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Abstract 
 
In this paper, we consider a committee of experts that decides whether to approve or reject a 
proposed innovation on behalf of society. In addition to a payoff linked to the adequateness of 
the committee’s decision, each expert receives a disesteem payoff if he/she voted in favor of 
an ill-fated innovation. An example is FDA committees, where committee members can be 
exposed to a disesteem payoff (negative) if they vote to pass a drug that proves to be fatal for 
some users. Under the standard voting model, we show that information is aggregated in large 
committees provided disesteem payoffs are not overly large. However, we go on to document 
an empirically-relevant discontinuity in the standard model: if an arbitrarily large number of 
signals does not perfectly reflect the state of the world then, no matter how small the 
disesteem payoffs are, information aggregation fails in large committees and the committee 
rejects the innovation almost surely, providing an explanation for over-caution in committees. 
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1 Introduction

The logic for allocating a social decision to a group of experts rather than an individual

is clear: committees aggregate multiple sources of information and expertise, and therefore

allow for more informed decisions. When decisions are made by groups, however, each

individual’s ability to influence the final decision is diluted, which can lead to a magnification

of individual biases. Specifically, if committee members face idiosyncratic payoffs tied to their

vote, such as an expressive motive or a preference for voting for the winning option, then

information aggregation can fail in large committees (see Callander (2008) and Morgan and

Várdy (2012)): In these settings, individuals prefer that the committee choose the right

option, but have an incentive to vote for one of the options independent of which option

is right. Therefore, in a large committee, where the probability of being pivotal is low,

individuals rationally vote to maximize their idiosyncratic payoffs, rather than to accurately

aggregate information. In contrast to previous research, the question we ask here is, does a

committee effectively aggregate information when, in addition to caring about making the

right decision, committee members also care about individually voting for the right decision

(an idiosyncratic payoff that is dependent on which option is right)?

A particularly relevant example is the advisory committees under the United States Food

and Drug Administration (FDA), which are called upon to decide whether or not to approve

a new pharmaceutical drug for general use. Presumably, each committee member, just like

each individual in society, prefers to accept safe drugs and reject bad drugs. However, if

the committee passes a drug that proves to have unexpected severe side-effects, committee

members will receive an additional negative (disesteem) payoff if they personally voted to

approve the drug. For example, when Posicor, a drug to relieve high blood pressure, resulted

in the death of over 140 people, numerous newspaper articles (including an article that

received the Pulitzer Prize) singled out individual committee members based on their vote.

While the committee as a whole made the wrong decision, only committee members who

personally voted for the drug were scrutinized.1

Contrary to the intuition that idiosyncratic biases will dominate, using the standard model of

1This payoff can be purely intrinsic (self-esteem), or as in Brennan and Pettit (2004) and Ellingsen

and Johannesson (2008), esteem payoffs can reflect an agent’s payoff from their general regard by other

members of society (also see the discussion of the relevant psychological and classical literature in Brennan

and Pettit). We argue that committee members are exposed to esteem payoffs to the extent that their voting

decision is made salient ex-post; since a committee’s decision to correctly approve an innovation is unlikely

to become salient, we consider a negative disesteem payoff to be the relevant payoff in these applications.

Other examples include hiring committees and juries. Hiring committee members might be held responsible

for a bad hire only if they voted for the candidate. Jury members might receive a negative intrinsic payoff

if they vote to convict a suspect who later turns out to be innocent.
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information aggregation in committees, we find that introducing disesteem payoffs, provided

they are not overly-large, does not lead to a failure of information aggregation in large

committees. The reason is that although the probability of being pivotal approaches zero

as the committee becomes large, the probability that the committee, conditional on voting

optimally, takes a wrong decision also approaches zero, and at the same rate as the probability

of being pivotal.

While this result is interesting in itself, we find that it is not robust to certain real-world

considerations. The standard approach in voting models assumes that the information held

by individuals is generated by a true state of the world, so that the aggregation of information

held by an arbitrarily large group of individuals reveals the state with arbitrary precision.

We analyze information aggregation under disesteem payoffs in a proposed alternative to the

standard model, where each expert’s information is generated by a technology which itself

may be incorrect. Under this view, where even the collective knowledge contained in a very

large number of signals has some probability of being wrong, we reveal a discontinuity in the

standard model in the presence of idiosyncratic payoffs. That is, we show that no matter how

small disesteem payoffs are, and no matter how small the probability that the information

generating technology is wrong, a large enough committee will always reject the innovation

regardless of the information held by its members. This result undermines the idea formally

captured by the generalizations of the Condorcet Jury Theorem to strategic voting, according

to which a robust way of improving collective decision making is by increasing committee

sizes.

Our analysis highlights that even committees of experts whose idiosyncratic payoffs depend

on which option is correct are subject to a variant of a familiar problem: decisions by groups

require an aggregate decision-making approach and, as is often the case when collective action

is required to achieve a socially desirable result, the process is susceptible to collective-action

problems (as discussed in Olson (1965) and the subsequent literature on collective action).

Idiosyncratic payoffs in committees, such as disesteem payoffs, can create a situation in

which each member prefers a certain collective action be taken (pass the innovation given

a minimum number of signals to accept), but lacks an individual motivation to contribute

to the preferred result. Therefore, for large committees, voting to accept given a signal of

accept is a public good: all benefit from the increased probability that good drugs are passed,

but only the individual is subject to the risk of disesteem payoffs. In committees, just as in

society at large, public goods are generally under-provided (as in the seminal contributions of

Samuelson (1954) and Bergstrom et al. (1986)), leading to over-caution of large committees

of experts.

Turning to FDA’s advisory panels, we find that larger committees are more likely to reject

new drug applications: a simple OLS regression suggests that an additional committee mem-
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ber decreases the likelihood that any member votes for approval by 1.3 percent, a decrease

of 30 percent from the smallest to largest committee in our sample.2 Intuitively, the logic

proposed above suggests these observations might be due to the collective nature of the

decision-making process magnifying the caution of individual committee members.

In our framework, a committee is composed of n experts who must vote simultaneously to

approve or reject an innovation using a q-rule, which specifies that the innovation is approved

only if more than a fraction q of the committee members vote for approval. Whether the

innovation is beneficial to society or not depends on an unobservable binary state of the

world, which is revealed only if the innovation is approved.3 If the innovation is rejected

(status quo) committee members get a payoff of zero. If the innovation is rightfully approved,

each expert gets a positive payoff of W . However, if the innovation is wrongfully approved

then all committee members receive a negative payoff of C, and the committee members that

supported the approval receive an additional penalty of K. Under the standard state-of-the-

world model (SoW), each individual’s signal is a noisy signal of the state of the world (ω).

Alternatively, we model the opinion (signal) of each expert as a noisy version of society’s

state of the art with respect to his field of expertise (SoA). Each expert’s opinion of whether

a drug is safe or not is the result of applying a small measure of white noise to a hypothetical

ideal dictamen by the state of the art, which in itself is a noisy reflection of the true state of

the world, with exogenous accuracy.4 The standard (SoW) model can be seen as a special

case of our model in which the state of the art is a perfect reflection of the true state of the

world.

We show that for each set of values of the exogenous parameters there is essentially a unique

equilibrium. As exemplified by Callander (2008), showing uniqueness in voting games with

idiosyncratic payoffs has proved elusive, and the possibility of multiplicity limits the signif-

icance of comparative static analysis. We establish that in our model non-trivial-equilibria

are unique by applying the recent results of Quah and Strulovici (2012). The application of

these results in order to explore uniqueness in voting problems with non-standard payoffs

2We present this empirical finding in detail, complete with a discussion of alternative explanations, in

Appendix B. We have voting data on approve/disapprove decisions from 174 meetings spread over twenty-

one topical FDA committees. Each of the FDA panels in our sample consists of 11-15 regular members, but

for any particular decision, the size of the committee varies (in the range 3-26) due to two main factors. (1)

Absenteeism: permanent members frequently cancel on the meetings (members serve on a voluntary basis

and most of them are physicians and professors of medicine). (2) Invited members: often, individuals who

are not regular committee members, but who have expertise particularly relevant to the drug in question,

are invited to participate.
3In our FDA example, information on harmful side-effects of a drug is only generated if the drug is made

generally available.
4The state of the art can be thought of as the decision that an ideal computer, programmed with the

best available decision procedures and criteria for classifying all the evidence, would arrive at.
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in general seems quite promising.5 This is important since in the absence of uniqueness

the insights that can be obtained via comparative statics only apply locally and are thus of

limited interest.

Besides our main result, we characterize this unique equilibrium and study the comparative

statics. We also show that in the special case of the standard (SoW) model, the Condorcet

Jury Theorem continues to hold as long as K is small enough. Of interest, yet unsurpris-

ingly, when increasing K (the disesteem penalty) the committee acceptance rate decreases.

The relation between the acceptance rate and committee size, however, is non-monotonic.

As more experts join the committee there is potential for more information aggregation,

which may make the experts more confident about accepting the innovation. On the other

hand, the probability of being pivotal decreases, which exacerbates the free riding problem.

Eventually, this latter effect dominates. Similarly, we find that a decrease in the noise of the

experts’ signals generated by the state of the art may not necessarily increase the commit-

tee’s acceptance rate, since less noise implies that agents can better predict the actions of

their peers, which can decrease their ex ante probability of being pivotal. Finally, we study

a variation of the model in which the disesteem payoffs get diluted as the committee’s size

increases. We provide sufficient conditions on the speed of dilution of the disesteem payoffs

for the main results to hold.

The paper is organized as follows. Section 2 introduces the payoff structure and the process

that generates each expert’s opinion (signal). Section 3 characterizes the symmetric equilibria

of the game, establishes the main result of the paper, provides comparative statics, and

discusses robustness to dillution. All proofs are relegated to Appendix A. Appendix B

contains a detailed discussion of the empirical analysis noted in footnote 2. Lastly, for

completeness, a supplementary Appendix6 provides a general characterization of information

aggregation under the state of the art view of expertise, without disesteem payoffs.7

Related Literature

This paper contributes to the game theoretic literature on information aggregation in com-

mittees (see Austen-Smith and Banks (1996) for an early reference and recent surveys by

5As we note in our analysis, standard techniques for establishing the single crossing property in these

kinds of models do not apply, since the functions involved, along with their first and second derivatives are

non-monotonic.
6Available online at http://mwpweb.eu/JustinValasek/.
7All the results in the absence of disesteem payoff are analogous to those of the literature on the Condorcet

jury theorem with strategic voters (see Austen-Smith and Banks (1996)), McLennan (1998) and Feddersen

and Pesendorfer (1998)). For the most general version of the Condorcet jury theorem, see Peleg and Zamir

(2012).
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Gerling et al. (2005) and Li and Suen (2009)). Our paper is most closely related to a sub-

set of the committee literature that considers information aggregation when voters have a

common interest in making the right decision and additional ”idiosyncratic” payoffs that

condition on the individuals’ votes.8

In Visser and Swank (2007), committee members deliberate, prior to voting, on whether

to accept a project. The members are concerned about the value of the project and their

reputation for being well informed. The market, whose judgement the experts care about,

does not observe the value of the project, only the decision taken by the committee. Visser

and Swank show that reputation concerns make the a priori unconventional decision more

attractive and lead committees to show a united front. As the number of committee members

grows, however, converging on the unconventional decision becomes a weaker indicator of

signal concurrence, which in turn lowers the reputation concerns and leads to overall better

decisions. One difference with respect to our model is that in Visser and Swank the additional

reputational (idiosyncratic) payoffs do not directly depend on the state (the true value of

the project is never revealed).

Callander (2008) analyzes idiosyncratic payoffs in elections under simple majority rule when

voters wish for the better candidate to be elected, but also to personally vote for the winner.

The payoff for voting for the winner (independently of the winning candidate’s quality)

creates multiple symmetric equilibria, some with unusual properties. When considering

optimal equilibria as the population becomes large, Callander (2008) shows that in elections

without a dominant front-running candidate the better candidate is almost surely elected,

whereas information cannot be fully aggregated in races with a clear front-runner.

Morgan and Várdy (2012) study a model in which voters are driven by both instrumental and

purely expressive idiosyncratic payoffs. That is, a voter receives some consumption utility if

he/she votes in a pre-defined way (e.g. in accordance with one’s norms) that is irrespective

of the correct outcome and the implemented decision. Some voters will receive a signal

that is in conflict with their expressive motive. If the degree of conflict is low and thus the

expressive preferences are mostly shaped by facts (the signals) then Condorcet’s (1785) jury

theorem holds and large voting bodies make correct decisions. However, when expressive

preferences are relatively impervious to facts, then large voting bodies do no better than a

coin flip.

While Callander (2008) and Morgan and Várdy (2012) both demonstrate that idiosyncratic

payoffs can lead to a failure of information aggregation in large committees, the mechanism

8In another branch of the literature the committee members have no concern for the aggregate decision

and care only about voting (or giving recommendations) to maximize the belief that the “market” holds

about their level of competence i.e. the precision of their private signals. See e.g. Ottaviani and Sorensen

(2001) and Levy (2007).
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we present here is quite different. In both of the above papers, idiosyncratic payoffs give

agents a direct incentive to vote for, say, candidate A regardless of the state of the world;

that is, information aggregation fails because the idiosyncratic payoffs run counter to the

common value payoff of electing the better candidate. In our analysis, however, information

aggregation fails despite idiosyncratic payoffs that reinforce common value payoffs: disesteem

payoffs realize only when the committee approves a bad drug.

