this sample is to ensure that the regulatory framework is constant during the period of study.

Even though the design of complex bids has not changed since the start of the electricity market, other important
institutional details have been changing over time. The regulator introduced some sudden changes in the regulatory
framework in March 2006, with the approval of the Royal Decree 03/2006, which affected bidding strategies until
February 2007. In July 2007, the Spanish electricity market joined the Portuguese market to form the MIBEL market.
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Table 1: Summary statics for the day-ahead market

Mean Median St.dev. Min Max N.Obs.
Hourly market price (e/MWh) 34.1 32.1 9.1 7.0 69.7 2,880
Number of thermal units 78.56 78.00 2.46 73.0 83.0 120
Average simple bid

First step price (e/MWh) 29.5 1.0 55.1 0.0 180.3 174,731
Other steps price (e/MWh) 67.9 54.3 47.7 0.0 180.3 823,467
First step quantity (MWh) 191 190 126 1 823 174,731
Other steps quantity (MWh) 43 22 66 1 803 823,467

Average complex bid
Fix component (Ke) 38.7 0.0 118.5 0.0 605.0 6,395
Var. component (e/MWh) 51.9 39.2 29.7 0.0 180.3 6,395

Notes: Sample from March to June 2007.

had generation shares between 5 to 11%. Most firms were vertically integrated and participated in
distribution (regulated and usually performed by incumbent firms) and retailing.

During this time period, coal was the predominant source of energy (25%), followed by nu-
clear, natural gas and renewables, each of them with a share of approximately 20%. Hydraulic
energy accounted for approximately 10% of the production. Due to limited cross-border trans-
mission capacity, international imports represented a very small fraction of total production, being
approximately 3%.

The study of bidding behavior is focused on thermal units, which are the ones using complex
bids. In the sample, there are 88 thermal units other than nuclear power plants, which account for
most thermal units in the Spanish system that are operating during this period. Nuclear plants, co-
generation plants and new plants that are not operational during this period are excluded. I divide
the units in three main categories: coal units, combined cycle gas units and gas and oil units.

Table 1 presents summary statistics of the bidding data and market outcomes. There are 2,880
hour-day observations in the sample, with an average market price of 34.1e/MWh. The average
number of units in the market is around 79, which submit on average simple bids with 4.41 steps.
The distribution of simple bid prices and quantities depends significantly on the step considered,
as explained below. Whenever used, complex bids are on average 38.7Ke for the fixed component
and 51.9e for the marginal component. They are used around two thirds of the times.

2.4 Bidding behavior

Before turning to the model, I illustrate some of the patterns to be explained in the data. The main
goal of the discussion is to understand how simple and complex bids translate into (i) discrete
decisions about using a thermal unit or not (startup decisions), and (ii) marginal decisions about

9



how much to produce with a given unit.

2.4.1 How do firms use simple bids?

The usual interpretation of simple bids in a multi-unit auction is that they express a marginal
willingness to buy or sell. In the context of electricity markets, they express how much output a
firm is willing to produce at different price levels in a given hour. However, if firms have startup
costs, simple bids need not to be marginal. In particular, the first step is important to determine
whether a unit will run or not in a particular hour. If a unit wins its first step, it means that the unit
will be running. Conditional on winning the first step, the other steps of simple bids are marginal,
as the unit is already turned on if it sets the price with a step higher than the first one.

The importance of the first step is very apparent when looking at the bidding data. Firms
usually submit a zero bid for the first step in most hours of the day. As seen in Table 1, the median
bid is just one Euro, well below any possible marginal cost estimate and the prices observed in the
market. This strategy ensures that, conditional on being accepted, the unit will operate for sure.
The distribution of bids also shows that, for some hours, firms may submit very high bids instead,
ensuring that they will are turned off.

Figure 3 shows graphically the distribution of simple bids for the first step, separated from the
rest of the bids. As shown in Figure 3(a), most of first step bids have either very low or very high
values, as the first step affects the discrete decision of starting up. In particular, there are important
mass points at the price floor (0e/MWh) and around the price cap (180.30e/MWh). Differently,
the rest of the steps have a more centered distribution, usually around equilibrium prices observed
in the data, highlighting their marginal nature, as seen in Figure 3(b). The same point is conveyed
by differencing out the bids from the equilibrium market price, as shown in the histograms 3(c)-(d).
Whereas most bids are accumulated either well below or well above the market price for the first
step, the rest of the bids are more centered around the market price.

These patterns highlights the discrete decision involved with the first step, which manifests in
extreme bids that determine whether a unit will be running or not. Note that this strategy can also
be used in the absence of complex bids. In fact, units with neither complex bids nor production
contracts have even more extreme bids for the first step, as they use this strategy to determine
ex-ante whether they will produce or not, ensuring smooth production patterns.

For the purposes of inferring firms marginal valuations, these patterns point out that the re-
searcher needs to be cautions when inferring marginal costs in the presence of startup costs or
other non-convex constraints affecting firms’ valuations. Otherwise, the patterns in the first step
might look irrational in a paradigm in which firms only have marginal costs and there are no com-
plex bids.
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Figure 3: Distribution of simple bids
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Note: Sample from March to June 2007. Dashed lines represent minimum and maximum price observed
in the sample. One can observe that the distribution of first-step bids appears to be very different from the
distribution of “marginal steps.” Firms submit either very low or very high first step bids.
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2.4.2 How do firms use complex bids?

Complex bids are concerned with the discrete decision about running a unit or not, as they deter-
mine whether a unit participates in the market during the day. Firms make frequent use of complex
bids. As seen in Table 1, most units use complex bids (66.1%). Alternatively, some firms decide
the startup decisions of their units with production contracts, which are set in advance (23.2%).
The remainder of units uses the first step to decide the startup, in which case they use extreme
bids: very low if they want to ensure production, or very high otherwise.

Conditional on using complex bids, it is useful to have a competitive benchmark in mind when
examining the data. As it will be shown below, in a simplified model, it is incentive compatible for
a non-strategic firm to set the variable component of their complex bid equal to the marginal cost
of inputs, and the fixed component equal to its startup cost. For a strategic firm, these bids will not
exactly provide marginal and startup costs, but they will be related.

In the data, one can see that these two bid components are indeed correlated with these fun-
damentals. The size of the minimum revenue requirement varies depending on the type of fuel
used. The variable component is on average cheapest for coal units (34.25e/MWh), which have
the lowest marginal cost, and most expensive for oil units (94.74e/MWh), which have the highest
marginal costs. Regarding the fixed component of complex bids, firms appear to use it only when
units are switched off; otherwise they tend to use only the variable component of complex bids. For
this reason, the median fixed bid is zero, as seen in Table 1. This is consistent with firms bidding
zero when they are already running, and suggests that firms use the fixed component of complex
bids to reflect their startup costs in some manner.

3 The model: a multi-unit auction with complex bids

The patterns in the simple bidding data and the frequent use of complex bids make clear the need
to account for startup costs in analyzing the bidding process. To formalize firms’ decisions, I
represent the electricity market as a set of multi-unit auctions with complex bids. There are i =

{1,...,N} firms, who own a certain number of units that can produce electricity, indexed for each
firm by j = {1,...,Ji}. The goods auctioned in each daily auction are electricity to be produced at
each hour of the following day (in MWh).

The units owned by a firm limit the quantity that it can produce. Each unit has a minimum and a
maximum capacity, represented by q

ij
and qij . Minimum production levels are a feature of thermal

power plants. To operate safely, generators need to produce above a certain level. Even though
there is some margin of adjustment, to first order this minimum production acts as hard constraint
that cannot be relaxed. In the model, if a unit needs to produce within the range qijh ∈ [q

ij
,qij],
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Figure 4: Diagram of bidding strategy for each unit

Firms submit step functions for every unit and every hour of the day. Each
unit can also have a fixed and variable complex bid.

whenever it is running.
The model considers the bidding decisions of the firms on a daily basis.12 Each firm i chooses

a bidding strategy to maximize its expected profits, taking the distribution of other firms’ bids as
given and conditional on a set of common public information and independent private shocks.

The public information set contains the common information shared by the firms, such as pub-
licly available demand forecasts, wind production forecasts and coal and gas input prices. There
are several aspects that could generate private information across firms. For example, firms could
be uncertain about input cost shocks, about their maintenance strategy or unit unavailabilities,
about their hydro storage levels or about bilateral contracts that might be unobserved.

3.1 Bidding space and auction rules

Equilibrium prices and quantities are determined by the auction rules. The auction rules follow the
ones in the Spanish electricity market, described in Section 2. All firms submit individual simple
bids for each unit to offer their production at a given price, as they would in a uniform auction. In
addition, they can also submit complex bids. Complex bids complement simple bids and are also
specific to a particular production unit. Figure 4 presents a diagram of the elements of the bidding
strategy for each unit in the market.

