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1 Introduction

Starting with the seminal work of Ellsberg (1961), experimental economists have argued that

the standard economic model for decision making under uncertainty, namely the Expected

Utility Model (henceforth EU model), performs rather poorly in describing individuals’ be-

havior in situations where subjects have very little information regarding the decision problem

they are facing. In particular, it has been shown that the overwhelming majority of individuals

tends to shy away from alternatives for which they lack the necessary information to form a

probabilistic belief about their consequences. It is well known that this aversion against uncer-

tainty/ambiguity is incompatible with the EU model.1

This inconsistency between observed decisions and the EU model has stimulated the de-

velopment of decision theoretic models that are able to accommodate ambiguity aversion. For

two recent surveys of the literature on ambiguity aversion and its axiomatic foundations, see

Gilboa (2009) and Gilboa and Marinacci (2011). While ambiguity aversion models have been

successfully applied in many areas of economics and finance,2 they have received only limited

attention in mechanism design (see the discussion of the literature below).

We consider a screening model in which a seller is selling an object to a single ambiguity

averse buyer. For most of the paper we assume that the agent’s preferences can be described by

the maxmin expected utility model (MMEU) proposed by Gilboa and Schmeidler (1989). The

agent privately observes his willingness to pay for the good, while the principal only knows the

distribution from which it has been drawn. We introduce the concept of an ambiguous mecha-

nism, i.e. a mechanism where the principal announces a set of possible standard mechanisms

(henceforth simple mechanisms), and commits to one of them without revealing to the buyer

which one he has chosen.

We then proceed to show that a seller who faces an ambiguity averse agent can strictly

benefit from using such ambiguous mechanisms. This result has wide ranging consequences.

It implies that in any mechanism design environment with ambiguity averse agents—be it auc-

tions, bilateral trade, optimal taxation, unemployment insurance, or some other setting—the

1The sense in which ambiguity aversion is incompatible with the EU model is best explained with Ellsberg’s
famous two urn example. There are two urns, each of which contains one hundred balls. Half of the balls in Urn A
are red, the other half is blue. Also Urn B is composed of balls that are either red or blue, but the decision maker
has no information about the number of balls of each color. Now consider the following two bets. Bet RA pays one
dollar if in a random draw from Urn A a red ball is extracted; bet RB pays one dollar if a random draw from Urn B
yields a red ball. When faced with the choice between these two bets the overwhelming majority of subjects picks
bet RA. The same they do also when the pair of bets is formulated for the color blue. Within the EU framework it is
impossible to rationalize both these decisions: for each possible belief about the composition of Urn B the decision
maker should choose the bet on a blue ball from Urn B if and only if between the two bets on red he prefers the one
referring to Urn A.

2See for instance Epstein and Schneider (2008) and Castro and Yannelis (2012) for examples of applications of
ambiguity aversion in finance and general equilibrium.
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analysis is not without loss of generality unless ambiguous mechanisms are considered.

Mechanisms where the buyer is not fully informed about all details of the rules, and which

can therefore be considered as ambiguous, are commonly observed. Probably the most promi-

nent examples are auctions with secret reserve prices.3 Bergemann and Horner (2010) discuss

the case of Google’s sponsored search auctions where the algorithm to pick the winner is un-

known.4 Our result also provides a new way to rationalize laws that leave some discretionary

decision power to the executive or judicial branch of government. It is reasonable to assume

that for citizens it is much more difficult to predict the behavior of government agencies or

judicial courts with proper decision power then it is to predict the behavior of agencies who

just implement fully specified legal rules. In particular, this should be the case for citizens who

have only limited experience in dealing with the public administration. Thus, by leaving laws

incomplete, and by delegating decisions to the executive agencies and/or the court system, the

parliament exposes its citizens to ambiguity.

Through the use of an ambiguous mechanism, the principal exposes the agent to ambiguity

regarding the consequences of his report. Since the agent has MMEU preferences, he associates

with each possible report the worst possible outcome that he can obtain under all the simple

mechanisms that compose the ambiguous mechanism. Different types evaluate outcomes dif-

ferently, and hence they may associate different worst case scenarios with a given report. It is

precisely this feature that makes the use of ambiguous mechanisms attractive for the principal:

the principal can design the ambiguous mechanism in such a way that each outcome function

that it contains deters the agent from a subset of his deviation possibilities. In this way each

of the simple mechanisms that compose the ambiguous mechanism needs to be less distorted

than the outcome function of a simple mechanism has to be, since the latter has to prevent the

agent from all his possible deviations.

The arguments in the preceding paragraph presume that the agent believes that the principal

might have committed to any of the elements of the ambiguous mechanism. Put differently, it

takes for granted that the agent’s (set-valued) belief over the set of outcome functions contains

at least all degenerate distributions over this set. The assumption that the agent holds such

a ‘comprehensive’ belief is reasonable if it is compatible with the principal being indifferent

between all the elements of the ambiguous mechanism, provided that the agent acts optimally

with respect to such a belief. We therefore require that all elements of an ambiguous mechanism

3Ashenfelter (1989) documents the existence of secret reserve prices at the famous auction houses as Christie’s
and Sotheby’s, Hendricks, Porter, and Spady (1989) in auctions for off-shore oil, Elyakime, Laffont, Loisel, and
Vuong (1994) in timber auctions in France, and Bajari and Hortacsu (2003) on eBay, to name a few.

4 Auctions with ex ante uncertain auction rules are also applied in the used car market. In these auctions first
buyers submit their bids. Upon observing the bids the auctioneer either declares a winner or he calls for a second
round of bids and so on. The rule according to which the decision about whether or not to continue is taken, is
not known to buyers (and supposedly not easily inferable from previous observations unless the bidder is extremely
experienced). We are thankful to Larry Samuelson for pointing us to this example.
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generate the same expected revenue under the assumption that the agent chooses his strategy

based on a comprehensive belief. We refer to ambiguous mechanisms that satisfy this condition

as consistent. A formal definition of the consistency condition is presented in Section 3. While

from a technical point of view we treat consistency as a constraint that limits the feasible actions

available to the designer, it should be interpreted as an equilibrium condition in the interaction

between the principal and the agent.

In the remainder of the paper we characterize the profit maximizing static mechanisms in

the above described environment. First, we formulate and prove a version of the Revelation

Principle that is appropriate for our context and objectives. Doing so allows us to restrict

attention to direct ambiguous mechanisms. We characterize (one of) the smallest optimal direct

ambiguous mechanism(s) for the case where the set of possible types of the agent is finite.5 We

show that this mechanism is composed of at most N − 1 elements, where N is the number

of types. The n-th outcome function of this ambiguous mechanism assigns the good with

probability one to all types m , n,N at a price that coincides with the reported type. Thus,

every outcome function extracts the entire surplus from N − 2 types. The highest type also

obtains the good with probability one. However, since his transfers are used to guarantee

consistency, he typically does not have to pay a price equal to his willingness to pay. The

remaining components of the outcome functions (allocations and payments of type n ≤ N − 1

under outcome function n) vary with the details of the type distribution. More specifically,

we show that these components depend on the types’ so called adjusted virtual valuations.

Independently of the details of the type distribution, these components satisfy a monotonicity

condition: the probability with which type n obtains the good under outcome function n is

smaller than or equal to the probability with which outcome function m > n assigns the good to

type m.

Using the above described characterization, we prove that the share of surplus that the

designer can extract from the agent increases as the type set becomes larger and the probability

of each type converges to zero. In the limiting case of a non-atomic type distribution over an

interval, the optimal ambiguous mechanism extracts the full surplus from the agent. In the

final section of the paper we discuss how this result on full surplus extraction under ambiguity

aversion relates to the findings of Matthews (1983), who shows that with the risk aversion

growing towards infinity the seller’s rents grows towards full surplus extraction.6 We then

proceed to show that the principal may want to elicit payoff-irrelevant private information from

the agent. Since such information is easy to generate, the principal has an incentive to induce

the agent to inflate his type set by adding payoff irrelevant elements.

5The term ‘smallest’ refers to the number of elements of the ambiguous mechanism.
6The implications of risk aversion for the design of an optimal mechanism are also studied by Maskin and Riley

(1984).
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We provide two robustness checks. First, we argue that the central insight of the paper—

that the principal can exploit the ambiguity aversion of the agent by offering an ambiguous

mechanism—does not depend on the specific model of ambiguity aversion we adopt in this pa-

per (MMEU preferences) but remains valid under alternative models of uncertainty aversion.7

More specifically, we provide an example that shows this for the case of smooth ambiguity

aversion. A second dimension in which the core insight of the paper generalizes is the num-

ber of agents. While we do not provide a detailed characterization of the optimal ambiguous

mechanism for the case where the agents’ type sets are finite, we describe the mechanism that

extracts the full surplus when the agents’ types are drawn from an atomfree distribution defined

on some interval.

Related literature: A number of recent papers consider mechanism design problems with

ambiguity averse players. Examples include Bose, Ozdenoren, and Pape (2006), Turocy (2008),

Bose and Daripa (2009), Bodoh-Creed (2010), Bose and Renou (2014), Bergemann and Schlag

(2011), Auster (2013) and Wolitzky (2013).8 The central difference between these papers and

ours is that they start from the assumption that the agents (and/or the principal) are uncertain

about the other agents’ type distribution. That is, the uncertainty in these models refers to an

exogenously given variable. The endogenous objects (i.e. the mechanisms) are not allowed to

be ambiguous.9 Instead, these papers characterize the optimal standard (i.e. non-ambiguous)

mechanism, where attention is restricted either to direct mechanisms or to simple forms of

indirect mechanisms (e.g. standard auction formats).10

To the best of our knowledge, this is the first paper showing that it can be in the designer’s

interest to introduce uncertainty over outcome functions when agents are ambiguity averse. In

a contemporaneous and independent paper, Bose and Renou (2014) also recognize that in such

contexts the principal may want to introduce some element of uncertainty into the mechanism

that he uses. The two papers are complementary, as they study the impact of ambiguity aversion

through quite distinct channels. Unlike in this paper, in their work the uncertainty is not intro-

duced via the outcome functions. Instead, they explore which social choice rules the designer

can implement if he engages the agents in a dynamic communication game that he mediates by

7The details of our characterization of an optimal ambiguous mechanism do depend on the assumption of
MMEU preferences.

8Several models of beliefs and behavior in games that relax the assumption of Bayesian expected-utility max-
imizing players have been proposed. See e.g. Azrieli and Teper (2011) and the references therein. Moreover,
ambiguity aversion has also been applied in environments with moral hazard; see Lang and Wambach (2013).

9Bose and Renou (2014) are an exception to this observation; their work is discussed in more detail in the
following paragraph.

10Similar comments apply both to the literature that considers moral hazard models with ambiguity aversion
and the literature that studies models with Knightian uncertainty. For the literature on moral hazard and ambiguity
aversion see for instance Kellner (2011) and Szydlowski (2012); on Knightian uncertainty in mechanism design see
Lopomo, Rigotti, and Shannon (2009) and Garrett (2011) and the references therein.
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transforming messages in an ambiguous way. By injecting uncertainty in the exchange of mes-

sages between the agents, the principal can manipulate the agents’ beliefs about each other’s

type and hence their behavior. Bose and Renou (2014) remark that the precise extent to which

the agents’ beliefs can be manipulated depends on the assumed form of (full Bayesian) belief

updating. By contrast, restricting attention to strategic form mechanisms makes the question of

what is the most appropriate way to model updating by ambiguity averse individuals— an issue

still controversially discussed in the literature—altogether irrelevant in our context. Finally, the

ambiguous communication devices in Bose and Renou (2014) serve to manipulate the agents’

beliefs over the other agents’ types and hence they are ineffective in single agent environments.

Instead, as we show in this paper, (outcome) ambiguous mechanisms have leverage also in the

case of a single agent.

The paper is also related to the literature on robust mechanism design that originated with

the seminal papers by Bergemann and Morris (2005) and Chung and Ely (2007). This litera-

ture departs from the standard Bayesian type space framework that has dominated the earlier

mechanism design literature and studies what kind of social choice functions are implementable

irrespective of the type space that is assumed. Requiring such a form of robustness with respect

to the specificities of the type space is similar in spirit to the idea of a designer that is uncertain

with respect to the ‘correct’ type space. Apart from the fact that the ‘uncertainty aversion’ in

the case of this literature is on the side of the designer, the crucial conceptual difference to our

work lies in the fact that the family of the relevant type spaces is not an endogenous object (like

the ambiguous mechanisms in our work) but is exogenously given.

2 Motivating Example

A principal is selling an object to an ambiguity averse and risk neutral buyer whose preferences

can be represented by maxmin expected utility and whose valuation for the object, θ, is 1 with

probability 1/4, 2 with probability 1/4 and 4 with probability 1/2. The seller’s objective is to

maximize expected revenue.

The optimal standard mechanism in this setting is a take-it-or-leave-it offer at the price of

4. The corresponding direct mechanism asks the agent to report his type and awards him the

object at the price of 4 if the agent announces θ = 4. For any other report the seller keeps the

object and no transfers take place. The expected revenue generated by this mechanism is 2. It

will prove convenient to represent the described direct mechanism in the following table form,

where (q∗, t∗) denotes the outcome function (probability with which the good is transferred and

transfer to be paid) and θ̂ denotes the reported type.

5



θ̂ 1 2 4

(q∗, t∗) (0,0) (0,0) (1,4)

Table 1: The optimal non-ambiguous direct mechanism

Suppose that instead of offering the above standard mechanism (henceforth, we will refer

to such mechanisms also as simple mechanisms) the seller proceeds as follows. Before he asks

the buyer to communicate his valuation of the good he informs him that he has committed to a

simple (direct) mechanism. But instead of letting the buyer know to which simple mechanism

he has committed he only tells him that this simple mechanism is an element of some set of

simple mechanisms that he reveals to the buyer. By not providing the buyer with any further

information about the simple mechanism to which he has committed, the seller exposes the

buyer to ambiguity about the consequences of his messages. We therefore refer to the set of

simple mechanisms that is communicated to the buyer as an ambiguous mechanism.

For the sake of concreteness, suppose the seller offers an ambiguous mechanism that con-

tains two (direct) simple mechanisms, denoted by (q1, t1) and (q2, t2), respectively.11 Assume

that the first outcome function, (q1, t1), specifies that upon a message θ̂ = 1 the object remains

with the seller and there are no transfers. If the agent reports θ̂ = 2, he obtains the object at

the price of 1. Finally, in case the agent’s message is θ̂ = 4, he obtains the object and pays

price 4. The second outcome function, (q2, t2), awards the object at the price of 1 to the agent

if he reports the type θ̂ = 1, does not award the object to the agent, and no transfers take place,

if the agent reports type θ̂ = 2. If the agent sends the message θ̂ = 4, he receives the object

with certainty and pays 4. We denote the ambiguous mechanism that is composed of these two

simple mechanisms by Ω. The details of Ω are summarized in the following table.

θ̂ 1 2 4

(q1, t1) (0,0) (1,1) (1,4)

(q2, t2) (1,1) (0,0) (1,4)

Table 2: The ambiguous (direct) mechanism Ω

We now turn to the question of how the buyer should behave when he is offered the mech-

anism Ω. We have assumed that the buyer’s preferences are of the max-min expected utility

type. This means that whenever he is faced with a decision problem under ambiguity he asso-

ciates with each action that he may take the payoff that this action yields in the (action specific)

11Throughout the paper we slightly abuse terminology by identifying direct mechanisms with their outcome
functions.
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worst case scenario. In the context of our example the buyer is exposed to ambiguity through

the mechanism Ω: the consequences of any message that he can send to the seller depend on

the outcome function to which the seller has committed and he has no explicit or even implicit

information regarding the seller’s choice.