Lastly, Li (2001) shows that committees might have an incentive to adopt a more conservative

decision rule, in the sense of requiring a higher information threshold, to induce members to

individually invest more in information gathering. Our results give a complementary expla-

nation for why, even in situations where the committee decision rule is based on votes rather

than quantifiable evidence, committee members have an incentive to vote conservatively.

Interestingly, although we consider a different setting, in the comparative statics section we

detail a result that is related to Li (2001) in spirit: in some cases, increasing the number of

votes required for approval may, in equilibrium, increase the probability that the committee

passes good innovations.

2 The Model

An innovation is submitted for approval by a committee of n experts that operates according

to a q-rule: If strictly more than a fraction q of the committee members i ∈ {1, 2, ..., n} vote

in favor of approval then the innovation is approved, and otherwise it is rejected. We denote

the votes of each committee members i ∈ {1, 2, ..., n} by vi ∈ {a, r} and the decision of the

committee by X ∈ {a, r}, where a indicates accept and r indicates reject.9 The payoff to

each expert i depends on the decision of the committee, an underlying state of the world

ω ∈ {A,R}, and the expert’s vote vi:

U(vi, X, ω) =


0 if X = r

W if X = a, ω = A

−C if X = a, ω = R, vi = r

−(C +K) if X = a, ω = R, vi = a

where W,C,K > 0.

9We consider any q-rule with a fixed q, such as the majority rule used in FDA committees. This excludes

decision rules such as the unanimity rule, where q = (n− 1)/n; for an analysis of the case of unanimity and

communication, see a working version of the paper, available online at http://mwpweb.eu/JustinValasek/.
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One interpretation of the structure of the payoffs is as follows: if the innovation is rejected,

then payoffs to all agents in the committee are zero, since the status quo is preserved and

no further information about the innovation’s quality is generated. If the innovation is

approved, then the quality of the innovation is revealed and the committee members receive

a common payoff and, depending on the state of the world and their vote, an individual

disesteem payoff. The common payoff is W or −C depending on whether the committee

has made the right decision with respect to the state of the world. The individual disesteem

payoff is only awarded in the case that the committee has made the wrong decision, and

is non-zero (−K) only for the agents that supported that wrong decision.10 If K is small

these payoffs represent a seemingly small departure from a pure common values situation,

in which the payoffs to all committee members are identical in all possible events. However,

as our main result shows, for a sufficiently large committee this small departure implies a

large difference in equilibrium behavior.

2.1 The state of the art and expert’s opinions (signals)

We denote by pA ≡ p(ω = A) society’s prior belief on the state of the world. We think

of the committee members as experts in a relevant discipline for the decision at hand. We

model the knowledge of each member of the committee as an idiosyncratic departure from

the state of the art of that discipline. We denote the state of the art by t ∈ {a, r} and

let α denote the probability that the state of the art is wrong when it indicates that the

innovation should be rejected (α = p(ω = A|t = r), 0 < α < 1
2
), and let β denote the

probability that the state of the art is wrong when it indicates that the innovation should be

accepted (β = p(ω = R|t = a), 0 < β < 1
2
). Put in terms of our example of the FDA advisory

committees, there is a commonly available collection of evidence on the efficacy and safety of

the drug–a whole battery of data from clinical trials. The state of the art, t, can be thought

of as the decision which an ideal computer, programmed with the ideal decision procedures

of medical science and state of the art criteria for evaluating all data, would arrive at.

The state of the art is not directly observable to the experts. Instead, we think of an expert

as a coarse embodiment of the state of the art. The coarseness reflects idiosyncrasies at

the individual decision making level, such as possible errors of interpretation, conceptual

misunderstandings, lapses of attention (all these often classified as “human error”), but

also inspired hunches and extraordinary insights. We further assume that these individual

differences with respect to the state of the art are purely idiosyncratic, in the sense that

10K can be thought of as the probability that the decision is disastrously wrong, e.g. side effects exist and

are fatal, multiplied by the negative payoff that accrues to committee members who supported the decision

to approve the drug.
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conditioning on t, the sincere opinions of different experts (which we henceforth refer to

as signals) are independent. Concretely, with probability 1 − ε the signal of expert i, si,

coincides with the state of the art (p(si = t|t) = 1 − ε, ε < 1
2
), and with probability ε it

differs with respect to the state of the art (p(si 6= t|t) = ε).11 The standard model, where

signals are generated directly by the state of the world (SoW model) corresponds to the case

of α = β = 0.

2.1.1 Equilibrium Concept

In what follows we will use σi : {a, r} → [0, 1] to denote the possibly-mixed strategy according

to which member i sets vi = a with probability σi(a) after receiving signal si = a, and sets

vi = a with probability σi(r) after receiving signal si = r. Throughout the analysis we rely

on the concept of Bayesian Nash equilibrium and focus on symmetric strategies only; that

is, conditioning on signals, all members use the same decision rule.12 Assuming that all

members other than i play according to strategy σ = (σ(a), σ(r)) we denote i’s expected

payoff from using strategy σi by:

Eσ[U(σi, X, ω)|si] = σi(si)
∑

X∈{a,r}

∑
ω∈{A,R}

pσ(X,ω|vi = a, si)U(a,X, ω)

+ (1− σi(si))
∑

X∈{a,r}

∑
ω∈{A,R}

pσ(X,ω|vi = r, si)U(r,X, ω),

where pσ denotes the probability of the event given other agents play strategies σ = (σ(a), σ(r)).

Definition 1 (Symmetric Equilibrium) A strategy, σ = (σ(a), σ(r)), is a symmetric

equilibrium if and only if for all i ∈ {1, 2, ..., n}, si ∈ {r, a} and, strategy of expert i, σi:

Eσ[Uσ(σ,X, ω)|si] ≥ E[Uσ(σi, X, ω)|si]

3 Analysis

We first characterize the equilibria of the model and then present the main results and

comparative statics. Denote by GK
n,q the game with disesteem payoffs K, decision rule q, and

n players. We show that, other than the babbling equilibrium in which all agents vote to

11The state of the art can be thought of in an alternative, more constructive way. Rather than thinking

of the opinions of the experts as idiosyncratic distortions of a pre-existing state of the art, we can think of

the state of the art as the probability limit of the average of the signals
1

n
lim
n→∞

n∑
=1

si and explicitly set forth

conditions which would deem the signals conditionally independent given this limit.
12Restricting attention to symmetric strategies is common in the voting literature when voting is simulta-

neous; see for example Palfrey and Rosenthal (1985) and Feddersen and Pesendorfer (1997).
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reject, each game GK
n,q has at most one equilibrium. We let pivi denote the event that among

all experts other than i, there are exactly bnqc votes for approval. Assuming that all other

members are using strategy σ, expert i finds it optimal to set vi = a upon observing signal

si if, and only if, his willingness to vote to reject the innovation Rsi(n, σ) is nonpositive:13

Rsi(n, σ) = Kpσ(X = a, ω = R|si)−Wpσ(pivi, ω = A|si) + Cpσ(pivi, ω = R|si) ≤ 0 (1)

Note that if σ(a) = σ(r) = 0, then all probabilities in this inequality vanish. It follows that

it is always an equilibrium for the members to reject the innovation regardless of their signal

(referred to as the babbling equilibrium). However, in contrast to K = 0, σ(a) = σ(r) = 1 is

not an equilibrium.14 As is also the case with K = 0, non-babbling equilibria often involve

mixed strategies.

Relying on the following Lemma and Corollary, we are able to fully characterize the mem-

bers’ willingness to reject functions (1), prove uniqueness of non-babbling equilibria, and

demonstrate how equilibria respond to changes in the exogenous parameters of the model.

Lemma 1

Suppose that at least one of σ(r) or σ(a) is strictly positive. If Rr(n, σ) ≤ 0, then Ra(n, σ) <

Rr(n, σ).

Lemma 1 implies that if an expert weakly prefers to set vi = a upon receiving signal r (i.e.

(1) holds when si = r) he will strictly prefer to set vi = a upon receiving signal a (i.e. (1)

holds strictly when si = a).15

Corollary 1 follows immediately from Lemma 1 and shows that in any other equilibrium of

GK
n,q, behavior is ordered in the sense that σ(a) > σ(r), and that a properly mixed action is

used after receiving at most one of the signals.

Corollary 1

Any equilibrium of any game GK
n,q has the following form: σ(r) = 0, σ(a) ≥ 0, or 0 < σ(r),

σ(a) = 1.

By virtue of Lemma 1, equilibria of the form σ(r) = 0, 0 < σ(a) < 1 are fully characterized

by solutions to the equation Ra(n, (σ(a), 0)) = 0 and equilibria of the form 0 < σ(r) <

13We use the abbreviated notation Rsi(n, σ) ≡ Rsi(pA, α, β, ε, q, n,K,W,C, σ) unless we need to stress the

dependence of R on the other parameters.
14When K = 0, σ(a) = σ(r) = 1 is an equilibrium as long as q ≥ 1

n . With every member voting to accept,

the innovation is accepted by the committee for sure and expert i’s action has no impact on his payoff.
15When K = 0 a stronger relation holds: Specifically, with the exception of the case in which everyone

votes to reject, agents always have a strictly smaller willingness to reject after observing si = a than after

observing si = r.
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1, σ(a) = 1 are fully characterized by solutions to the equation Rr(n, (1, σ(r))) = 0.16

This allows us to characterize the equilibria of the model using the following function:

R(n, z) =

{
Ra(n, (z, 0)) if z ≤ 1

Rr(n, (1, z − 1)) if z > 1

Where z = σa + σr. Importantly, in contrast to Ra and Rr, the last argument of R is one-

dimensional. Therefore, with all parameters other than z being held constant, the equilibria

of GK
n,q correspond to the values of z that are roots of R when z 6= 1, as the function is

continuous for all z 6= 1, or to a crossing at the point of discontinuity in case z = 1, which

corresponds to the equilibrium σ = (1, 0). We can now present the proposition characterizing

the non-babbling equilibrium:

Proposition 1 (Equilibrium Characterization)

(1) If a non-babbling equilibrium z∗ exists, it is unique.

(2) If GK
n,q has a non babbling equilibrium, then so does GK

n,q′ for any q′ > q.

(3) If an equilibrium z∗ 6= 1 exists then ∂R(n,z∗)
∂z

> 0.

As exemplified by Callander (2008), in voting games with idiosyncratic payoffs there are

often multiple equilibria, and this multiplicity limits the significance of comparative static

analysis. It turns out that in our model non-trivial-equilibria are unique, and we establish

this to be the case by applying the recent results of Quah and Strulovici (2012). We discuss

the main idea of the proof in what follows, relegating the details to the Appendix.

The difficulty in characterizing the set of roots of R(n, z) (and thereby the equilibria of the

game), stems from the fact that the function is non-monotonic, and discontinuous at z = 1.

However, there are two main properties of R that hold when K > 0 that exclude most cases

that would allow for multiplicity. These are: (1) If Rr(n, (1, 0)) ≤ 0 then the jump at the

discontinuity is positive (Ra(n, (1, 0)) < Rr(n, (1, 0))), which follows from Lemma 1. (2) In

each of the two continuous segments (z ∈ (0, 1] and z ∈ (1, 2)) R has the single crossing

property in z. This implies both that R has at most one root in each of these two segments,

and also that the crossing of the z axis must be from negative to positive. Establishing that

R has the single crossing property in each of these two segments using standard techniques

is not possible, since the signs of its first and second derivatives change frequently. We can

16 The reason is that by Lemma 1, if Ra(n, (σ(a), 0)) = 0, it must be the case that Rr(n, (σ(a), 0)) > 0

so (σ(a), 0) is an equilibrium. Similarly if Rr(n, (1, σ(r))) = 0 then Ra(n, (1, σ(r))) < 0 so (1, σ(r)) is an

equilibrium.
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z

R

Figure 1: This case is excluded by (1), since Rr(n, (1, 0)) ≤ 0 implies that the jump at z = 1

must be positive.

however express R as a linear combination of functions which are always non-negative or

non-positive and which can be readily seen to satisfy the single crossing property. The main

result of Quah and Strulovici (2012) establishes conditions under which linear combinations

of single-crossing functions are themselves single crossing, and these conditions are met by

each of the continuous segments of R. By (2) the only way in which there can be an

equilibrium at z ≥ 1 is if Rr(n, (1, 0)) ≤ 0 (illustrated in Figure 1), but then it follows that

Ra(n, (1, 0)) < Rr(n, (1, 0)) ≤ 0, so by (1) in this case there is no equilibrium z ∈ (0, 1).

Next, we turn to the comparative statics of the non-babbling equilibrium with respect to

K. We denote the unique non-babbling equilibrium of GK
n,q (if it exists) by σKn,q and its

one dimensional representation by zKn,q = σKn,q(a) + σKn,q(r).
17 Throughout what follows,

we alternate between the σKn,q and zKn,q based on convenience. Proposition 1 allows us to

characterize the effect of increasing K, which is captured by the following Claim.