3.1.1 Simple bids

Define the collection of simple bids by all firms with the array b. Simple bids are hour- and unit-
specific step functions. They contain price and quantity pairs 〈bijhk,gijhk〉 for each unit j of each
firm i, each hour h and each possible step k = 1,...,K, where K is the maximum number of steps

12In practice, the decision of starting up often involves more than one day. The theoretical model abstracts from this
longer horizon, which I discuss later in the empirical and simulation sections.
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and is set by the auctioneer at 25. In practice, this constraint is almost never biding, as firms do not
need to use all the allowed steps.13

There are some restrictions to simple bids. Price bids cannot be below a price floor (zero) or
exceed a price cap (180.30 e/MWh). The quantity bids are also constrained by the capacity of a
unit, as otherwise firms would be offering electricity they cannot produce. Price bids need to be
weakly increasing with quantity bids.

Definition 1. Simple bids for a given firm i are defined as:

bi =

{
(
−→
b ijh,
−→g ijh,Kijh) : dim(

−→
b ijh) = dim(−→g ijh) = Kijh ∈ 1,...,25 ∀j,h

bijhk ∈ [0,180.30], gijhk ∈ [q
ij
,qij] ∧ ∀k > 1 : bijhk > bijhk−1, gijhk > gijhk−1

}

3.1.2 Complex bids

Define the collection of all complex bids with the array c. Complex bids contain a fixed and a
variable component of the minimum revenue requirement for each unit j of each firm i, represented
by Aij and Bij respectively. The variable component is subject to the same price caps as simple
bids.

Definition 2. Complex bids for a given firm i are defined as:

ci =

{
(Aij,Bij) ∀j

Aij ≥ 0,Bij ∈ [0,180.30]

}

A unit needs to recover the fixed and variable components in order to produce, which acts
as an effective implicit minimum revenue requirement. The revenue requirement of each unit is
constructed as the fixed component plus the variable component times the daily unit output, i.e.
Aij+Bij

∑24
h=1qijh, where qijh represents the equilibrium quantity of unit j at hour h.

All the offers of a unit are taken out from the market whenever the minimum revenue require-
ment over the day is not satisfied, no matter what the simple bids are. A unit j is always discarded
whenever at the equilibrium prices,

24∑
h=1

phqijh︸ ︷︷ ︸
Gross Revenue

< Aij+Bij

24∑
h=1

qijh︸ ︷︷ ︸
Minimum revenue

,

where ph represents the equilibrium hourly market price. Otherwise the unit is not discarded and

13The underutilization of steps is a well-known phenomena previously studied in the multi-unit auction literature
(Chapman, McAdams and Paarsch, 2007; Kastl, 2011, 2012).
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its bids are considered in the auction.14

3.1.3 Market clearing

The market clearing algorithm searches for the set of complex bids that are satisfied. If the mini-
mum revenue requirement is not satisfied, a unit is discarded. The system operator crosses demand
and supply using only the simple bids of those units that have not been discarded. The price is
determined by the last accepted simple bid, as in a uniform auction.

Let S denote all possible combinations of units being accepted (i.e., having their minimum
revenue requirement or complex bid satisfied) and let s denote one of these combinations. As an
example, consider a market with two firms, each of them with two units. A possible combination
of units being accepted is a set s where units 1 and 2 for firm 1 have their revenue requirement
met, but only unit 1 from firm 2 is accepted. Unit 2 is withdrawn because its revenue requirement
is not covered. Therefore, s would contain three units in this particular example.

The algorithm initially considers all simple bids to determine equilibrium prices, i.e. it consid-
ers the set s0 in which all units are accepted. It then iteratively discards the simple bids of those
units whose minimum revenue requirement is not satisfied, until all remaining units belonging to
the equilibrium set s∗ cover their revenue requirements.

3.2 The profits of the firm

Given the bidding rules, expected profits of firm i for a given day can be expressed as the sum of
expected profits over different combinations of accepted units, i.e.,

E−i[Πi(b,c)] =
∑
s∈S

P (s|bi,ci)E−i
[

Πi(bis,b−is)
∣∣∣s], (1)

where P (s|bi,ci) defines the probability of a set of s of units being accepted, conditional on firm
i’s bids. Note that this probability depends implicitly on the distribution of beliefs about other
firms’ strategies, {b−i,c−i}.15 Conditional on a given state s, only the simple bids that are not
removed from the supply curve determine market outcomes, which I denote with {bis,b−is}. Firm
i still remains uncertain about the exact values of b−is, and therefore the expectation is taken over
beliefs about other firms’ strategies.

14In practice, all units are discarded if their minimum revenue requirement is not satisfied, but the converse is not
necessarily true. I abstract from this feature of the iterative procedure used in the Spanish electricity, as it simplifies
characterizing the problem of the firm. Only in 3% of the cases a unit is taken out from the supply curve, but it could
have recovered its minimum revenue requirement. See the online appendix for an extended discussion.

15Formally, let ρnj(b,c) =
∑24

h=1ph(b,c)qnjh(b,c)−Anj−Bnj

∑24
h=1qnjh(b,c), then

P (s|bi,ci) ≡ E−i
[∏N

n=1

∏Jn

j=11{ρnj(b,c) ≥ 0 if j ∈ s or ρnj(b,c) < 0 if j /∈ s} | bi,ci
]
.
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The profit function for state s and bids {bis,b−is} is given by,

Πi(bis,b−is) =

(
24∑
h=1

ph(bihs,b−ihs)(Qih(bihs,b−ihs)−νih)

)
−
∑
j

Cij(qij(bis,b−is)), (2)

where ph(.) represents the equilibrium price, Qih(.) is the total quantity sold by firm i at hour h,
νih are the financial contracts of the firm, and Cij(.) represents the daily costs of unit j belonging
to firm i, which depends on the vector of hourly equilibrium unit quantities. Note that, whereas
the hourly market outcomes can be separated on an hourly basis, the cost function is allowed to
present time interdependencies.

The profit function is the gross revenue of the firm minus its costs. The gross revenue is
stated as the price times the net selling position of the firm (production minus financial contracts),
represented by Qih(.)−νih. This is the relevant quantity that determines the incentives of the firm
to drive the price either up or down.16 The actual monetary flow would also include an additional
term from the sale of forward contracts, which is sunk at this stage.

When there is market clearing, the net physical quantity allocated to be produced by the firm,
represented by Qih(.), needs to be equal to the residual demand in the market, represented by
DR
ih(.). For a particular realization of bids, in equilibrium, supply equals residual demand, i.e.

DR
ih(bh) = Qih(bh).

Cost structure Complex bids are introduced due to the presence of valuation complementari-
ties at the production level, which arise due to dynamic costs. For this reason, it is important to
understand how costs enter the profit function of the firm, as they affect optimality conditions.

I focus my analysis on the cost structure of thermal units (coal, oil and gas), which are the
ones that submit complex bids. Expressing the cost function implicitly in terms of equilibrium
quantities, the cost function for unit j is expressed as follows,17

Cij(qij) =
24∑
h=1

(
αij1qijh+

αij2
2
q̃2ijh+

αij3
4

(qijh−qij,h−1)2
)

+βij1
start
ij ,

where αij1,αij2 represent unit-specific marginal costs of production, αij3 represents the costs of
changing production levels rapidly (also known as ramping costs), q̃ijh represents the quantity over
the minimum production level q

ij
, i.e. q̃ijh = max{qijh−qij,0}, and 1

start represents a dummy
variable that takes the value of one when a unit gets switched on, which implies incurring a startup

16This issue has been explored extensively in the literature. See, for example, Wolak (2000) and Bushnell, Mansur
and Saravia (2008).

17The cost specification parallels Wolak (2007). It is also consistent with engineering models that are frequently
used by firms to plan their decisions (Baı́llo et al., 2001).
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cost βij .18

The dynamic structure comes from the ramping costs (α3) and the startup costs (β). The prob-
lem of starting up becomes non-trivial due to the fact that, whenever units are turned on, they need
to produce at least q

ij
, which is usually 30% to 40% of their maximum capacity. Therefore, to

avoid shutting down at a particular time, a unit needs to keep producing a non-negligible amount
of electricity.

3.3 Optimality conditions

The goal of the firm is to choose its bids {bi,ci} to maximize its expected profit. The model
above allows to derive optimality conditions at the firm level. In the context of the auction design
considered, one needs to characterize the optimal strategies for both simple and complex bids,
which constitute the bidding strategy of the firm. Under certain assumptions, first-order conditions
can be derived that are amenable for empirical estimation.

For both simple and complex bids, I make the assumption that ties with other firms or with
different units within a given firm do not happen with positive probability, which allows me to
avoid the problems that arise in the presence of ties (see Kastl, 2011, for a discussion).19

3.3.1 Optimality conditions for complex bids

To derive optimality conditions with respect to complex bids, it is useful to note that they only
affect the profit function of the firm through the probability of a given set of complex bids being
accepted, given by P (s|bi,ci) in expression (1). Proposition 1 summarizes the main result.