If the buyer does consider it possible that the principal might have committed to either of

the two outcome functions in Ω, then the payoff that type θ associates with the message θ̂ is

min{q1(θ̂)θ − t1(θ̂),q2(θ̂)θ − t2(θ̂)}.12 We will now argue that truthful reporting is an optimal

strategy for the buyer. To see this, suppose first that the buyer’s type is θ = 4. If he reports this

truthfully he obtains the object with certainty and pays the price 4 (both simple mechanisms

specify this outcome in case of the message θ̂ = 4). His payoff in that case is therefore 0. If he

reports type 2 he gets the object at the price of 1 if he is facing the simple mechanism (q1, t1);

the corresponding payoff is 1×4−1 = 3. On the other hand, if he is faced with (q2, t2) he does

not get the object, and does not have to pay anything. Consequently, his payoff in that case is 0.

So the worst-case payoff both for truth-telling and for reporting type 2 is equal to 0, meaning

that reporting type 2 when the true type is 4 does not represent a profitable deviation. The same

reasoning can be applied to show that type 4 cannot do better by reporting 1 instead of 4. In

fact, the ‘symmetry’ in the outcomes after reporting either type 1 or 2 implies that all three

types are indifferent between these two reports. Thus, in order to complete our argument we

just have to show that neither type 1 nor type 2 can do better by reporting 4 than by telling the

truth. This follows since reporting 4 implies a payment of 4 which exceeds the valuations of

both lower types.

Under truthful reporting both outcome functions in Ω generate an expected revenue of 9/4:

(q1, t1) : 0×
1
4

+ 1×
1
4

+ 4×
1
2

=
9
4

(q2, t2) : 1×
1
4

+ 0×
1
4

+ 4×
1
2

=
9
4
.

This expected revenue exceeds the expected revenue of 2 which is achieved by the optimal

standard mechanism (which is a take it or leave it offer at the price of 4). Hence we have

shown that in the context of the current example the seller can do strictly better by adopting an

ambiguous mechanism rather than limiting himself to a standard mechanism.

The above analysis relies on two crucial assumptions on which we want to comment further.

First, in order for the ambiguous mechanism Ω to generate a higher expected revenue than the

best simple mechanism it is crucial that the seller has the possibility to commit to one of the

two simple mechanisms in Ω before the agent makes his choice. It is straightforward to see

that if the principal does not have the possibility to commit but must make his choice between

12Remember that we have also imposed risk neutrality.
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(q1, t1) and (q2, t2) ex post, then truthtelling would no longer be optimal. Without commitment

the principal would always choose the first outcome function after receiving the message 2 and

the second one upon getting message 1. But if that is the case, then type 4 of the buyer would

never want to report his type truthfully since by choosing either of the other two messages

he could get the object with the same probability but at a lower price. Thus, in the absence

of commitment Ω generates a lower expected revenue than the optimal simple mechanism.

In fact, without commitment no ambiguous mechanism could do better than the best simple

mechanism.

Given this observation, it is important to understand that the commitment ability that we

need for our results is no stronger than the kind of commitment that is imposed in most of

the mechanism design literature. The only difference is that here we assume that the principal

can commit to something that the agent cannot observe before he makes his choice. But the

ex ante observability of the mechanism for the agent should not be a crucial determinant for

the principal’s ability to commit. After all we can always assume that the simple mechanism

to which the principal commits is described in some document that is stored in some place

the access to which is jointly controlled by the principal and the agent (so that ex post they

can verify together which allocation-transfer pair should be implemented). If anything, what

should matter is the verifiability of the mechanism and of the messages vis-a-vis a third party

who can guarantee the correct implementation of the mechanism.

The second important assumption on which our analysis of the above example builds is

the assumption that the buyer does consider it possible that the seller might have committed

to either of the two outcome functions in Ω. On the one hand this is certainly a reasonable

assumption in light of the fact that the seller is not providing the buyer with any explicit infor-

mation whatsoever as to which outcome function he might have chosen. The question remains

whether the choice of Ω itself might be carrying relevant information. In particular, it would

seem reasonable that a buyer asks himself what the expected revenue is that each element of

the ambiguous mechanism generates, and that he would not believe in the possibility that the

principal might have chosen a simple mechanism that generates a lower expected revenue than

other simple mechanisms in Ω.

The possibility to indirectly infer the simple mechanism chosen by the principal is incom-

patible with the idea that the buyer perceives the ambiguous mechanism that he is presented

with as ambiguous. We therefore impose the requirement that the principal can offer only

ambiguous mechanisms with the property that all their elements generate the same expected

revenue provided the agent acts optimally based on the belief that the principal might have

committed to any of the simple mechanisms in the ambiguous mechanism. We refer to this

condition as consistency condition. Under consistency the principal is indifferent between all

the simple mechanisms in the ambiguous mechanism if he assumes that the agent considers

8



all the elements of the ambiguous mechanism as ‘real’ possibilities. Conversely, for the agent

there exists no reason to deem one of the elements of the ambiguous mechanism as impossible

if he is aware of the principal’s indifference. As an ambiguity averter he should therefore not

exclude any of them from his considerations.13 It is due to these considerations that we have

chosen Ω in such a way that both its simple mechanisms generate the same expected revenue.

3 Framework

Throughout the first part of the paper we consider the mechanism design problem of a principal

selling a single unit of a good to a single agent. The notation and terminology that we introduce

below generalize in the obvious way to the case of multiple agents, which we consider later in

the paper.

Allocations and preferences. An allocation is a pair (x, τ) ∈ X ×R, where x ∈ X = [0,1]

denotes the probability with which the good is transferred to the agent and τ the monetary

transfer he has to pay to the principal.14 With a slight abuse of terminology we will typically

use the term ‘allocation’ to indicate the non-monetary component x of a pair (x, τ). The agent’s

preferences over X ×R depend on his type θ ∈ Θ ⊂ R. More specifically, we assume that they

are represented by the linear utility function

u(x, τ) = xθ−τ.

The agent’s valuation of the good, that is, his type θ, is his private information. Throughout the

first part of the paper we assume that Θ is a finite set with N elements and we index types so

that θn is increasing in n. The principal’s beliefs regarding the agent’s type are described the

probability distribution p = (p1, . . . , pN).

The agent is ambiguity averse in the sense of Gilboa and Schmeidler (1989). That is, in

a situation where his beliefs are described by a family of distributions over allocation-transfer

pairs, Λ, his utility is given by

inf
λ∈Λ
Eλ[xθ−τ].

The principal is risk and ambiguity neutral. His objective is to maximize expected revenue,

that is, the expected transfer payments paid by the agent. We show in Section 5.3 that our main

results go through also under the assumption of an ambiguity averse principal. Allowing for

13The possibility that the buyer would choose to arbitrarily disregard some of the elements of the ambiguous
mechanism would be difficult to reconcile with the spirit of models of ambiguity aversion.

14Instead of interpreting x as the probability with which the indivisible good is transferred one can equivalently
assume that the good is perfectly divisible and that x represents the share given to the agent.
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this possibility, however, does not add anything of interest to our analysis as the central insights

that we obtain are driven by the agent’s ambiguity aversion.

Simple vs. ambiguous mechanisms. A simple mechanism is a triple (S ,q, t). S is a set of

messages that the agent may send to the principal. The functions q and t map S into X and R,

respectively. q(s) is the probability with which the good is transferred to the agent if he sends

message s, while t(s) is the corresponding transfer that the agent has to pay to the principal.15

We refer to q and t, respectively, as allocation and transfer rules on S ; the pair (q, t) is the

outcome function of the mechanism. A direct simple mechanism is a simple mechanism such

that S = Θ. Since all direct mechanisms share the same message space, we drop the latter from

the notation and identify the direct mechanism (Θ,q, t) with its outcome function (q, t).

Mechanism design models typically assume that besides committing to a particular out-

come function the principal also fully and credibly reveals it to the agent. In effect, if the agent

has standard expected utility preferences then the latter part of this assumption is innocuous,

as the principal cannot gain anything from concealing this information.16 The central insight

of this paper is that this is no longer true with an ambiguity averse agent. Indeed, we show that

it is typically in the principal’s best interest not to inform the agent about the exact outcome

function he commits to. Instead, he can benefit from communicating the rules of the mecha-

nisms in an ambiguous way, by only announcing that it belongs to a certain set. The notion of

an ambiguous mechanism captures the idea of such ambiguous rules.

Definition 1 (Ambiguous mechanism). An ambiguous mechanism is a pair (S ,Ω), where S

is a set of messages, and Ω is a set of outcome functions defined on S , i.e. Ω ⊂ XS ×RS .17 A

generic element of Ω is denoted by (q, t), where q ∈ XS and t ∈ RS .

Before we go on, a few remarks on the interpretation and purpose of the concept of an

ambiguous mechanism are in order. After choosing a set of possible messages, S , the principal

commits to an outcome function (q̂, t̂). This commitment may be achieved, say, by depositing

(q̂, t̂) with an uninterested third party. The agent is not fully informed about the chosen outcome

function. Instead the principal limits himself to telling the agent that it belongs to a set Ω. Of

15Note that our definition of a simple mechanism allows for random allocations but not for random transfers:
the range of t is R, not the set of probability measures over R. Given that both the principal and the agent are
risk neutral, restricting attention to deterministic transfer schemes is without loss of generality. A mechanism with
random transfers can be replaced by one with deterministic transfers that specifies for each type report the expected
values of the random transfer scheme. Doing so does not alter the two players’ expected payoffs for any decision
that the agent may take. The same is true for random allocation rules if the good is perfectly divisible. If the good
is not divisible, then allowing for random allocations expands the set of possible allocations.

16Under any standard equilibrium concept the agent would know in equilibrium which function has been chosen
by the principal.

17As already argued earlier, the restriction to ambiguous mechanisms with (sets of) deterministic outcome func-
tions is without loss of generality in an environment with risk neutral players.
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course, by announcing such ambiguous rules he exposes the agent to uncertainty about the

consequences of his messages and we discuss the principal’s motives for doing so in the next

section.

The requirement (q̂, t̂) ∈ Ω rules out the possibility that the principal completely deceives

the agent with regard to (q̂, t̂). We stress once more the fact that the principal commits to (q̂, t̂)

before the agent sends his message; therefore the choice of (q̂, t̂) cannot be conditioned on the

message.

Agent’s strategies and beliefs. Once the designer has specified an ambiguous mechanism,

(S ,Ω), the agent chooses a message from S . A strategy for the agent is a function σ that maps

Θ into S , i.e. σ ∈ S Θ.

We assume that the agent cannot use mixed strategies. This assumption, which is com-

monly adopted in the ambiguity literature, has some bite, as an ambiguity averse individual

facing two alternatives with uncertain consequences may strictly prefer mixing over the al-

ternatives to each of the two.18 However, we maintain that besides being pervasive in the

literature, the assumption is especially weak in our context. Unlike an expected utility max-

imizer, an ambiguity averter may ex ante wish to randomize even over alternatives that he is

not indifferent over. But if the individual has strict preferences over the alternatives he is ran-

domizing over, then the strong ex ante incentives to mix conflicts with the individuals ex post

incentives to implement the outcome of the randomization. In this case, allowing for mixed

strategies may therefore matter only if the agent can commit to obeying the recommendation

of some randomizing device. Making such a commitment in a mechanism design context is

difficult, because the designer can do better by declining reports generated by such devices,

that is, by requiring reports to be made directly by the agent.19

The set of optimal strategies for the agent depends on his beliefs regarding the outcome

function (q̂, t̂) to which the principal has committed himself. The agent’s only piece of hard

information in this respect is that the function belongs to Ω. On the other hand, the agent

knows that the principal seeks to maximize his revenue. Given the agent’s ambiguity aversion,

it thus seems appropriate to assume that his belief set contains the entire family ∆(Ω) of prob-

ability measures on Ω, provided that such a belief set is not incompatible with the principal’s

optimizing behavior in a sense that we formalize next.

18Ever since Raiffa (1961), it is well known that randomization may help the agent to hedge against the uncer-
tainty involved in the two alternatives. Recently Saito (2013) provided an axiomatization of ambiguity aversion
which does not give rise to a hedging motive.

19While this argument only refers to randomizations over alternatives that the individual does not consider as
equivalent, it is sufficient for our purpose. In our context, the agent will have to decide which type to report to the
principal. The optimal direct mechanism that we will derive can be arbitrarily closely approximated by a mechanism
with the property that no type of the agent is indifferent between any two messages.
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For any ambiguous mechanism (S ,Ω), let Σ∗(S ,Ω) designate the corresponding set of opti-

mal strategies for the agent, when his beliefs are given by ∆(Ω). Since the agent is risk neutral,

calculating the infimum of his expected payoffs with respect to ∆(Ω) delivers the same value as

the one obtained when attention is restricted to Ω. Thus, the set Σ∗(S ,Ω) is the set of all σ ∈ S Θ

such that for each θ ∈ Θ,

σ(θ) ∈ argmax
s∈S

inf
(q,t)∈Ω

[q(σ(θ))θ− t(σ(θ))].

Definition 2 (Consistency). An ambiguous mechanism (S ,Ω) is consistent with respect to σ ∈

Σ∗(S ,Ω) if under σ all outcome functions in Ω yield the same expected revenue to the principal,

i.e. if for all (q, t), (q′, t′) ∈Ω

Ep[t(σ(θ))] =Ep[t′(σ(θ))].

The ambiguous mechanism (S ,Ω) is consistent if it is consistent with respect to some σ ∈

Σ∗(S ,Ω).

Consistency requires that each element of the ambiguous mechanism Ω delivers the same

expected revenue to the principal if the agent bases his choice on the belief set ∆(Ω). To

shed further light on this condition, consider a situation were it is not satisfied. Thus, suppose

that the principal proposes an ambiguous mechanism (S ,Ω) such that for every σ ∈ Σ∗(S ,Ω)

there exist (q, t), (q′, t′) ∈Ω withEp[t(σ(θ))] <Ep[t′(σ(θ))]. In this case the agent’s assumption

that the principal might have chosen any of the elements in Ω leads to the conclusion that

the principal strictly prefers some elements of Ω over other elements of Ω, if he correctly

predicts the agent’s belief and strategy. Consistency rules out such contradictory beliefs. It

is essentially an equilibrium condition for the two stage game played by the two parties. In

equilibrium the agent should not entertain the possibility that a certain outcome function is

chosen, if the strategy that he intends to implement in response to this belief implies that the

outcome function does not maximize the designer’s payoff.20

Finally, we remark that requiring the seller to be indifferent before the buyer reports his

type rather than after, is to the seller’s benefit. If the seller could choose his preferred simple

mechanism in the ambiguous mechanism after the report, he would choose a mechanism with

the highest transfer given the report. The buyer would foresee this and calculate his payoffs

accordingly. In particular, every type of the agent would associate with any given report the

same worst case scenario, namely the outcome function in Ω with the smallest probability of

trade (for that report) among the simple mechanisms that specify the highest transfer (for that

report). But then the agent’s behavior vis-a-vis the ambiguous mechanism Ω would be exactly

20 In Section 5.3 we show that the assumption of consistency is without loss of generality when also the seller
has maxmin expected utility preferences.
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the same as the agent’s behavior vis-a-vis a simple mechanism that specifies only these worst

case allocations and transfers.21 Consequently, the expected revenue of the designer would

also be exactly the same. Thus, if the designer does not commit ex ante to an element in Ω he

cannot do any better than by using only simple mechanisms.

