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Abstract 
 
This paper proposes tests of policy ineffectiveness in the context of macroeconometric 
rational expectations models. It is assumed that there is a policy intervention that takes the 
form of changes in the parameters of a policy rule, and that there are sufficient observations 
before and after the intervention. The test is based on the difference between the realisations 
of the outcome variable of interest and counterfactuals based on no policy intervention, using 
only the pre-intervention parameter estimates, and in consequence the Lucas Critique does not 
apply. The paper develops tests of policy ineffectiveness for a full structural model, with and 
without exogenous, policy or non-policy, variables. Asymptotic distributions of the proposed 
tests are derived both when the post intervention sample is fixed as the pre-intervention 
sample expands, and when both samples rise jointly but at different rates. The performance of 
the test is illustrated by a simulated policy analysis of a three equation New Keynesian Model, 
which shows that the test size is correct but the power may be low unless the model includes 
exogenous variables, or if the policy intervention changes the steady states, such as the 
inflation target. 
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1 Introduction

In this paper we propose tests for the e¤ect of a change in policy on some target variable in the

context of a macroeconometric dynamic stochastic general equilibrium (DSGE) model. We are

concerned with ex post evaluation of a policy intervention on a single unit (country), where data

are available before and after the intervention.

We consider a policy intervention which takes the form of a change in one or more of the

parameters of a policy rule, the non-policy parameters being structural in that they are invariant

to the policy intervention. The announcement and implementation of the intervention, at time

T0; are assumed to be understood and to be credible. The null hypothesis of the test is policy

ine¤ectiveness, no change in the parameters, and the tests are based on the mean, over a given

policy evaluation horizon, T0+1; T0+2; :::; T0+H; of the di¤erences between the post-intervention

realizations of the target variable and the associated counterfactual outcomes based on the para-

meters estimated using data before the policy intervention. The development of the test does not

require knowing or estimating the post-intervention parameters, thus it is not a structural change

test. We derive the asymptotic distribution of the tests both when the post-intervention sample

size, H; is �xed as the pre-intervention sample expands, and when both samples rise jointly but

possibly at di¤erent rates.

The Lucas Critique is not an issue since the counterfactual, given by the predictions from

the model estimated on pre-intervention data, will embody pre-intervention parameters while the

actual post-intervention outcomes will embody the e¤ect of any change in the policy parameters

and the consequent change in expectations. Di¤erent issues are involved in ex ante policy for-

mulation where post-intervention data are not available and the Lucas Critique could be an issue

since the possible e¤ects of the policy change on parameters and expectations must be taken into

account.

We consider both standard DSGE models where all variables, including policy variables, are

endogenous and DSGE models augmented by exogenous variables. This also accommodates inter-

ventions that change parameters in rules that determine the policy variable exogenously, as in a

�xed money supply growth rule or in�ation targeting, rather than determine them endogenously,

as in a Taylor rule that relates the policy variable to the endogenous variables of the DSGE model.

Thus our framework can also accommodate policy changes that alter the steady states of some of

the variables, as occurs when the in�ation target is changed.

In DSGE models with persistence, we show that the policy intervention will e¤ect the devia-

tions from steady state but these e¤ects are transitory, so the average e¤ect of the intervention on

the target variable over the evaluation sample will fall towards zero as the length of the evaluation
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sample is increased without bound. Thus while the test may have power for short post-intervention

evaluation samples, its power does not rise with H. In addition, the power of the test to detect

the intervention will depend on the state of the economy at the time of the intervention, T0: If

at T0 the economy is in steady states the test will have little power to detect the intervention.

In practice this may not be a problem, because major policy interventions tend to take place at

times when the economy is far from its steady state.

Where there are exogenous variables that have permanent e¤ects or where the policy interven-

tion changes the steady state, such as changing the target rate of in�ation, the power of the test

increases towards one as the evaluation horizon, H; increases. The most e¤ective policy changes

are ones that change the parameters in a way that ampli�es the permanent e¤ect of exogenous

variables. Policy interventions that change the steady states, such as the target in�ation rate,

have this property.

We investigate the size and power of the proposed tests by a simulation analysis using a

standard three equation New Keynesian DSGE model, where the policy interventions involve

changing the parameters of the Taylor rule. The model shows very standard shock impulse

response functions which show the time pro�le of the e¤ects on the variables of monetary policy,

demand and supply shocks. We also consider policy impulse response functions which show

the time pro�le of the e¤ects on the variables of a change in the policy rule parameters. The

simulations accord with the theoretical results and show that in all applications (where we abstract

from parameter uncertainty) the tests have the correct size; but if the intervention does not

change the steady state the power of the test can be low. The simulations demonstrate how the

power varies with the the magnitude of the policy change, the di¤erence between pre and post-

intervention parameter values; the particular parameters of the Taylor rule which are changed;

the state of the economy at the time of policy intervention, and the post-intervention evaluation

horizon.

We also consider policy changes that aim at increasing or reducing the in�ation target, with

the latter scenario being currently of interest for Japan. Once again simulation results are in line

with the theory, and show that our test has power when it is applied to interest rates and in�ation

and the power rises with H and eventually appraoches unity. But when the test is applied to

output deviations, the power could be low and does not rise with H, since the e¤ect of the policy

change on output is only transitory. The simulations also show interesting interactions between

the direction of the policy change in the in�ation target and the degree of interest rate smoothing.