Proposition 1. Assume P (s|bi,ci) is differentiable inAij . If ∂P (s|bi,ci)
∂Aij

6= 0 for some s, a necessary

first-order condition of optimality for Aij is

E−i

[
Πj in
i (b,c)−Πj out

i (b,c)
∣∣∣ 24∑
h=1

phqijh = Aij+Bij

24∑
h=1

qijh

]
= 0, (3)

where Πj in
i represents the expected profit of firm i when unit j’s is accepted and Πj out

i represents

18Note that I have implicitly assumed that a unit switches on or off at most once every day. This simplification
makes the analysis more clear and is consistent with the empirical evidence.

19There are several justifications behind this assumption. First, ties are relatively infrequent in the data. I examine
bids that are near the market price (5e band) and count the number of ties as potential ties. Potential ties with other
firms happen around 6% of the times. Potential ties at the firm level are relatively infrequent, and happen around
5% of the times. Similar percentages arise using alternative bands. Second, the average size of the marginal step is
small (around 30 MWh) compared to the quantities that big firms are selling (usually well above 5,000 MWh), and
thus rationing is economically not very important. Finally, in the empirical application, I use a smooth approximation
of the first-order conditions in which rationing due to ties does not occur. I discuss the rational for using a smooth
approximation in the empirical section.
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the expected profit of firm i when unit j is discarded, computed at the point at which the unit’s

complex bid is marginal.20

Proposition 1 states that the firm chooses a complex bid such that the opportunity cost of being
accepted versus being rejected are equalized in expectation at the point at which the minimum
revenue requirement is just satisfied, i.e., they set the incremental profit of starting up a particular
unit for the day equal to its startup costs at the margin.21 The result follows from observing that
marginal changes in complex bids affect outcomes along the range at which the complex bid is just
binding, i.e. when

∑24
h=1phqijh = Aij+Bij

∑24
h=1qijh.

In a competitive environment in which a firm has only one unit and behaves as a price taker,
Proposition 1 implies that the optimal complex bid is such that the unit breaks even in expecta-
tion, when it is just accepted. For the case in which there are no quadratic and ramping costs
(α2 = 0,α3 = 0), the unit would set the fixed component equal to its startup cost and the variable
component equal to its marginal cost, i.e., Aij = βj and Bij = α1j . In a strategic environment,
however, Equation (3) also captures the fact that the profit of the rest of the units owned by a firm
can change depending on whether unit j is accepted or not. If there is a strategic value to withhold
capacity and increase equilibrium prices, then a firm will choose complex bids such that the unit
still makes positive profits at the point at which it is just accepted.

3.3.2 Optimality conditions for simple bids

To derive first-order conditions for simple bids, I focus on the first-order conditions with respect
to the price offers.22 A necessary condition for simple bids to be consistent with optimality is that
there are no profitable local deviations. For example, a firm must be indifferent between raising or
lowering the whole bidding offer at a given step of the supply curve, given by a bid bijkh, for unit
j at step k and hour h,

∑
s∈S

P (s|bi,ci)
∂E−i[Πi(b)|s]

∂bijkh
+
∑
s∈S

∂P (s|bi,ci)
∂bijkh

E−i[Πi(b)|s,∂P (s|bi,ci)
∂bijkh

6= 0] = 0. (4)

Whereas the first term is the usual uniform auction optimality condition, the second one arises due
to the presence of complex bids.

20See the appendix for a derivation. Formally, Πj in
i =

∑
s−j∈S−j

P (s−j |bi,ci)E−i[Πi(bs,cs)|s = {s−j ,j}], and

Πj out
i =

∑
s−j∈S−j

P (s−j |bi,ci)E−i[Πi(bs,cs)|s = {s−j}], where S−j denotes all possible combinations of ac-
cepted units excluding j.

21In a dynamic context in which different days are interrelated, the difference in profits might include an option
value of being either turned on or off for the next day. I discuss this issue in the empirical section.

22It is also possible to use quantity offers to derive first-order conditions (Wolak, 2007; Kastl, 2011). I focus on
price deviations because the price of the bids is the dimension that firms appear to modify more frequently.
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The second term represents the probability that the firm might affect the likelihood of certain
units being accepted when setting the market price. Therefore, it is only non-zero when a complex
bid is just accepted and the unit sets the marginal price. In this setting, the term is likely to be
small, as these two events will rarely happen simultaneously. In fact, empirically there are no
instances in which these two events happen jointly. Even if these two events occurred jointly, the
term tends towards zero as the conditional joint probability of the two events tends to one, due to
the envelope condition implied by Proposition 1.

Given these theoretical and empirical findings, to derive the first order condition used in the
empirical application, I assume that the first order condition with respect to the bid bijkh can be
reduced to the direct effects of the simple bid on profits, i.e., the first term in (4).23

Assumption 1. Marginal deviations of simple bids at a single step k and hour h are primarily

captured by their marginal effects on conditional profits, this is,

∑
s∈S

∂P (s|bi,ci)
∂bijkh

E−i[Πi(b)|s,∂P (s|bi,ci)
∂bijkh

6= 0] ≈ 0.

Assumption 1 allows to treat the decision of the firm over simple bids in a similar manner as a
set of simultaneous uniform price auctions. Therefore, first order conditions with respect to simple
bids closely resemble the ones usually found in a multi-unit auction with a uniform pricing rule.
This result is summarized in Proposition 2.

Proposition 2. Let Assumption 1 hold. A necessary first-order condition for optimality of bijkh, for

a given unit j at hour h and bidding step k > 1, is given by

bijkh = ζ ijkh−
E−i[Qih−νih|ph = bijkh]

∂E−i[Qih|ph = bijkh]/∂bijkh
, (5)

where ζ ijkh ≡
∂E−i[Ci|ph=bijkh]/∂bijkh
∂E−i[Qih|ph=bijkh]/∂bijkh

is a weighted expected average marginal cost when bijkh
sets the price.

Proposition 2 states that the bid is equal to the average marginal cost plus a shading factor or
markup. The shading factor is composed by the expected inframarginal quantity produced by the
firm when the unit is accepted, divided by its effect on equilibrium quantities, which is equivalent
to its effect on the residual demand. The effect of the residual demand on bids captures the impacts
of the degree of competition faced by the firm. Intuitively, a more inelastic residual demand drives
the markup up. Note that this term is not well defined if there is no residual demand realization at

23See the online appendix for a more detailed discussion. I present evidence that shows that the omitted term is
empirically small and that omitting it does not appear to rise bias concerns in the main estimation.
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which the bid sets the price. Therefore, Proposition 2 is only valid if the bid submitted has some
positive probability of being marginal.

This condition is similar to the optimality conditions found in Hortaçsu and Puller (2008) and
Allcott (2012). As in the usual setting, the net quantity supplied by the firm determines the sign
of the cost markup. For a positive net selling quantity, the firm puts a positive markup to its offer,
submitting a bid that is higher than its marginal cost. Forward contracts reduce the selling position
of a firm, and therefore reduce markups. Indeed, if the firm is a net buyer in the market, either
because it has large forward contracts or because it is also a retailer, the bid will be lower than the
marginal cost. One difference in this setup is that the presence of complex bids affects the markup,
which is a weighted average over the possible combinations of complex bids being accepted.

4 Estimation

The unknown parameters for firm i can be summarized as follows

θi = {αi,βi,γi},

where αi and βi are marginal and startup costs respectively, and γi represent the parameters that
affect the forward position of the firm.

The cornerstone of the estimation are the optimality conditions implied by the multi-unit auc-
tion bidding game, presented in Propositions 1 and 2. I discuss first the construction of the empir-
ical analogues of both sets of first-order conditions, as well the intuition behind identification. I
then present the results.

4.1 Simple bids Moment Conditions

To estimate the unit-specific costs and the forward contracts, I use a generalized method of mo-
ments procedure based on the first-order conditions on simple bids implied by Proposition 2, to-
gether with a parametrization of marginal costs and forward contracts. The procedure is analogue
to previous studies in the multi-unit auction literature, adapted to the particularities of electricity
markets.

The first-order condition in (5) can be re-written as follows:

(
bijkh−ζ ijkh

)∂E−i[Qijkh|ph = bijkh]

∂bijkh
+ E−i

[
(Qih−νih)

∣∣∣ ph = bijkh

]
= 0. (6)

To construct the empirical analogue of this first-order condition, one needs to estimate its ex-
pectation terms. Similar to Hortaçsu and McAdams (2010) and Kastl (2011), I use a bootstrapping
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Table 2: Pseudo-algorithm to Simulate Market Outcomes

For a given firm i and auction day t,
1) Fix bidder i bidding strategies in auction day t.
2) Randomly sample bidding strategies for each firm j ∈ I\i from a set

of N similar days.
3) Clear the market using the complex bidding algorithm (see online

appendix A for details).
4) Repeat 2-3 B times to obtain a distribution of market outcomes.

procedure to estimate the expectation over residual demand. The pseudo-algorithm is described
in Table 2. The procedure consists in simulating the beliefs of one firm i about the other firms’
strategies based on the available data. For a particular firm and day, its strategy is held fix (step 1).
For other firms, their strategies are randomly sampled from the data, mimicking the uncertainty
that the firm faces (step 2). For a particular draw, and given the auction algorithm, I can compute
auction outcomes which determine firm’s profit, such as market prices, quantities assigned to each
generator and overall quantity sold by the firm (step 3). Repeating this procedure many times, one
can approximate expected profits (step 4).