4 Optimal ambiguous mechanisms

In designing the optimal ambiguous mechanism the principal has to take into account two types

of constraints. First, he must respect the consistency condition that we have discussed in the

preceding section. Second, since we assume that the buyer’s participation in the mechanism is

voluntary, the principal must make sure that the mechanism allows each type of the agent to

earn at least his outside option. We assume that the latter is equal to zero for every type. Thus,

the principal’s, problem is to choose among all ambiguous mechanisms (S ,Ω) for which there

exists some σ ∈ Σ∗(S ,Ω) satisfying the conditions

Ep[t(σ(θ))] =Ep[t′(σ(θ))] for all (q, t), (q′, t′) ∈Ω, (1)

inf
(q,t)∈Ω

{q(σ(θ))θ− t(σ(θ))} ≥ 0 for all θ ∈ Θ, (2)

the one that delivers the highest expected revenue.

In what follows we show that the principal’s problem can be substantially simplified.

4.1 The Revelation Principle

First we prove a version of the Revelation Principle that applies to our environment, by showing

that the principal can without loss of generality offer the agent an ambiguous mechanism that

(i) asks the agent to report his type, and (ii) is constructed such that the agent is willing to do

so in a truthful manner.

Definition 3 (Incentive compatibility). An ambiguous mechanism (S ,Ω) is direct if S = Θ,

in which case we identify the mechanism with its set of outcome functions Ω, and for all

(q, t) ∈Ω and 1 ≤ n ≤ N we write qn and tn for q(θn) and t(θn), respectively. A direct ambiguous

mechanism Ω is downward incentive compatible if

inf
(q,t)∈Ω

{qnθn− tn} ≥ inf
(q,t)∈Ω

{qmθn− tm} for all 1 ≤ m < n ≤ N, (DIC)

21Formally, this simple mechanism specifies the same messages, S, and its outcome function (q, t) is such that
for all s, t(s) = sup(q′,t′)∈Ω{τ ∈ R : t′(s) = τ} and q(s) = inf(q′,t′)∈Ω{x ∈ X : q′(s) = x and t′(s) = t(s)}.
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upward incentive compatible if

inf
(q,t)∈Ω

{qnθn− tn} ≥ inf
(q,t)∈Ω

{qmθn− tm} for all 1 ≤ n < m ≤ N (UIC)

and incentive compatible if it is both downward and upward incentive compatible.

Proposition 1 (Revelation Principle). Let (S ,Ω) be an ambiguous mechanism that is consistent

with respect to σ ∈ Σ∗(S ,Ω). The direct ambiguous mechanism

Ω′ =
{
(q′, t′) ∈ XΘ×RΘ : q′ = q◦σ, t′ = t ◦σ for some (q, t) ∈Ω

}
is incentive compatible and consistent with respect to truthtelling.

Proof. See the Appendix. �

The Revelation Principle guarantees that given any consistent ambiguous mechanism, (S ,Ω),

we can find a direct ambiguous mechanism, Ω′, satisfying incentive compatibility and such

that, element by element, (S ,Ω) and Ω′ generate the same allocations and transfers, and hence

give both the principal and the agent the same payoff. As a consequence the principal can re-

strict himself to direct ambiguous mechanisms that satisfy incentive compatibility, consistency

with respect to truth-telling and individual rationality (condition (2)). In the case of direct

ambiguous mechanisms Ω, the latter may be rewritten as

inf
(q,t)∈Ω

qnθn− tn ≥ 0 for all 1 ≤ n ≤ N. (IR)

Thus, the problem of the principal can be written as follows:

max
R∈R,Ω⊆XΘ×RΘ

R (P)

s.t. R =

N∑
n=1

pntn for all (q, t) ∈Ω, (C)

(DIC), (UIC) and (IR).

We now consider the relaxed version of this problem where constraint (UIC) is removed,

and show through a sequence of lemmata that the set of feasible mechanisms for the relaxed

problem can be restricted while leaving the problem’s value unchanged. Finally, we prove that

all optimal mechanisms for the relaxed problem in fact satisfy (UIC), and are therefore also

optimal for the original problem (P). Given a direct ambiguous mechanism Ω that satisfies (C),

in what follows we write R(Ω) for the expected revenue associated to every simple mechanism
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in the ambiguous mechanism Ω, so that

R(Ω) =

N∑
n=1

pntn.

4.2 Uniform, minimal and monotonic ambiguous mechanisms

We first show that the relaxed version of Problem (P) always admits solutions that do not

expose truthfully reporting types to ambiguity, except possibly the highest type. That is, the

truthtelling payoff of every type θn, n < N, is constant across the outcome functions of the

optimal ambiguous mechanism. Moreover, at the optimum for each type one of the downward

deviation constraints must be binding. Thus, the truthtelling payoffs coincide with the payoff

that types can obtain from the most attractive downward deviation. In what follows we refer to

these properties as uniformity.

Definition 4 (Uniformity). A direct ambiguous mechanism Ω is uniform if

q1θ1− t1 = 0, for all (q, t) ∈Ω,

qnθn− tn = max
1<m<n

inf
(q′,t′)∈Ω

{q′mθn− t′m}, for all (q, t) ∈Ω, (Uni)

qNθN − tN = max
1<m<N

inf
(q′,t′)∈Ω

{q′mθN − t′m}, for some (q, t) ∈Ω

Note that uniformity implies both downward incentive compatibility ((DIC)) and individual

rationality ((IR)). This is immediate to see in the case of (DIC). As for (IR) observe that for all

(q, t) ∈Ω and all 1 < n ≤ N we have

q1θn− t1 ≥ q1θ1− t1.

That is, type θn, n > 1, cannot obtain a lower payoff from reporting θ1 than type θ1 himself.

By the first condition in the definition of uniformity the lowest type’s payoff from truth-telling

is zero. But then, the second and third condition of uniformity can be satisfied only if the

truth-telling payoffs of all types θn, n > 1, are (weakly) larger than zero too.

Lemma 1. For every direct ambiguous mechanism Ω satisfying (C), (DIC) and (IR) there is a

direct ambiguous mechanism Ω′ satisfying satisfying (C), (Uni) and R(Ω′) ≥ R(Ω).

Proof. See the Appendix. �

The fact that imposing the uniformity condition (Uni) is without loss of generality – in the

relaxed problem where (UIC) is removed but, as we argue later, in problem (P) as well – re-

sembles the standard result from mechanism design, stating that at the optimum the downward
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incentive compatibility constraints and the individual rationality constraint of the lowest type

are binding. Ambiguity aversion and the consistency requirement, however, demand special

attention in establishing this fact. In the proof of the lemma we show that if any simple mecha-

nism, (q, t), in the ambiguous mechanism Ω gives the lowest type a strictly positive payoff, then

it can be changed by increasing t1 to q1θ1 and decreasing the transfer tN in a way that leaves

the simple mechanism’s expected revenue unaltered. Given that the expected revenue remains

constant, this modification is neutral with respect to the consistency condition (C). Moreover,

increasing the lowest type’s transfer and decreasing the one of the highest type cannot possibly

lead to a violation of any downward incentive compatibility condition.

Using similar arguments, we show that the value of the designer’s problem is not affected if

he only considers ambiguous mechanisms Ω such that each (q, t) ∈Ω satisfies the property that

truthful reporting of the type θn, n ≤ N, yields the same payoff as the most attractive misreport

of a lower type (not necessarily the downward adjacent one).

In the statement of Problem P, ambiguous mechanisms are allowed to be of any size. The

next result shows that the problem can be substantially simplified since attention can be re-

stricted to ambiguous mechanisms that are both ‘small’ and have a simple structure. In par-

ticular, Lemma 2 shows that there is always a solution of the relaxed version of Problem P

that contains N−1 (not necessarily distinct) simple mechanisms.22 Each one of these outcome

functions serves the purpose to deter downward deviations towards one particular report. We

will henceforth refer to mechanisms with this property as minimal mechanisms.

Definition 5 (Minimality). An ambiguous mechanism Ω is minimal if Ω = {(q1, t1), . . . , (qN−1, tN−1)},

with

qm
mθn− tm

m ≤ q`mθn− t`m for all 1 ≤ `,m < n ≤ N. (Min)

Lemma 2. For every direct ambiguous mechanism Ω, satisfying (C), (Uni) there is a direct

ambiguous mechanism Ω′ satisfying (C), (Uni), (Min), and R(Ω) = R(Ω′).

Proof. See the Appendix. �

The fact that each outcome function, (qm, tm), of a minimal mechanism has to dissuade the

agent only from reporting θm when his true type is higher, provides the central intuition for why

the seller can do better with an ambiguous mechanism than with a simple mechanism. With

multiple outcome functions the designer has more instruments to take care of the incentive

constraints. Each single simple mechanism, in the ambiguous mechanism, takes care of only a

22By allowing for the possibility that minimal ambiguous mechanisms contain multiple copies of one and the
same outcome function we slightly abuse the meaning of the term ‘set’ that we are using when referring to ambigu-
ous mechanisms. The reasons for adopting this convention are purely notational.
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subset of all incentive compatibility constraints. While the outcome function (qm, tm) guaran-

tees that no type θn > θm wishes to report θm, another outcome function, (qm′ , tm′), performs the

same task with respect to report θm′ . Each simple mechanism in the ambiguous mechanism is

therefore less distorted than the optimal non-ambiguous mechanism which has to take care of

all the incentive compatibility conditions.

The principal’s ability to limit himself to minimal mechanisms has immediate consequences

for the case of a binary type set. In this case, having multiple simple mechanisms in the ambigu-

ous mechanism does not provide any advantage in handling the incentive constraints. Indeed,

when there are are only two types Lemma (5) readily implies that the seller cannot do better

with an ambiguous mechanism containing multiple simple mechanism than with a standard

non-ambiguous mechanism.

Corollary 1. If the type set Θ contains only two elements, then the use of ambiguous mecha-

nisms does not allow the principal to achieve a higher expected revenue than the one that he

can obtain with an optimal non-ambiguous mechanism.

Finally, we show that within the set of ambiguous mechanisms that are minimal and uni-

form, we only have to consider ambiguous mechanisms that exhibit allocation rules that have

a particularly simple structure. More specifically, attention can be limited to mechanisms with

allocation rules that are are equal to 1 for all except possibly one report. Moreover, the coor-

dinates of the outcome functions that are allowed to differ from the value 1 can be assumed to

satisfy a monotonicity condition defined across outcome functions.

Definition 6 (Monotonicity). A minimal direct ambiguous mechanism Ω = {(q1, t1), . . . , (qN−1
N−1, t

N−1
N−1)}

is monotonic if

qm
n = 1 for all 1 ≤ m < N,1 ≤ n ≤ N,n , m and (Mon)

qm
m ≤ qn

n for all 1 ≤ m < N,m ≤ n ≤ N −1.

Lemma 3. For every direct ambiguous mechanism Ω, satisfying (C), (Uni) and (Min), there is

a direct ambiguous mechanism Ω′ satisfying (C), (Uni), (Min), (Mon) and R(Ω′) ≥ R(Ω).

Proof. See the Appendix. �

The above lemma shows that one can restrict attention to minimal ambiguous mechanisms

in which every simple mechanism awards the object with probability one to the agent after

all but (possibly) one report. The intuition for the fact that in the simple mechanism (qm, tm)

only the allocation qm
m needs to be left unrestricted is rather straightforward. We have observed

earlier, that the purpose of (qm, tm) is to prevent the agent from reporting θm when he is of a

higher type. Since by uniformity the truthtelling payoff of type θm has to be constant across
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outcome functions, it follows that the payoff of higher types who value the good more, must be

minimized by the outcome function that awards the object with the lowest probability. Thus,

qm
m ≤ qm′

m for all m′ , m. Finally, if (qm, tm) takes care of the downward deviation constraints

toward θm, then an increase of qm
m′ could neither affect the (downward) incentive compatibility

of the mechanism nor its individual rationality. Consequently, qm
m′ can be set equal to one.

The second part of (Mon), qm
m ≥ qm−1

m−1 for all m strictly between 1 and N, parallels the

monotonicity result in a standard mechanism design problem with ambiguity neutral agents,

where an allocation rule is implementable if and only if it is monotonic. This property translates

in a natural way into our setting with an ambiguity averse agent.

In the proof of the lemma we show that this is the case because under a uniform ambiguous

mechanism the most attractive (downward) deviation option for type θn is the report that guar-

antees the largest worst case allocation, i.e., the report that guarantees maxm<n min1≤`<m ql
m.

Thus, if 1 ≤ m′ < m < N, and qm′
m′ > qm

m, then there is no type θn, n > m, for whom the incentive

constraint with respect to θm is binding. Consequently, by an increase of qm
m up to qm′

m′ that is ac-

companied by a corresponding increase of tm
m (so that the truth-telling payoff of type θm remains

unchanged) no downward incentive constraints of any type θn > θm is violated. Since such an

increase of qm
m (and the associated increase of tm

m) does not affect the downward incentive con-

straints of types θn, n ≤ m it follows that the assumed non-monotonicity can be eliminated

without affecting downward incentive compatibility. Through appropriate adjustments of the

transfers of the highest type (C) can be reestablished and (DIC) can be strengthened into (Uni).

None of these modifications affects (Min).

The three results above show that in solving the relaxed version of Problem (P), where

(UIC) is removed, one can restrict attention to mechanisms that satisfy condition (C), unifor-

mity, minimality and monotonicity. We now show that properties (C), (Uni), (Min) and (Mon)

are actually sufficient for feasibility in the original Problem (P) where (UIC) is present.

Lemma 4. If a direct ambiguous mechanism Ω satisfies (Uni), (Min) and (Mon), then it also

satisfies (UIC).

Proof. See the Appendix. �

The main result of this section now follows.

Proposition 2. Every solution to problem

max
R∈R,Ω⊂XΘ×RΘ

R (P’)

subject to (C), (Uni), (Min) and (Mon),

is also a solution to Problem (P).
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Proof. See the Appendix. �

4.3 The optimal ambiguous mechanism

We are now ready to describe explicitly an optimal ambiguous mechanism. First, we provide a

useful characterization of the constraint set of Problem (P’).

Lemma 5. A minimal and monotonic direct ambiguous mechanism Ω = {(q1, t1), . . . , (qN−1, tN−1)}

satisfies (Uni) if and only if the following hold:

tm
n = qm

n θn−

n−1∑
k=1

qk
k(θk+1− θk) for all 1 ≤ m,n ≤ N −1, (3)

max
1≤m<N

tm
N = θN −

N−1∑
k=1

qk
k(θk+1− θk) (4)

Proof. See the Appendix. �

Lemma 5 shows that the transfers of minimal, and monotonic mechanisms that are also

uniform can be expressed in terms of the allocation vector (q1
1, . . . ,q

N−1
N−1) only. The only excep-

tion to this rule are the transfers of the highest type. Those are bounded above by an expression

that only depends on (q1
1, . . . ,q

N−1
N−1) (condition (4)) . Conversely, any minimal and monotonic

mechanism whose transfers satisfy conditions (3) and (4) is also uniform. Thus, solving Prob-

lem P’ amounts to optimally choosing allocations q1
1 ≤ . . . ≤ qN−1

N−1 and transfers t1
N , . . . , t

N−1
N . All

other allocations are equal to one and all other transfers are determined via (3) through the

choice of (q1
1, . . . ,q

N−1
N−1). The two constraints to be respected are condition (4) and consistency;

i.e. t1
N , . . . , t

N−1
N together with the transfers that are determined through (3) must be such that∑N

n=1 pntm
n is constant in m. Given these observations, in what follows we will say that the vector

of allocations (q̄1
1, . . . , q̄

N−1
N−1) generates or induces the mechanism Ω = {(q1, t1), . . . , (qN−1

N−1, t
N−1
N−1)},

if Ω satisfies all constraints of Problem P’ and qm
m = q̄m

m for all 1 ≤ m ≤ N −1.