Claim 1 (Comparative statics: K)

If z∗ 6= 1 then
∂z∗n,q

∂K
> 0. It then follows that pzKn,q

(X = a) and in particular, both pzKn,q
(X =

a|t = a) and pzKn,q
(X = a|t = r) are decreasing in K.

Claim 1 follows immediately from observing in equation (1) that as long as z = σ(a)+σ(r) is

positive, increasing K simply shifts R upwards. As established using the results of Quah and

17Given zKn,q, the actual values of σK
n,q(a) and σK

n,q(r) can be recovered as σK
n,q(a) = zKn,q and σK

n,q(r) = 0

if zKn,q ≤ 1 and σK
n,q(a) = 1 and σK

n,q(r) = zKn,q − 1 if zKn,q > 1.
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Strulovici (2012), any crossing can only take place from negative to positive and therefore

this upward shift causes the new crossing to take place at z′ < zKn,q (unless the crossing

happens exactly at the discontinuity (z = 1)). Generically, a small enough change of K at

an equilibrium z∗ = 1 preserves this as the unique equilibrium of the game.18

The straightforward intuition for Claim 1 is that K indexes the conflict of interest among

committee members. For any q < n−1
n

(all decision rules excluding unanimity), a positive

K implies that if the members believe that the innovation should be approved, any given

expert i would rather have the rest of the committee to approve it, and hedge against the

disesteem payoff by setting vi = r. The motive for avoiding potential disesteem is increasing

in K. Therefore, to sustain positive approval rates at higher values of K it is necessary that

all committee members are relatively more pivotal, and/or for P (X = a|ω = R) to decrease.

Part (3) of Proposition 1 implies that in equilibrium the only way of doing this is by lowering

z.19

3.1 Large Committees

In this section, we analyze the consequences of disesteem payoffs for large n. In order to

compare, we first characterize large committee outcomes for K = 0 (G0
n,q).

Proposition 2 (No disesteem payoffs: Information aggregation)

When K = 0 and committee members act according to the non-babbling equilibrium, the

decision of the committee converges almost surely to the state of the art for all q ∈ (0, 1) as

n approaches infinity.

Proposition 2 states the analogous result to Feddersen and Pessendorfer’s (1998) Proposition

3 (proved in the supplementary appendix as Corollary 2): in the absence of disesteem payoffs,

regardless of q, decisions by large committees almost surely converge to the state of the art.

This gives us an appropriate benchmark for our main results. In particular, the following

proposition shows that for positive yet sufficiently small K, in the special case in which

the state of the art is a perfect reflection of the truth (SoW), committees make the correct

decision with probability 1 as n→∞.

18There is a simple argument, that essentially provides the same result as Claim 1 without requiring

Proposition 1 (single crossing). Let z∗∗n,q denote the maximum crossing (in case there are many). Since we

know that when all other agents vote to accept, any agent i finds it strictly optimal to reject (R(n, 2) > 0),

this last crossing at z∗∗n,q must be from bottom to top (with the exception of a possible tangency). It follows

that if
∂z∗∗

n,q

∂K exists it must be positive.
19It is important to note that this is a property of the equilibrium and not a global property of R.
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Proposition 3 (Disesteem payoffs, SoW: Conditional information aggregation)

Assume that W
C
∈
( ε2(1−pA)
(1−ε)2pA

, (1−pA)
pA

)
and

K <
pAW

(
(1−ε)2
ε

)
− Cε(1− pA)

ε(1− pA) 1−ε
1−2ε

(1)

If q = 1
2
, then σ(a) = 1, σ(r) = 0 is an equilibrium for all sufficiently large n. In particular,

this implies that the Condorcet Theorem holds for all K satisfying the inequality above.20

The intuition for this result (proved in the appendix) is that, with σ(a) = 1, σ(r) = 0,

the probability that the committee makes the wrong decision converges to 0 at the same

rate as the probability that a given agent is pivotal, and therefore the ratio of the the

two probabilities, p(piv|ω = A)/p(X = A|ω = R), approaches a strictly positive constant.

Therefore, when K is sufficiently small relative to W , the benefit of voting to accept given

a signal of accept outweighs the exposure to the disesteem payoff in large committees, and

truthful voting is supported in equilibrium.

In stark contrast to Proposition 3, under the SoA model we show that as n grows, the

behavior of the committee given any equilibrium of GK
n,q converges to its behavior under the

babbling strategy. That is, for any β, α > 0 the committee converges to always rejecting the

innovation.

Proposition 4 (Disesteem payoffs, SoA: No information aggregation)

Let K > 0 and consider the sequence of games GK
n,q and any sequence of symmetric strategy

profiles σn, such that for each n, σn is an equilibrium of GK
n,q. We let pσn(X = a) denote

the probability that the committee accepts the innovation in game GK
n,q, playing according

to σn. Then, pσn(X = a)→ 0 as n→∞. That is, for all δ > 0, there exists nδ such that for

all n > nδ, pσn(X = a) < δ.

The proof of Proposition 4 has two parts, which can be illustrated by reference to the RHS

and LHS of the following rearrangement of equation (1), representing expert i’s willingness

to vote to accept the innovation upon receiving signal si, when all other members play

according to σ,

Wpσ(pivi, ω = A|si)− Cpσ(pivi, ω = R|si) ≥ Kpσ(X = a, ω = R|si) (1′)

First, we show that under any q-rule, LHS converges to zero as n approaches infinity. Next

we show that, due to the state of the art layer, the RHS, while decreasing under some

20Note that this is a sufficient, but not necessary, condition. In particular, this proposition specifies

conditions under which voting is truthful (σ(a) = 1, σ(r) = 0) given a majority rule and K positive, a

stronger condition than is needed for the Condorcet Theorem to hold. Also, if the disesteem payoff is

“diluted” as n grows, then the condition on K is not restrictive. We discuss this, and the robustness of the

following SoA result to dilution, in section 3.3.

14



{σa, σr}, is always strictly bounded away from zero. Intuitively, as the size of the committee

grows, the probability of influencing the committee decision, and hence of obtaining W rather

than −C, approaches zero. The probability the negative disesteem payoff realizes, however,

is bounded away from zero.

Corollary 2 (Behavior)

Let K > 0. There exists n∗ such that for all n > n∗, σn(a) < q
1−ε , where σn is any symmetric

equilibrium of GK
n,q.

Proposition 4 and its corollary implies a striking difference in the equilibrium behavior of

committees of sufficiently large size with respect to their behavior with no disesteem payoffs–

no matter how small these disesteem payoffs are. In particular, Propositions 2 and 3 show

that the unique non-babbling equilibrium of G0
n,q converges to the decision of a single agent

with representative preferences and direct access to the state of the art (state of the world).

In contrast, Proposition 4 tells us that no matter how small, when K > 0, and for sufficiently

large n, the committee essentially always rejects the innovation, implying that it will wrongly

reject the innovation with high probability.

Comparing the results of Propositions 3 and 4, the propositions show that: under the SoW

model, information aggregation can be sustained with disesteem payoffs since both the prob-

ability of being pivotal and the probability the committee wrongly accepts the innovation

approach zero; under the SoA model, however, the probability the committee wrongly ac-

cepts the innovation is bounded away from zero whenever p(X = A) is bounded away from

zero. Therefore, the mechanism that sustains information aggregation in the SoW model is

absent in the SoA model. Moreover, we demonstrate that this difference is particularly stark

since it holds in the limit as the SoA model approaches the SoW model (α and β approach

zero). This exposes a discontinuity in the standard model, where only a marginal deviation

away from the SoW assumption changes equilibrium behavior from truthful to babbling.

3.2 Comparative Statics

In this section, we characterize the marginal effect of changes in the exogenous parameters

on the non-babbling equilibrium z∗. The following is a Corollary of Proposition 1:

Corollary 3 (Signs)

For all parameter values such that z∗(pA, α, β, ε, q, n,K,W,C) exists and is different from 1,

we have:

• ∂z∗

∂W
> 0,

∂z∗

∂C
< 0.
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• ∂z∗

∂pA
> 0,

∂z∗

∂α
> 0 and

∂z∗

∂β
< 0.

• z∗ is weakly increasing in q.21

In order to establish the first two sets of results we rely on the characterization of the

willingness to reject R, summarized in Figure 1. Note that the effects of α = p(ω = A|t = r)

and β = p(ω = R|t = a) have opposite signs; a higher α and a lower β both map onto a

greater likelihood of ω = A, which shifts the expert’s willingness to reject, R, down. Since

R is increasing in z at all equilibria, the unique non-babbling equilibrium under a higher α

(or lower β) must occur at a higher z.

In terms of the effect of q on z∗, we use the result of Quah and Strulovici (2012) to show that

the negative of the willingness to reject, −R, has the single crossing property in bnqc. Thus,

it follows that in any non-babbling equilibrium, the willingness of any committee member

i to vote to accept the innovation is increasing in the decision threshold bnqc. This result

also has an intuitive explanation: Fixing the behavior of all other agents, an increase of bnqc
from m to m′, has two effects. First, it makes the committee less likely to accept, and thus

reduces i’s exposure to the disesteem payoffs. Second, conditional on being pivotal, i infers

that the other agents have received a greater number of a signals under m′ than under m,22

and thus assigns a higher probability on ω = A. Since both these effects lower the agent’s

willingness to reject the unique non-babbling equilibrium under a higher q must occur at a

(weakly) higher z.

Note, however, that the overall effect of an increase in q on the probability that the committee

accepts the innovation depends on whether the increase in z is high enough to outweigh the

increase in the decision threshold. In general, the relation between q and the probability

of acceptance is non-monotonic and, somewhat surprisingly, as shown in Figure 2, a higher

value of q may imply a higher acceptance probability p(X = a).

The comparative statics with respect to n and ε are non-monotonic, and therefore cannot be

generally classified by sign. However, these non-monotonicities represent interesting cases

that we explore further. Fixing the behavior of all members other than i, increasing n has

two effects: (1) Fixing the fraction of a signals received by other experts, i’s confidence on

his inference on the state of the world increases. Therefore, conditional on i being pivotal,

voting for a becomes less ‘risky.’ (2) The probability of i being pivotal decreases, and

therefore so does the importance of his payoffs that condition on being pivotal. Thus, the

21q affects z∗ through bnqc and therefore z∗ is discontinuous and not differentiable in q.
22Formally, under m′, the distribution of the number of a signals conditional on i being pivotal first order

stochastically dominates the same distribution under m.
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Figure 2: Monotonicity of z and non-monotonicity of p(X = a|ω) and p(X = a|t) in q.

Parameters: ε = 0.3, W = 3, C = 4, K = 1/3, pA = 0.5, α = 0.4, β = 0.3, n = 101. Left

graph: z is monotonic in q, yet p(X = A|t) (middle graph) p(X = a|ω) (right graph) are

not. The dashed lines represent p(X = a|t = r) and p(X = a|ω = R) and the continuous

lines p(X = a|t = a) and p(X = a|ω = A).

Figure 3: Non-monotonicity of σ(a), p(X = a|t = a) and p(X = a|ω = A) in n. The

jaggedness of the figures is due to the discreteness of the problem (we are interested in the

“low frequency variation”). Parameters: ε = 0.3, W = 3, C = 4, pA = 0.5, α = 0.4, β = 0.3

Top Figures: q = 0.5, z is weakly monotonic, yet p(X = a|t = a) and p(X = a|ω = a) is

non-monotonic. Bottom Figures: q = 0.75, None of z, p(X = a|t = a) and p(X = a|ω = A)

are monotonic. The smooth lines represent the case K = 1
3
. As a benchmark, the dotted

lines represent the situation with no disesteem payoff (K = 0).

relative salience of disesteem payoffs–which accrue regardless of whether he is pivotal or not–

increases. Proposition 4 shows that for large enough increases in n, (2) always predominates.

However, for small increases in n this may not be the case, as seen in Figure 3.
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Figure 4: Non-monotonicity of z, p(X = a|t = a), and p(X = a|ω = A) in ε. Parameters:

n = 25, W = 3, C = 4, pA = 0.5, α = 0.4, β = 0.3. Note that z is non-monotonic. Despite

the initial rise in z, p(X = a|t = a) is weakly decreasing throughout, and p(X = a|ω = A) is

non-monotonic. The smooth lines represent the case of K = 1
3
. As a benchmark, the dotted

lines represent the situation with no disesteem payoff (K = 0).

The case of ε is also interesting. On the one hand, a smaller ε implies that any expert’s

signal is more likely to reflect the state of the art, and indirectly the state of the world. From

this perspective, any given member i becomes more willing to vote for a upon receiving an

a signal. On the other hand, a lower ε implies that all else equal, i has a better prediction

of how the other experts will vote. In particular, under a smaller ε, holding the strategy

used by other experts constant, upon receiving an a signal i is more confident that other

members will vote a.23 Therefore, conditional on receiving signal a expert i is less likely to

be pivotal, and has a smaller incentive for vote a than with the higher ε. These competing

effects can result in non-monotonicity, which can be seen in the example shown in Figure 4.