Step 2 is very important as it is meant to mimic firm i’s believes about other firms’ strategies. I
approximate the uncertainty faced by the firm in the market by randomly drawing the strategies of
other firms across similar days. Days are classified in four weekday categories (Monday, another
weekday, Saturday and Sunday). Within each category, I match similar days by minimizing the
squared difference in their maximum demand forecast. For example, to find four similar days for a
particular Monday, I take the four Mondays in the sample that have the lowest squared difference
between their maximum demand forecast and that of the particular Monday at hand. This group
of days will trivially include the same day, together with three other similar days. This selection
rule parallels Gans and Wolak (2008), who also pool similar days to construct sample analogues
of moment conditions implied by profit maximization.

Figure 5 presents the supply of a given firm and its residual demand for fifteen bootstrapped
market outcomes resulting from this procedure. Figure 6 compares the distribution of simulated
bootstrapped prices to the one observed during the period of study. One can see that the distribution
is matched at the different quantiles of the distribution. This would not be necessarily true if
one had matched bids from very different days. Overall, the bootstrapping procedure generates a
distribution of prices that matches the one in the sample.

It is important to note that there are three aspects in the bootstrap simulation that are different
from the procedure used in other applications. First, the auction is not standard and therefore one
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Figure 5: Generating Random Market Outcomes - April 11th 2007, 5pm

Randomly drawing strategies of other players generates a distribution of expected
residual demand. Due to complex bids, the ex-post supply curve of a given firm
can depend on the particular realization of other firms’ strategies.

Figure 6: Distribution of Bootstrapped Market Outcomes

(a) Kernel Distribution of Equilibrium Prices
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(b) Summary Statistics

Price Price Non-trim.
Actual Bootstrap Price BS

(e/MWh) (e/MWh) (e/MWh)
mean 34.16 34.21 34.20
sd 9.07 8.28 8.57
skew. 0.59 0.54 0.58
kurt. 3.37 2.62 2.92
p5 22.72 23.05 22.22
p25 27.48 27.71 27.50
p50 32.18 32.68 32.60
p75 40.01 40.01 40.06
p95 50.16 50.61 52.02
min 7.00 18.00 8.03
max 69.70 65.00 73.40

Notes: Sample of 120 days (24 hours each). Bootstrap samples obtained mixing six similar days. 100
bootstrap samples per day considered. “Price Bootstrap” excludes lower and upper 0.5% of the data.
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needs to clear the market using the complex bidding algorithm.24 Second, due to the presence of
complex bids, firms also face uncertainty over their own equilibrium supply curve, as they are not
certain about which plants will be asked to turn on (as shown in Figure 5). Finally, in contrast to
other auction settings, the population of bidders in the market is held fixed. The randomization
comes from mixing similar days for the same population of bidders.

Once market outcomes are simulated, there are still some challenges left to construct the empir-
ical moments, specially to approximate the slope E−i[∂Qijkh/∂bijkh|ph = bijkh] in (6). Different
than other multi-unit auction settings, electricity auctions have limited uncertainty as well as many
small steps. In a large auction with many small steps, such as the one considered in this paper,
estimating the derivatives at the point at which a bid exactly sets the price can be challenging and
numerically unstable, even if many bootstrap samples are drawn.

To address this problem, I follow a smoothing approach that has been used in the context of
electricity auctions (Wolak, 2007; Gans and Wolak, 2008). With this approach, both demand and
supply are approximated as a continuous function that depends on price. For a given bootstrap
sample bs, both the residual demand faced by a firm and its supply curve are approximated as
follows,

D̂R,bs
ih (ph,b−i,h|sbs,bw) =

∑
l 6=i

∑
j∈sbsl

∑
k

gljkhK
(bljkh−pbsh

bw

)
,

Q̂bs
ih(ph,bi,h|sbs,bw) =

∑
j∈sbs

∑
k

gijkhK
(bijkh−pbsh

bw

)
,

whereK is a Kernel cumulative weight and bw is a bandwidth parameter that determines the degree
of smoothing.

With this smooth representation, the empirical analog to the first-order condition of unit j at
step k in hour h can be constructed. Adding a subscript t to represent the day of the sample, the
empirical analogue to the first-order condition is constructed as,

mijkht(αi,γi;bw,B) ≡ 1

B

B∑
bs=1

1(j in)
∂̂phtbs

∂bijkht

(
(bijkht−ζijkht(αi))

∂D̂R,bs
iht

∂pht
+(Qbsijkht−νiht(γi))

)
, (7)

where B represents the number of bootstrap simulations that are taken for each day in the boot-
strapping algorithm. Note that ∂pht

∂bijkht
=

∂Qih/∂bijkh
∂DR

ih/∂ph−∂Qih/∂ph
in equilibrium, which can be computed

using the smooth approximation (Wolak, 2007). See the appendix for a full derivation.
There are two advantages to using this approach. First, the residual demand becomes a contin-

uous object, and therefore its derivative is easier to approximate. Second, differently than before,

24This algorithm is described in the online appendix A.
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bids near the simulated equilibrium prices have an impact through the Kernel weights. This fact
implies that not only bids that exactly set the price are used for inference, but also those near the
observed equilibrium price, which can be useful in auctions with many prices and small bids.

To fully characterize the moments, it remains to specify functional forms for marginal costs
and forward contracts. For marginal costs, I specify them following the structural cost function
presented in Section 3,

ζ ijkht(αi) ≡ αj1+αj2q̃ijht+αj3(2qij,h,t−qij,h−1,t−qij,h+1,t)+εijkht.

The error term in the marginal cost specification rationalizes the strategies of the firm in the econo-
metric specification. It can be interpreted as a shock on marginal costs known to the firm as well
as optimization or specification error. In the results section, I discuss an alternative specification
that allows the coefficients to be proportional to input costs.

The specification for forward contracts assumes that firms hedge a percentage of their expected
hourly output,

νht(γi) ≡ γiqht+εht,

where qht represents the expected quantity sold at the day-ahead market. One justification for this
parametric assumption is that it is common in the industry to refer to the amount of hedging as
the percent of the output that is hedged. Therefore, I assume that firms target a certain share of
financial hedging during the period.

With all these elements, the moments are constructed. Given the potential endogeneity and
measurement error of markup terms, I use temperature and the publicly available demand forecast
as instruments, represented with Zht. For a given firm i, the empirical moments that I use are,

T∑
t=1

K∑
k=1

Z ′htmijkht(αi,γi;bw,B) = 0, ∀j,h,

which provides a consistent estimate for αi and γi as the number of simulations B and time
periods T grow. The estimate will converge at a parametric rate in T as long as one can ensure
that the non-parametric components in mijkht(αi,γi;bw,B), which are estimated in a preliminary
stage, have converged as Bbw → 0, B → ∞. One needs to assume that the number of similar
days required to approximate firms’ expectations goes to zero as the sample size goes to infinity,
i.e. N/T → 0 as T →∞.

Note that to construct the moments I average them both over time and across steps. The idea to
average the moments across steps is that the choice of steps and their size is potentially endogenous.
However, in practice, firms bid using similar number of steps and quantities. Using each step as a
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separate moment does not appear to affect the results in this application.
Standard errors are constructed using bootstrapping. Due to the temporal nature of the data,

I perform block-bootstraps, where the blocks are taken for seven days. A week seems a natural
length for the bootstrap blocks in this application, given the seasonality of demand over the week
that affects both startup patterns and output in this market.

Identification In the context of electricity markets and using similar first-order conditions, pre-
vious work has shown that forward contracts can be identified if marginal costs are observed
(Hortaçsu and Puller, 2008), and that marginal costs can be identified if forward contract data is
available (Wolak, 2000). I show that identification of both elements can be performed by imposing
reasonable restrictions on the cost functions and the forward position.

The key idea behind the identification is to notice that there are two reasonable economic
constraints that provide additional degrees of freedom for identification. First, the forward position
is a financial position at the firm level that is predetermined at the time of the auction. It is common
across the different units, which implies that there are at most 24 forward parameters per day (one
per hour). Second, input costs for coal and gas commodities do not fluctuate within a day and
marginal costs for power plants tend to be well captured with a finite set of parameters, which
implies that one can approximate the cost structure of a power plant reasonably well with a limited
number of parameters per day.

Suppose that one could observe firms bidding a very rich strategy, where several units are
setting the price with some probability across several hours of the day. If firms have 3 or 4 steps per
hour for each unit at the margin, that would generate enough moments to estimate the parameters.
The estimation of the forward position would benefit from observing different units at the same
hour with different markups (i.e. variation in the inframarginal quantity and the slope of residual
demand across units). The variation in bids and markups across hours would help identify the
marginal cost for each unit. Indeed, one could identify such parameters very flexibly on a daily
basis, by exploiting differences in bids within and across units throughout several hours of the day.