In cases where the policy change aims at increasing the in�ation target then smoothing of interest

rate changes can have bene�cial e¤ects on output, but in cases where the in�ation target is reduced

further smoothing of interest rate changes can be costly as output losses will be greater.
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The rest of the paper is organized as follows: Section 2 develops the counterfactuals and policy

impulse response functions and derives the policy ine¤ectiveness test for a standard DSGE where

all the variables, including the policy variable, are endogenous. Section 3 augments the standard

DSGE model to allow for exogenous variables including exogenous policy variables. Section 4

provides the simulated policy analysis of the New Keynesian model. Section 5 ends with some

concluding remarks. The more technical derivations are given in an Appendix.

2 Policy ine¤ectiveness tests for a standard RE model

2.1 Derivation of the counterfactuals and policy e¤ects: standard case

Consider a standard rational expectations (RE) model, where all the variables are endogenous.

We suppose that the target variable, yt; is a¤ected directly by a vector of variables, zt, including

the policy variable, and assume that the (kz + 1) � 1 vector qt = (yt; z
0
t)
0 is determined by the

RE model (which could result from some well de�ned decision problem) of the form

A0qt = A1Et(qt+1) +A2qt�1 + ut; (1)

where the structural shocks, ut, have mean zero, E(ut) = 0; are serially uncorrelated and have the

constant variance matrix, E(utu0t) = �u; typically a diagonal matrix. Et(qt+1) = E(qt+1 j It);

It is the information set that includes ut, and the lagged values of the variables, qt. We assume

that qt are measured as deviations from their steady state values, but discuss policy changes that

alter the steady states, such as the in�ation target, below.

Initially we abstract from parameter estimation uncertainty and denote the vector of structural

and policy parameters by � = vec(A0;A1;A2), and assume that �u remains invariant to the

policy change. The parameter vector, �, is composed of a set of policy parameters, �p, and a

set of structural parameters, �s, that are invariant to changes in �p. A policy intervention is

de�ned in terms of a change in one or more elements of �p. The null hypothesis of our test is

policy ine¤ectiveness to be de�ned more formally below. We assume that the model is known

by economic agents, the announcement and implementation of the intervention are credible, and

no further changes are expected.1 We suppose that the policy intervention occurs at the end of

time t = T0, and we have a pre-intervention sample that runs from t = M;M + 1; :::; T0, and

a post-intervention sample for t = T0 + 1; T0 + 2; ::; T0 + H. Therefore, the post-intervention

evaluation horizon is H and the sample size for estimation of the pre-intervention parameters is

T = T0 �M + 1: This notation allows us to increase the sample size T (by letting M ! �1),

while keeping the time of intervention, T0, �xed.

1Kulish and Pagan (2014) consider solutions of forward looking models in the case of imperfect credibility where
policy announcements are not necessarily incorporated into expectations.
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A prominent example of a system of this form is the three equation new Keynesian DSGE

model, which has an IS curve determining log output-gap, yt; a Phillips curve determining in-

�ation, �t; and a Taylor rule determining the short interest rate, Rt: The policy parameters are

the parameters of the Taylor rule. We use such a model in the simulation analysis in Section 4.

In the literature the e¤ects of policy is usually measured by "shock impulse response functions",

SIRFs. For instance in the NK model, this estimates the expected e¤ect over time of a one stan-

dard error monetary policy shock to the interest rate equation, assuming that the shock is small

enough to leave the parameters unchanged. In contrast, we focus on a "policy impulse response

function" (PIRF), that measures the e¤ect over time of a policy intervention that takes the form

of a change in the policy parameters, �p, such as those of the Taylor rule, rather than a shock

to its equation error. In the context of the SIRF, it is often not clear what is the source of this

policy implementation error that is shocked to produce the IRF in response to a monetary policy

shock.

Under the above set up, the RE model (1) has the unique solution

qt = �(�)qt�1 + �(�)ut; (2)

if the quadratic matrix equation

A1�
2 �A0�+A2 = 0; (3)

has a solution, �, with all its eigenvalues inside the unit circle, and �(�) = (A0 �A1�)
�1. Below

we shall also use the reduced form shocks, "t = �(�)ut, and we note that

�"(�) = E("t"
0
t) = (A0 �A1�)

�1�u(A0 �A1�)
0�1: (4)

Notice that (2) is a vector autoregression and corresponds to the reduced form of a standard

simultaneous equations model where there are no exogenous variables.

A policy change, de�ned as a change in one or more elements of �p; will a¤ect the mean

outcomes through changes in�(�) and the variance of the outcomes through �(�). Denote the pre-

intervention parameters by �0 = (�00p ; �
0
s)
0, and the post-intervention parameters by �1 = (�10p ; �

0
s)
0,

where only one or more elements of the policy parameters are changed. If the intervention at

T0 is transparently and fully communicated, it is understood to be credible, with expectations

adjusting immediately, then the process switches from

qt = �(�
0)qt�1 + �(�

0)ut; t =M;M + 1;M + 2; :::; T0

to

qt = �(�
1)qt�1 + �(�

1)ut; t = T0 + 1; T0 + 2; :::; T0 +H:
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The policy impulse response function for yt is given by the expected di¤erence in the outcomes

associated with the two parameter vectors

PIRFy(h; �
0; �1;qT0) = s

0
n�
�
�
�1
��h � �� ��0��hoqT0 ; (5)

where s is a the (kz + 1)� 1 selection vector with all its elements zero except for its �rst element

which is set to unity. Unlike the shock impulse response functions the PIRF depends on the state

of the economy at the time of the intervention, qT0 : To evaluate this PIRF requires knowing, or

being able to estimate, the post-intervention parameters �1. However, the counterfactual values

of the focus variable, yT0+h, on the assumption of no change in policy, are given by

y0T0+h = s
0 �� ��0��h qT0 ; (6)

and only require estimation of �0. The e¤ect of policy on the target variable is then the di¤erence

between the realised values, yT0+h; and the counterfactual values, y
0
T0+h

,

dT0+h = yT0+h � y0T0+h; h = 1; 2; :::;H: (7)