In what follows we outline how to compute the expected revenue of the mechanism gen-

erated by (q1
1, . . . ,q

N−1
N−1). The problem is that one does not know for which m the maximum in

(4) is attained. However, the right-hand sides of (3) and (4) can be used to compute an upper

boundary on the expected transfer of each outcome function of the ambiguous mechanism that

is generated by (q1
1, . . . ,q

N−1
N−1). Since the generated ambiguous mechanism needs to be such that

all the simple mechanisms yield the same expected transfer the relevant upper boundary is the

lowest one. More precisely, let R̄m(q1
1, . . . ,q

N−1
N−1) be the expected value of the sum of the terms
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in the right hand sides of (3) and (4), that is,

R̄m(q1
1, . . . ,q

N−1
N−1) = Ep[θ]− pm(1−qm

m)θm−

N−1∑
n=1

qn
n(1−Pn)(θn+1− θn),

where Pn =
∑n

k=1 pk. If the designer chooses the ambiguous mechanism that is generated by the

vector of allocations (q1
1, . . . ,q

N−1
N−1), his expected revenue under the outcome function (qm, tm)

cannot exceed R̄m(q1
1, . . . ,q

N−1
N−1). In fact, since we require that

∑N
n=1 pntm

n is constant in m it must

be the case that transfers in Ω are such that for each 1 ≤ m ≤ N −1 we have

Rm(Ω) = min
1≤l≤N−1

R̄l(q1
1, . . . ,q

N−1
N−1). (5)

That is, the lowest upper boundary on the expected revenue is binding and thus yields the

expected revenue of the ambiguous mechanism generated by (q1
1, . . . ,q

N−1
N−1).

Since the seller is maximizing his expected revenue, an optimal choice of (q1
1, . . . ,q

N−1
N−1)

must solve the problem

max
(q1

1,...,q
N−1
N−1)∈Q

min
1≤m≤N−1

R̄m(q1
1, . . . ,q

N−1
N−1), (P”)

where Q is the set of all vectors Q = (q1
1, . . . ,q

N−1
N−1) ∈ [0,1]N−1 whose components are weakly

increasing. The corresponding optimal transfers for the highest type, (t1
N , . . . , t

N−1
N ), are then

determined by condition (5), i.e. they are chosen so that condition (C) holds.

For the presentation of the next results it is convenient to introduce some further notation

and terminology. First, we inductively construct the set M = {m1, . . . ,mM,mM+1}, which is a

subset of the index set N. The first element, m1, is set equal to 1. If for m j−1 the set {n : N >

n >m j−1, pnθn > pm j−1θm j−1} is non-empty, we set m j = min{n : N > n >m j−1, pnθn > pm j−1θm j−1}.

Let mM be the largest index defined in this way and set mM+1 = N. Observe that if pnθn is

increasing in n, then M coincides with the set N. Also notice that pm jθm j is monotonic in

j = 1, . . . ,M by construction.

Next we define for all 1 ≤ j ≤ M the so called adjusted virtual valuation, ν̄m j :

ν̄m j = pm jθm j −

M∑
s= j

pm jθm j

pmsθms

ms+1−1∑
i=ms

(1−Pi)(θi+1− θi).

We refer to ν̄m j as adjusted virtual valuation because both its definition and its role are remi-

niscent of the role of virtual valuations.23 In particular, in Proposition 3 below we show that

23Strictly speaking the adjusted virtual valuation ν̄m j resembles more the product of the virtual valuation of type
θm j and its probability pm j than the virtual valuation itself.
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the optimal value of Q depends on the signs of the adjusted virtual valuations. In the statement

of this result we will exploit the fact that the adjusted virtual valuation can cross the zero only

from below. This is shown in the following lemma.

Lemma 6. If ν̄m j ≤ 0 for 1 < j ≤ M, then ν̄mk ≤ 0 for all 1 ≤ k < j.

Proof. See the Appendix. �

We are now ready to state the main result of this section in which we characterize a solution

of Problem P”.

Proposition 3.

i) If ν̄1 > 0, then (q̂1
1, . . . , q̂

N−1
N−1) = (1, . . . ,1) solves Problem P”.

ii) If ν̄1 ≤ 0, let j∗ = max{ j : ν̄m j ≤ 0} and let Q̂ = (q̂1
1, . . . , q̂

N−1
N−1) be defined by

q̂n
n =


0 if n < m j∗+1

1−
pm j∗ θm j∗

pm jθm j
if j∗+ 1 ≤ j ≤ M and m j ≤ n < m j+1.

Q̂ constitutes a solution of P”.

Proof. See the Appendix. �

Proposition 3 yields a solution to Problem P”. Given Q̂ it is straightforward to calculate the

problem’s optimal value R̂. In particular, for all 1 ≤ n,m < N the optimal transfer t̂m
n can be

obtained from (3). The highest type’s transfers are then chosen so that the expected revenue

of each of the N − 1 simple mechanisms is equal to the optimal value of Problem P”, R̂ =

min j R̄m j(Q̂). We summarize these observations in the following corollary.

Corollary 2. Suppose Q̂ = (q̂1
1, . . . , q̂

N−1
N−1) solves Problem P” and that R̂ is the problem’s value.

Moreover, write (q̂m, t̂m), m = 1, . . . ,N − 1 for the m-th element of the (optimal) ambiguous

mechanism generated by Q̂. Then, t̂m is given by

t̂m
n =

q̂m
n θn−

∑n−1
k=1 q̂k

k(θk+1− θk) if 1 ≤ n < N

(R̂−
∑N−1

n=1 pn t̂m
n )/pN if n = N,

If ν̄1 > 0, then the optimal value of the designer’s problem is R̂ = θ1. Otherwise, the optimal

expected revenue is

R̂ = R̄m j∗ =Ep[θ]− pm j∗ θm j∗ −

N−1∑
n=m j∗+1

q̂n
n(1−Pn)(θn+1− θn).
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In our environment the buyer values the good more than the seller. Allocative efficiency

would therefore require that the good always be allocated to the buyer. According to Propo-

sition 3 this is typically not the case in the revenue maximizing ambiguous mechanism. The

seller might distort the allocative efficiency to increase the revenue, much like it is done in

revenue maximizing simple mechanisms. In Section 5.1 we will see that unlike in the case of

optimal simple mechanisms these distortions tend to vanish in environments with large type

sets. An additional source of inefficiency is introduced through the ambiguity the agent faces

when presented with an ambiguous mechanism. This inefficiency though regards only the high-

est type, for only his truth-telling payoffs vary across outcome functions. For all other types,

the uncertainty embedded in the optimal ambiguous mechanism regards only the payoffs from

deviations, which are never realized.

Finally, it is interesting to compare the expected revenue of an optimal ambiguous mecha-

nism with the expected revenue of the best simple mechanism. Of course, every simple mech-

anism constitutes a (trivial) ambiguous mechanism. Thus, simple mechanisms cannot possibly

deliver a higher revenue than the optimal ambiguous mechanism. But when is it the case that

the designer can do strictly better by using an ambiguous mechanism?

Certainly, this cannot be the case whenever Q = (1, . . . ,1) solves Problem P”. The am-

biguous mechanism that is generated by the allocation vector Q = (1 . . . ,1), yields an expected

revenue of R̂ = θ1, which is the same as the revenue obtained from a a simple mechanism that

prescribes that the object is transferred with probability one at the price of θ1, irrespective of

which message the buyer sends (take-it-or-leave-it offer at the price θ1).

Therefore a necessary condition for the optimal ambiguous mechanisms to yield a higher

expected revenue than the best simple mechanism is that Q = (1, . . . ,1) is not a solution to

Problem P”. We will argue now that this condition is also sufficient. Towards that, assume that

Q = (1, . . . ,1) is not a solution of P”. There are two possibilities regarding the optimal simple

mechanism (q̃, t̃): either q̃ = (1, . . . ,1) or q̃ , (1, . . . ,1). In the first case, we have that R̃ = θ1
24

and thus R̂ > R̃. The latter inequality is implied by the following two facts: a) the revenue of

the ambiguous mechanism generated by Q = (1, . . . ,1) is equal to θ1 and b) Q = (1, . . . ,1) is not

optimal. This leaves us with the case q̃ , (1, . . . ,1).

Let (q̃, t̃) be some optimal simple mechanism, and assume that no (q̃′, t̃′) with q̃′ = (1, . . . ,1)

is optimal among simple mechanism. Define the ambiguous mechanism Ω = {(q1, t1), . . . , (qN−1, tN−1)}

24In what follows all variables with a tilde refer to the optimal simple mechanism (q̃, t̃). For instance R̃ is the
expected revenue generated by (q̃, t̃).
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as follows

qm
n =

q̃n if n = m

1 else,
tm
n =


t̃n if n = m

t̃n + (1− q̃n)θn if n , m,N

t̃N − [pmMθmM (1− q̃mM )− pmθm(1− q̃m)]/pN if n = N,

where mM is defined as before, i.e. mM ∈ argmaxn<N pnθn. In words, we take the optimal

simple mechanism (q̃, t̃) and construct an ambiguous mechanism the following way. The am-

biguous mechanism consists of N − 1 simple mechanisms. In the simple mechanism (qm, tm),

m = 1, . . . ,N −1, qm
n is set equal to 1 whenever n , m; qm

m instead is set equal to q̃m. The trans-

fers are such that tm
m = t̃m, and tm

n = t̃n + (1− q̃n)θn for n , m. tm
N is defined so that consistency is

satisfied.

Incentive compatibility of the optimal simple mechanism (q̃, t̃) implies q̃n ≤ q̃n+1, 1 ≤ n <

N. Observe also that for all types θn, n < N, the truth-telling payoffs are constant across the

simple mechanisms in Ω. In particular, they coincide with the truth-telling payoffs under (q̃, t̃).

By construction of Ω the deviation payoffs cannot be larger than the deviation payoffs under

(q̃, t̃); we verify this in the proof of Proposition 4. Hence, Ω is both incentive compatible

and individually rational. Finally, it can easily be verified that Ω is consistent. The expected

revenue generated by (qm, tm) ∈Ω is

Rm =
∑
n≤N

pn t̃n +
∑

n,mM ,N

(1− q̃n)θn.

The above equation shows that the expected revenue of the ambiguous mechanism Ω, con-

structed from the simple mechanism (q̃, t̃), can be written as the expected revenue from the

simple mechanism (the first term) plus a term that depends on the allocation in the simple

mechanism (q̃, t̃). This second term is strictly larger than zero if and only if there is a n,mM,N,

such that q̃n < 1.

Thus, whenever (q̃, t̃) is such that q̃n < 1 for some n , mM,N, then Ω is an ambiguous

mechanism that delivers a strictly larger expected revenue than (q̃, t̃). What if, q̃n = 1 for all

n ,mM,N? If this condition holds and mM , 1 then q̃1 = 1; by monotonicity of q̃ it then follows

that q̃ = (1 . . . ,1), a case that we have already considered before. So the only case that is left to

be considered is q̃ = (0,1, . . . ,1).25 If the object is assigned to all types but the lowest one, then

the expected revenue is R̃ = (1− p1)θ2. But when mM = 1, then the ambiguous mechanism that

25If q̃mM = q̃1 , 1 then we can assume that q̃1 = 0. If choosing q = (q1,1, . . . ,1) with 0 < q1 was optimal then so
would be q = (1, . . . ,1). But we have already dealt with that case.
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is generated by Q = (0, . . . ,0) yields an expected revenue of

R =Ep[θ]− p1θ1 = (1− p1)θ2 +

N∑
n=3

pn(θn− θ2) > R̃,

meaning that also in this case there exists an ambiguous mechanism that does strictly better

than the optimal simple mechanism.

We summarize the preceding observations in the following proposition.

Proposition 4. An optimal ambiguous mechanism yields a strictly larger revenue than the best

simple mechanism if and only if ν̄1 < 0. That is, the use of ambiguous mechanisms is strictly

beneficial for the principal if and only if Q = (1, . . . ,1) is not a solution of Problem P”.

Proof. See the Appendix. �

We conclude this section with a three-type example that illustrates the above discussed

results.

Example 1 (Optimal ambiguous mechanisms in the three type case).
Suppose that Θ = {θ1, θ2, θ3}. The formula for the optimal Q given in Proposition 3 conditions

on the signs of the adjusted virtual valuations. The adjusted virtual valuations in turn depend on

the composition of the setM. Remember thatM = {m1, . . . ,mM+1} is a subset of type indices

such that pm jθm j is increasing in j. With three types there are only two possibilities: either i)

p1θ1 > p2θ2 or ii) p1θ1 ≤ p2θ2.

i) p1θ1 > p2θ2: In this case we haveM = {1,3}; i.e. M does not include 2. Consequently, q2
2

is always chosen equal to q1
1 and so we either have q1

1 = q2
2 = 1 or q1

1 = q2
2 = 0, depending on

whether ν̄1 > 0 or ν̄1 ≤ 0. Notice that ν̄1 takes the value

ν̄1 = p1θ1− (1− p1)(θ2− θ1)− (1−P2)(θ3− θ2) = θ1− p2θ2− p3θ3.

Hence, q1
1 = q2

2 = 1 is optimal if θ1 is larger than the two larger types’ contribution toEp[θ]. (3)

implies that all transfers for the two lower types are equal to θ1. Since by Corollary 2, R̂ = θ1,

it follows that also the highest type’s transfers are equal to θ1. Q̂ = (1,1) means that every

outcome function of the ambiguous mechanism specifies that the agent is awarded the good

with probability one, irrespective of his message. Incentive compatibility then requires that the

transfers do not change either with the reported type. The maximal transfer that is compatible

with the lowest type’s individual rationality constraint is to have him pay his valuation.

Notice also that Q̂ = (1,1) means that the two outcome functions (q1, t1) and (q2, t2) co-

incide. Thus, the designer can achieve the maximal expected revenue by offering a simple

mechanism.
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If ν̄1 ≤ 0, then it is optimal to set q1
1 = q2

2 = 0. That is, each of the two outcome functions

excludes one of the two lower types, but neither of them excludes both. According to Corollary

2 the expected revenue in this case is R̂ = p2θ2 + p3θ3. Using (??) once more we obtain t1
1 = 0,

t1
2 = θ2, t2

1 = θ1 and t2
2 = 0. Finally, consistency implies t1

3 = θ3 and t2
3 = θ3− [p1θ1− p2θ2]/p3.

Clearly there is no simple mechanism that achieves an expected revenue of R̂ = p2θ2 + p3θ3.

An optimal simple mechanism takes one of the following three forms: i) the good is given to

every type with probability one at the price θ1, ii) the good is given to types two and three at the

price θ2 or iii) it specifies that only the highest type gets the good at the price of his valuation.

Option i) generates an expected revenue of θ1 which is by assumption (ν̄1 ≤ 0) smaller than R̂.

The revenues under options ii), p2(θ2 + θ3), and iii), p3θ3, are clearly smaller than p2θ2 + p3θ3.

This confirms the result in Proposition 4.

ii) p1θ1 ≤ p2θ2: In this case M = {1,2,3}, implying that the choices of both q1
1 and q2

2 are

non-trivial and depend on the sign of both ν̄1 and ν̄2. These two variables now take the values

ν̄1 = p1θ1− (1− p1)(θ2− θ1)−
p1θ1

p2θ2
p3(θ3− θ2) = θ1− (1− p1)θ2−

p1θ1

p2θ2
p3(θ3− θ2)

ν̄2 = p2θ2− (1−P2)(θ3− θ2) = (p2 + p3)θ2− p3θ3.

ν̄1 is slightly larger than in case i) (the difference between the two expressions is the smaller

the closer p1θ1 is to p2θ2). ν̄2 instead is given by the product of the (regular) virtual valuation

of type 2 and his probability.