In practice, such high-frequency identification presents challenges. First, for the first-order
conditions to be valid, a given unit needs to set the equilibrium price with positive probability.
Given the limited degree of uncertainty in these markets, one needs to rely on both daily, weekly
and seasonal demand variation, so that the different parts of the supply curve are explored and
thus different units are at the margin. Furthermore, to the extent that firms do not exactly optimize
their bids at such high frequency, the implied non-parametric estimates could be noisy. In this line,
such identification strategy would require to consider moments at the daily level, whereas a more
parametric estimation only requires moments to be valid as they are averaged across time. For
these reasons, the identification strategy for both marginal costs and forward contracts relies on

25



imposing a structure that is constant over the period of study.

4.2 Complex bids Moment Conditions

As shown in the previous section, first-order conditions with respect to complex bids map into the
startup costs. To see this relationship more clearly, one can re-write the first-order condition as
follows,

E−i
[
Π̃j in
i (αi,γi)−Π̃j out

i (αi,γi)
∣∣∣ 24∑
h=1

phqijh = Aij+Bij

24∑
h=1

qijh

]
= βij,

where Π̃j in
i ,Π̃j out

i represent the marginal profit of the firm ignoring startup costs. Representing
profits without startup costs allows to note that the firm will startup a unit j as long as the additional
net profit from doing so covers its startup costs, βij .

I use an analogous procedure to the bootstrap method in Table 2 to estimate the elements of
this first order condition. Given an estimate of the marginal cost and forward contract parameters,
{α̂i,γ̂i}, one can construct the sample analog of the left-hand side of the above expression. For
each unit j and bootstrap sample bs, I simulate profits both imposing that the unit is accepted (to
obtain market outcomes for Π̃j in

i ) and imposing that the unit is rejected (to obtain market outcomes
for Π̃j out

i ). The residual from the difference in profits from having a unit just in or just out (ignoring
startup costs) becomes the estimate of the startup cost itself.

Similar to the simple bidding estimation, empirical observations in which the minimum revenue
requirement is just satisfied are rarely observed in practice, even after augmenting the data with
the bootstrap procedure. I use a kernel estimator to approximate this term around those demand
realizations for which the minimum revenue requirement is close to being satisfied.25

The empirical analog to the first-order condition for a unit j and day t is given by,

fjt(β,α̂i,γ̂i;bw,B) =
1

B
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κ
(
Aijt+

∑24
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)
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where κ is a probability density function. In my application, I use a Gaussian kernel and I set the
bandwidth based on Silverman’s optimal rule of thumb.

To create the empirical moments, I use the average over time for each technology and day of

25Note that this estimate relies on identifying an object conditional on an event that happens with zero probability
and it could be subject to the Borel’s paradox, which points out that the object needs not to be continuous when
approaching that point. In this application, by inspection the object that is being approximated appears to be smooth
around zero and locally linear, thus the locally linear kernel seems an appropriate choice.
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the week, ∑
t∈dw

∑
j∈τ

fjt(β,α̂i,γ̂i;bw,B) = 0, ∀τ,dw,

where τ = {Coal, CCGT} represents the technology and dw represents the day of the week.
I include an additional moment to control for the slope of the locally linear kernel. I set bw =

1.06σ̂n−1/5,where σ̂ is the standard deviation of the net minimum revenue requirement.26 Standard
errors are constructed using the block-bootstrap methodology described in the first step.

Identification The estimator gives an expression for startup costs of those units that use com-
plex bids. Complex bids unveil firms’ indifference point for starting up a unit, as they provide a
firm’s contingent plan. The identification strategy relies on credibly backing out the point at which
the minimum revenue requirement is just satisfied, through the bootstrapping mechanism, while
correcting for the presence of market power. Startup costs are thus identified as long as startup
happens with positive probability, even when only one outcome (on/off) is observed ex-post.

Even with the richness of the bidding data, there are challenges to identifying startup costs.
First, in some situations the minimum revenue requirement will be far away from being satisfied,
and therefore the bootstrapping technique will not be able to point-wise recover the indifference
point. Second, some units do not use complex bids, and therefore this methodology cannot be
used. Finally, some units are already on, in which case there is no clear mapping to the startup
cost.

To identify the startup cost, I focus my attention on units that are switched off and decide
whether to startup or not in a given day using complex bids.The main assumption for identification
is that fluctuations in demand affect which units are in or out, and not unobservable shocks. To
avoid potential concerns, I explicitly exclude units that are unavailable due to technical problems
or maintenance in the estimation, which is observed in the data.

Additionally, the decision horizon of the firm is usually longer than one day. Therefore, if there
is a continuation value due to the dynamic nature of the problem, then the estimate also captures
the difference in the continuation value of being on or off. Therefore,

Π̂j in
i (α̂i,γ̂i)−Π̂j out

i (α̂i,γ̂i) = βj−∆V j in−out
i .

In the presence of a continuation value, the startup cost estimate will tend to be a lower bound to

26The convergence rate for the conditional expectation is n−2/5, when bwB → 0 as B → ∞. Similar to the
first step estimator, if one is willing to assume that the number of similar days required to estimate the conditional
expectation consistently goes to zero as T grows, i.e. N/T → 0, then the convergence is parametric in T .
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the actual cost.27 The intuition behind the above equation is that a unit does not need to recover its
startup costs during a single day. Consider for example a competitive unit. The unit might decide
to startup if it makes a positive profit during the day, even ignoring the startup cost, if it expects to
recover such startup cost in the following days of continuous operation.

To control for the potential continuation value, I use weekday dummies. The idea behind this
strategy is that the continuation value of starting up a unit depends on the day of the week. For
example, a gas unit starting up on Friday will generally only startup for that given day, as on the
weekend there is lower demand for electricity, which implies that the continuation value of that
startup can be considered to be approximately zero. The continuation value might still not be
zero, as some units do operate continuously over the weekend, specially coal plants. However, the
Friday fixed effect can be used as a baseline to identify the startup costs of the units, as this is the
day in which the continuation value is arguably lowest.

4.3 Results

This section describes the results of the estimation for the marginal and forward parameters as well
as for the startup costs. I estimate the parameters for one of the largest firms in the market, which
owns several coal, combined cycle gas and oil units. I focus on this firm for several reasons. First,
it is one of the two biggest firms in the market. Second, it is the firm that makes most frequent
use of complex bids. Finally, among the two biggest firms, it is the one that owns a richer mix of
technologies.28

This firm has a thermal generating capacity of around 9,000 MW, most of it composed of
combined cycle gas unit (around 5,600 MW) followed by oil and coal units (around 2,050 MW
and 1,000 MW respectively). Given that oil units never produce during the sample of study and are
always discarded by their complex bids, I do not include them in the estimation as their costs cannot
be properly identified. The focus of the paper is on coal and combined cycle gas units, which are the
relevant units that use complex bids. I also exclude units that are located in persistently congested
areas, as those units are rarely used in the day-ahead market and enjoy local market power, thus
facing very different incentives not captured by the model. In total, there are eight thermal units.29

27Unless there are important strategic effects of keeping a unit off (Fershtman and Pakes, 2009), the option value of
having the unit already on is always higher than having to start it up.

28The other biggest firm makes limited use of complex bids and also, contrary to this firm, decides a large share of
its output and operation decisions through pre-arranged production contracts.

29In the online appendix, I include results for the other large firm in the market. The costs that I estimate for the
second firm are comparable to those of firm 1.
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Table 3: Agreggate Marginal Cost Estimates for Firm 1

(1) (2) (3) (4) (5)

Coal (e/MWh) 30.46 29.17 25.52 18.00 25.19
(0.98) (0.98) (1.76) (6.43) (1.68)

CCGT (e/MWh) 35.74 34.96 32.83 32.83 29.43
(2.15) (2.15) (3.72) (3.86) (3.53)

Coal X q (e/MWh2) 4.47e-02 2.12e-08 5.94e-02
(1.77e-02) (2.47e-02) (1.75e-02)

CCGT X q (e/MWh2) 8.89e-03 8.88e-03 2.32e-02
(5.88e-03) (6.55e-03) (9.08e-03)

Coal ramp (e/MWh2) 4.49e-02
(2.85e-02)

CCGT ramp (e/MWh2) 1.76e-12
(3.05e-03)

Forward Position (%) 88.47 84.09 85.09 85.10 88.77
(2.82) (2.82) (3.50) (3.48) (3.58)

Time Periods 120 120 120 120 120
Moments 210 210 210 210 210

Notes: Sample from March to June 2007. Input variable constructed with European fuel prices
of coal, natural gas and oil. Heat rates as provided in reports by the Spanish Ministry of
Industry. Estimates computed using a GMM estimator. Bandwidth parameter set to 3e.