These measured policy e¤ects will be subject to the post intervention random errors, "y;T0+h::

Notice that if there are no dynamics in (1), A2 = 0; then assuming that all eigenvalues of

A�10 A1 lie within the unit circle, the unique solution is:

qt = A
�1
0 ut = �(�)ut:

Thus in the absence of persistence (dynamics), a policy intervention (de�ned by a change in some

elements of A0) has no e¤ect on the mean outcomes, qt; but does change the variance of the

outcomes. The variance of qt changes from �"(�
0) = �(�0)�u�(�

0)0 to �"(�1) = �(�1)�u�(�1)0.

Conditional on the structural error variances, �u, remaining constant, one could derive a test

statistic for a policy induced variance change corresponding to the policy ine¤ectiveness test for a

mean change discussed below. It will be more challenging to develop tests that separate the e¤ects

of a policy change from other changes in �u that happen by chance. When there is persistence,

policy can e¤ect mean outcomes, but that e¤ect is transitory since the system returns to steady

state.

2.2 Derivation of the test statistic: standard case

To derive the distribution of the policy e¤ects and develop a policy ine¤ectiveness test we require

the following assumptions.

Assumption 1: The RE model de�ned by (1) has a unique solution given by (2), and

the structural parameters, � 2 �, are identi�ed at �0 and �1 (the pre and post-intervention
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parameters). The structural errors, ut, are serially uncorrelated with zero means and a constant

covariance matrix, �u.

Assumption 2a: The spectral radius of �(�), de�ned by j�max [�(�)]j, is strictly less than

unity for values of � = �0 and �1 2 �.2

Assumption 2b: There exists a matrix norm of�(�), denoted by k�(�)k, such that k�(�)k <

1, for values of � = �0 and �1 2 �.

Assumption 3: Standard regularity assumptions on the structural errors, ut, and the

processes generating the exogenous variables (if any) apply such that �0 can be consistently

estimated by �̂
0
T based on the pre-intervention sample, t = M;M + 1;M + 2; :::; T0, where

T = T0 �M + 1; and �̂0T = �0 +Op
�
T�1=2

�
. In particular

p
T
�
�̂0T � �0

�
as N(0;��0); (8)

E
�̂0T � �0 = O(T�1=2); (9)

where ��0 is a symmetric positive de�nite matrix.

Assumption 4: �(�) = (�ij(�)), is bounded and continuously di¤erentiable in �, such that@�ij(�)=@�0, for all i and j exist and are bounded.
Assumption 5: The initial values, qT0 , are bounded, namely kqT0k < K; where K is a �xed

positive constant.

Assumptions 1, 2a, 3 and 4 are standard in the literature on the econometric analysis of DSGE

models. The conditions for identi�cation in Assumption 1 are discussed in Koop, Pesaran and

Smith (2013). Assumption 2a ensures that k�(�)k < �, where � is a �nite positive constant.3

Assumption 2b is stronger than 2a and further requires that � < 1. This latter restriction allows

us to simplify the proofs considerably and obtain the main theoretical results without requiring

high order di¤erentiability of �(�) which will be needed in the absence of Assumption 2b.

In the cases where both H and T go to in�nity we will also use the following joint asymptotic

condition:

Condition 1 The post-intervention sample size, H, rises with the pre-intervention sample size,

T , such that H = �T �, where � is a �xed positive constant, and � � 1=2.

Using (6), estimates of the counterfactuals in the absence of the policy change are given by

ŷ0T0+h = s
0
h
�
�
�̂0T

�ih
qT0 ; (10)

2�max(A) stands for the largest eigenvalue of matrix A.
3Note that there exists a matrix norm, kAk, such that j�max(A)j � kAk � j�max(A)j + �, where � is a positive

constant. See, for example, Lemma 5.10.10 in Horn and Johnson (1985).
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where under Assumption 3, �̂0T is a
p
T - consistent estimator of � based on the pre-intervention

sample. Therefore, the estimated policy e¤ects are given by

d̂T0+h(�̂
0
T ) = s

0qT0+h � s0
h
�
�
�̂0T

�ih
qT0 ; (11)

for h = 1; 2; :::;H. It is clear that estimation of the policy e¤ects only requires estimates of �0

that can be obtained using the pre-intervention sample. Also, the sampling distribution of the

d̂T0+h(�̂
0
T ), depends on post-intervention parameters only under the alternative that the policy is

e¤ective, but not under the null hypothesis of no policy e¤ect as de�ned by

H0 : �
1 = �0: (12)

To derive the distribution of the policy e¤ects, d̂T0+h(�̂
0
T ); �rst note that post-intervention

realized values, qT0+h, (for h = 1; 2; :::;H) are given by

qT0+h =
�
�
�
�1
��h

qT0 +

h�1X
j=0

�
�
�
�1
��j
�(�1)uT0+h�j . (13)