As in case i) it is optimal to set q1
1 = q2

2 = 1 if ν̄1 > 0. If ν̄1 ≤ 0 then the optimal value of

q1
1 is 0. But unlike before, ν̄1 ≤ 0 no longer implies q2

2 = 0. Instead, the optimal value of q2
2

depends on the sign of ν̄2. More specifically, in order for q1
1 = q2

2 = 0 to be optimal, it must be

the case that both ν1 ≤ 0 and ν2 ≤ 0. In the remaining case (ν1 ≤ 0 and ν2 > 0) we obtain the

solution q1
1 = 0 and q2

2 = 1− p1θ1/p2θ2.

As for the transfers, we obtain t1
1 = 0, t1

2 = θ2, t1
3 = θ2 + p1θ1(θ3 − θ2)/p2θ2 and t2

1 = θ1, t2
2 =

(1− p1θ1/p2θ2)θ2, t2
3 = θ2 + p1θ1(θ3 − θ2)/p2θ2. The expected value of these transfers is R̂ =

(p2 + p3)θ2 + p1 p3θ1(θ3− θ2)/p2θ2. This revenue exceeds the revenue achieved by the revenue

maximizing simple mechanism, (p2 + p3)θ2. �
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5 Discussion and extensions

5.1 Increasing the number of types: Full surplus extraction in the limit

In this section we focus on the ambiguous mechanism generated by Q = (0, . . . ,0).26 This

mechanism takes a particularly simple form: the transfer rule corresponding to the m-th out-

come function, tm, is given by

tm
n =


0 if n = m

θn if n , m,N

θN − (pmMθmM − pmθm)/pN if n = N.

The expectation of this transfer is R = Ep[θ]− pmMθmM . So the ambiguous mechanism gen-

erated by Q = (0, . . . ,0) extracts all of the agent’s (expected) surplus except for type θmM ’s

contribution, pmMθmM . The part of the surplus that is left to the agent, pmMθmM , is small if the

probability of each single type (and thus also the one of type θmM ) is small, as it can be the case

in settings with ‘large’ type sets. The optimal ambiguous mechanism then leaves to the agent

at most this much surplus. These observations suggest, that in environments with large type

sets, the designer can essentially extract the full rent from the agent. The following proposition

gives a more precise formulation of this insight.

Proposition 5 (Full surplus extraction in the limit). Let {ΘN , pN}N be a sequence of finite

environments, such that |ΘN | = N. Assume the limit limN→∞EpN [θN] exists. Moreover, let

m̄N be such that pN
m̄N
θN

m̄N
≥ pN

l θ
N
l for all 1 ≤ l ≤ N − 1 and write R̂N for the revenue that the

designer can generate with the an optimal ambiguous mechanism in the N-th environment. If

pN
m̄N
θN

m̄N

N→∞
−→ 0 then

R̂N

EpN [θN]
N→∞
−→ 1.

That is, in the limit the designer is able to extract all of the agent’s surplus.

Proof. By our preceding observations for all N we have

EpN [θN] ≥ R̂N ≥EpN [θN]− pN
m̄N
θN

m̄N
.

Dividing both sides by EpN [θN] and taking the limit yields the result. �

In order to get a better intuition for this result, consider again the type of ambiguous mech-

anism described above. In such a mechanism, for each n < N, the outcome function (qn, tn)

26Remember that we say that Ω = {(q1, t1), . . . , (qN−1, tN−1)} is generated by Q, if Ω satisfies the properties (C),
(Uni), (Min), (Mon) and (q1

1,q
2
2, . . . ,q

N−1
N−1) = Q.
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assigns the good with probability one to every type except type θn, who is excluded from trade

(i.e. he receives the good with probability zero). Moreover, under (qn, tn) all types, except θn

and θN , are charged their valuations. The fact that under (qn, tn) type θn does not get the good

not only implies that type θn himself cannot get a strictly positive payoff from revealing his

type, but it also means that no other type can achieve a strictly positive payoff from reporting

θn. Thus, the outcome function (qn, tn) guarantees that (downward) deviations toward θn are

unattractive. In the same way each other outcome function (qm, tm), m , n makes sure that the

agent does not have an incentive to report θm unless that is his true type. Since each single out-

come function in the ambiguous mechanism has to take care of the deviation incentives toward

just one type, they can be chosen freely (i.e. unconstrained by incentive considerations) for all

other possible reports. In particular, it is feasible to specify that for each other message (except

θN) the agent gets the good for sure in exchange of a payment that corresponds to his report.

The highest type does not necessarily have to pay his valuation since his transfers are used to

guarantee consistency across outcome functions.

In the case of simple mechanisms all deviation incentives have to be taken care of by a

single outcome function. In order to do so this single outcome function needs to be distorted

much more than each single element of an ambiguous mechanism.

The downside of a types’s exclusion from trade is that no rent can be extracted from him.

Since all outcome functions must yield the same expected revenue, all of them can extract

only as much as the one that excludes the type with the largest contribution to the expected

surplus. If the set of types increases and the likelihood of each single type decreases, the cost

of excluding each single type decreases as well.

In a context with a continuum of types and an atomless type distribution, the weight of

each single type is exactly zero. For such environments, we obtain the following corollary to

Proposition 5.

Corollary 3 (Full surplus extraction). Suppose that Θ is a compact interval in R and that the

type distribution P is atomless. Then the ambiguous mechanism, Ω = {(qθ, tθ), θ ∈ Θ}, where

(qθ, tθ) is defined by

qθθ′ =

0 if θ′ = θ

1 else
tθθ′ =

0 if θ′ = θ

θ′ else,

is individually rational, incentive compatible and consistent. Moreover, Ω extracts the full

surplus from the agent, that is R(Ω) =Ep[θ].

Corollary 3 is important not only because it tells us that the designer can achieve full

surplus extraction by using an appropriately constructed ambiguous mechanism. An even more
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important insight that we can derive from this result is that in situations where type sets are large

(i.e. continua) and the type distributions are not too concentrated on single points (i.e. atom

less), it is possible to design an ambiguous mechanism that achieves full surplus extraction

without knowing the details of the type distribution. Moreover, in this case the mechanism is

ex post efficient with probability one. That is, each simple mechanism transfers the good to the

agent with probability one.

5.2 Payoff irrelevant information and the ‘splitting’ of types

In the preceding (sub-)section we have seen that the share of the surplus that the designer

can extract from the agent is the larger ‘the more types there are’. In particular, if types are

distributed atomless on an interval then full surplus extraction is possible. In this section we

use this insight to argue that the principal should not only elicit the agent’s payoff types, but

that he can benefit also from conditioning outcomes on non-payoff relevant information that

the agent may hold.

In order to see this, consider again our basic set up with N payoff relevant types, Θ =

{θ1, . . . , θN}. Assume that θ is only one component of the agent’s type. The second component,

v, is payoff irrelevant and takes values in the (finite) set V = {v1, . . . , vK}; for convenience, let

V ⊂ R. Denote the distribution of the (bi-dimensional) type by π and assume that the principal

knows this distribution.

Even though the type set of this environment is bi-dimensional the results from the pre-

ceding section carry over also to this context if we endow Θ×V with the lexicographic order

(where payoff relevant types constitute the first criterion). In particular, we can construct an

optimal ambiguous mechanism as described in Proposition 3 and Corollary 2.

Using the payoff irrelevant part of a type serves the purpose of ‘splitting’ payoff types into

subtypes. Doing so generates a larger number of types who all have a smaller probability. We

have seen in the previous subsection why it is desirable from the designer’s perspective to have

many types who are all not very likely to occur. The insights from that section do not rest on

the assumption that types are different in terms of payoff relevance. Instead they also apply

when two types differ only in non-payoff relevant dimensions. We demonstrate this in the next

example.

Example 2 (The benefits of eliciting payoff irrelevant information). Consider the following

simple environment. The type set is given by Θ×V , where Θ = {1,3} and V = {L,H}. The type

distribution is uniform and the type set is endowed with the obvious lexicographic ordering.

If the principal ignores the payoff irrelevant part of the agent’s type it is as if facing an

agent with only two (equally likely) types, 1 and 3. Remember that by Corollary 1 the best
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mechanism that the designer can offer is a simple mechanism. It is straightforward to see that

the optimal simple mechanism, (q̃, t̃), is defined by (q̃(1), t̃(1)) = (0,0), (q̃(3), t̃(3)) = (1,3). The

expected revenue generate by this mechanism is R̃ = 3/2.

Now assume that the designer takes into account also the payoff irrelevant component of

the agent’s type. Then according to Proposition 3 he should offer the ambiguous mechanism Ω

composed by the outcome functions described in the following table.27

(θ, v) (1,L) (1,H) (3,L) (3,H)

(q(1,L), t(1,L)) (0,0) (1,1) (1,3) (1,3)

(q(1,H), t(1,H)) (1,1) (0,0) (1,3) (1,3)

(q(3,L), t(3,L)) (1,1) (1,1) (2/3,2) (1,3)

Table 3: An ambiguous mechanism conditioning on payoff-irrelevant type dimensions

It is easily verified that Ω generates an expected revenue of 7/4 > 3/2. �

‘Creation’ of types. In the preceding discussion we have seen that the principal can benefit

from adopting an ambiguous mechanism that elicits not only payoff relevant information but

also payoff irrelevant aspects of the agent’s type. But if the principal can take advantage of an

agent’s payoff irrelevant information, then even if the agent does not have such information to

start with, he should induce him to acquire it. A simple way to achieve this is to instruct the

agent to take a draw from some distribution. If this distribution is atom free doing so allows

the principal to extract the agent’s full surplus.

Notice that this ‘type creation process’ must take place before the revelation game is played.

Thus, ambiguous mechanisms that are based on type creation do not belong to the class of

static ambiguous mechanisms that we have considered so far. Consequently, the discussion in

the preceding paragraph is not in contradiction with our findings in the earlier sections where

we have derived the optimal ambiguous mechanism for a given finite set of types. Moreover,

the possibility of creating types does not reduce the relevance of those findings. On the one

hand the analysis for a given type set is by itself of theoretical interest. On the other hand,

that analysis constitutes the basis upon which our discussion of the benefits of type splitting

rests. Finally, also from a more applied perspective the preceding results retain their impor-

tance. Practicality considerations (complexity costs) might well impose limits on increasing

the number of outcome functions in the ambiguous mechanism. Whenever that is the case the

designer needs to understand the trade off between the costs and benefits of any additional type.

27In this case we haveM = {(1,L), (3,L), (3,H)}, ν̄(1,L) = −3/4 and ν̄(3,L) = 3/4.
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Our results allow us to determine with precision the benefits of larger type sets.

5.3 Preferences

The agent’s preferences: Throughout our analysis we have assumed that the agent’s valu-

ation is (bi-)linear and that his ambiguity aversion can be captured by the Gilboa-Schmeidler

model. In this section we comment on the role of these assumptions.

The linearity of the agent’s valuation function—risk neutrality—is crucial in the final steps

of the characterization of the optimal ambiguous mechanism (i.e. Proposition 3 relies on this

assumption). In all results up to Lemma 4 we have only exploited the increasing difference

property of the linear valuation function. That is, all those results go through for valuation

functions that exhibit increasing differences. The result that under an atomless type distribution

the principal can extract the full surplus goes through in even more general settings. If the

agent’s preferences over allocation-transfer pairs (x, τ) are described by the function u(x, τ,θ),

where x is a fraction of the good, then an ambiguous mechanism like the one used in Corollary

3 can be constructed whenever the problem

max
(q(θ),t(θ))∈XΘ×RΘ

Ep[t(θ)]

s.t. u(q(θ), t(θ), θ) ≥ u(0,0, θ) ∀θ ∈ Θ,

admits a solution.28 If (q∗, t∗) solves this problem, then the ambiguous mechanism Ω = {(qθ, tθ), θ ∈

Θ} whose elements are defined by

qθθ′ =

0 if θ′ = θ

q∗(θ′) else
tθθ′ =

0 if θ′ = θ

t∗(θ′) else,

extracts the full surplus.

A concern regarding our assumptions on preferences might be the question to what extent

our results are driven by the way in which we model ambiguity aversion. MMEU certainly con-

stitutes a rather stark model of ambiguity aversion. Our analysis heavily exploits the tractability

of these preferences in the derivation of the optimal ambiguous mechanism with finite types.

While we do not know how an optimal mechanism would look like for an alternative model of

ambiguity aversion, we can say that the basic idea on which the analysis in this paper builds,

does generalize. The most fundamental insight of this paper is that a principal who faces an am-

biguity averse agent might be able to exploit his ambiguity aversion by offering an ambiguous

mechanism. In the following example we show that this insight applies also in environments

28We continue to assume that by opting out from the mechanism each type of the agent obtains the allocation-
transfer pair (0,0).
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where the agent’s attitude toward uncertainty is represented by a model of smooth ambiguity

aversion.

Example 3 (Smooth ambiguity aversion). The setup is as in the example considered in Sec-

tion 2, except for the agent’s attitude towards ambiguity. That is, we have Θ = {1,2,4}, p =

(1/4,1/4,1/2), u(x, τ,θ) = xθ−τ.

The only difference with respect to the example in Section 2 lies in the agent’s attitude

towards ambiguity. Here we consider the case of an agent who is smoothly ambiguity averse

in the sense of Klibanoff, Marinacci, and Mukerji (2005). In particular, we assume that when

faced with a (direct) ambiguous mechanism Ω, type θ of the agent evaluates messages accord-

ing to the following procedure. First, he calculates for each message θ̂ ∈ Θ and each possible

probability π ∈ ∆(Ω) his expected utility, i.e.

Eπ

[
u(q(θ̂), t(θ̂), θ)

]
=Eπ

[
q(θ̂)θ− t(θ̂)

]
.

In a second step, he evaluates the thus obtained expected utility values with the increasing and

concave function φ : R→ R. Finally, the transformed utility indices are integrated with respect

to some probability measure µ over ∆(Ω). The payoff that type θ of the agent associates with

reporting type θ̂ is

U(θ̂, θ) =Eµ

{
φ
(
Eπ

[
q(θ̂)θ− t(θ̂))

])}
.

The function φ and the distribution µ capture the agent’s attitude towards uncertainty. µ de-

scribes the relative weight that the agent assigns to the possible beliefs that he can hold after

learning the ambiguous mechanism. The shape of the function φ captures the agent’s degree of

ambiguity aversion. A linear φ means that the agent is ambiguity neutral, i.e. exposing him to

uncertainty does not generate any cost to him. A strictly concave φ instead corresponds to an

agent who is strictly ambiguity averse.

For the sake of concreteness, in what follows we assume that φ(x) = 1− exp(−7x), i.e. φ

has the shape of a CARA function. As for µ, we assume that it is uniform over Ω (or the set of

degenerate distributions over Ω). This seems a natural assumption given that we only allow for

consistent ambiguous mechanisms. Consistency means that the designer is indifferent between

the different outcome functions of the ambiguous mechanism. Thus there is no reason for the

agent to treat the different outcome functions asymmetrically.29

Returning to our example, consider the direct ambiguous mechanism Ω = {(q1, t1), (q2, t2)},

described in the following table.