4.3.1 Marginal cost and forward estimates

To construct the empirical moments, I take 100 bootstrap draws to simulate market outcomes for
each day, with a total of 120 days. Each bootstrap mixes between six similar days. The bandwidth
parameter is equal to 3e. The baseline estimation considers one moment per unit and hour, with a
total of 210 moments. Because the number of similar days, bandwidth and number of moments are
a choice relegated to the econometrician, I perform extensive sensitivity analysis in the robustness
section. The results across specifications are similar to those presented here.

Table 3 provides the estimates summarized by fuel type.30 Focusing on specification (3) with
quadratic costs, the results indicate that average coal marginal costs are around 25.52e/MWh,
whereas combined cycle marginal costs are around 32.83e/MWh. Combined cycle marginal costs
appear to fluctuate more than coal costs over time, which is consistent with the fact that gas prices
tend to fluctuate more than coal prices. These estimates are reasonable given input costs during
the period. The table also includes the forward position at the firm level, which is estimated to be
around 85.09% of the quantity that is sold in the day-ahead market.31

30In the online appendix, I include additional unit-by-unit results.
31Even though 85.09% might appear to be a large share of forwarded quantity, previous studies in markets in which
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It is important to note that the specification without quadratic costs presented in (1) differs in
the implied forward position of the firms. The specification does not instrument for the endogeneity
of the inframarginal quantity. Specification (2), on the other hand, instruments for the markup and
gives similar average marginal costs and forward position. The preferred specification is (3), which
includes quadratic costs, as they are usually considered when modeling the functioning of these
units in engineering terms. For the case of coal units, the magnitudes of the quadratic (α2) and
ramping costs (α3) are in line with previous estimates in the literature for similar power plants
(Wolak, 2007).

Adding ramping costs in specification (4) does not affect the results substantially, although the
effect appears to be noisily identified. For example, for gas plants, I find no effect and for coal
plants, it appears to take out the effect of quadratic costs. In specification (5), I use information on
thermal rates for coal units as well as fuel prices at European markets to control for variation in fuel
costs over time. Average marginal costs and forward contract estimates do not change substantially
when variation of fuel prices over time is accounted for.

4.3.2 Startup cost estimates

The firm of study actively uses complex bids, which allows me to identify the startup cost for all
units. I estimate startup costs using equation (8). To construct a sample of the expected difference
in profits at the point at which the minimum revenue requirement is just satisfied, I take 100 boot-
strap draws of market outcomes for every day, which enables me to ensure that observations next
to the minimum revenue requirement are sampled.

I pool units within thermal groups to perform the moment estimation.The coefficients on the
covariates are not unit specific, but specific to the type of fuel. I include a coefficient on the size
of the unit, which is an important determinant of startup costs. A substantial part of startup costs
are the fuel costs incurred to warm up a generator, which increase with the size of the unit.32 I
include controls for the day of the week, which are different by technology, as a way to capture the
variation in the option value of startup due to weekly demand fluctuations.

Results from the startup costs estimation are presented in Table 4, in which I report startup
costs for typical unit sizes. In the baseline specification (1), weekday fixed effects are included
and Friday is taken as a baseline. Units reportedly unavailable due to maintenance or outages
are not included in the baseline specification, given that their complex bids might reflect their
unavailability.

forward data are available document large shares of forward contracting. Wolak (2007) documents an average forward
position of 88% in the Australian electricity market. It is also consistent with informal discussions with industry
participants, who mentioned that they tend to forward a large share of their expected output.

32Startup costs could also potentially depend on the status of other units in the same plant. Unfortunately, there is
not enough variation regarding the status of units in the same group to test this hypothesis.
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Table 4: Startup Cost Estimates for Firm 1

(1) (2) (3) (4) (5) (6)
Coal (e)

150.0MW 15,977 12,704 15,383 15,985 16,458 13,766
(4,523) (3,583) (3,344) (4,524) (4,505) (3,772)

350.0MW 28,364 26,442 30,593 28,364 33,581 17,005
(11,341) (21,760) (11,622) (11,348) (11,903) (12,533)

CCGT (e)
400.0MW 21,967 16,326 29,183 21,997 22,457 22,987

(20,332) (18,861) (18,782) (20,343) (20,416) (20,218)
800.0MW 22,431 -101 40,237 22,425 22,540 25,078

(23,866) (26,058) (25,565) (23,871) (23,894) (23,905)
Input Controls N N Y N N N
Weekday Controls Y N Y Y Y Y
Congested Excluded Y Y Y N N N
Unavailable Excluded Y Y Y Y N N
Already On Excluded Y Y Y Y Y N

Notes: Sample from March to June 2007. Dependent variable is the difference in profits of getting one
plant in or out from the market. Estimates computed using a locally linear regression around observa-
tions for which the minimum revenue requirement is just satisfied. Regression performed by fuel groups
controlling different plant sizes.

Specification (1) shows that coal units have startup costs that are increasing in the capacity of
the unit. They range approximately between 16,000e and 28,000e. These economic estimates
seem to be in a reasonable ball park when compared to engineering estimates from previously
regulated units.33 Coal estimates without the weekday controls are somewhat lower, as one would
expect, as can be seen in specifications (2). Specification (3) is based on marginal costs that allow
for input controls and specification (4) includes congested plants. The inclusion of unavailable
units has the expected effect of increasing startup cost estimates, as can be seen in specification
(5). If units that are already turned on are considered, the estimated opportunity cost goes down,
as seen in (6).

Gas units have startup costs around 22,000e, as shown in column (1). The estimates appear to
be similar as a function of the plant size. One possible explanation for this finding is that plants
that have a capacity of 800MW are composed of two cycles, and have the option of only starting
up 400MW.

The estimates for gas units are more sensitive to the removal of weekday fixed effects or to the
inclusion of input controls, as can be seen in columns (2) and (3). Note that they are particularly

33Based on data from the Spanish Ministry of Industry (1988), I calculate startup costs ranging from 5,000 to
18,500e.
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sensitive for the bigger plant. The reason is that there is only one 800MW plant, and its revenue
requirement is often far away from being satisfied. This is specially true in the weekends. The
estimates do not appear to be sensitive to the inclusion of congested or unavailable units, as well
as to the inclusion of units that are already on, as seen in specifications (4)-(6).

The standard errors for startup costs are relatively tight for coal units, but are large for combined
cycle units. The larger standard errors are due to the fact that the startup costs are very sensitive
to the first step estimates, which have relatively wide standard errors. Another reason for the
imprecise identification is that gas plants do not start very frequently in this period, and are often
far away from the point at which their minimum requirement is just satisfied. This is particularly
problematic once the block bootstrap is used, as we might be missing those few days in which
the units are at the margin. Overall, the point estimates for gas plants need to be interpreted with
caution.

4.4 Robustness

The above results rely on a particular choice of the smoothing parameter, the number of moments
and the number of similar days that are being mixed. Table 6 in the appendix presents a battery of
these robustness checks. Overall, the estimation appears to be robust to the econometric choices.

Smoothing parameter The bandwidth parameter is set at 3e, in line with the literature. In the
online appendix E, I provide visual evidence on the degree of smoothing that is achieved. Addi-
tionally, I check several different smoothing parameters (ranging from 1e to 5e). As can be seen
in Table 6, the smoothing parameter has a relatively minor effect on the estimates. Marginal costs
and forward positions remain very stable within the whole range of smoothing parameters. The
only parameter that appears to change somewhat is the startup cost for large coal plants (approxi-
mately between 22,000eand 37,000e), but it is still within the confidence intervals of the baseline
specification.

Number of moments The baseline estimation considers one moment per unit and hour, with a
total of 210 moments. Because firms do not appear to modify their bids for every single hour,
but rather in hourly blocks, one could wonder whether the level of aggregation of the first-order
conditions could significantly affect the results. To examine this possibility, I try different numbers
of moment conditions by aggregating the moments of each unit across blocks of hours. Table 6
explores changing the number of moments. These choices have very minor effects on the estimates,
suggesting that the potential optimization error contained in hourly first-order conditions is not
significantly biasing the estimates.
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Number of similar days An important aspect of the simulation is the mixing of similar days,
which allows one to infer what firms would have done in likely market conditions. The econome-
trician needs to decide how many days to consider and how to pool them. I explore the importance
of mixing by changing the number of similar days between two to eight. I find that there is no
substantial difference between using four, six or eight similar days. The results are more different
if I only use two different days, specially for coal startup costs. With only two similar days, one
cannot exploit very well the information contained in complex bids, as with limited variation, few
observations might be close the point at which the minimum revenue requirement is just satisfied.

5 Startup Costs and Market Power

The estimates obtained in Section 4 can be used to perform several experiments that analyze the
importance of startup costs in electricity markets. In this paper, I focus on the effect of dynamic
costs in the ability of firms to exercise unilateral market power.

Before turning to the market power analysis, it is important to note that the estimation is only
based on necessary first-order conditions implied by optimal bidding, but these conditions are not
sufficient to characterize the full optimal strategy of the firm. To perform policy experiments, it
is required to specify a simulation model that, with additional structure, can solve for the optimal
strategy of the firm.