Using (13) and substituting the results for qT0+h in (11) we have

d̂T0+h(�̂
0
T ) = �̂T0;h(�̂

0
T ) + vT0;h (14)

where

�̂T0;h(�̂
0
T ) = �s0

�h
�
�
�̂0T

�ih
�
�
�
�
�1
��h�

qT0 ; (15)

vT0;h =
h�1X
j=0

s0
�
�
�
�1
��j
�(�1)uT0+h�j ; (16)

In (14) the estimated policy e¤ect, d̂T0+h(�̂
0
T ), has a systematic component, �̂T0;h(�̂

0
T ), and a

random component, vT0;h. The random component is a weighted linear combination of serially

uncorrelated shocks, ut with the weights decaying exponentially under Assumption 2a. A policy

ine¤ectiveness test of H0 can now be based on the policy e¤ects, d̂T0+h(�̂
0
T ), h = 1; 2; :::;H. But

to develop formal statistical tests of policy ine¤ectiveness, we also need to make distributional

assumptions regarding the shocks, ut. The role of such assumptions can be minimized by basing

the policy ine¤ectiveness test on a "mean policy e¤ect" computed over the post-intervention

horizon T0 + h, for h = 1; 2; :::;H, namely

d̂H(�̂
0
T ) =

1

H

HX
h=1

d̂T0+h(�̂
0
T ): (17)

For a �xed H, the implicit null hypothesis of no policy e¤ects can now be speci�ed as

H 0
0 : p lim

T!1

 
H�1=2

HX
h=1

�̂T0;h(�̂
0
T )

!
= 0: (18)

8



As we shall see, this condition is met under Assumptions 1, 2a, 3 and 4 when H is �xed and as

T !1.

Interestingly enough, H 0
0 continues to hold even if H ! 1, so long as Assumption 2b holds

and the rate of increase of H in relation to T is governed by the joint asymptotic condition 1. If

the underlying RE model is correctly speci�ed, then under the null of no policy change, H0, we

have

H�1=2
HX
h=1

�̂T0;h(�̂
0
T ) = �s0

(
H�1=2

HX
h=1

h
�
�
�̂0T

�ih
�
�
�
�
�0
��h)

qT0 : (19)

Now using results in Lemmas 2 and 3, given in the Appendix, we haveH�1=2
HX
h=1

�̂T0;h(�̂
0
T )

 � s0 kqT0kH�1=2


HX
h=1

h
�
�
�̂0T

�ih
�
�
�
�
�0
��h

� K
s0 kqT0kH�1=2

 
HX
h=1

h�h�1T

!�̂0T � �0 ; (20)

where K is a �xed constant. Using (70) in Lemma 3, we have�(�̂0T ) � �(�0)+ aT �̂0T � �0 ;
where aT =

@� ���0T � =@�0, and elements of ��0T lie on the line segment joining �0 and �̂0T . Con-
sidering that ��0T !p �

0, and by Assumption 4 k@�ij(�)=@�0k for all i and j exist and are bounded,

then it must also follow that aT is bounded in T . Hence, recalling that under Assumption 3,
p
T
�̂0T � �0 = Op(1), then �T � � + aTT

�1=2, where
� ��0� � �, and aT is bounded in T .

In the case where H is �xed and T !1,�����H�1=2

 
HX
h=1

h�h�1T

!����� � H�1=2
HX
h=1

h
�
�+ aTT

�1=2
�h�1

! H�1=2
HX
h=1

h�h�1 < K, as T !1.

Using this result in (20) and noting that under Assumptions 3 and 5, kqT0k is bounded in T;

and
�̂0T � �0 = Op

�
T�1=2

�
, then under the null of no policy change, H0, for a �xed H and as

T !1, we have
H�1=2

HX
h=1

�̂T0;h(�̂
0
T )

!p 0, as required.

Consider now the case where H rises with T and the rate of increase of H in relation to T is

governed by the joint asymptotic condition 1. Note also that under Assumption 2b, � < 1. Then

using (71) and (72) in Lemma 4 we have

HX
h=1

h�h�1T =
1

(1� �)2
+Op

�
T�1=2

�
+Op

�
H�H

�
; (21)

HX
h=1

h�1X
j=0

j�j�1T =
1

(1� �)2

�
H � 1 + �

1� �

�
+Op

�
T�1=2

�
+Op

�
H�H

�
: (22)
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Using (21) in (20), and (22) we obtain

H�1=2
HX
h=1

�̂T0;h(�̂
0
T ) = Op

�
H�1=2T�1=2

�
+Op

 
H�1=2�H

T�1=2

!
; under H0 (23)

Therefore, under H0; H�1=2
HX
h=1

�̂T0;h(�̂
0
T ) tends to zero in probability if H = �T �, for � � 1=2; as

H and T !1 (the joint asymptotic condition 1).