29While the assumption of a uniform µ over Ω is convenient in that it simplifies the presentation of our example,
we should point out that it is not an assumption that is necessary for our argument.
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θ 1 2 4

(q1, t1) (0,0) (1,1) (1, t)

(q2, t2) (1,1) (0,0) (1, t)

Table 4: An ambiguous mechanism with R = t/2 + 1/4 (under truth-telling)

It is straightforward to verify that under truth-telling the expected revenue of both outcome

functions is R = t/2 + 1/4. We will now solve for the largest t such that this mechanism is

incentive compatible. The following table shows the payoffs that each type θ obtains from the

available messages θ̂.30

θ \ θ̂ 1 2 4

1 φ(0) φ(0) φ(1− t)

2 φ(1)/2 φ(1)/2 φ(2− t)

4 φ(3)/2 φ(3)/2 φ(4− t)

Table 5: Payoffs for the ambiguous mechanism in the preceding table

Observe that a truthful report guarantees each type a payoff that is no smaller than the value

of the outside option, φ(0). Thus, the ambiguous mechanism Ω is individually rational. It is

also easily seen that the two lowest type’s incentive compatibility constraints are satisfied if

t > 2 (φ(0) > φ(1− t) and φ(1)/2 > φ(2− t)). The highest type has no incentive to deviate if

φ(4− t) ≥ φ(3)/2. The largest t which satisfies this condition is approximately t = 3.9.

With t = 3.9 the ambiguous mechanism generates an expected revenue of R = t/2+1/4 = 2.2

which exceeds the revenue of the best simple mechanism by 0.2.

�

The principal’s preferences: Throughout the paper we assumed that the principal is ambiguity-

neutral. However, our results do not depend on this assumption. This is most obvious in the

case of Proposition 1 and Lemmata 1–4 as those results do not refer to the designer’s pref-

erences. It is also easily seen that the ambiguous mechanism characterized in Proposition 3

remains the optimal ambiguous mechanism in the class of direct ambiguous mechanisms that

are consistent when the seller is risk neutral and his preferences are represented by max-min

expected utility. Thus, allowing for an ambiguity averse principal does not lead to different pre-

dictions once attention is restricted to consistent ambiguous mechanisms as we have defined

30Remember that the agent’s belief is described by the uniform distribution over the degenerate distributions on
Ω.
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them in Section 3. The question therefore is whether or not allowing for ambiguity aversion on

the side of the principal affects the interpretation of the concept of an ambiguous mechanism

and the appropriateness of the consistency condition that we impose.

Assuming an ambiguity averse principal indeed introduces an aspect that is not present

in the case of an ambiguity neutral designer: in such a framework the principal may expose

himself to the uncertainty to which he subjects the agent. That is, instead of committing ex ante

to a specific element in the ambiguous mechanism that he announces to the agent, he could

delegate the task of picking an element from the ambiguous mechanism to an uninterested

third party or some mechanical selection device whose functioning neither he nor the agent

understands.

In situations where the principal is MMEU and a third party picks the outcome function

there is no need to impose consistency. Consistency has been introduced in order to make

sure that the buyer’s beliefs as to which outcome function in the ambiguous mechanism he is

facing take into account the seller’s motives in choosing that outcome function. This motivation

disappears if the principal does not have to make the choice. In principle this means that one

would have to consider a larger set of possible ambiguous mechanisms, including those that

do not satisfy consistency, than we have considered in this paper so far. Fortunately, it is not

difficult to see that non-consistent mechanisms can be disregarded without loss of generality

when the designer is ambiguity averse.

In order to see this notice first that dropping consistency would not upset the validity of the

Revelation Principle. Without the requirement that every outcome function in an ambiguous

mechanism needs to yield the same expected revenue the relaxed v Problem P becomes

max
R∈R,Ω⊂XΘ×RΘ

R (P-2)

s.t. R ≤ min
(q,t)∈Ω

Ep[t(θ)], (C’)

(DIC), (UIC), (IR).

Note that the only difference between this problem and Problem P is that the constraint (C)

in the latter is replaced by the constraint (C’) in Problem P-2. (C’) represents the fact that the

payoff of a seller who is MMEU ambiguity averse and who delegates the choice of the outcome

function that will be implemented to an external ‘ambiguity device’ (uninterested third party),

is given by the minimum of the expected revenues that the outcome functions in his ambiguous

mechanism generate.

The following result tells us that replacing (C) with (C’) is inconsequential for the values

of the optimization problems.

Proposition 6. The value of Problem P-2 coincides with the value of Problem P.
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Proof. See the Appendix. �

The intuition for this result is rather straightforward: given that the principal’s payoff is de-

termined by the outcome function that delivers the lowest expected revenue, he might as well

choose to start with a mechanism that contains only outcome functions that yield the same ex-

pected revenue. Suppose we are given a mechanism Ω that does not satisfy this condition. Let

R denote the minimum of the expected revenues of the outcome functions in Ω. By appropri-

ately lowering the transfers of the highest type in all outcome functions who do not produce an

expected revenue of R one can obtains a mechanism that is still downward incentive compat-

ible and individually rational. Applying Lemmata 1 through 3 this mechanism can be further

transformed to obtain a new mechanism that is also upward incentive compatible and generates

an expected revenue of at least R.

5.4 Surplus extraction: ambiguity aversion vs. risk aversion

In Section 5.1 we have shown that with the use of ambiguous mechanisms the principal can

extract the entire surplus from the agent provided that the agent has MMEU preferences and

his type set is ‘large enough’. This result is related to the findings of Matthews (1983) and

Maskin and Riley (1984) who have studied mechanism design problems with risk averse

agents. Matthews (1983) shows that if the type set is a continuum and the agent has a val-

uation function that exhibits constant absolute risk aversion, then the share of the surplus that

the principal can extract from the agent increases as the agent’s coefficient of absolute risk

aversion increases; in particular, when the agent becomes infinitely risk averse, the principal

can appropriate the entire surplus.

Formally, the case of an ambiguity neutral and risk averse agent with a CARA utility func-

tion resembles the case of an agent who is risk neutral and smoothly ambiguity averse with

a CARA transformation function φ.31 Moreover, the MMEU preferences à la Gilboa and

Schmeidler (1989) that we assume can be seen as the limit of ambiguity averse preferences

that are CARA-smooth, when the CARA coefficient tends to infinity. In the light of these ob-

servations our full rent extraction result for the case where the type set is a continuum, may

seem to be similar to the results in Matthews (1983).

But the analogy between risk aversion and stochastic mechanisms on the one hand and

(smooth) ambiguity aversion and ambiguous mechanisms on the other hand is not quite as

close as it appears at first sight. The central difference between the two cases lies in the fact

that in the case of stochastic mechanisms the distribution of the outcomes is determined by

the designer. That is, the distribution of the outcomes is given by an objective probabilistic

31By the term ‘transformation function’ we mean the function which is applied to transform the expected utility
values. It is standard to denote this function by φ as we do in Example 3.
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distribution that is a choice variable of the principal. There is no analogous instrument in the

case of smooth ambiguity aversion.

Even though in that model uncertainty is described by a distribution (µ) over (distributions

of) outcomes, the higher level distribution (µ)—which is the mathematical analog of the prob-

ability distributions over outcomes in a stochastic mechanism—does not allow for an objective

interpretation.32 In particular, one cannot think of it as a variable that the principal can choose

and can commit to in the way he chooses and commits to the distributions in a stochastic mech-

anism. Instead, the higher level distribution (µ) is only a description of the uncertainty that the

agent perceives and – by the very idea that underlies the concept of uncertainty – there is no

sense in which this perception could be given an objective interpretation as can be done in a

setting with risk aversion by considering only objective probabilistic distribution of outcomes.

Thus, unlike in the case of a stochastic mechanism which fully pins down the perceptions of

the risk averse agent by specifying in an objective way all aspects of the distribution of the out-

comes, an ambiguous mechanism can always just determine the support of the distribution that

describes the agent’s perceptions. All remaining aspects of the agent’s uncertainty perception

are necessarily of a purely subjective nature.

While on the one hand the fact that the higher order distribution in the smooth ambiguity

model describes the subjective uncertainty perceptions of the agent means that it is outside the

direct control of the principal, on the other hand it also implies that it should be considered

as endogenous with respect to the principal’s choices. In particular, this endogeneity of the

agent’s perceptions would call for the use of the consistency concept in an environment with a

smoothly ambiguity averse agent for the same reasons we have adopted it in our setting with

MMEU preferences. Notice that there is no analogous constraint that has to be considered

in a setting with risk aversion and stochastic mechanisms. Thus, the conceptual differences

between the two cases also translate into important differences in their mathematical treatment.

5.5 Environments with multiple agents

In the previous sections we have restricted our attention to optimal mechanism design prob-

lems in single agent environments. In this section we show how the full surplus extraction

result of Corollary 3 can be extended to a setting with multiple agents.33 More specifically, in

what follows we consider a setting with two agents whose types are drawn from an atomless

distribution. The assumption of two agents is made for notational convenience only. All the

arguments easily extend to the case with more than two agents.
32See the discussion of this issue in Klibanoff, Marinacci, and Mukerji (2012).
33The following full-rent-extraction result for multiple agents implies that ambiguous mechanisms outperform

simple mechanisms also in situations with multiple agents. For a characterization of expected revenue maximizing
simple mechanisms in general quasi-linear environments see Kos and Messner (2013).

35



Assume that the two agents have preferences as in the previous sections. We denote the

type set of agent, i = 1,2, by Θi. For a generic element of this set we write θi; generic type

profiles in Θ = ×iΘ
i, are indicated by θ. We assume that the agents’ types are (independently)

drawn from the atomless distribution p with support [0,1]. We do not need to assume that the

designer knows the exact type distribution. For the following result we only need to impose

that he knows the support of the distribution. Regarding the two agents’ beliefs about each

others type distribution we make no assumptions at all.

Proposition 7 (Full surplus extraction with multiple agents). Consider a two agent setting as

described in the preceding paragraph. Moreover, let the ambiguous mechanism Ω = {(qθ, tθ) :

θ ∈ Θ}, be defined by

qθ(θ̂) =


(0,0) if θ = θ̂

(1,0) if
[
θ̂1 , θ1 and θ̂2 = θ2

]
or

[
θ̂1 , θ1, θ̂2 , θ2, and θ̂1 ≥ θ̂2

]
(0,1) else

tθ(θ̂) = (qθ1(θ̂)θ̂1,qθ2(θ̂)θ̂2).

Under Ω truth-telling is an optimal strategy for the two agents irrespective of their beliefs

regarding the other agent’s type or play. Moreover, Ω is individually rational and consistent

(with respect to truth telling). The expected revenue generated by each element of Ω is T =

E[max{θ1, θ2}]. That is, Ω achieves full surplus extraction.

The ambiguous mechanisms presented in the above result can be constructed as follows.

For every profile of types θ̃ = (θ̃1, θ̃2) we add to the ambiguous mechanism a simple mechanism

(qθ̃, tθ̃) with the following property. If both agents’ reports coincide with the corresponding

component of the label of the simple mechanism, i.e. if for every i we have θ̂i = θ̃i, then the

seller keeps the object and there are no transfers. If, neither agent’s report coincides with label,

i.e. if for every i, θi , θ̃i, then the agent with the higher report receives the object at the price he

reported. Finally, if only one agent’s report coincides with the label of the simple mechanism,

then the agent whose report does not coincide receives the object at the price equal to the value

he announced. Since the ambiguous mechanism contains all such simple mechanisms, there

is a simple mechanism for each report of each agent such that the agent does not receive the

object if he reports that type. This bounds the agent’s expected payoff above by 0. By reporting

truthfully the agent either obtains the object and pays the reported, and therefore true, value or

does not receive it and pays zero. In either case the agent’s payoff is zero, which is also the

before established upper bound. But then the agent has no incentives to deviate from truthful

reporting. This establishes that truthful reporting is an equilibrium of the proposed mechanism.

On the other hand, assuming that the agents do report truthfully and that each profile of types

occurs with probability zero, each simple mechanism yields for the seller the expected surplus
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E[max{θ1, θ2}]. With other words, the seller extracts the full surplus.

6 Conclusion

In this paper we have studied mechanism design problems where the agent is ambiguity averse

in the sense of Gilboa and Schmeidler (1989). The central insight of our analysis is the ob-

servation that the principal can exploit the agent’s ambiguity aversion by offering ambiguous

mechanisms. In fact, we find that if the type set is ‘large enough’ the designer can extract the

entire rent from the agent.

While most of our analysis concentrates on the case of a single agent environment, we show

that when the type distribution is atomless our result readily generalize to settings with multiple

agents. Finally, the core insight of our paper - in order to optimally exploit the uncertainty

aversion of the agent the designer should offer ambiguous mechanisms - do not depend on the

assumption of MMEU preferences à la Gilboa and Schmeidler (1989). In comparison to other

models of ambiguity aversion, MMEU preferences provide important advantages in terms of

tractability. In Example 3 we have seen that it is optimal for the principal to use ambiguous

mechanisms also if we adopt the less extreme smooth model of ambiguity aversion.

A Appendix

Proof of Proposition 1. Optimality of σ implies

inf
(q,t)∈Ω

q(σ(θ))θ− t(σ(θ)) ≥ inf
(q,t)∈Ω

q(s)θ− t(s) ∀s ∈ S .

Consider the direct ambiguous mechanism Ω′ defined in the proposition. By the construction

of Ω′ we have

inf
(q′,t′)∈Ω′

q′(θ)θ− t′(θ) = inf
(q,t)∈Ω

q(σ(θ))θ− t(σ(θ)).

Similarly,

inf
(q′,t′)∈Ω′

q′(θ′)θ− t′(θ′) = inf
(q,t)∈Ω

q(s′)θ− t(s′)

for s′ = σ(θ′). Combining these three observations yields

inf
(q′,t′)∈Ω′

q′(θ)θ− t′(θ) ≥ inf
(q′,t′)∈Ω

q′(θ′)θ− t′(θ′) ∀θ′ ∈ Θ,

and so we can conclude that Ω′ is incentive compatible.
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That Ω′ is consistent with respect to thruthtelling follows immediately from the fact that Ω

is consistent with respect to σ. �

Proof of Lemma 1. Let Ω be a mechanism that satisfies (C), (DIC) and (IR). Let Ω1 be the set

of all simple mechanisms of the form (q, t′), where (q, t) ∈Ω, t′n = tn for all 1 < n < N, and

t′1 = q1θ1 and t′N = tN −
p1

pN
[t′1− t1].

Since Ω satisfies (IR), t′1 ≥ t1 and t′N ≤ tN . Thus, in passing from t to t′, the transfer of type θ1 is

increased until his truth-telling payoff is zero, while that of θN is lowered so that t and t′ have

the same expected value. Since Ω satisfies (C) so does Ω1; in particular, R(Ω) = R(Ω1). By

construction Ω1 satisfies the individual rationality constraint of the lowest type with equality.

Moreover, it is also downward incentive compatible. To see this observe that the truth-telling

payoffs of all types θn, 1 < n < N, are the same under Ω and Ω1. The highest type’s truth-telling

payoff instead is (weakly) larger in Ω1 than in Ω. Regarding the payoffs from downward de-

viations, observe that the only downward deviation report which may deliver different payoffs

in Ω than Ω1 is θ1. But whenever that is the case it is lower in Ω1 than in Ω. Given that the

truth-telling payoffs of types who have downward deviation opportunities are at most higher in

Ω1 than in Ω, it follows that Ω1 must indeed satisfy (DIC) given that Ω does.

Ω1 constitutes the base case for our inductive argument. We next show the inductive step.

Suppose we have defined the mechanisms Ω1, . . . ,Ωn−1 for some 1 < n < N −1. Proceeding in

similar fashion as before, we define Ωn as the set of all simple mechanisms of the form (q, t′),

where (q, t) ∈ Ωn−1, and the transfer rule t′ coincides with t except for the transfers of types θn

and θN , which are

t′n = qnθn− max
1<m<n

inf
(q̃,t̃)∈Ωn−1

q̃mθn− t̃m and t′N = tN −
pn

pN
[t′n− tn].