In Section 5.1, I extend the model to fully characterize the firm’s optimal strategy. In Section
5.2, I assess how good the simulation model predicts market outcomes and firm behavior at the
estimated parameters. Finally, in Section 5.3, I conduct policy experiments to assess the interaction
of start-up costs and market power analysis.

5.1 Simulation Model

I develop a computational model that solves the best response of a strategic firm, given other firms’
strategies, using a mixed integer programming approach that ensures that the global optimum for
the firm’s best response is found.

The model computes the optimal strategy of the firm to maximize profits, assuming that there
is no uncertainty and firms have perfect foresight on other firms’ strategies. In the absence of un-
certainty, the optimal strategy of the firm is similar to a Cournot strategy, with the added discrete
decision over which plants to startup and the introduction of minimum and maximum plant capac-
ities.34 Therefore, the main decisions are how much quantity to produce at each hour of the day, as

34In my original thesis chapter (Reguant, 2011), I show how to extend the computational model to deal with uncer-
tainty as well as to the presence of two strategic firms.
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well as which units to use when doing so.
The decision of maintaining a unit started up during the last hour of the day has important

implications for costs on the following day. If the plant is kept running, there is no need to incur
startup costs. To account for the effects of on/off status across several days, I introduce this dy-
namic link in the computational model. The decisions of the firm are solved with a finite horizon
model looking at five days ahead.

The choice of a finite horizon is reasonable in this application. In the industry, firms use
finite horizon models without discount (typically between five to ten days) to make their short-run
dynamic decisions. By looking at few days ahead, firms have enough information to assess the
relevant trade-offs involved in the startup decision. I choose five days to limit the dimensionality
of the problem, but I have evaluated longer lengths and it does not appear to make a substantial
impact.

The model of the firm is solved using a combinatorial algorithm that checks all discrete com-
binations of startup decisions to find the global optimum to the problem of the firm. In the online
appendix D, I present a complete characterization of the mathematical program that defines the
optimization problem of the firm.

5.2 Model Assessment

I assess the appropriateness of the computational model by computing the firm’s optimal strategy
given the forward contract, marginal cost and startup cost estimates from Section 4. I compare
predicted outcomes in the simulation to those observed in the data.

I find that the model captures well the average price, quantity and startup decisions that are
observed in the data. The average price in the data is 34.10e versus 34.35e in the replication. The
standard deviation on the errors is 3.86e. The thermal quantity produced by the firm is 642MWh
per hour on average in the original data, whereas it is 667MWh in the replication. The average
number of units on a given hour is 5.09 versus 5.01, respectively.

Figure 7 shows the average daily patterns of four main variables replicated by the model, com-
pared to actual outcomes. Additionally, I simulate market outcomes when I take the lower and
upper confidence intervals of marginal costs, startup costs and forward contracts. I take the lower
bound on marginal and startup costs paired with the upper bound on forward contracts, to compute
the lower bound on costs and strategic market power. I take the opposite approach to obtain an
upper bound on costs and strategic behavior.35 To give a sense of the importance of startup costs, I
also plot daily patterns for a model in which startup costs are ignored.

35These bounds on parameter estimates do not necessarily provide upper and lower bounds on market outcomes,
such as market prices, as startup costs can have non-linear effects on startup patterns.
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Panel 7(a) shows the evolution of prices over the day, in black. The original data is plotted with
a gray solid line. The model predicts accurately the evolution of average daily prices. The daily
quantity patterns are also well captured by the model, as seen in panel 7(b). When looking at the
quantity patterns, the differences between the model with startup costs (solid black line) and that
without startup costs is more apparent (dashed line). Ignoring startup costs overstates the ability
of the firm to accommodate fluctuations in daily output.

To show the effects of startup costs in more detail, panels 7(c) and 7(d) show the number of
units that are operating during the day on average and the total average capacity that is operating,
respectively. The model including startup costs does a good job at predicting that firms do not
switch on and off their units frequently, in spite of not capturing its timing exactly.36 On the
contrary, ignoring startup costs, one would predict that firms turn on and off units much more
frequently than they actually do, overstating their production flexibility.

Computational model and startup cost estimation With the computational model, it is possible
to simulate the firm’s optimal best response at given parameter values. As an additional check, one
can re-estimate startup costs based on the moments in Figure 7, using a simulated method of
moments (SMM). These estimates can be compared to the estimates relying only on necessary
first-order conditions implied by optimal bidding.

Whereas the first-order conditions are derived from theory, the estimation using a SMM ap-
proach is more dependent on how the computational model is specified, as well as how the simu-
lated moments are chosen. It can also be computationally burdensome, as one needs to simulate
market outcomes throughout the period for each possible guess of startup costs. As an advantage,
the computational model is more explicit about continuation values. It is also feasible even in the
absence of auction data, which allows to estimate startup costs in markets where complementary
bidding mechanisms might not be in place or bidding data might not be available.

I perform a SMM estimation restricting the dimensionality of the parameters to one startup
parameter for coal units and one startup parameter for gas units, using a finite grid in a range of
0 to 80,000 e, in 5,000e intervals. As moments, I use the ones presented in Figure 7: hourly
average price, hourly average quantity, hourly average number of units on, and hourly average
capacity turned on.

The sum of squared errors is minimized when coal startup costs are between 5,000 and 15,000e
and gas costs are between 30,000 and 40,000e. Coal estimates appear to be sensitive to the mo-
ments used, and for some cases they range from 45,000 to 65,000e, highlighting that only using

36One possible explanation for why firms appear to startup before than the model predicts is that, in reality, firms
cannot produce at their minimum output level immediately, but need to warm up progressively. Introducing this level
of detail in the operations of these plants is beyond the scope of this paper.
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Figure 7: Hourly Patterns from Replication Model

(a) Average Market Price over the Day (b) Average Thermal Quantity over the Day

(c) Average Number of Operating Units over the Day (d) Average Operating Capacity over the Day
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data from actual startup patterns can make the identification of startup costs more sensitive in
practice. This can be particularly true for coal units, which do not startup and shutdown very often.

The estimates are broadly in the ballpark of those found in the main estimation section. None
of the combinations of moments that I consider are maximized with zero startup costs for either
technology, emphasizing again the importance of startup costs for understanding firm behavior.

5.3 Market Power Assessment

After evaluating the computational model, I use it to perform counterfactual experiments and assess
the degree of market power in this industry. I focus on understanding how accounting for startup
costs can affect market power calculations. Traditionally, market power calculations are performed
by comparing actual market outcomes to a competitive counterfactual without startup costs (Boren-
stein, Bushnell and Wolak, 2002; Bushnell, Mansur and Saravia, 2008). Mansur (2008) points out
that ignoring dynamic costs could generate important biases in predicted welfare effects of market
power.

To assess whether the methods presented in this paper can help reduce these biases, I compute
market power estimates comparing the simulated market outcomes to a competitive counterfactual
with and without startup costs. The strategic model solves for the firm’s best response, as described
in section 5.1. The competitive counterfactual is computed by minimizing firm production costs,
instead of maximizing profits, also taking other firms’ behavior as given. Therefore, it can be
interpreted as the firm’s first best counterfactual strategy.37

I define a measure of unilateral market power by comparing predicted prices in the strategic
simulation (pstrategic) and predicted prices in the competitive simulation (pcompetitive). At a given
day and hour, strategic markups are computed as,

Markup = 100×p
strategic−pcompetitive

pcompetitive
.

I focus on three main experiments. The first experiment computes markups when both the
strategic firm and the competitive counterfactual have dynamic costs (Markup 1). The second
experiment computes markups when both the strategic firm and the competitive counterfactual do
not have any dynamic costs (Markup 2). Finally, the third experiment computes markups when the
strategic firm has dynamic costs but these are not accounted for in the competitive counterfactual
(Markup 3), which is what has been usually considered in the literature. All three markups can be
interpreted as short-run unilateral market power estimates; the only differences arise from whether
startup costs are taken into account or not.

37The mathematical program for the competitive case is also described in the online appendix D.
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Figure 8: Markups and Startup Costs

The graph represents average markups over the twenty-four hours of the day over alternative counter-
factuals, depending on whether startup costs are accounted for or not. Markup 1 considers strategic
markups when both the strategic and competitive benchmark account for dynamic costs. Markup 2
considers markups when no benchmark has dynamic costs. Markup 3 considers strategic markups
when the strategic firm has dynamic costs, but the competitive benchmark does not account for them.

Figure 8 and Table 5 present the results from these experiments. As shown in Figure 8, the
counterfactual that compares actual firm behavior with a competitive counterfactual without startup
costs generates the most volatile markups (Markup 3). In fact, I find average negative markups at
night, which is consistent with previous evidence using a static competitive framework (Bushnell,
Mansur and Saravia, 2008). Negative markups are generated because the competitive counterfac-
tual without dynamic costs cannot explain why strategic firms keep producing at night, even when
prices drop substantially. These markups are significantly different than those predicted by a model
with dynamic costs (Markup 1), as shown in Table 5, column 5.