To derive the distribution of d̂H(�̂0T ); using Lemma 1, in the Appendix, we �rst note that

1

H

HX
h=1

vT0;h =
1

H

HX
h=1

h�1X
j=0

s0
�
�(�1)

�j
�(�1)uT0+h�j =

1

H

HX
j=1

s0AH�j (�1)�(�1)uT0+h�j ; (24)

where

AH�j (�1) = Ikz+1 +�1 +�21 + :::+�
H�j
1 = (Ikz+1��1)

�1 (Ikz+1��
H�j+1
1 ): (25)

To simplify notation we have used �1 for �(�1). Considering that under H0, �̂T0;H(�̂
0
T ) =

Op(T
�1=2), we have

V ar
�p

Hd̂H(�̂
0
T )
�
= !20q + o(1);

where

!20q = s
0

24H�1
HX
j=1

AH�j (�1)�"(�1)A0H�j (�1)

35 s;
�"(�

1) = E("T+j"
0
T+j) = �(�

1)�u�(�
1)0. See (4) for the de�nition of �(�). Therefore, the policy

ine¤ectiveness test statistic can be written as

Td;H =
p
Hd̂H(�̂

0
T )q

!̂20q

; (26)

where !20q can be estimated using pre-intervention sample as:

!̂20q = s
0

8<:H�1
HX
j=1

AH�j
�
�(�̂0T )

�
�"

�
�̂0T

�
A0H�j

�
�(�̂0T )

�9=; s; (27)

where

AH�j
�
�(�̂0T )

�
= Ikz+1 +�(�̂

0
T ) +

h
�(�̂0T )

i2
+ :::+

h
�(�̂0T )

iH�j
(28)

�"

�
�̂0T

�
= T�1

T0X
t=M

h
qt ��(�̂0T )qt�1

i h
qt ��(�̂0T )qt�1

i0
; (29)

Under the null hypothesis of policy ine¤ectiveness, and assuming that the underlying RE model

is correctly speci�ed and the innovations "T0+h = �(�)uT0+h for h = 1; 2; :::;H are normally

distributed, then for a �xed H and as T !1, we have Td;H !d N(0; 1). For moderate values of

10



H, small departures from normality of the innovations over the post-intervention sample might

not be that serious for the validity of the test.

Finally, the above derivations abstract from the pre-intervention sampling uncertainty by as-

suming that T is su¢ ciently large and H=T su¢ ciently small. Allowing for the e¤ects of sampling

uncertainty on the distribution of Td;H when dealing with dynamic RE models with complicated

non-linear cross-equation restrictions is likely to be challenging and will not be attempted here.

Alternatively, one could adopt a Bayesian approach and compute the posterior distribution of

d̂H(�̂
0
T ) using Markov chain Monte Carlo simulations.

2.3 Power of the policy ine¤ectiveness test: standard case

The power of Td;H test, de�ned by (26), depends on the probability limit of Td;H under the

alternative hypothesis that �1 6= �0. In particular, the test is consistent if its power exceeds its

size in �nite samples, and if the power tends to unity as H !1. Using (14) and suppressing the

dependence on (�̂0T ) for simplicity, we note that

p
Hd̂H = H�1=2

HX
h=1

�̂T0;h +H
�1=2

HX
h=1

vT0;h: (30)

It is now easily seen that the purely random component, H�1=2
HX
h=1

vT0;h, has a limiting distribution

with mean zero and a �nite variance both under the null and the alternative hypotheses. Therefore,

for the test to be consistent the mean component of
p
Hd̂H must diverge to in�nity with H. We

shall consider the limiting behaviour of H�1=2
HX
h=1

�̂T0;h, which relates to the internal dynamics of

the DSGE model. Under H1 : �1 6= �0, we have

H�1=2
HX
h=1

�̂T0;h = �s0
(
H�1=2

HX
h=1

h
�h
�
�̂0T

�
��h

�
�1
�i)

qT0

= s0

(
H�1=2

HX
h=1

h
�h
�
�1
�
��h

�
�0
�i)

qT0 � s0
(
H�1=2

HX
h=1

h
�h
�
�̂0T

�
��h

�
�0
�i)

qT0 :

(31)

But it has been already established that (see (23))

s0

(
H�1=2

HX
h=1

h
�h
�
�̂0T

�
��h

�
�0
�i)

qT0 = Op

�
H�1=2T�1=2

�
+Op

 
H�1=2�H

T�1=2

!
:

Hence, under H1

H�1=2
HX
h=1

�̂T0;h = s
0

(
H�1=2

HX
h=1

h
�h
�
�1
�
��h

�
�0
�i)

qT0+Op

�
H�1=2T�1=2

�
+Op

 
H�1=2�H

T�1=2

!
:

11



Now set �1 = �
�
�1
�
and �0 = �

�
�0
�
, and note that

HX
h=1

�h1 = �1(Ikz+1��H1 )(Ikz+1��1)�1.

Under Assumption 2, (Ikz+1 ��1)�1 exists and is �nite and �H1 ! 0 as H !1. Hence,

H�1=2
HX
h=1

�h
�
�1
�
= H�1=2�1(Ikz+1 ��H1 )(Ikz+1 ��1)�1 ! 0, as H !1.

Similarly, H�1=2
HX
h=1

�h
�
�0
�
! 0, with H, and H�1=2

HX
h=1

�̂T0;h = op(1), under the alternative

hypothesis. Hence, H�1=2
HX
h=1

�̂T0;h !p 0 under both the null and the alternative hypotheses as

T and H ! 1, subject to the joint asymptotic condition 1. Therefore, the internal dynamics

of the RE model do not contribute to the power of the policy ine¤ectiveness test for T and H

large. Thus tests based on the average policy e¤ects, d̂H , will not be consistent in the case of

stationary DSGE models. In such cases, the best that can be hoped for is to base the test of

the policy ine¤ectiveness on a short post-intervention sample and accept that the test is likely to

lack power and be sensitive to the speci�cations of the post-intervention error processes, "T0+h,

h = 1; 2; :::;H.