3.3 Dilution of Disesteem Payoffs

Lastly, we discuss the extent to which our result is robust to dilution of disesteem payoffs.24

It is reasonable that the size of the disesteem payoff is smaller in a larger committee, since

more individuals share the blame for approving a bad innovation. The main results still

obtains, however, as long as the speed of dilution is “slow enough.” Consider the following

variation of the sequence of games (GK
n ) analyzed in Section 3.1. We let the game (G

f(n)
n ) be

just as (GK
n ) with the exception of the disesteem component of the payoffs, which we define

in a slightly more general way. In particular let the payoff function be given by:

23Note that equilibria are always ordered, in the sense that σ(a) > σ(r).
24A discussion of deliberation and the robustness of our main results to information pooling can be found

in a working version of the paper, available online at http://mwpweb.eu/JustinValasek/.
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U(X, vi, ω) =


0 if X = r

W if X = a, ω = A

−C if X = a, ω = R, vi = r

−(C + fn(n, {vi}ni=1)) if X = a, ω = R, vi = a

Where for each n, f(n, {vi}ni=1) > 0 and is bounded from below by some deterministic

function gn of n, gn : N+ → R such that the sequence gn(n) converges to 0 at a lower speed

than 1√
n
. That is, for all n, fn(n, {vi}ni=1) ≥ gn(n), where lim

n→∞

√
ngn(n)→∞.

Note that the games (GK
n ) of Section 3.1 are a special case of this formulation, as f(n) = K

being constant in n certainly has the required property ( lim
n→∞

√
nK → ∞). This definition

also accommodates other interesting cases; for example, let f(n, {vi}ni=1) = K
log(n)

.

First, note that Proposition 3 extends to the case of dilution:

Corollary 4

Assume that W
C
∈
(
ε2(1−pA)
(1−ε)2pA

, (1−pA)
pA

)
. If lim

n→∞
f(n, {vi}ni=1) = 0 and q = 1

2
, then σ(a) = 1,

σ(r) = 0 is an equilibrium for all sufficiently large n.

Trivially, the condition on K satisfied for large n if lim
n→∞

f(n, {vi}ni=1) = 0.

Next, we show that Proposition 4 extends to dilution of the form outlined above:

Proposition 5

Let (fn) be a sequence of functions satisfying the properties discussed above and consider the

sequence of games Gfn
n,q and any sequence of symmetric strategy profiles σn, such that for each

n, σn is an equilibrium of Gfn
n,q. We let pσn(X = a) denote the probability that the committee

accepts the innovation in game Gfn
n,q, playing according to σn. Then, pσn(X = a) → 0 as

n→∞. That is, for all δ > 0, there exists nδ such that for all n > nδ, pσn(X = a) < δ.

The proof of Proposition 5 is analogous to the proof of Proposition 4, and follows by simply

dividing both sides of (1′′) by gn.

3.4 Information Pooling

Here, we consider the effect of information pooling of the experts’ signals on the collective

action problem introduced by disesteem payoffs. Since committees of experts most often

discuss prior to voting, the committee members can then share their private signals with

the other members of the committee. Second, we characterize the extent to which Proposi-

tion 4 is robust to dilution of disesteem payoffs. Suppose each member reveals his private

signal to the committee prior to voting, which implies that the precision of the information

available to individual committee members is increasing in n. Since each expert now has the
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same information set, {s1, ..., sn} ≡ {si}n, symmetric strategies imply that every member

chooses to approve or reject the innovation with the same probability, which we denote by

σ(s1, s2, ..., sn).

Corollary 5 (Robustness to Increasing Precision)

Let K > 0 and let each committee member observe the full set of signals {si}n. Following

the notation of Proposition 4, for any q-rule, pσn(X = a) → 0 as n → ∞. That is, for all

δ > 0, there exists nδ such that for all n > nδ, pσn(X = a) < δ.

Corollary 5 follows directly from Proposition 4 since that result holds under perfect signals

(ε = 0). More specifically, the structure of each expert’s decision rule is unchanged, with

the only difference being that the probabilities condition on the full set of signals:

Kpσ(X = a, ω = R|{si}n)−Wpσ(pivi, ω = A|{si}n) + Cpσ(pivi, ω = R|{si}n) ≤ 0 (1′′)

Corollary 5 extends Proposition 4 and shows that under pooling of private signals, large

committees will reject innovations almost surely.

In contrast to Corollary 5, without disesteem payoffs (K = 0) and under information pooling,

there always exists a single-agent efficient equilibrium. We call an equilibrium single-agent

efficient if for every realization of signals (s1, s2, ..., sn), the committee approves the innova-

tion if, and only if, it would be approved by a single-agent committee whose only member

has access to (s1, s2, ..., sn).25 This disparity with respect to K > 0 stems from the fact

that with disesteem payoffs and any q-rule different from unanimity (q < n−1
n

), payoffs are

heterogeneous since it is only the experts who vote to accept that are exposed to disesteem

payoffs. Hence, even though the experts agree on the optimal committee outcome, the col-

lective action problem remains and each expert will face an incentive to free-ride and vote

to reject.

Given Corollary 5, the result of the following proposition is remarkable: under unanimity

and K > 0 a single-agent efficient equilibrium exists, and this is true also if the experts have

the option to misrepresent their signals. In appendix A, we present a formal model with an

initial stage of costless communication.

Proposition 6 (Efficiency under Unanimity)

Let K = 0 and consider any q < 1. Under information pooling there exists a single-agent

efficient equilibrium, even if experts are able to mis-represent their signals. This is only true

for K > 0 when n−1
n
≤ q < 1 (unanimity).

25This representative agent receives a payoff of 0 if the innovation is rejected, W if it is accepted and

ω = A and −(C +K) if he accepts it and ω = R.
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The intuition for the proof of Proposition 6 is simple: Assuming all experts observe the

full set of signals and, if approval is single-agent efficient, then no agent has an incentive to

deviate. This is true when K = 0 because the payoff of each committee member coincides, for

all possible outcomes, with that of the single agent. This is also the case under unanimity and

K > 0, since each expert’s vote is pivotal when the committee accepts and thus the expert

faces exactly the same decision problem as the representative single agent. Furthermore, by

mis-representing his signal, an expert is only able to alter the final outcome in the same way

as he would by correctly presenting his signal and modifying his vote (see also Coughlan

(2000)).

Proposition 6 shows that costless communication can lead to efficiency in the presence of

disesteem payoffs, but only if it is paired with a unanimity rule. This result supports the

argument of Coughlan (2000) for why certain committees, such as juries, are better off using

a unanimity rule, despite its disadvantages (see Feddersen and Pesendorfer (1998)).

Our analysis of information aggregation under information pooling yields the following two

insights. First, it shows that, to the extent that it provides committee members with more in-

formation, information sharing cannot overcome the collective action problem in committees.

Second, it highlights the fact that in our setting, the conflict of interest among committee

members depends on the decision rule.

4 Conclusion

In this paper, we detail the effect of disesteem payoffs on information aggregation in commit-

tees. We show that under the “state of the art” model of expertise, disesteem payoffs lead

large committees to be over-cautious and reject new innovations as individual committee

members seek to save face and avoid being blamed for a bad decision. Our paper also shows

that the predictions of models of information aggregation can be sensitive to the standard

assumption that experts’ signals are independently distributed conditional on the state of

the world. This distinction is empirically relevant, since it is unlikely that the decision that

aggregates all current knowledge perfectly identifies the true state of the world; that is,

due to imperfect evidence, even the “best” decision might be wrong ex post. Additionally,

the state of the art model in this paper implies a particular correlation structure between

experts’ signals, and the general implications of such correlation warrant further study.

Second, our paper shows that idiosyncratic payoffs can affect information aggregation even

when they reinforce common payoffs. Specifically, idiosyncratic payoffs can distort decisions

when they introduce asymmetry in payoffs. This asymmetry need not be large; we show

here that even a marginal deviation from common payoffs can distort outcomes in large
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committees. Asymmetry can occur either due to informational asymmetry, e.g. when in-

formation regarding the adequacy of a drug is only revealed when the drug is passed, or if

the saliency of individual votes vary with the committee outcome. One particularly relevant

environment is a political setting, where idiosyncratic payoffs can be interpreted as changes

in reelection probabilities. Voting records of politicians are heavily scrutinized in US legisla-

tures, and the saliency of a particular representative’s vote might condition on the legislative

outcome. Therefore, an interesting area for future study is the effect of idiosyncratic payoffs

on information aggregation in legislatures.
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Appendix A: Proofs

We begin by noting that our game is equivalent to a single layer game (that does not make

reference to the state of the world ω, but just to the state of the art t) with the following

payoff function:

U(X, vi, t) =



0 if X = r

Wp(ω = A|t = a)− Cp(ω = R|t = a) if X = a, t = a, vi = r

−(Cp(ω = R|t = r)−Wp(ω = A|t = r)) if X = a, t = r, vi = r

Wp(ω = A|t = a)− (C +K)p(ω = R|t = a) if X = a, t = a, vi = a

−((C +K)p(ω = R|t = r)−Wp(ω = A|t = r)) if X = a, t = r, vi = a

Unless otherwise stated we establish the following results, by analyzing the slightly more

general game with the following payoff structure:26

U(X, vi, t) =



0 if X = r

W ′ if X = a, t = a, vi = r

−C ′ if X = a, t = r, vi = r

W ′ −K1 if X = a, t = a, vi = a

−C ′ −K2 if X = a, t = r, vi = a

Our game is a special case of this second one. However this second structure is strictly

more general. For instance, in our game we would always have K1 = Kp(ω = R|t = a),

K2 = Kp(ω = R|t = r) which implies K1 < K2 since β < 1−α. Denote the set of all agents

j 6= i, such that vj = a, by Hi, and let pivi, denote the event |Hi| = bnqc. Expert i finds it

optimal to set vi = a upon receiving signal si, when all other agents are using strategy σ if,

and only if, Rsi(pA, α, β, ε, q, n,K1, K2,W,C, σ), abbreviated Rsi(n, σ), is nonpositive :

Rsi(n, σ) = K1pσ

(
|Hi|+ 1

n
> q, t = a|si

)
+K2pσ

(
|Hi|+ 1

n
> q, t = r|si

)
−W ′pσ(pivi, t = a|si) + C ′pσ(pivi, t = r|si) ≤ 0

Proof of Lemma 1:

Assume Rr(n, σ) ≤ 0, and that at least one of σ(r) or σ(a) is strictly positive. Then:

−W ′pσ(pivi|t = a)paε+ C ′pσ(pivi|t = r)(1− pa)(1− ε) +

26We are abusing notation slightly, as we are just referring to the structure of the payoff function. The

coincidence of W and C in the representations above and below does not mean that they are equal.
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K1pσ

(
|Hi|+ 1

n
> q|t = a

)
paε+K2pσ

(
|Hi|+ 1

n
> q|t = r

)
(1− pa)(1− ε) ≤ 0

≡ paε

(
−W ′pσ(pivi|t = a) +K1pσ

(
|Hi|+ 1

n
> q|t = a

))
≤

(1− pa)(1− ε)
(
−C ′pσ(pivi|t = r)−K2pσ

(
|Hi|+ 1

n
> q|t = r

))
⇒ paε

(
−W ′pσ(pivi|t = a) +K1pσ

(
|Hi|+ 1

n
> q|t = a

))
< 0

Since
(
−C ′pσ(pivi|t = r)−K2pσ

(
|Hi|+1
n

> q|t = r
))

< 0 , given that since by assumption

at least one of σ(a) and σ(r) is positive, and therefore p
(
|Hi|+1
n

> q|t = r
)
> 0.

Now,

Ra(n, σ) =

(1− ε)pa
(
−W ′pσ(pivi|t = a) +K1pσ

(
|Hi|+ 1

n
> q|t = a

))
−

ε(1− pa)
(
−C ′pσ(pivi|t = r)−K2pσ

(
|Hi|+ 1

n
> q|t = r

))
< εpa

(
−W ′pσ(pivi|t = a) +K1pσ

(
|Hi|+ 1

n
> q|t = a

))
−

(1− ε)(1− pa)
(
−C ′pσ(pivi|t = r)−K2pσ

(
|Hi|+ 1

n
> q|t = r

))
= Rr(n, σ)

The strict inequality follows from the facts that:

(1)
(
−W ′pσ(pivi|t = a) +K1pσ

(
|Hi|+1
n

> q|t = a
))

< 0 and(
−C ′pσ(pivi|t = r)−K2pσ

(
|Hi|+1
n

> q|t = r
))

< 0 (proved above)

(2) ε < 1
2

and therefore (1− ε) > ε. (Lemma 1)

Proof of Corollary 1:

The proof of Corollary 1 proceeds by showing that if an equilibrium σ(a), σ(r) is not bab-

bling (σ(a) = σ(r) = 0) then it necessarily must be in one of the two categories (1) σ(r) = 0,

σ(a) > 0, or (2) σ(r) > 0, σ(a) = 1 . So suppose the equilibrium is not a babbling equi-

librium. There are two possibilities: either σ(r) = 0 or σ(r) > 0. If σ(r) = 0, then we are

done, since by assumption the equilibrium is not babbling, and therefore it must be the case

that σ(a) > 0, in which case the equilibrium is in category (1). So assume σ(r) > 0. Then

for a player to be best responding it must be the case that Rr(n, σ) ≤ 0, as otherwise he

would find it strictly better to set vi = r (contradicting σ(r) > 0). By Lemma 1 this implies
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Ra(n, σ) < Rr(n, σ) ≤ 0, and therefore the expert finds it strictly optimal to set vi = a. It

must therefore be the case that σ(a) = 1 and the equilibrium is in category (2). (Corollary 1)

Proof of Proposition 1:

We begin by showing part (1). The proof establishes that R(n, z) has the single crossing

property in z ∈ (0, 2]. Given that Rr(n, (1, 1)) > 0 for all q < n−1
n

,27 it follows that any

crossing must actually take place in (0, 2), so it suffices to show that R(n, z) has the single

crossing property in z ∈ (0, 2). We proceed as follows: (A) We first show that Ra(n, (z, 0))

has the single crossing property for z ∈ (0, 1] and Rr(n, (1, z − 1)) has the single crossing

property for z ∈ [1, 2). We do so by relying on the main result of Quah and Strulovici (2012)

which provides sufficient and necessary conditions for non-negative sums of functions having

the single crossing property to also have the single crossing property. And then (B) we use

Lemma 1 to argue that if R(n, z) has a crossing in (0, 1) then it cannot have one in [1, 2).