Since Ωn−1 is satisfies (DIC), it follows that t′n ≥ tn and t′N ≤ tN . The above transformation

increases the transfer to be paid upon reporting type θn in all outcome functions until type θn’s

truth-telling payoff from each outcome function becomes equal to the payoff from his most

attractive downward deviation. As before, Ωn inherits the properties (C), (DIC) and (IR) from

Ωn−1; moreover, by construction R(Ωn) = R(Ωn−1).

Finally, define ΩN as the set of all outcome functions of the form (q, t′), where (q, t) ∈ΩN−1

and the transfers t′ coincide with t except for the transfers of the highest type which are set

equal to

t′N = tN + inf
(q̃,t̃)∈ΩN−1

{q̃NθN − t̃N}− max
1≤m<N

inf
(q̃,t̃)∈ΩN−1

{q̃mθN − t̃m }.
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Since ΩN−1 is downward incentive compatible it follows that the difference

inf
(q̃,t̃)∈ΩN−1

{q̃NθN − t̃N}− max
1≤m<N

inf
(q̃,t̃)∈ΩN−1

{q̃mθN − t̃m }

is non-negative. This means that in passing from ΩN−1 to ΩN the transfers of the highest type

are increased by the same amount in all outcome functions. Thus, property (C) is preserved

and R(ΩN) ≥ R(ΩN−1).

In the first step we have shown that the transfers of the lowest type can be increased so that

each outcome function gives payoff zero to the lowest type when he reports truthfully. The

inductive step then takes an ambiguous mechanism in which the downward incentive compat-

ibility with respect to types θ1 through θn−1 are binding and shows that one can increase the

transfers of type θn and decrease the transfers of the type θN so that also type θn’s downward

incentive compatibility constraint becomes binding and the expected transfer of each of the

outcome functions does not change. In the last step the transfers tN in all outcome functions

are uniformly increased until θN’s downward incentive compatibility constraint becomes bind-

ing. ΩN is, therefore, an ambiguous mechanism that satisfies all conditions of (Uni). Thus,

setting Ω′ = ΩN proves the lemma.

�

Proof of Lemma 2. Let Ω be an ambiguous mechanism that satisfies (C) and (Uni). Denote

its closure (in the usual Euclidean sense) by Ω̄. Clearly, Ω̄ inherits the properties (C) and

(Uni) from Ω. Moreover, R(Ω̄) = R(Ω). For each 1 ≤ m < N, let Ωm be the set of ambiguous

mechanisms in Ω̄ that minimize the probability of the allocation for the report θm, that is,

Ωm = {(q, t) ∈ Ω̄ : qm ≤ q′m for all (q′, t′) ∈ Ω̄}. (6)

Let m < n ≤ N. Since θn > θm, an outcome function (q, t) ∈ Ω̄ belongs to Ωm if and only if

(qm − q′m)(θn − θm) ≤ 0 for all (q′, t′) ∈ Ω. By (Uni), qmθm − tm = q′mθm − t′m, hence the above

inequality can be written as qmθn− tm ≤ q′mθn− t′m. It follows that Ωm is also the set of outcome

functions that minimizes the payoff of any type θn > θm when he untruthfully reports θm, that

is, for all m < n ≤ N

Ωm = {(q, t) ∈ Ω̄ : qmθn− tm ≤ q′mθn− t′m for all (q′, t′) ∈ Ω̄}. (7)

The mechanism Ω′ is now obtained as follows: for each 1 ≤ m < N, let (qm, tm) be an

arbitrarily chosen element from Ωm. Since, Ω′ is composed of simple mechanisms that where

picked from Ω̄, it immediately follows that Ω′ satisfies (C) and R(Ω′) = R(Ω̄). Moreover,
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uniformity of Ω̄ implies that the truth-telling payoffs in Ω′ must be the same as in Ω̄. Finally,

Ω′ is composed exactly of those elements of Ω̄ which define the downward deviation payoffs in

Ω̄. Therefore the downward deviation payoffs under both mechanisms coincide as well. Since

neither the truth-telling payoffs nor the downward deviation payoffs change in passing from Ω̄

to Ω′, we can conclude that Ω′ inherits the property (Uni) from Ω̄. �

Proof of Lemma 3. Let Ω = {(q1, t1), . . . , (qN−1, tN−1)} be a mechanism satisfying (C), (Uni)

and (Min).

We first show that Ω may be changed so that it satisfies the first part of (Mon) while still

satisfying (C), (Uni) and (Min). Consider the mechanism Ω̄ = {(q̄1, t1), . . . , (q̄N−1, tN−1)}, where

for each 1 ≤ m < N the allocation rule q̄m is defined as follows. For every 1 ≤ n ≤ N, q̄m
n = qm

n

if n = m and q̄m
n = 1 otherwise. By construction, Ω̄ satisfies the first part of (Mon). Moreover,

Ω̄ has the same transfer rules as Ω. Given that the latter satisfies (C) so must Ω̄. For the same

reason we also have R(Ω̄) = R(Ω). Next, observe that the downward deviation payoffs in Ω and

Ω̄ are the same. Clearly, these payoffs cannot decrease due to the increase in the allocations

that occurs when passing from Ω to Ω̄ (transfers do not change). That they cannot increase

follows from the construction of Ω̄ and the fact that Ω satisfies (Min). Taken together these

properties imply that for all 1 ≤ m < n ≤ N we have

min
1≤`<N

{q`mθn− t`n} = qm
mθn− tm

m = q̄m
mθn− tm

m = min
1≤`<N

{q̄`mθn− t`n}. (8)

Since also the truth-telling payoffs can at most increase, it follows that Ω̄ inherits from Ω

the properties (DIC) and (IR). Applying Lemma 1 to Ω̄ delivers an ambiguous mechanism

Ω̃ = {(q̃1, t̃1), . . . , (q̃N−1, t̃N−1)} that satisfies (Uni). Since this last step does not involve any

changes in the allocation rules it follows that Ω̃ satisfies the first part of (Mon), so that for all

1 ≤ m ≤ N − 1 we have q̃m
m ≤ q̃`m for all 1 ≤ ` ≤ N − 1. In the proof of Lemma 2 we have seen

that this implies that (q̃m, t̃m) is the outcome function that defines the payoff from downward

deviations towards θm. We can therefore conclude that Ω̃ satisfies (Min) as well.

We now come to the second part of (Mon). Let Ω = {(q1, t1), . . . , (qN−1, tN−1)} be a mecha-

nism satisfying (C), (Uni), (Min) and the first part of (Mon). Observe first that if for 1 ≤ m <

m′ < N we have qm
m ≤ qm′

m′ then for every type θn, n > m′, a deviation to θm can never be more

attractive than a deviation to θm′ . In order to see this, remember that (Uni) implies (DIC) and

so type θm′ must be better off by reporting truthfully than by reporting θm:

qm
mθm′ − tm

m ≤ qm′
m′θm′ − tm′

m′ . (9)
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Then

tm′
m′ − tm

m ≤ qm′
m′θm′ −qm

mθm′ ≤ (qm′
m′ −qm

m)θn

for m′ < n ≤ N. Therefore

qm
mθn− tm

m ≤ qm′
m′θn− tm′

m′ for all m′ < n ≤ N. (10)

Now assume that Ω does not satisfy the second part of (Mon), and let m′ be the smallest

1 ≤ m < N for which the condition is violated. Thus,

qm′
m′ < qm′−1

m′−1 and qm
m ≥ qm−1

m−1 ∀ 1 < m < m′. (11)

By our previous observation for every type θn, n >m′−1 the most attractive deviation in the set

{θ1, . . . , θm′−1} is θm′−1. Since Ω is uniform this means that the payoff of type θm′ from reporting

truthfully and from reporting θm′−1 is the same, i.e.

qm′−1
m′−1θm′ − tm′−1

m′−1 = qm′
m′θm′ − tm′

m′ . (12)

But if type θm′ is indifferent between the reports θm′ ant θm′−1, then for each n > m′, type θn

must strictly prefer reporting θm′−1 over reporting θm. Indeed, (12) implies

qm′−1
m′−1θn− tm′−1

m′−1 > qm′
m′θn− tm′

m′ for all m′ < n ≤ N. (13)

Thus, the downward deviation constraint with respect to θm′
m′ cannot be binding for any type θn,

n > m′.

Consider now the mechanism Ω̄ = {(q̄1, t̄1), . . . , (q̄N−1, t̄N−1)} that coincides with Ω except

for the values of q̄m′
m′ , t̄m′

m′ and t̄m′
N . q̄m′

m′ is increased to qm′−1
m′−1, t̄m′

m′ is increased so that the payoff

that type θm′ gets under the outcome function (q̄m′ , t̄m′) when reporting truthfully is the same

one that he gets under the outcome function (qm′ , tm′), i.e.

q̄m′
m′θm′ − t̄m′

m′ = qm′
m′θm′ − tm′

m′ .

Finally, t̄N is chosen such that the expected values of t̄m′ and tm′ coincide, i.e.

t̄m′
N = tm′

N −
pm′

pN

[
t̄m′
m′ − tm′

m′
]
.

Since t̄m′
m ≥ tm′

m , it follows that t̄m′
N ≤ tm′

N . Notice that in passing from Ω to Ω̄ only the conse-

quences of reporting θm′ and θN under outcome function (qm′ , tm′) are affected. We will argue

now that Ω̄ satisfies all desired properties except possibly the third condition in (Uni) (a binding
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downward deviation incentive constraint of type θN). Transfers have been modified in a way

such that the expected value of tm′ remains unchanged. Thus Ω̄ satisfies (C) with R(Ω̄) = R(Ω).

The truth-telling payoff of type θm′ under (q̄m′ , t̄m′) does not change with respect to (qm′ , tm′).

Thus, also in Ω̄ type θm′ gets the same truth-telling payoff from all outcome functions. From

Lemma 2 we know that in combination with q̄m′
m′ ≤ q̄`m′ , 1 ≤ ` ≤ N−1, this implies that (q̄m′ , t̄m′)

defines the payoff from downward deviations toward θm′ by types θn, n > m′. Since no other

downward deviation payoffs could be affected when passing from Ω to Ω̄, we can conclude that

the latter must satisfy (Min).

The payoffs from downward deviations toward θm′ increase, but they cannot exceed those

from deviations toward θm′−1. To see this, notice that since Ω satisfies (Uni) we have

q̄m′
m′θm′ − t̄m′

m′ = qm′
m′θm′ − tm′

m′ = qm′−1
m′−1θm′ − tm′−1

m′−1 = q̄m′−1
m′−1θm′ − t̄m′−1

m′−1.

Combining this with qm′
m′ = q̄m′−1

m′−1 we get t̄m′
m′ = t̄m′−1

m′−1. Thus, the payoff that any type can get

from report θm′ under outcome function (q̄m′ , t̄m′) coincides with the payoff that he gets from

report θm′−1 under outcome function (q̄m′−1, t̄m′−1). Since, the latter defines the payoffs from

downward deviations to θm′−1 the claim follows. We can therefore conclude that Ω̄ satisfies the

first two conditions in (Uni).

As for the third requirement of (Uni) (a binding incentive constraint for downward devia-

tions by the highest type) observe that the truth-telling payoff of type θN may increase since tm′
N

decreases. If this is not the case, then Ω̄ satisfies all conditions of (Uni) and so we are done by

setting Ω′ = Ω̄.

If instead the highest type’s truth-telling payoff is higher in Ω̄ than in Ω, then consider the

mechanism Ω′ which coincides with Ω̄ everywhere except for the transfers of the highest type.

The latter are chosen as follows: for each 1 ≤ m < N, set t
′m
N = t̄m

N +ε, where ε is given by

ε = min
1≤`<N

{q̄`NθN − t̄`N}− max
1≤m<N

min
1≤`<N

{q̄`mθm− t̄`m}.

Since in passing from Ω̄ to Ω′ the highest type’s transfer is increased uniformly across all

outcome functions it follows that Ω′ satisfies (C) with R(Ω′) > R(Ω). Moreover, the fact that

by the switch from Ω̄ to Ω′ only the transfers for the highest type are affected, implies that

Ω′ inherits both (Min) and the first two parts of (Uni) from Ω̄. Finally, in Ω′ the transfers of

the highest are chosen exactly such that the highest type’s downward deviation constraint is

binding. Consequently, Ω′ satisfies all parts of (Uni) and so the proof is complete. �

Proof of Lemma 4. Let Ω be a mechanism that satisfies (Uni), (Min) and (Mon). Let N > n >
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m ≥ 1. Then

min
(q,t)∈Ω

{qnθm− tn} ≤ qn
nθm− tn

n

= qn
n(θm− θn) + qn

nθn− tn
n = qn

n(θm− θn) + qn−1
n−1θn− tn−1

n−1

= qn
n(θm− θn) + qn−1

n−1(θn− θn−1) + qn−1
n−1θn−1− tn−1

n−1
...

...

= qn
n(θm− θn) + qn−1

n−1(θn− θn−1) + . . .+ qm
m(θm+1− θm) + qm

mθm− tm
m

= qm
mθm− tm

m −

n−m−1∑
k=0

(qn−k
n−k −qn−k−1

n−k−1)(θn−k − θm)

≤ qm
mθm− tm

m

= min
(q,t)∈Ω

{qmθm− tm}.

The first inequality is definitional, the second inequality follows from the fact that qn
n is non-

decreasing in n and the last equality is implied by (Uni). The equalities between the two

inequalities follow from the fact that for each 1 < n ≤ N, the binding downward incentive

constraint of type θn, is the one with respect to the adjacent lower type θn−1. This has been

shown in the proof of Lemma 3, where we have seen that in a uniform ambiguous mechanism

(one of) the binding incentive constraint for downward deviations for type θn, 1 < n < N, is the

one with respect to type θmn , where

mn ∈ arg max
1≤m<n

{
min

1≤`<N
{q`m}

}
.

For a mechanism that is also minimal and monotonic it thus follows that mn = n−1.

In the preceding argument we do not allow for n = N. The reason for this is purely nota-

tional. A perfectly analogous argument can be applied in the case n = N by using in the first row

instead of (qn, tn) the mechanism that minimizes the truth telling payoff of the highest type. �

Proof of Proposition 2. By Lemma (4) we know that every mechanism that is feasible in Prob-

lem P’ also satisfies (UIC). It also satisfies (DIC) and (IR) because it satisfies (Uni); see the

paragraph after Definition 4. Therefore every such mechanism is feasible in Problem P and

thus the value of Problem P cannot be smaller than the value of Problem P’.

On the other hand, Lemmata 1 through 3 imply that for every mechanism that is feasible

in Problem P there exists a mechanism with at least as high an expected revenue for the seller,

that is feasible in Problem P’. But then the value of Problem P’ must be at least as large as the

value of Problem P. �
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Proof of Lemma 5. If Ω satisfies (Uni), (Min) and (Mon), then for each 1 < n ≤ N the binding

downward incentive constraint of type θn is the one with respect to θn−1 (see the proof of

Lemma 3). Thus,

tm
1 = qm

1 θ1 for all 1 ≤ m < N, (14)

tm
n+1 = (qm

n+1−qn
n)θn+1 + tn

n for all 1 ≤ n ≤ N −2 and 1 ≤ m < N,

tm
N ≤ (1−qN−1

N−1)θN + tN−1
N−1, for all 1 ≤ m < N.

From this it is straightforward to derive (3) and (4) by recursively substituting the expressions

tn
n into the formula for tm

n+1.

Conversely, suppose we are given a minimal and monotonic mechanism Ω the transfers

of which satisfy (3) and (4). It is then easily verified that for each 1 ≤ n < N the truth-telling

payoffs of type θn are constant across outcome functions. This in turn implies that the payoff

type θn, n≤ N, obtains from a deviation to θm, 1≤m< n, is determined by the outcome function

(qm, tm) (since this is the outcome function that minimizes the allocation probability after report

θm). Using this it is straightforward to show that the payoff of type θn from deviating θm, m < n

is increasing in m and is equal to the truthtelling payoff for m = n−1. With other words, type

θn’s downward adjacent IC constraint is binding.