Removing startup costs from both the strategic and competitive simulations reduces part of this
bias, as it does not create such strong asymmetry between the strategic and competitive counter-
factual, generating positive markups throughout the day (Markup 2). Predicted markups are still
significantly smaller at night, as shown in Table 5, column 4. Furthermore, firm behavior in the
absence of startup costs does not fit well actual realized outcomes, as shown in Section 5.2. Finally,
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Table 5: Hourly Markups Across Models

Markup 1 Markup 2 Markup 3 ∆2−1 ∆3−1

Hourly Block 1 8.41% 8.13% 6.57% -0.29% -1.85%
(0.53%) (0.59%) (0.62%) (0.32%) (0.26%)

Hourly Block 2 4.04% 1.50% -0.31% -2.54% -4.35%
(0.29%) (0.17%) (0.19%) (0.28%) (0.28%)

Hourly Block 3 8.18% 7.28% 6.43% -0.90% -1.75%
(0.70%) (0.82%) (0.84%) (0.38%) (0.38%)

Hourly Block 4 10.19% 10.66% 12.36% 0.47% 2.18%
(0.48%) (0.50%) (0.55%) (0.36%) (0.30%)

Hourly Block 5 10.04% 10.71% 12.37% 0.67% 2.33%
(0.42%) (0.45%) (0.49%) (0.33%) (0.27%)

Hourly Block 6 8.85% 8.62% 8.87% -0.23% 0.03%
(0.39%) (0.41%) (0.46%) (0.22%) (0.24%)

Hourly Block 7 9.63% 9.86% 9.85% 0.22% 0.22%
(0.44%) (0.47%) (0.51%) (0.26%) (0.24%)

Hourly Block 8 13.43% 14.46% 15.77% 1.03% 2.35%
(1.02%) (1.07%) (1.11%) (0.44%) (0.39%)

Notes: Sample from March to June 2007. Standard errors in parenthesis. Markup 1 considers strategic
markups when both the strategic and competitive benchmark account for dynamic costs. Markup 2 con-
siders markups when no benchmark has dynamic costs. Markup 3 considers strategic markups when the
strategic firm has dynamic costs, but the competitive benchmark does not account for them. Each block
contains three hours, starting at midnight-3am.
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accounting for startup costs in both the strategic and the competitive counterfactual produces the
smoothest markups (Markup 1).

By examining Markup 2 and Markup 3, it is possible to compute differences in strategic
markups due to dynamic costs, holding the competitive counterfactual constant.38 Ignoring startup
costs (Markup 2) overestimates the ability of the firm to price discriminate across hours with differ-
ent competitive conditions. In the static model, a firm can freely reduce its output when demand is
low, avoiding some of the price fall at night. On the contrary, when demand is high, the static firm
is more responsive and increases its output relatively more, reducing price increases. This implies
that startup costs exacerbate price fluctuations in this market, making price differences between
night and day even more stark.

In sum, these findings highlight that dynamic costs limit the ability of the firm to adjust out-
put. Through the lens of a model without startup costs, firms in the data would appear to have
“too many” plants running at night, but “too few” during the day, exacerbating price fluctuations.
This would lead to overestimate the amount of market power exercised during the day, and un-
derestimate market power at night, resulting in high markup volatility. Introducing startup costs
contributes to explaining why firms do not adjust quantity to high frequency changes in market
conditions, producing smoother estimated markups.

6 Conclusions

In this paper, I study a complementary bidding mechanism that is used in electricity markets to
allow firms to reflect their dynamic costs of production. I also examine how these dynamic costs
affect firm behavior and its incentives and ability to exercise market power.

I extend previous results from the multi-unit auction literature to account for these augmented
forms of bidding and derive first-order conditions that can be used in the estimation. I develop a
new method to use the information in complementary bids to identify startup costs. I also show that
accounting for cost complementarities helps better rationalize the observed patterns in the bidding
data.

Finally, I present counterfactual simulations to measure the interaction of startup costs and
unilateral market power. I find that the introduction of startup costs generates smoother markups,
thus providing a natural correction for markup calculations, which had been previously shown
to exhibit downward bias at night. This is explained by startup costs limiting the ability of a
strategic firm to change production across hours with different demand conditions, exacerbating
price volatility in this market.

38The competitive counterfactual used to compute these markups does not have dynamic costs. Relative compar-
isons would be similar if the dynamic competitive counterfactual were used to normalize markups.
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A Appendix

A.1 Derivation of Proposition 1
Complex bids only affect directly the probability of each complex condition being binding, given
by P (s|bi,ci). Separating the different uncertainty realizations in those in which the minimum
requirement is satisfied and those at which the minimum requirement is not satisfied, marginal
changes in complex bids only affect outcomes at those states in which the complex bid is just
binding, given by

∑24
h=1phqijh = Aij+Bij

∑24
h=1qijh.

We can partition the state space in states in which unit j is accepted or not, as follows∑
s−j∈S

P (s−j,j in|bi,ci)E−i[Πi(b,c|s−j,j in)] + P (s−j,j out|bi,ci)E−i[Πi(b,c|s−j,j out)] = 0.

Omitting bi,ci in P to ease notation (all probabilities and expectations are conditioned on own
bids), the first-order condition becomes,∑

s−j∈S

∂P (s−j,j in)

∂Aij
E−i[Πi(b,c|s−j,j in)−Πi(b,c|s−j,j out)] = 0,

by noting that P (s−j,j out) = P (s−j)−P (s−j,j in), and that P (s−j) does not depend on Aij at
the margin, under the assumption of no ties.

Define ρij ≡
∑24

h=1phqijh−Aij−
∑24

h=1Bijqijh. We can express these probabilities as,

P (s−j,j in) = F (ρij ≥ 0|s−j)P (s−j).

Differentiating with respect to Aij , the derivative becomes,∑
s−j∈S

f(ρij = 0|s−j)P (s−j)E−i[Πi(b,c|s−j,j in)−Πi(b,c|s−j,j out)] = 0.

Dividing by
∑

s−j∈Sf(ρij = 0|s−j)P (s−j), this expression gives the expected difference in profits
when the minimum revenue requirement is just satisfied,

E−i
[
Πj in
i (b,c)−Πj out

i (b,c)
∣∣ ρij = 0

]
= 0.

A.2 Derivation of Proposition 2
Under assumption 1, we need to show that,∑

s∈S

P (s|bi,ci)
∂E−i[

∑
hph(bh)(Qih(bh)−νih)−Ci(b)|s]

∂bijkh
= 0,

implies,

bijkh = ζ ijkh−
E−i[Qih(b)−νih|j in,ph = bijkh]

∂E−i[Qih(b)|j in,ph = bijkh]/∂bijkh
,
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where ζ ijkh equals the average marginal cost at the step for the case of constant marginal costs at
the step or constant slope of residual demand at ph. Otherwise, the term is equal to a weighted
average marginal cost at the step, defined by,

ζ ijkh ≡
∂E−i[Ci(b)|j in,ph = bijkh]/∂bijkh
∂E−i[Qih(b)|j in,ph = bijkh]/∂bijkh

.

Note that the bid only affects market outcomes on a particular hour, therefore one can compute
the derivative for every single hour. The only links across hours will be contained in the marginal
cost ζ ijkh, which depends on expected market outcomes at contiguous hours.

Following Kastl (2011), and noting that the bid only affects market outcomes when it sets the
price with positive probability, one can differentiate expected profits with respect to the bids at
every hour, which gives∑
s∈S|j in

P (s|bi,ci)
(
E−i[Qih−νih|s,ph = bijkh]+bijkh

∂E−i[Qih|s,ph = bijkh]

∂bijkh
−
∂E−i[Ci|s,ph = bijkh]

∂bijkh

)
= 0.

Note that this derivation uses the fact that ∂ph
∂bijkh

= 1 when ph = bijkh and zero otherwise.
Re-arranging the terms gives the above result.

A.3 Derivation of Smoothed Proposition 2
To derive the smoothed out probability, I follow the best-response bidding approach in Wolak
(2003). By differentiating the profit function with respect to the bids, one finds∑

s∈S|j in

P (s|bi,ci)E−i[(QS
ih−νh)

∂ph
∂bijkh

+ph
∂DR

h

∂ph

∂ph
∂bijkh

−C ′i(
∂Qih

∂bijkh
+
∂Qih

∂ph

∂ph
∂bijkh

)] =

∑
s∈S|j in

P (s|bi,ci)E−i[
∂ph
∂bijkh

(
(QS

ijkh−νh)+(bijkh−C ′i)
∂DR

h

∂ph

)
].

Note that ∂ph
∂bijkh

=
∂Qih/∂bijkh

∂DR
ih/∂ph−∂Qih/∂ph

using the market clearing condition, Qih = DR
ih.

The equation is very closely related to the bidding equation. In the step function setting, when-
ever the bid sets the price, ∂ph

∂bijkh
= 1, which brings back the original expression conditional on the

bid setting the price (ph = bijkh).
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