(A) Ra(n, (z, 0)) has the single crossing property for z ∈ (0, 1] and, Rr(n, (1, z − 1)) for z ∈ [1, 2).

Note that for z ∈ (0, 1], Ra(n, (z, 0)), is just

Ra(n, (z, 0)) = Kpz(X = a, ω = R|a)−Wpz(pivi, ω = A|a) + Cpz(pivi, ω = R|a).

Which is a special case of the general form:

G(y) : D1pz(pivi|t = r) +D2pz

(
|Hi|
n
> q|t = a

)
+

D3pz

(
|Hi|
n

> q|t = r

)
−D4pz(pivi|t = a). 28

where D1, D2, D3 and D4 are nonnegative constants. The result will follow as a direct

application of Lemma 1 in the appendix of Quah and Strulovici (2012). For convenience we

reproduce the Lemma and the relevant definitions below (as they apply to our paper).

Definition 2 (Quah and Strulovici (2012)) Let S be partially ordered set. A function

f : S → R satisfies the single crossing property (SCP) if:

• f(s) ≥ (>)0 =⇒ f(s′) ≥ (>)0 whenever s′ > s.

Note that G(z) has at most one solution if and only if it satisfies (SCP).29 G(z) is a non-

27Given that as long as the decision rule is not unanimity, if all other agents surely accept the innovation,

any agent’s unique best reply is to reject it.
28We suppress explicitly noting the dependence on n as throughout this section n is kept constant.
29Note G(0) = 0 so in principle it could satisfy (SCP) by being constant at 0 for all z or by remaining

constant for an interval and then becoming positive. This possibility can be ruled out by verifying that there

exist points arbitrarily close to 0 whose image under G is not 0.
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negative linear combination of functions that satisfy (SCP ) in (0, 1).30 In their work, Quah

and Strulovici provide necessary and sufficient conditions under which such linear combina-

tions also satisfy (SCP ).

Definition 3 (Quah and Strulovici (2012)) A pair of functions f : S → R and g :

S → R satisfy the signed ratio monotonicity property (SR) if:

a) If g(s) < 0 and f(s) > 0 then − g(s)
f(s)
≥ − g(s′)

f(s′)
when s′ > s.

b) If g(s) > 0 and f(s) < 0 then −f(s)
g(s)
≥ −f(s′)

g(s′)
when s′ > s.

Lemma 2 (Quah and Strulovici (2012) (Lemma 1 in the Appendix))

Let F = {fi}1≤i≤M be a family of functions satisfying (SCP ) such that any two members

satisfy (SR). Then
M∑
i=1

αifi, where αi ≥ 0 for all i, satisfies (SCP ).

Consider the family of functions (1) py(pivi|t = r), (2) py

(
|Hi|
n
> q|t = a

)
, (3) py

(
|Hi|
n
> q|t = r

)
and (4) −pz(pivi|t = a), and notice that they all satisfy (SCP ) when z ∈ (0, 1]. The first 3

are nonnegative, so any pair among them satisfies (SR). It therefore suffices to show that

all the pairs formed by (4) and each of (1), (2) and (3) satisfy (SR).

Lemma 3

All pairs in the family {pz(pivi|t = r), pz

(
|Hi|
n
> q|t = a

)
, pz

(
|Hi|
n
> q|t = r

)
,−pz(pivi|t =

a)} satisfy (SR) for z ∈ (0, 1].

Proof of Lemma 3:

As stated above, we just need to check the pairs involving −pz(pivi|t = a), as all other pairs

involving components with the same sign satisfy the condition vacuously.

(1) −pz(pivi|t = a) and pz(pivi|t = r) . In this case, the condition is equivalent to pz(pivi|t=a)
pz(pivi|t=r)

being non-increasing in z.

pz(pivi|t = a) =

(
n− 1

bnqc

)
µbnqca (1− µa)n−1−bnqc and

pz(pivi|t = r) =

(
n− 1

bnqc

)
µbnqcr (1− µr)n−1−bnqc

where µa = (1− ε)z and µr = εz. Therefore:

30They do so trivially, as each of the four functions ((1) pz(pivi|t = r), (2) pz

(
|Hi|
n > q|t = a

)
, (3)

pz

(
|Hi|
n > q|t = r

)
and (4) −pz(pivi|t = a)) are 0 when evaluated at z = 0, and then either always positive

(the first 3) or alway negative (the 4th).
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pz(pivi|t = a)

pz(pivi|t = r)
=

(
1− ε
ε

)bnqc(
1− (1− ε)z

1− εz

)n−1−bnqc
This expression is non-increasing in z, if for all z, z′ ∈ (0, 1] where z < z′ we have(

1− (1− ε)z
1− εz

)
≥
(

1− (1− ε)z′

1− εz′

)
which can be seen to be true whenever ε ≤ 0.5.

(2) −pz(pivi|t = a) and pz

(
|Hi|
n
> q|t = a

)
. This case amounts to showing that the hazard

ratio of the binomial distribution evaluated at bnqc is decreasing for all success probabilities

between 0 and (1− ε).31 More generally, we will show that the hazard ratio evaluated at k:(
m
k

)
µka(1− µa)m−k

m∑
j=k+1

(
m
j

)
µja(1− µa)m−j

, is decreasing in µa ∈ [0, 1) for all m.

The hazard ratio is decreasing if, and only if, its multiplicative inverse is increasing, which

is true since:
m∑

j=k+1

(
m
j

)
µja(1− µa)m−j(

m
k

)
µka(1− µa)m−k

=
m∑

j=k+1

(
m
j

)(
m
k

) ( µa
1− µa

)j−k
.

and µa
1−µa is strictly increasing in µa ∈ [0, 1) as required.

(3) −pz(pivi|t = a) and pz

(
|Hi|
n
> q|t = r

)
. The analogous expression to the inverse hazard

ratio in this case (as a function of z) is:

m∑
j=k+1

(
m
j

)(
m
k

) ( (εz)j(1− εz)m−j

((1− ε)z)k(1− (1− ε)z)m−k

)
.

The derivative of
(

(εz)j(1−εz)m−j

((1−ε)z)k(1−(1−ε)z)m−k

)
w.r.t. z is:(

(εz)j(1− εz)m−j−1

z((1− ε)z)k(1− (1− ε)z)m−k+1

)
((j − k) + z((1− 2ε)m− j(1− ε) + kε))

The sign of this expression just depends on the sign of the linear function of z , (j − k) +

z((1−2ε)m−j(1−ε)+kε) which can be straightforwardly verified to be always non-negative

for ε < 0.5, and k < j ≤ m. We therefore have that the sum above is nondecreasing in z

and pz(pivi|t=a)
pz

(
|Hi|
n
>q|t=a

) is nonincreasing in z, as required. (Lemma 3)

We can therefore apply Quah and Strulovici’s Lemma (Lemma 2 above) to conclude that

G(z) can have at most one other solution (other than σ(a) = 0), in the interval z ∈ [0, 1]. We

end by noting that the “extreme” configuration z = 1, corresponding to σ(a) = 1, σ(r) = 0

31These are the bounds for µa as z varies between 0 and 1.
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requires just G(1) ≤ 0 and not the more restrictive G(1) = 0. The definition of (SCP ) also

implies that any crossing must take place from below the x-axis. But this means that either

G(z) is negative throughout the range (with the exception of G(0) = 0), in which case z = 1

defines an equilibrium provided that Rr(n, z) ≥ 0 (and is the only one), or it crosses the

x-axis, but if this is the case then having G(1) ≤ 0 would require a second crossing, which

we have shown to be impossible.

We now verify the analogous steps for the case z ∈ [1, 2)

For z ∈ (0, 1], Rr(n, (1, z − 1)), is just

Rr(n, (1, z − 1)) = Kpz(X = a, ω = R|r)−Wpz(pivi, ω = A|r) + Cpz(pivi, ω = R|r).
Once more, it is a special case of the form:

M(z) : D′1pz(pivi|t = r) +D′2pz

(
|Hi|
n

> q|t = a

)
+

D′3pz

(
|Hi|
n

> q|t = r

)
−D′4pz(pivi|t = a) = 0.

for some nonnegative constants D′1, D
′
2, D

′
3 and D′4. However, z now belongs to [1, 2). Since

M(z) and G(z) have the same form, analogous arguments to those used in (1) (2) and

(3) above apply, the main difference being that now µa = (1 − ε) + ε(z − 1) and µr =

(1− ε)(z − 1) + ε. Or letting y = z − 1, µa = (1− ε) + εy and µr = (1− ε)y + ε, y ∈ [0, 1).

Lemma 4

All pairs in the family {pz(pivi|t = r), pz

(
|Hi|
n
> q|t = a

)
, pz

(
|Hi|
n
> q|t = r

)
,−pz(pivi|t =

a)} satisfy (SR) for z ∈ [1, 2).

Proof of Lemma 4:

As above we just need to check the pairs involving −pz(pivi|t = a), as all other pairs,

involving components with the same sign, satisfy the condition vacuously.

(1) −pz(pivi|t = a) and pz(pivi|t = r) . In this case, the condition is equivalent to pz(pivi|t=a)
pz(pivi|t=r)

being non-increasing in z.

pz(pivi|t = a)

pz(pivi|t = r)
=

(
1− ε
ε

)bnqc−n+1(
(1− ε) + εy

(1− ε)y + ε

)bnqc
This expression is non-increasing in y, if for all y, y′ ∈ (0, 1] where y < y′ we have(

(1− ε) + εy

(1− ε)y + ε

)
≥
(

(1− ε) + εy′

(1− ε)y′ + ε

)
which can be seen to be true whenever ε ≤ 0.5.

(2) −pz(pivi|t = a) and pz

(
|Hi|
n
> q|t = a

)
. The argument presented above (for z ∈ (0, 1])

just relied on µa ∈ [0, 1), which contains the full range of µa, (1 − ε, 1), for z ∈ (1, 2), so it

applies directly to this case.
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(3) −pz(pivi|t = a) and pz

(
|Hi|
n
> q|t = r

)
. The analogous expression32 to the inverse haz-

ard ratio in this case (as a function of z) is:

m∑
j=k+1

(
m
j

)(
m
k

) (((1− ε)y + ε)j((1− ε)(1− y))m−j

((1− ε) + εy)k(ε(1− y))m−k

)
.

The derivative of
(

((1−ε)y+ε)j((1−ε)(1−y))m−j

((1−ε)+εy)k(ε(1−y))m−k

)
w.r.t. y is:(

(1− ε)(y(1− ε) + ε)j−1((1− y)(1− ε))m−j−1

(1− (1− y)ε)k+1(ε(1− y))m−k

)
(j(1− ε)− εk + y(jε− k(1− ε)))

The sign of this expression just depends on the sign of the linear function of z, j(1 − ε) −
εk + z(jε− k(1− ε)) which can be straightforwardly verified to be always non-negative for

ε < 0.5, and k < j ≤ m. We therefore have that the sum above is nondecreasing in z and
pz(pivi|t=a)

pz
(
|Hi|
n
>q|t=a

) is nonincreasing in z, as required. (Lemma 4)

(B) If R(n, z) has a crossing in z ∈ [1, 2), the it does not have a crossing in z ∈ (0, 1).

If there is a crossing with z ∈ [1, 2) then Rr(n, (1, 0)) ≤ 0, as the crossing must be from

below the x−axis. By Lemma 1, this implies Ra(n, (1, 0)) < Rr(n, (1, 0)) ≤ 0, and therefore

there can’t be any crossing in z ∈ (0, 1) (Part (1) Proposition 1)

So far we have shown that when a non-babbling equilibrium exists it is unique. We now go

on to the proof of part (2) of Proposition 1. For that purpose we study the willingness to

reject, as a function of m = bnqc and denote it R(m) (Ra(m) and Rr(m) when referring to

the two continuous segments (as functions of σ)).33

Lemma 5

−R(m) has the single crossing property (as a function of m = bnqc), for m ∈ {0, 1, 2, ..., n−
1}, for all z ∈ (0, 2).

The proof shows that when z ∈ (0, 2), the family

{−pz(pivi|t = r),−pz (|Hi| > m|t = a) ,−pz (|Hi| > m|t = r) , pz(pivi|t = a)} satisfies (SR).