3 Policy ine¤ectiveness tests for the RE model with exogenous
variables

3.1 Derivation of the counterfactuals and policy e¤ects with exogenous vari-
ables

We now allow for exogenous policy and non-policy variables. Endogenous policy rules, such as

the Taylor rule, follow closed loop control with feedback, but there may be open loop control

without feedbacks, such as �xed money supply rules, where the policy variable xt is exogenous.

There may also be non-policy variables, wt, such as global variables that a¤ect zt and/or yt but

are invariant to changes in xt. This framework also accomodates changes that shift steady states

such as target in�ation.

As before let qt = (yt; z
0
t)
0, be a (kz + 1) � 1 vector, but now introduce st = (xt;w

0
t)
0, a

(1 + kw)� 1 vector. The RE model is now

A0qt = A1Et(qt+1) +A2qt�1 +A3st + ut; (32)

and suppose that the forcing variables, st, follow the VAR(1) speci�cation

st = Rst�1 + �t; (33)

where

R =

�
� 0
0 Rw

�
; �t =

�
�xt
�wt

�
;

12



so that wt is invariant to changes in xt: The errors, ut and �t are assumed to be serially and cross

sectionally uncorrelated, with zero means and constant variances, �u, and ��, respectively.

Initially, consider the case where there are no dynamics, namely A2 = 0; and all eigenvalues

of A�10 A1 lie within the unit circle. Then the unique solution of (32) is given by

A0qt = G(�)st + ut; (34)

where � includes both the structural coe¢ cients, a = vec(A0;A1;A3), and the parameters of the

processes generating the exogenous variables, � = (�; vec(Rw)0)0:

vec(G) =
�
(Ikw+1
Ikz+1)�

�
R0
A1A�10

���1
vec (A3) :

Equation (34) is the structural form of a standard simultaneous equations model. The reduced

form is

qt = A
�1
0 G(�)st +A

�1
0 ut (35)

= � (�) st + �(�)ut:

Under the same assumptions as before about the intervention at T0, then the process switches

from

qt = A
�1
0 G(�

0)st +A
�1
0 ut = �

0st + �(�)ut; t =M;M + 1;M + 2; :::; T0;

to

qt = A
�1
0 G(�

1)st +A
�1
0 ut = �

1st + �(�)ut; t = T0 + 1; T0 + 2; :::; T0 +H:

In the general case where A2 6= 0; the RE solution is

qt = � (�)qt�1 +	x (�)xt +	w (�)wt + �(�)ut; (36)

where � contains a = vec(A0;A1;A2;A3) and � = (�; vec(Rw)0)0. The counterfactual values of

yT0+h, are now given by

y0T0+h = s
0 �� ��0��h qT0 + s0 h�1X

j=0

�
�
�
�0
��j �

	x

�
�0
�
x0T0+h�j +	w

�
�0
�
wT0+h�j

�
; (37)

where x0T0+j for j = 1; 2; :::;H denote the counterfactual values of the policy variable, and wT0+j ,

for j = 1; 2; :::;H, are the realized values of the policy invariant variables. In the case where

there is a single policy variable that follows the AR(1) process, xt = �xt�1 + �xt; we also have

x0T0+h =
�
�0
�h
xT0 . Notice that the counterfactual outcomes are neither ex ante forecasts, since

y0T0+h is computed conditional on the realizations of wT0+h and not their predictions, nor are they

ex post forecasts since they are based on projected values of the policy variables, xT0+h, and the

initial values of the endogenous variables, qT0 .

13



3.2 Derivation of the test statistic with exogenous variables

In addition to assumptions 1-3 and the joint asymptotic condition given above we amend assump-

tions 4 and 5 to allow for the exogenous variables.

Assumption 4a: �(�) = (�ij(�)), and 	(�)= ( ij(�)); are bounded and continuously di¤er-

entiable in �, such that
@�ij(�)=@�0, and @ ij(�)=@�0 exist and are bounded, for all i and

j.

Assumption 5a: The initial values, qT0 , and post policy exogenous variables, sT0+j , for

j = 1; 2; :::;H are bounded, namely kqT0k < K; and ksT0+jk < K for all T0 and j, where K is a

�xed positive constant.

Using (37), the estimated counterfactuals are

ŷ0T0+h = s
0
h
�
�
�̂0T

�ih
qT0 + s

0
h�1X
j=0

h
�
�
�̂0T

�ij h
	x

�
�̂0T

�
x̂0T0+h�j +	w

�
�̂0T

�
wT0+h�j

i
: (38)

As before under Assumption 3, �̂0T is
p
T consistent estimator of � based on pre-intervention

period, t = 1; 2; :::; T . In the case of the AR(1) speci�cation for xt we also have x0T0+h = (�
0)hxT0 ;

h = 1; 2; :::H; where �0 is the pre-intervention value of �, which can be estimated using the

pre-intervention sample, namely

x̂0T0+h�j =
�
�̂0T
�h�j

xT0 :

Therefore, the estimated policy e¤ects are

d̂T0+h = s
0qT0+h�s0

h
�
�
�̂0T

�ih
qT0�s0

h�1X
j=0

h
�
�
�̂0T

�ij h
	x

�
�̂0T

� �
�̂0T
�h�j

xT0 +	w

�
�̂0T

�
wT0+h�j

i
;

(39)

for h = 1; 2; :::;H. The dependence of d̂T0+h on
�
�̂
0
T

�
has not been made explicit for simplicity.