In order to see this, consider the difference in the payoff of type θn from reporting θm and

θm−1, m ≤ n.

min
1≤l<N

{ql
mθn− tl

m}− min
1≤l<N

{ql
m−1θn− tl

m−1} = qm
mθn− tm

m −qm−1
m−1θn− tm−1

m−1 (15)

= qm
mθn−qm

mθm +

m−1∑
k=1

qk
k(θk+1− θk)−qm−1

m−1θn + qm−1
m−1θm−1−

m−2∑
k=1

qk
k(θk+1− θk) (16)

= (θn− θm)(qm
m−qm−1

m−1) ≥ 0. (17)

Given that qm
m ≥ qm−1

m−1 this difference is non-negative. Moreover, it becomes zero for m = n.

Hence, Ω satisfies all downward incentive constraints and the one with respect to the adjacent

lower type is binding. Combining all these observations we can conclude that Ω satisfies (Uni).

�

Proof of Lemma 6. In order to see this, we rewrite the virtual valuation ν̄m j in the form

ν̄m j = pm jθm j

1− M∑
s= j

1
pmsθms

ms+1−1∑
i=ms

(1−Pi)(θi+1− θi)

 .
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The sign of ν̄m j is determined by the expression in the square brackets. It is easy to verify that

this term is increasing in j. Thus, if it is negative for a given 1 < j ≤ M then it must be so also

for all 1 ≤ k < j. �

Proof of Proposition 3. We proceed in several steps. In the first step we show that the problem

of choosing (q1
1, . . . ,q

N−1
N−1) can be reduced to a problem where only (qm1

m1 , . . . ,q
mM
mM ) are chosen.

Step 1. If m j < n < m j+1, 1 ≤ j ≤ M, then at the optimum q̂n
n = q̂m j

m j .

In order to see this observe that since for every Q with non-decreasing components, we

have qn
n ≥ qm j

m j it follows that

R̄n(Q)− R̄m j(Q) = −pnθn(1−qn
n) + pm jθm j(1−qm j

m j) ≥ (1−qm j
m j)(pm jθm j − pnθn) ≥ 0.

That is, there is no admissible Q for which R̄n(Q) is the (strictly) smallest upper bound on the

revenues. But R̄n(Q) is the only bound that could be increasing in qn
n. Thus, it is without loss

to choose qn
n as small as possible, i.e. we can set q̂n

n = q̂n−1
n−1. Since this argument applies to all

m j < n < m j+1 we can conclude that choosing q̂n
n = q̂m j

m j for all m j < n < m j+1 is optimal.

Step 2. At the optimum

q̂m j+1
m j+1 ≤ 1−

pm jθm j

pm j+1θm j+1

(1− q̂m j
m j)

for all 1 ≤ j ≤ M−1.

In order to see this, notice that for every Q such that

qm j+1
m j+1 > 1−

pm jθm j

pm j+1θm j+1

(1−qm j
m j)

we have

R̄m j+1(Q)− R̄m j(Q) > 0.

Moreover, rewriting the inequality yields

qm j+1
m j+1 −qm j

m j >

(
1−

pm jθm j

pm j+1θm j+1

)
(1−qm j

m j) ≥ 0.

In such a case we can lower qm j+1
m j+1 without violating the constraint qm j+1

m j+1 ≥ qm j
m j , and thus increase

all R̄n, n , m j+1. Since R̄m j+1 is not the smallest bound this means that the minimum of the

bounds would increase. But then Q cannot be optimal.
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Step 3. If ν̄1 ≤ 0 then at the optimum

q̂m j
m j = 1−

pm j−1θm j−1

pm jθm j

(1− q̂m j−1
m j−1) for all j∗ < j ≤ M;

if ν̄1 > 0 then this condition holds for all 1 < j ≤ M.

By Step 2 we know that at the optimum

q̂m j
m j ≤ 1−

pm j−1θm j−1

pm jθm j

(1− q̂m j−1
m j−1),

for all 1 < j ≤ M or equivalently

R̄m j(Q̂) ≤ R̄m j−1(Q̂).

Now suppose that Q̂ is such that this condition holds with strict inequality for j = M, implying

qM
M < 1. Then, R̄mM (Q̂) is strictly smaller than any other bound. If Q̂ is optimal then it should

not be possible to increase R̄mM . An increase of R̄mM can be achieved only if qmM
mM is increased.

On the other hand, since for all mM < n < N we have q̂n
n = q̂mM

mM , qmM
mM can be increased without

violating monotonicity only if at the same time we also increase qn
n. The impact of a uniform

increase of (qmM
mM , . . . ,q

N−1
N−1) on R̄mM is

pmMθmM −

N−1∑
i=mM

(1−Pi)(θi+1− θi) = ν̄mM .

Thus Q̂ cannot be optimal if ν̄mM > 0. This proves the claim for j = M > j∗.

For the case that j lies strictly between j∗ and M (i.e. j∗ < j < M) assume that we have

shown the claim for s = j + 1, . . . ,M. If Q̂ is such that

q̂m j
m j < 1−

pm j−1θm j−1

pm jθm j

(1− q̂m j−1
m j−1)

then

R̄mM (Q̂) = . . . = R̄m j+1(Q̂) = R̄m j(Q̂) < R̄m j−1(Q̂) ≤ . . . ≤ R̄m1(Q̂).

The assumption that the claim holds for s = j + 1, . . . ,M implies that

qms
ms = 1−

pms−1θms−1

pmsθms

(1−qms−1
ms−1) = 1−

pms−1θms−1

pmsθms

[
1−

(
1−

pms−2θms−2

pms−1θms−1

(1−qms−2
ms−2)

)]
=

pms−2θms−2

pmsθms

(1−qms−2
ms−2) = . . .

= 1−
pm jθm j

pmsθms

(1−qm j
m j).
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Moreover, by Step 1 we know that for ms−1 < n < ms, s = j + 1, . . . ,M,

qn
n = qms

ms .

Thus, if starting from Q̂ we want to increase qm j
m j , then monotonicity combined with the fact

that the claim holds for all s = j + 1, . . . ,M implies that we must increase qn
n, ms−1 ≤ n < ms,

s = j + 1, . . . ,M, at the rate

pm jθm j

pms−1θms−1

.

If (qm j
m j , . . . ,q

N−1
N−1) is increased in this way then R̄m j changes at the rate

pm jθm j −

M∑
s= j

pm jθm j

pmsθms

ms+1−1∑
i=ms

(1−Pi)(θi+1− θi) = ν̄m j .

Thus, if ν̄m j > 0, then Q̂ cannot be optimal.

Step 4. If ν̄1 ≤ 0 then at the optimum q̂m j
m j = 0 for all j ≤ j∗.

Consider first the case j = j∗. From Step 3 we know that for all s = j∗ + 1, . . . ,M the

condition

q̂ms
ms = 1−

pm j∗ θm j∗

pmsθms

(1− q̂
m j∗

m j∗
) (18)

holds. Thus, varying q
m j∗

m j∗
implies that we have to change accordingly also all qn

n, m j∗ < n < N.

In the previous step we have seen that the overall effect that such a change has on R̄m j∗ is

measured by ν̄m j∗ . Thus, if ν̄m j∗ ≤ 0, then R̄m j∗ is maximized by choosing q
m j∗

m j∗
as small as

possible. But that means that we have to set q
m j∗

m j∗
= q

m j∗−1
m j∗−1

.

Next, consider the choice of q
m j∗−1
m j∗−1

. If q
m j∗

m j∗
= q

m j∗−1
m j∗−1

, then

R̄m j∗ (Q)− R̄m j∗−1(Q) = (1−q
m j∗−1
m j∗−1

)(pm j∗−1θm j∗−1 − pm∗jθm∗j ). (19)

If q
m j∗−1
m j∗−1

< 1 this expression is strictly negative, meaning that R̄m j∗−1 is not the smallest one of

the bounds. Since all other bounds are strictly decreasing in q
m j∗−1
m j∗−1

, so must be min j R̄m j . If

q
m j∗

m j∗
= q

m j∗−1
m j∗−1

= 1, then R̄m j∗−1 can be increased by a decrease of q
m j∗−1
m j∗−1

that is accompanied with

a reduction of all qn
n, m j∗−1 < n < N, in accordance with (18). In order to see this notice that by

(19) we know that in the initial situation we have R̄m j∗ = R̄m j∗−1 . After the proposed reduction of

all qn
n, m j∗−1 ≤ n < N instead we have R̄m j∗ < R̄m j∗−1 . By our previous arguments we know that a

reduction of (q
m j∗

m j∗
, . . . ,qN−1

N−1) in accordance with (18) leads to an increase of R̄m j∗ and min j R̄m j .

If in addition also (q
m j∗−1
m j∗−1

, . . . ,q
m j∗−1
m j∗−1) is reduced then certainly R̄m j , j , j∗−1, increase further.
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Moreover, since after the change R̄m j∗ < R̄m j∗−1 it must be the case that also R̄m j∗−1 increases.

Combining these arguments we conclude that q
m j∗−1
m j∗−1

must be chosen as small as possible, i.e.

q
m j∗−1
m j∗−1

= q
m j∗−2
m j∗−2

.

Iterating on the same argument we can show that for all m j ≤ m j∗ , qm j
m j must be chosen as

small as possible. Since for m1 this means qm1
m1 = 0 we thus get qm j

m j = 0 for all m j ≤ m j∗ .

Step 5. If ν̄1 > 0, then at the optimum qm j
m j = 1 for all 1 ≤ j ≤ M.

In Step 3 we have seen that if ν̄m j > 0 for all j∗ < j ≤ M then each qm j
m j has to be chosen as

large as the constraint

q̂m j
m j ≤ 1−

pm j−1θm j−1

pm jθm j

(1− q̂m j−1
m j−1) (20)

allows. Since there is no such constraint for j = 1 it follows that qm1
m1 must be optimally set

equal to 1. Monotonicity then requires that also qn
n, 1 < n < N −1, must be equal to 1.

�

Proof of Proposition 4 . In the main text it has been shown that a necessary and sufficient

condition for the existence of an ambiguous mechanisms that does strictly better than the best

simple mechanism(s) is that Q = (1, . . . ,1) is not a solution of Problem P”. The two parts of

the proof that have not been argued in the text, are i) the incentive compatibility and individual

rationality of the ambiguous mechanism Ω constructed from the optimal simple mechanism

(q̃, t̃), and ii) the equivalence result showing that Q = (1, . . . ,1) is not a solution to Problem P”

if and only if ν̄1 < 0. We do so in the following.

As we have anticipated in the text, we will show that the agent’s payoff from truthful

reporting is no smaller than the truth-telling payoff under the optimal simple mechanism (q̃, t̃).

At the same time the deviation payoffs are bounded above by the corresponding deviation

payoffs under (q̃, t̃). Both individual rationality and incentive compatibility of the ambiguous

mechanism Ω therefore follow from the individual rationality and incentive compatibility of

(q̃, t̃).

We start with the truth-telling payoffs. Consider first an agent of type θn, n < N. Truthful

reporting yields the payoff q̃nθn − t̃n if the simple mechanism is (qn, tn), and qm
n θn − tm

n = θn −

(1− q̃n)θn− t̃n = q̃nθn− t̃n if the simple mechanism (qm, tm), m , n, is chosen. That is, for all the

simple mechanism in Ω the agent’s payoff from truthfully reporting his type is the same, and

in particular, equal to q̃nθn− t̃n.

For the highest type the payoff from truth-telling is no smaller θN − t̃N which in turn cannot

be smaller than the truth-telling payoff under (q̃, t̃), q̃NθN − t̃N .
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If the agent reports a type θl < θn, then his payoff is at most

q̃lθn− t̃l,

which is the payoff that agent would get under the simple mechanisms (ql, tl). Since (q̃, t̃) is in-

centive compatible, it follows that the agent does not have any incentive to deviate downwards.

By a perfectly analogous argument it follows that the agent has no profitable upward deviation

either.

In order to complete the proof we need to argue that Q = (1, . . . ,1) not being a solution of

P” is equivalent to ν̄1 < 0. Proposition 3 implies that when ν̄1 > 0, Q = (1, . . . ,1) is a solution

to P”. On the other hand, step 4 of the proof of Proposition 3 states that if ν̄1 ≤ 0, then at the

optimum q̂m j
m j = 0 for all j ≤ j∗. It is easy to see from the proof that when ν̄1 < 0, Q = (1, . . . ,1)

cannot be a solution to P”. However, when ν̄1 = 0, there can be other solutions beside the one

in the statement of Proposition 3. In that case R̄1(Q), as used in the proof, is constant when

one varies q1
1 and adjusts the other qm j

m j as in the said proof. Thus setting Q to (1, . . . ,1) does

not affect R̄1(Q) and provides an upper bound on the expected profit for the seller. In addition,

for Q = (1, . . . ,1), R̄m j is constant in m j, and in particular equal to θ1. Thus the upper bound is

attained, and Q = (1, . . . ,1) is also a solution. To conclude, Q = (1, . . . ,1) is not a solution to P”

if and only if ν̄1 < 0.

�

Proof of Proposition 6. Consider the relaxed versions of Problem P-2 from which (UIC) has

been dropped. Suppose that Ω is a feasible mechanism of that problem and that (q̄, t̄) is one

of the simple mechanisms in Ω that generates the smallest expected revenue, i.e. (q̄, t̄) ∈

argmin(q,t)∈ΩEp[t(θ)].

Let Ω′ be the set of all outcome functions of the form (q, t′), where (q, t) ∈Ω and the transfer

rule t′ coincides with t except for the transfers of the highest type, which are equal to

t′N = tN −
[
Ep[t(θ)]−Ep[t̄(θ)]

]
/pN .

Ω′ inherits from Ω the properties (IR) and (DIC). This follows from the fact that in passing

from Ω to Ω′ only the highest type’s transfers are lowered. Thus, both individual rationality

and downward incentive compatibility can at most be relaxed. Moreover, by construction we

have that

Ep[t(θ)] =Ep[t̄(θ)] for all (q, t) ∈Ω′.

Thus, Ω′ satisfies (C) and generates the same value as Ω. But that means that the value of the
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relaxed version of Problem P-2 does not change if the constraint (C’) is replaced by (C). Doing

so yields the relaxed version of Problem P. We already know that the latter has the same value

as Problem P itself. �

Proof of Proposition 7. Consistency follows from the fact that any two simple mechanisms in

Ω differ only on a set of types with zero probability. Notice also that every simple mechanism

almost always awards the object to the agent with the higher announced type at a price that is

equal to the announced type. Thus, under truth telling each simple mechanism in Ω generates

a revenue of T =E[max{θ1, θ2}].

As for individual rationality observe that the ambiguous mechanism never specifies a pay-

ment for an agent unless he receives the object. When an agent receives the object, then he

has to make a payment that corresponds to his announced valuation. Thus, truth telling always

guarantees a non-negative payoff.

Finally, we have to argue that under Ω truth telling is an optimal strategy for the two agents,

irrespective of what they believe about the other agent’s type or play. In order to see this, notice

that for every profile of announced types, θ̂, agent i knows that there are simple mechanisms in

Ω (all those indexed by a type profile, θ, such that θ̂i = θi) that specify that he will not receive

the object and that he will not have to pay anything. This means that for every θ̂ his payoff is

at most zero. On the other hand, by revealing his type truthfully, agent i can never get a strictly

negative payoff since every outcome function specifies for every pair of reported types one of

two possible outcomes for agent i: either he gets the object with probability one and pays the

reported valuation or he does not get the object and pays zero; in either case the resulting payoff

is zero. �
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