As argued in the proof of Lemma 3, Ra(m) and Rr(m) are both nonnegative linear combi-

nations of this family of functions (they only differ in the values of the coefficients in the

linear combination). Lemma 2 from Quah and Strulovici (2012) then immediately leads to

the result.

32As above, we let y=z-1, and therefore y ∈ [0, 1).
33Note that the dependence of Rsi(pA, α, β, ε, q, n,K,W,C, σ) on q is only through the number of votes

required for acceptance, that is bnqc.
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Proof of Lemma 5:

We only need to check the pairs involving pz(pivi|t = a), as all other pairs, involving com-

ponents with the same sign, satisfy the condition vacuously.

(1) −pz(pivi|t = r) and pz(pivi|t = a) . In this case, the condition is equivalent to pz(pivi|t=r)
pz(pivi|t=a)

being non-increasing in m, or equivalently pz(pivi|t=a)
pz(pivi|t=r) being non-decreasing in m.

(1a) When z ∈ (0, 1],
pz(pivi|t = a)

pz(pivi|t = r)
=

(
1− ε
ε

)m(
1− (1− ε)z

1− εz

)n−1−m
Note that(

1− ε
ε

)m+1(
1− (1− ε)z

1− εz

)n−1−(m+1)

>

(
1− ε
ε

)m(
1− (1− ε)z

1− εz

)n−1−m
if and only if:(

1− ε
ε

)
>

(
1− (1− ε)z

1− εz

)
. Which is true for all ε < 1

2
.

(1b) When z ∈ (1, 2),
pz(pivi|t = a)

pz(pivi|t = r)
=

(
1− ε
ε

)m−n+1(
(1− ε) + εy

(1− ε)y + ε

)m
where y = z − 1. Note that,(

1− ε
ε

)m−n+2(
(1− ε) + εy

(1− ε)y + ε

)m+1

>

(
1− ε
ε

)m−n+1(
(1− ε) + εy

(1− ε)y + ε

)m
if and only if:(

1− ε
ε

)
>

(
(1− ε)y + ε

(1− ε) + εy

)
. Which is true for all ε < 1

2
.

(2) p(pivi|t = a) and −p (|Hi| > m|t = a). This case amounts to showing that the hazard

ratio of the binomial distribution is non-decreasing in m ∈ {0, ..., n− 1}. That is:(
n−1
m

)
µma (1− µa)n−1−m

n−1∑
j=m+1

(
n−1
j

)
µja(1− µa)n−1−j

, is non-decreasing in m, for all µa ∈ (0, 1).34

Consider m ∈ {0, ..., n− 2} (so m+ 1 ≤ n− 1). Then we require:(
n−1
m

)
µma (1− µa)n−1−m

n−1∑
j=m+1

(
n−1
j

)
µja(1− µa)n−1−j

≤
(
n−1
m+1

)
µm+1
a (1− µa)n−1−(m+1)

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1−j

≡ m+ 1

n− 1−m
≤
(

µa
1− µa

) n−1∑
j=m+1

(
n−1
j

)
µja(1− µa)n−1−j

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1−j

34Note that for z ∈ (0, 1], µa = (1−ε)z and for z ∈ (1, 2), µa = (1−ε)+ε(z−1). In either case µa ∈ (0, 1).
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But we can write,

(
µa

1− µa

) n−1∑
j=m+1

(
n−1
j

)
µja(1− µa)n−1−j

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1−j

=

(1− µa)
(

n−1∑
h=m+2

( h
n−h)

(
n−1
h

)
µha(1− µa)n−1−h + µna

1−µa

)
(1− µa)

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1−j

≥

n−1∑
h=m+2

( h
n−h)

(
n−1
h

)
µha(1− µa)n−1−h

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1−j

≥

m+1
n−m−1

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1

n−1∑
j=m+2

(
n−1
j

)
µja(1− µa)n−1−j

=
m+ 1

n−m− 1

as required.

(3) p(pivi|t = a) and −p
(
|Hi|
n
> q|t = r

)
. We need to verify:

≡ m+ 1

n− 1−m
≤
(

µa
1− µa

) n−1∑
j=m+1

(
n−1
j

)
µj+1
r (1− µr)n−1−j

n−1∑
j=m+2

(
n−1
j

)
µjr(1− µr)n−1−j

Using the same arguments as in (2) above we have:

≡ m+ 1

n− 1−m
≤
(

µr
1− µr

) n−1∑
j=m+1

(
n−1
j

)
µj+1
r (1− µr)n−1−j

n−1∑
j=m+2

(
n−1
j

)
µjr(1− µr)n−1−j

≤
(

µa
1− µa

) n−1∑
j=m+1

(
n−1
j

)
µj+1
r (1− µr)n−1−j

n−1∑
j=m+2

(
n−1
j

)
µjr(1− µr)n−1−j

Since
µa

1− µa
≥ µr

1− µr
, given that σ(a) ≤ σ(r) throughout our region of interest.35

We can therefore apply Lemma 2 (from Quah and Strulovici (2012)) to conclude that R(m)

has the single crossing property in m = bnqc, whenever z ∈ (0, 2). (Lemma 5)

Suppose that there exists a non-babbling equilibrium for some q. Let q′ > q and m = bnqc,
m′ = bnq′c. Evaluated at m we have that either (1) Ra(m) = 0, or (2) Rr(m) = 0 (depending

on what kind of equilibrium we have).36 Assume that it is of form (1).37 By Lemma 5 we

35When z ∈ (0, 1], σ(r) = 0 and σ(a) > 0. When z ∈ (1, 2), σ(r) < 1 and σ(a) = 1.
36If the equilibrium occurs at z = 1, and is of the form Ra(m, (1, 0)) < 0 and Rr(m, (0, 1)) > 0, then

Ra(m′, (1, 0)) < 0. If Rr(m′, (0, 1)) ≥ 0, then z = 1 is also an equilibrium at m′. If Rr(m′, (0, 1)) < 0 then

the last case considered in this paragraph applies.
37It will be readily seen that the argument applies to the other case.
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know that −Ra(m) = 0 has the single crossing property in m, and therefore evaluated at

m′ > m, Ra(m
′) ≤ 0.

If Ra(m
′) = 0 then we have an equilibrium, so assume Ra(m

′) < 0. Now lets fix m′ and

look at Ra as a continuous function of z, Ra(m
′, (z, 0)). If Ra(m

′, (1, 0)) ≥ 0 then we have

an equilibrium, since given that Ra(m
′, (z, 0)) is continuous in z, it must have crossed the

z-axis in order to change sign. If at z = 1, Ra(m
′, (1, 0)) < 0, then either Rr(m

′, (1, 0)) ≥ 0

(in which case we have an equilibrium at z = 1), or Rr(m
′, (1, 0)) < 0. In this case, there

are two possibilities: either Rr(m
′, (1, 1)) ≤ 0 (which can only be possible if m′ = n− 1), in

which case we have an equilibrium (z = 2); or Rr(m
′, (1, 1)) > 0. Then due to the continuity

of Rr(m
′, (1, z − 1)) as a function of z, it must cross the z axis at some point in order to

change signs, so we have an equilibrium. (part (2), Proposition 1)

To finish the proof of Proposition 1, we go on to part (3). Note that, excluding z = 1,

R(pA, α, β, ε, q, n,K,W,C, z) is continuously differentiable in all variables with the exception

of n and q. So for any exogenous parameter θ different from n and q, and at all equilibria

z∗ 6= 1, we have that:

∂z∗(pA, α, β, ε, q, n,K,W,C)

∂θ
= −

∂R(pA,α,β,ε,q,n,K,W,C,σ
∗)

∂θ
∂R(pA,α,β,ε,q,n,K,W,C,z∗)

∂z

As shown in the proof of the uniqueness of the non-babbling equilibrium, as a function

of z, R(pA, α, β, ε, q, n,K,W,C, z) vanishes at most once, and when it does, the crossing

is from negative to positive. Relying on the implicit function theorem, this implies that
∂R(pA, α, β, ε, q, n,K,W,C, z

∗)

∂z
> 0 (where z∗ is just shorthand for z∗(pA, α, β, ε, q, n,K,W,C)).

The following lemma therefore immediately follows:

Lemma 6

For all pA, α, β ε, K, W and C, such that z∗(pA, α, β, ε, q, n,K,W,C) exists and does not

equal one, we have:

∂z∗(pA, α, β, ε, q, n,K,W,C)

∂θ
(>)(=)(<)0 if and only if

∂R(pA, α, β, ε, q, n,K,W,C, σ
∗)

∂θ
(<)(=)(>)0.

Part (3) of Proposition 1 follows from Lemma 6 and the single crossing property, which

implies that any crossing is from below, and hence ∂R(pA,α,β,ε,q,n,K,W,C,z
∗)

∂θ
> 0 when z∗ exists

and is different from 1.

For the case in which z∗ = 1, note that increasing K shifts both continuous branches of R

upwards (R as a function of z). Thus, for a small enough increase z∗ = 1 continues to be

an equilibrium, otherwise the new equilibrium (if it exists), must necessarily be at z < 1 .
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Since Rr shifts up, there can’t be any crossing with z ∈ (1, 2]. (Part (3) Proposition 1)

Proof of Proposition 3: From the analysis section, we know that truthful voting is an

equilibrium when K > 0 if and only if:

εpAWp(pivi|ω = A)− (1− ε)(1− pA)Cp(pivi|ω = R)

(1− ε)(1− pA)p(X = a|ω = R)
≤ K

≤ (1− ε)pAWp(pivi|ω = A)− ε(1− pA)Cp(pivi|ω = R)

ε(1− pA)p(X = a|ω = R)

We begin the proof by showing that the RHS of the inequality is bounded below by expression

1 in Proposition 3.

Let µR = σ(a)pr(si = a|ω = R) + σ(r)(1 − pr(si = a|ω = R)) = σ(a)ε + σ(r)(1 − ε) and

µA = σ(a)(1− ε) + σ(r)ε.

Note that the probability of incorrectly accepting the innovation, p(X = a|ω = R), is equal

to:

=
n−1∑

k=bnqc

(
n− 1

k

)
µkR(1− µR)n−1−k

=

(
n− 1

bnqc

)
µ
bnqc
R (1− µR)n−1−bnqc

[
n−1−qn∑
k=0

k∏
m=1

(
n−m− bnqc
bnqc+m

)(
µR

1− µR

)k]

Now, looking at the term in brackets:

[
1 +

n−1−qn∑
k=1

k∏
m=1

(
n(1− q)−m
nq +m

)(
µR

1− µR

)k]
<

[
1 +

n−1−qn∑
k=1

k∏
m=1

(
n(1− q)
nq

)(
µR

1− µR

)k]

=

[
n−1−qn∑
k=0

(
(1− q)µR
q(1− µR)

)k]

Returning to the main expression, the above equation shows that:
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(1− ε)pAWp(pivi|ω = A)− ε(1− pA)Cp(pivi|ω = R)

ε(1− pA)p( |Hi|
n
> nq−1

n
|ω = R)

>
(1− ε)pAW

(
n−1
bnqc

)
µ
bnqc
A (1− µA)n−1−bnqc − ε(1− pA)C

(
n−1
bnqc

)
µ
bnqc
R (1− µR)n−1−bnqc

ε(1− pA)
(
n−1
bnqc

)
µ
bnqc
R (1− µR)n−1−bnqc

(
n−1−qn∑
k=0

(
(1−q)µR
q(1−µR)

)k)
=

(1− ε)pAW (µA/µR)bnqc((1− µA)/(1− µR))n−1−bnqc

ε(1− pA)

(
n−1−qn∑
k=0

(
(1−q)µR
q(1−µR)

)k) − C(
n−1−qn∑
k=0

(
(1−q)µR
q(1−µR)

)k)

=
(1− ε)pAW (µA/µR)q((1− µA)/(1− µR))1−q)

n
(

1−µR
1−µA

)
ε(1− pA)

(
n−1−qn∑
k=0

(
(1−q)µR
q(1−µR)

)k) − C(
n−1−qn∑
k=0

(
(1−q)µR
q(1−µR)

)k)
Next, we proceed by construction. Assume σ(a) = 1 and σ(r) = 0, and q = 1

2
. Then:

(
µA/µR)q((1− µA)/(1− µR))1−q

)n
= 1 (2)

since µA = (1− ε) and µR = ε:

lim
n→∞

(
n−1−qn∑
k=0

(
(1− q)µR
q(1− µR)

)k)
= lim

n→∞

(
n−1−qn∑
k=0

(
ε

(1− ε)

)k)
=

1− ε
1− 2ε

(3)

Equations 2 and 3, taken together with above inequality, shows that:

lim
n→∞

(1− ε)pAWp(pivi|ω = A)− ε(1− pA)Cp(pivi|ω = R)

ε(1− pA)p( |Hi|
n
> nq−1

n
|ω = R)

>
pAW

(
(1−ε)2
ε

)
ε(1− pA) 1−ε

1−2ε
− C

1−ε
1−2ε

=
pAW

(
(1−ε)2
ε

)
− Cε(1− pA)

ε(1− pA) 1−ε
1−2ε

which shows that the RHS of the inequality is bounded below by the expression in 1.