The null hypothesis of no policy e¤ect is H0 : �1 = �0 and �1 = �0:

The post-intervention realized values, qT0+h, (for h = 1; 2; :::;H) are given by

qT0+h =
�
�
�
�1
��h

qT0 +

h�1X
j=0

�
�
�
�1
��j h

	x

�
�1
� �
�1
�h�j

xT0 +	w

�
�1
�
wT0+h�j

i

+
h�1X
j=0

�
�
�
�1
��j
	x

�
�1
�
�T0;h�j +

h�1X
j=0

�
�
�
�1
��j

"T0+h�j .

where "t = A�10 ut, and

�T0;h�j =

h�jX
i=1

�
�1
�h�j�i

�x;T0+i:

14



But after some algebra it follows that

h�1X
j=0

�
�
�
�1
��j
	x

�
�1
�
�T0;h�j =

h�1X
j=0

Bj
�
�1; �1

�
�x;T0+h�j ; (40)

where

Bj
�
�1; �1

�
=

jX
i=0

�
�
�
�1
��i
	x

�
�1
� �
�1
�j�i

:

The estimated policy e¤ects are then

d̂T0+h =
�
�̂qT0;h + �̂

w
T0;h + �̂

x
T0;h

�
+
�
vqT0;h + v

x
T0;h

�
= �̂T0;h + vT0;h:

The terms

�̂qT0;h = �s
0
�h
�
�
�̂0T

�ih
�
�
�
�
�1
��h�

qT0 ;

vqT0;h =
h�1X
j=0

s0
�
�
�
�1
��j

"T0+h�j ;

are the same as �̂T;h in (15) and vT;h in (16) in section (2.2), without exogenous variables. The

other terms are

�̂wT0;h = �s
0
h�1X
j=0

�h
�
�
�̂0T

�ij
	w

�
�̂0T

�
�
�
�
�
�1
��j
	w

�
�1
��
wT0+h�j ; (41)

�̂xT0;h = �s
0
h�1X
j=0

�h
�
�
�̂0T

�ij
	x

�
�̂0T

� �
�̂0T
�h�j � �� ��1��j	x

�
�1
� �
�1
�h�j�

xT0 ; (42)

and

vxT0;h =
h�1X
j=0

s0Bj
�
�1; �1

�
�x;T0+h�j : (43)

For a �xed H, the implicit null hypothesis of no policy e¤ects can now be speci�ed as

H 0
0 : p lim

T!1

"
H�1=2

HX
h=1

�
�̂qT0;h + �̂

w
T0;h + �̂

x
T0;h

�#
= 0; (44)

which is a generalization of (18). To establish the above result, we consider each of the three

terms in (44), separately. The �rst term, relates to the internal dynamics of the DSGE model,

which we already discussed above in Section 2.2, while the next two terms capture the e¤ects of

exogenous variables.

Consider now the second term in (44), and note that (under Assumption 5a)H�1=2
HX
h=1

�̂wT0;h

 � K H�1=2
HX
h=1

h�1X
j=0

h���̂0T�ij	w

�
�̂0T

�
�
�
�
�
�1
��j
	w

�
�1
� : (45)
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But under H0h
�
�
�̂0T

�ij
	w

�
�̂0T

�
�
�
�
�
�1
��j
	w

�
�1
�
= �̂j0	̂0;w��j0	0;w =

�
�̂j0 ��

j
0

�
	̂0;w+�

j
0

�
	̂0;w �	0;w

�
;

where �0 = �
�
�0
�
, �̂0 = �

�
�̂0T

�
, 	0;w = 	w

�
�0
�
and 	̂0;w = 	w

�
�̂0T

�
. Hence

HX
h=1

h�1X
j=0

h���̂0T�ij	w

�
�̂0T

�
�
�
�
�
�1
��j
	w

�
�1
� (46)

�
HX
h=1

h�1X
j=0

�̂j0 ��j0	̂0;w

+ �j0	̂0;w �	0;w

 :
Once again using results in Lemmas 2 and 3 we have

HX
h=1

h�1X
j=0

�̂j0 ��j0	̂0;w

+ �j0	̂0;w �	0;w


�

0@ HX
h=1

h�1X
j=0

j�j�1T

1A�̂0 ��0	̂0;w

+
0@ HX
h=1

h�1X
j=0

�j�1

1A	̂0;w �	0;w

 ; (47)

where � is the upper bound of k�0k, and as before �T � � + aTT
�1=2. Once again when H is

�xed and T ! 1,
 

HX
h=1

Ph�1
j=0 j�

j�1
T

!
and

 
HX
h=1

Ph�1
j=0 �

j�1

!
are bounded in T , by Lemma 3

and under Assumption 3,
�̂0 ��0 and 	̂0;w �	0;w

 both tend to zero in probability and we
have H�1=2

HX
h=1

�̂wT;h !p 0; as desired. A similar result also obtains for H�1
HX
h=1

�̂xT;h . Therefore,

for a �xed H and under Assumptions 1-3, 4a, 5a, and the null of no policy change, H0, we have

H�1=2
HX
h=1

�
�̂qT0;h + �̂

w
T0;h + �̂

x
T0;h

�
!p 0, as T !1, for a �xed H.