Now note that the numerator in the LHS of the inequality is given by:

(pAW − (1− pA)C)

(
n− 1

bnqc

)
(ε(1− ε))

n
2 ,

which is strictly smaller than 0 as long as pAW
(1−pA)C

< 1. So the above shows that truthful

voting is an equilibrium when q = 1
2

and K > 0.
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When K = 0 the analogous inequalities are:

εpAWp(pivi|ω = A)− (1− ε)(1− pA)Cp(pivi|ω = R)

(1− ε)(1− pA) + εA
≤ 0

≤ (1− ε)pAWp(pivi|ω = A)− ε(1− pA)Cp(pivi|ω = R)

(1− ε)pA + ε(1− pA)

As shown above, the numerator of the LHS negative as long as pAW
(1−pA)C

< 1. The numerator

od the RHS is given by:(
1− ε
ε

pAW −
ε

1− ε
(1− pA)C

)(
n− 1

bnqc

)
(ε(1− ε))

n
2

which is positive as long as ε2

(1−ε)2 <
pAW

(1−pA)C
. Note that this inequality also guarantees that

our bound for K in the proposition:

pAW
(

(1−ε)2
ε

)
− Cε(1− pA)

ε(1− pA) 1−ε
1−2ε

is positive.

Proof of Proposition 4:

We prove the proposition by contradiction. That is, suppose that there exists a sequence

of symmetric strategy profiles σn such that for each n, σn is an equilibrium of GK
n,q and

pσn(X = a) does not converge to 0. This implies that there exists δ > 0 such that for every

m, there exists nm > m with pσnm (X = a) > δ.

Let i be any expert. Then, by expression (1”) i finds it optimal to set vi = a upon receiving

signal si if and only if:

Wpσn (pivi, ω = A|si)− Cpσn (pivi, ω = R|si) ≥ Kpσn

(
|Hi|+ 1

n
> q, ω = R|si

)
(1′)

The argument is divided into two parts. First, we show that if pσn(X = a) > δ then

Kpσn

(
|Hi|+1
n

> q, ω = R|si
)
≥ Kδmin{βp(t = a|si), (1 − α)p(t = r|si)}. Second, we show

that the LHS of (1′) has an upper bound that is independent of σn and which converges

to 0. Then putting the two together we arrive at a contradiction of the assumption that

pσn(X = a) does not converge to 0.

Part one: lower bound on the RHS

Note that:

Kpσn

(
|Hi|+ 1

n
> q, ω = R|si

)
= Kpσn

(
|Hi|+ 1

n
> q, ω = R, t = a|si

)
+ Kpσn

(
|Hi|+ 1

n
> q, ω = R, t = r|si

)
= Kpσn

(
|Hi|+ 1

n
> q, ω = R|t = a

)
p(t = a|si)

+ Kpσn

(
|Hi|+ 1

n
> q, ω = R|t = r

)
p(t = r|si)
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where the second equality follows from the fact that conditional on t, si is independent of

the state of the world ω and of the other committee members’ signals.

Now note that pσn(X = a) = pσn(X = a|t = a)p(t = a) + pσn(X = a|t = r)(1− p(t = a)).

It must therefore be the case that at least one of (I) pσn(X = a|t = a) > δ or (II) pσn(X =

a|t = r) > δ holds. First lets assume (I) holds, pσn(X = a|t = a) > δ.

Note that pσn(X = a|t = a) ≤ pσn

(
|Hi|+1
n

> q|t = a
)

where Hi = {j 6= i : vj = a}, and

therefore (I) implies pσn

(
|Hi|+1
n

> q|t = a
)
> δ which in turn implies pσn( |Hi|+1

n
> q, ω =

R|t = a) > δp(ω = R|t = a), since:

pσn

(
|Hi|+ 1

n
> q, ω = R|t = a

)
= pσn

(
|Hi|+ 1

n
> q|ω = R, t = a

)
p(ω = R|t = a)

= pσn

(
|Hi|+ 1

n
> q|t = a

)
p(ω = R|t = a)

where the last equality follows from the fact that the voting behavior of the members only

depends on their signals and these are independent from ω conditional on t. We can therefore

conclude that:

Kpσn

(
|Hi|+ 1

n
> q, ω = R|si

)
≥ Kδp(ω = R|t = a)p(t = a|si) = Kδβp(t = a|si)

If (I) does not hold, then it must be the case that (II) holds, pσn(X = a|t = r) > δ, case in

which we obtain pσn( |Hi|+1
n

> q, ω = R|t = r) > δp(ω = R|t = r) and we can conclude:

Kpσn

(
|Hi|+ 1

n
> q, ω = R|si

)
≥ Kδp(ω = R|t = r)p(t = r|si) = Kδ(1− α)p(t = a|si).

Putting these two cases together it follows that it must be the case, as claimed, that:

Kpσn

(
|Hi|+1
n

> q, ω = R|si
)
≥ Kδmin{βp(t = a|si), (1− α)p(t = r|si)}

Part Two: The LHS has an upper bound wich converges to 0

Note that:

pσn (pivi, ω = A|si) = pσn (pivi, ω = A, t = a|si) + pσn (pivi, ω = A, t = r|si)

= pσn(pivi|t = a, ω = A, si)p(t = a, ω = A|si)
+ pσn(pivi|t = r, ω = A, si)p(t = r, ω = A|si)

= pσn(pivi|t = a)p(t = a, ω = A|si)
+ pσn(pivi|t = r)p(t = r, ω = A|si)

where the second equality follows from Bayes’ rule, and the third equality from the indepen-

dence of signals (among them and from the state of the world), conditional on the state of

the art. Given that there is an analogous expression for pσn(pivi, ω = R|si), it follows that

the the LHS of (1′) is equal to :
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C1pσn(pivi|t = a) + C2pσn(pivi|t = r) (*)

where C1 and C2 are constants that only depend on the exogenous parameters of the game

other than n. In particular they do not depend on the strategy used by the agents. Now note

that pσn(pivi|t = a) = pσn(|Hi| = bnqc|t = a) and pσn(pivi|t = r) = pσn(|Hi| = bnqc|t = r),

where |Hi| = |{j 6= i : vj = a}|. Letting µa,n = p(vj = a|t = a) = (1− ε)σn(a) + εσn(r) and

µr,n = pσn(vj = a|t = r) = εσn(a) + (1− ε)σn(r) and given the independence of the signals

of different agents conditional on the state of the art we have:

pσn(pivi|t = a) =

(
n− 1

bnqc

)
µbnqca,n (1− µa,n)n−1−bnqc and

pσn(pivi|t = r) =

(
n− 1

bnqc

)
µbnqcr,n (1− µr,n)n−1−bnqc

The fact that the LHS of (1′′) is bounded above by an expression that is independent of σn

and that this upper bound converges to 0, now follows from the above expressions and the

following lemma.

Lemma 7 (Convergence of binomial points of mass)

The set {
(
n−1
bnqc

)
pbnqc(1 − p)n−1−bnqc : 0 ≤ p ≤ 1} is bounded above by a function f(n) such

that lim
n→∞

f(n)→ 0.

Proof of Lemma 7:

We prove the lemma by using Stirling’s formula to establish an upper bound for the set

{
(
n−1
bnqc

)
pbnqc(1− p)n−1−bnqc : 0 < p < 1} and showing that this upper bound converges to 0.

By Stirling’s formula

(
lim
n→∞

n!√
2πn(n

e )
n = 1

)
we have that for any ε > 0 there exists n1 such

that if n > n1 then:(
n− 1

bnqc

)
pbnqc(1− p)n−1−bnqc

< (1− ε)

(n−1)!√
2π(n−1)(n−1

e )
n−1

bnqc!√
2πbnqc( bnqc

e )
bnqc

(n−1−bnqc)!√
2π(n−1−bnqc)( (n−1−bnqc)

e )
(n−1−bnqc)

pbnqc(1− p)n−1−bnqc

= (1− ε)
(

n− 1

2πbnqc(n− 1− bnqc)

) 1
2
(

(n− 1)q

bnqc

)bnqc(
(n− 1)(1− q)
n− 1− bnqc

)n−1−bnqc
×
(
p

q

)bnqc(
1− p
1− q

)n−1−bnqc
Note that pbnqc(1 − p)n−1−bnqc is strictly concave for sufficiently large n (q < 1 − 1

n
) and

uniquely maximized at p = bnqc
n−1 . At the maximum p∗ we have:(

n− 1

bnqc

)
(p∗)bnqc(1− p∗)n−1−bnqc

= (1− ε)
(

n− 1

2πbnqc(n− 1− bnqc)

) 1
2
(

(n− 1)q

bnqc

)bnqc(
(n− 1− nq + q)

n− 1− bnqc

)n−1−bnqc
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×
(

nq

(n− 1)q

)bnqc(
n− 1− nq

n− 1− nq + q

)n−1−bnqc(bnqc
nq

)bnqc(
n− 1− bnqc
n− 1− nq

)n−1−bnqc
= (1− ε)

(
n− 1

2πbnqc(n− 1− bnqc)

) 1
2

We therefore have that for all n > n1 and for all p ∈ (0, 1)(
n− 1

bnqc

)
pbnqc(1− p)n−1−bnqc < (1− ε)

(
n− 1

2πbnqc(n− 1− bnqc)

) 1
2

Moreover (1− ε)
(

n−1
2πbnqc(n−1−bnqc)

) 1
2

converges to 0 at rate 1√
n
. (Lemma 7)

To end the proof letm be such that for all n > m, (C1+C2)f(n) < Kδmin{βp(t=a|si),(1−α)p(t=r|si)}
2

and pick nm > m such that pσnm (X = a) > δ (which exists by the assumption that pσn(X =

a) does not converge to 0). It follows that:

Wpσnm (pivi, ω = A|si)− Cpσnm (pivi, ω = R|si) = C1pσnm (pivi|t = a) + C2pσnm (pivi|t = r)

<
Kδmin{βp(t = a|si), (1− α)p(t = r|si)}

2

< Kpσnm

(
|Hi|+ 1

n
> q, ω = R|si

)
So (1′) is violated. As i was arbitrary, this shows that every single expert strictly prefers

to set σnm(si) = 0. Moreover we can pick n large enough so that this is the case for both

signals. For σnm to be an equilibrium it must be the case that members are best respond-

ing and therefore σnm(a) = 0 and σnm(r) = 0, which contradicts pσnm (X = a) > δ which

in turn contradicts the assumption that pσnm (X = a) does not converge to 0 as n → ∞.

(Proposition 4)

Proof of Corollary 2: The corollary holds trivially if beyond some point in the sequence

the games have no non-babbling equilibria. So we assume this is not the case and focus on

the maximal subsequence such that all along the games have non-babbling equilibria. Pick

nδ such that pσn(X = a) < δ < p(t=a)
8

for the unique non-babbling symmetric equilibrium

σn of GK
n,q. Pick n∗ > nδ large enough such that for all n > n∗:

n∑
m=bnqc

(
n

m

)
qm(1− q)n−m >

1

4
. Such n∗ exists as this is the probability that the fraction of

successes in n trials is greater or equal to q, where trials are independent and the probability

of success of any one trial is q, and the binomial distribution can be approximated arbitrarily

well (close to its mean) by the normal distribution which is symmetric. So in particular this

probability converges to 1
2
.

Suppose the statement of the corollary is not true and pick m > n∗ such that σm is a
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symmetric equilibrium of GK
m,q and σm(a) ≥ q

1−ε . Letting µa = (1− ε)σ(a) + εσ(r), we have

µa ≥ q and therefore:

pσm(X = a|t = a) =
n∑

m=bnqc

(
n

m

)
µma (1− µa)n−m ≥

n∑
m=bnqc

(
n

m

)
qm(1− q)n−m >

1

4

⇒ pσm(X = a) = pσm(X = a|t = a)p(t = a) + pσm(X = a|t = r)p(t = r) > 1
4
p(t = a) a

contradiction, as we picked δ < p(t=a)
8

. (Corollary 2)

Proof of Corollary 3:

Fully writing Ra and Rr as a function of all the parameters of the model we have that:

Rr(pA, α, β, ε, q, n,K,W,C, σ) =

− (W (1− β)− Cβ)pσ∗(pivi|t = a)pAε+ (C(1− α)−Wα)pσ∗(pivi|t = r)(1− pA)(1− ε) +

Kβpσ∗

(
|Hi|+ 1

n
> q|t = a

)
pAε+K(1− α)pσ∗

(
|Hi|+ 1

n
> q|t = r

)
(1− pA)(1− ε)

and

Ra(pA, α, β, ε, q, n,K,W,C, σ) =

− (W (1− β)− Cβ)pσ∗(pivi|t = a)pA(1− ε) + (C(1− α)−Wα)pσ∗(pivi|t = r)(1− pA)ε+

Kβpσ∗

(
|Hi|+ 1

n
> q|t = a

)
pA(1− ε) +K(1− α)pσ∗

(
|Hi|+ 1

n
> q|t = r

)
(1− pA)ε

(Ia)
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂W
=

− (1− β)pσ∗(pivi|t = a)pAε− αpσ∗(pivi|t = r)(1− pA)(1− ε) < 0.

and
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂W
=

− (1− β)pσ∗(pivi|t = a)pA(1− ε)− αpσ∗(pivi|t = r)(1− pA)ε < 0.

By Lemma 6 we therefore have
∂z∗(pA, α, β, ε, q, n,K,W,C)

∂W
> 0.

(Ib)
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂C
=

βpσ∗(pivi|t = a)pAε+ (1− α)pσ∗(pivi|t = r)(1− pA)(1− ε) > 0.

and
∂Ra(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂C
=

βpσ∗(pivi|t = a)pA(1 − ε) + (1 − α)pσ∗(pivi|t = r)(1 − pA)ε > 0. By Lemma 6 we therefore

have
∂z∗(pA, α, β, ε, q, n,K,W,C)

∂C
< 0.

(IIa)
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂pA
=

− (W (1− β)− Cβ)pσ∗(pivi|t = a)ε− (C(1− α)−Wα)pσ∗(pivi|t = r)(1− ε) +

Kβpσ∗

(
|Hi|+ 1

n
> q|t = a

)
ε−K(1− α)pσ∗

(
|Hi|+ 1

n
> q|t = r

)
(1− ε)

The sign of which is the same as that of
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−(W (1− β)− Cβ)pσ∗(pivi|t = a)ε+Kβpσ∗
(
|Hi|+1
n

> q|t = a
)
ε

(C(1− α)−Wα)pσ∗(pivi|t = r)(1− ε) +K(1− α)pσ∗
(
|Hi|+1
n

> q|t = r
)

(1− ε)
− 1

But Rr(pA, α, β, ε, q, n,K,W,C, σ
∗) = 0 implies

−(W (1− β)− Cβ)pσ∗(pivi|t = a)ε+Kβpσ∗
(
|Hi|+1
n

> q|t = a
)
ε

(C(1− α)−Wα)pσ∗(pivi|t = r)(1− ε) +K(1− α)pσ∗
(
|Hi|+1
n

> q|t = r
)

(1− ε)
= −1− pA

pA

Similarly
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂pA
=

− (W (1− β)− Cβ)pσ∗(pivi|t = a)(1− ε)− (C(1− α)−Wα)pσ∗(pivi|t = r)ε+

Kβpσ∗

(
|Hi|+ 1

n
> q|t = a

)
(1− ε)−K(1− α)pσ∗

(
|Hi|+ 1

n
> q|t = r

)
ε

The sign of which is the same as that of

−(W (1− β)− Cβ)pσ∗(pivi|t = a)(1− ε) +Kβpσ∗
(
|Hi|+1
n

> q|t = a
)

(1− ε)

(C(1− α)−Wα)pσ∗(pivi|t = r)ε+K(1− α)pσ∗
(
|Hi|+1
n

> q|t = r
)
ε

− 1

But Ra(pA, α, β, ε, q, n,K,W,C, σ
∗) = 0 implies

−(W (1− β)− Cβ)pσ∗(pivi|t = a)(1− ε) +Kβpσ∗
(
|Hi|+1
n

> q|t = a
)

(1− ε)

(C(1− α)−Wα)pσ∗(pivi|t = r)ε+K(1− α)pσ∗
(
|Hi|+1
n

> q|t = r
)
ε

= −1− pA
pA

By Lemma 6 the above imply that
∂z∗(pA, α, β, ε, q, n,K,W,C)

∂pA
> 0.

(IIb)
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂α
=

− (W + C)pσ∗(pivi|t = r)(1− pA)(1− ε)−Kpσ∗
(
|Hi|+ 1

n
> q|t = r

)
(1− ε)(1− pA) < 0

∂Ra(pA, α, β, ε, q, n,K,W,C, σ
∗)

∂α
=

− (W + C)pσ∗(pivi|t = r)(1− pA)ε−Kpσ∗
(
|Hi|+ 1

n
> q|t = r

)
ε(1− pA) < 0

So by Lemma 6,
∂z∗(pA, α, β, ε, q, n,K,W,C)

∂α
> 0.

(IIc)
∂Rr(pA, α, β, ε, q, n,K,W,C, σ

∗)

∂β
=

(W + C)pσ∗(pivi|t = a)pA)ε+Kpσ∗

(
|Hi|+ 1

n
> q|t = a

)
εpA > 0

∂Ra(pA, α, β, ε, q, n,K,W,C, σ
∗)

∂β
=

(W + C)pσ∗(pivi|t = a)pA)(1− ε) +Kpσ∗

(
|Hi|+ 1

n
> q|t = a

)
(1− ε)pA > 0
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So by Lemma 6,
∂z∗(pA, α, β, ε, q, n,K,W,C)

∂β
< 0.

(III) Let q′ > q andm = bnqc, m′ = bnqc. Evaluated atm we have that eitherRa(m, (σ
∗(a), 0)) =

0 or Rr(m, (1, σ
∗(r)) = 0 (depending on what kind of equilibrium we have). Assume that

it is of form (1) and therefore evaluated at σ∗(r) = 0 and σ∗(a) > 0, Ra(m, (σ
∗(a), 0)) = 0.

By Lemma 5 we know that −Ra(m, (σ(a), 0)) has the single crossing property in m, and

therefore evaluated at m′ > m, genericall Ra(m
′, (σ∗(a), 0)) ≤ 0.38 If Ra(m

′, (σ∗(a), 0)) = 0

then we have an equilibrium, otherwise we fix fix m′ and look at Ra(m
′, (σ∗(a), 0)) as a

function of σ(a). As Ra(m
′, (σ∗(a), 0)) < 0 and Ra has the single crossing property in σ(a),

the equilibrium (which exists by virtue of 5 ) must either involve σ(a) > σ∗(a), or be of the

form σ(a) = 1 and σ(r) > 0. (Corollary 3)

Appendix B: Empirical Work

In this appendix, we utilize the rich set of data on decision-making in FDA boards to

investigate whether there is correlation between the size of the committee and the rate

of rejection of new drug applications. We find a weak negative relation between committee

size and the proportion of approval votes out of the total number of votes cast. This finding

could be explained by the mechanism we present in the paper, and the theoretical result

that the approval rate is vanishing for sufficiently large committees.

In the United States, the Food and Drug Administration (FDA) must approve or reject new

drugs by means of an assessment procedure called a “new drug application” (similarly a

“biologic license application” for biologic products and “premarket approval” for medical

devices). In most instances, the FDA has the option to refer a matter of drug approval to

an expert committee for consideration. The members of the panel will then discuss scientific

issues based on the studies provided by the sponsor company and then independently and

simultaneously vote on approval; i.e. whether the benefits of the drug outweigh risks. As

noted in the FDA’s guidelines for voting procedures: “Since all members vote on the same

question, the results help FDA gauge a committee’s collective view on complex, multi-faceted

issues.”39

We collect data from FDA committee meetings held between January 2008 and August

38Being a linear combination of different non-linear functions, with non-zero slopes at almost every point,

Ra and Rr have non zero slopes at almost every point.
39Guidance for FDA Advisory Committee Members and FDA Staff: Voting Procedures for Advisory

Committee Meetings. August 2008.
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2013.40 The data comes from official meeting minutes (or 24 hour summary documents)

downloaded via http://www.fda.gov. We only consider records from meetings that dis-

cuss drug/device/blood-product applications (NDA, sNDA, BLA, sBLA, PMA, sPMA) and

where the approval question is posed in a single question. We have voting data on the ap-

prove/disapprove question from 174 FDA meetings across 21 different topical committees.

In four cases, the FDA convened a joint meeting between two panels and in all these cases

the Drug Safety and Risk Management Committee was part of the session.

For each meeting, the source reports the number of voting members present. This number

varies between 3 and 26 in our sample and the average committee size is 13.14 members.

The committee size varies for different reasons. First, the official number of permanent

members vary across the topical committees; e.g. the Arthritis Drugs Committee has 11

permanent members, whereas the Dermatologic and Ophtalmic Drugs Committee has 15

permanent members. However, the actual number of permanent members is typically lower

due to many vacancies. Second, members often cancel on the meetings (meeting attendance

and cancellations are stated in the official meeting minutes). Finally, the FDA invites a

number of temporary voting members (including one patient representative) who are hand

picked specialists or serve on other advisory committees. The average proportion of invited

members out of the total number of voting members is 0.6.

Table 1 reports the results from an OLS regression of the fraction of acceptance votes in

a session on the total number of voting members (Model 1). The table also reports the

proportion of yes-votes (in favor of approval) out of the total number of votes. In the

regressions we ignore abstentions, which are few and mostly due to declarations of conflict of

interest. As reported in the Table the partial correlation associated to the number of voting

members is negative with a p-value of 0.0819. We also ran a logit model of a binary variable

taking a value of one if a simple majority of the committee members approved and zero

otherwise. The results from this regression are similar to the OLS regression: the coefficient

of the size variable is negative and the p-value is 0.111.

Some of the variation in size is due to variation in the number of permanent members across

different topical committees, which raises the concern that the negative effect of size found in

the ‘naive’ OLS regression is due to systematic differences in the medical products sent to the

individual committees. For example, if the products generated in the area of Dermatologic

and Ophtalmic Drugs are more likely to be “bad” (in terms of tour model, a lower pA) than

in the area of “Arthritis Drugs,” then the negative correlation could be driven by the fact

that the Dermatologic and Ophtalmic Drugs Committee has 15 permanent members whereas

40Prior to the FDA Amendments Act of 2007 the voting was sequential. Throughout the second half 2007,

voting by “a show of hands” was replaced by a mechanical device whereby each member votes independently

(Urfalino and Costa (2013)).

42



Model 1 Std. Error Model 2 Std. Error

Constant 0.807∗∗∗ (0.095) 0.46 (0.166)

# of voting members −0.013∗ (0.007) −0.009 (0.009)

Committee fixed effects − +

Mean fraction of y votes 0.642 0.642

R2 0.0191 0.235

Adjusted R2 0.0134 0.129

Num. Obs. 174 174

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

Table 1: Models 1 and 2. The dependent variable is the fraction of yes votes. The standard

errors are heteroskedasticity robust.

the Arthritis Drugs Committee has only 11. To explore this possibility, in Model 2 (also

reported in Table 1), we include 20 dummies to account for committee fixed effects in the

second regression. In the four cases where the meeting is joint between two committees, we

assign the meeting to the Drug Safety and Risk Management Committee. We find that most

of the committee dummies are significant, and while the sign on the “size” variable remains

negative and of similar size (−0.00900 with fixed effects versus −0.0125), the significance of

the coefficient drops, as reflected in the higher p-value, 0.2856.

Another concern is that the variation in committee size is endogenous, since the FDA invites

additional, temporary, members to participate in the approval decision of individual medical

products. This could explain the finding of a negative coefficient on committee size if,

for example, temporary members are more likely to be added for ‘difficult’ decisions that

have a higher downside risk (or in the terms of our model, a larger C). In order to study

this possibility, we regress the proportion of yes votes out of total votes on the proportion

of invited temporary voting members. We report the result in Table 2. For this specific

regression we only have 140 observations, as for most meetings of PMA-committees there

was no information available on the number of invited members. If endogenous variation in

committee size is behind the negative relationship we find in the ‘naive’ regression, we would

expect the proportion of invited members to be negatively correlated with the proportion of

yes votes. However, we find that the sign of the “proportion of invited member” coefficient

is not statistically significant (p-value=0.454), and is actually positive.

Lastly, we address a separate issue. The majority decision of an FDA board is not binding,

and the final decision rests on FDA’s division director. Therefore, in a legal sense, the

decision of the committee is purely advisory. However, there is evidence of a norm for
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Coefficient Std. Error

Constant 0.539∗∗∗ (0.112)

Fraction of invited members 0.131 (0.174)

R2 0.004

Adjusted R2 −0.003

Num. Obs. 144

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

Table 2: The dependent variable is the fraction of yes votes. Standard errors are robust to

heteroskedasticity.

following the majority decision of the expert committee and the chairman usually has the

task of breaking eventual voting ties. In our sample, 90 percent of the final FDA decisions

follow the recommendation of the committee. However, the non-binding nature of committee

decisions raises the following possibility: if the FDA is aware of a bias towards rejection

in larger committees, they may try to counteract this bias by over-ruling close rejection

outcomes in larger committees. Due to the small number of final decisions that go against

the majority decision, we are not able explore this hypothesis statistically. Out of 174

committee meetings, we have the final FDA decision in 161 instances (some applications are

still awaiting an answer from the division director) and out of these the FDA overturned

16 committee decisions. The committees recommended approval 117 times and the FDA

overturned 11 of these applications (9.4 percent) and the average size of the “overturned”

panels is 13.4. Further, the committees rejected 44 applications and the FDA overturned 5

of these recommendations (11.6 percent) and the average size of these five boards is 14.4.
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Gerling, Kerstin, Hans Peter Grüner, Alexandra Kiel, and Elisabeth Schulte (2005), “Infor-

mation acquisition and decision making in committees: A survey.” European Journal of

Political Economy, 21, 563–597.

Levy, Gilat (2007), “Decision Making in Committees: Transparency, Reputation, and Voting

Rules.” The American Economic Review, 97, 150–168.

Li, Hao (2001), “A Theory of Conservatism.” Journal of Political Economy, 109, 617–636.

Li, Hao and Wing Suen (2009), “Viewpoint: Decision-making in committees.” Canadian

Journal of Economics/Revue canadienne d’économique, 42, 359–392.
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