In the case where H rises with T and the rate of increase of H in relation to T is governed by

the joint asymptotic condition 1, in addition to the results above, following (21), we have

H�1=2
HX
h=1

�̂wT0;h = Op

�
H1=2T�1=2

�
+Op

 
H�1=2�H

T�1=2

!
; under H0:

Therefore, under H0; H�1=2
HX
h=1

�̂qT0;h and H
�1=2

HX
h=1

�̂wT0;h, both tend to zero in probability if H =

�T �, for � � 1=2; as H and T !1 (the joint asymptotic condition 1). A similar result also holds

for H�1=2
HX
h=1

�̂xT0;h.

To derive the distribution of the mean e¤ect, d̂H ; we use (24) and

1

H

HX
h=1

vxT0;h =
1

H

HX
h=1

h�1X
j=0

s0Bj
�
�1; �1

�
�x;T0+h�j

=
1

H

HX
j=1

s0CH�j
�
�1; �1

�
�x;T0+j ;
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where CH�j
�
�1; �1

�
=
PH�j
i=0 Bi

�
�1; �1

�
. Hence, since by assumption �xt and "t are serially

uncorrelated and are distributed independently of each other, and considering that under H0,

�̂T0;H = Op(T
�1=2), we have

V ar
�p

Hd̂H

�
= !20q + !

2
0x + o(1);

where

!20q = s
0

24H�1
HX
j=1

AH�j (�1)�"(�1)A0H�j (�1)

35 s;
�"(�

1) = E("T+j"T+j) and (see also 4))

!20x = �2�xs
0

24H�1
HX
j=1

CH�j
�
�1; �1

�
CH�j

�
�1; �1

�035 s:
Therefore, the policy ine¤ectiveness test statistic is given by

Td;H =
p
Hd̂Hq

!̂20q + !̂
2
0x

; (48)

where !20q and !
2
0x are estimated using pre-intervention sample as:

!̂20q = s
0

8<:H�1
HX
j=1

AH�j
�
�(�̂0T )

�
�"

�
�̂0T

�
A0H�j

�
�(�̂0T )

�9=; s;
where

AH�j
�
�(�̂0T )

�
= Ikz+1 +�(�̂

0
T ) +

h
�(�̂0T )

i2
+ :::+

h
�(�̂0T )

iH�j
�"

�
�̂0T

�
= T�1

T0X
t=M

"t

�
�̂0T

�
"0t

�
�̂0T

�
;

"t

�
�̂0T

�
= qt ��(�̂0T )qt�1 �	x

�
�̂0T

�
xt �	w

�
�̂0T

�
wt,

!̂20x = �̂20;�xs
0

24H�1
HX
j=1

�bCH�j bC0H�j�
35 s; (49)

bCH�j = PH�j
i=0 Bi

�
�̂0T ; �̂

0
T

�
, and �̂20;�x = T�1

PT0
t=M

�
xt � �̂0Txt�1

�2. Under the null hypothesis
of policy ine¤ectiveness, and assuming that the underlying RE model is correctly speci�ed and

the innovations "T0+h and �x;T0+h for h = 1; 2; :::;H are normally distributed, then for a �xed

H and as T ! 1, we have Td;H !d N(0; 1). Notice that (48) di¤ers from (26) in the explicit

inclusion of the estimated variance of the exogenous policy variable !̂20x: In (26) the variance of

the endogenous policy variable was included in !̂20q:
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3.3 Power of the policy ine¤ectiveness test with exogenous variables

In the numerator of (48)

p
Hd̂H = H�1=2

HX
h=1

�
�̂qT0;h + �̂

w
T0;h + �̂

x
T0;h

�
+H�1=2

HX
h=1

�
vqT0;h + v

x
T0;h

�
:

the purely random component, H�1=2
HX
h=1

�
vqT0;h + v

x
T0;h

�
, has a limiting distribution with mean

zero and a �nite variance both under the null and the alternative hypotheses. Therefore, for

the test to be consistent the mean component of
p
Hd̂H must diverge to in�nity with H. The

limiting behaviour of H�1=2
HX
h=1

�̂qT0;h, which relates to the internal dynamics of the DSGE model

is considered above in section (2.3) following (31). The terms H�1=2
HX
h=1

�̂wT0;h, and H
�1=2

HX
h=1

�̂xT0;h,

capture the e¤ects of exogenous variables. Under H1 : �1 6= �0, we have

H�1=2
HX
h=1

�̂wT0;h = �H
�1=2

HX
h=1

h�1X
j=0

s0
n
�̂j0	̂0;w ��j1	1;w

o
wT0+h�j ; (50)

where 	̂0;w = 	w

�
�̂0T

�
, 	1;w = 	w

�
�1
�
, �̂0 = �

�
�̂0T

�
, and, �1 = �

�
�1
�
. Also, setting

	0;w = 	w

�
�0
�
we have

�̂j0	̂0;w ��j1	1;w =
�
�̂j0 ��

j
0

�
	̂0;w +�

j
0

�
	̂0;w �	0;w

�
+�j0	0;w ��j1	1;w; (51)

and we have

H�1=2
HX
h=1

�̂wT0;h = �H
�1=2

HX
h=1

h�1X
j=0

s0
h�
�̂j0 ��

j
0

�
	̂0;w +�

j
0

�
	̂0;w �	0;w

�i
wT0+h�j

= �H�1=2
HX
h=1

h�1X
j=0

s0
�
�j0	0;w ��j1	1;w

�
wT0+h�j :

Noting that under Assumption 5a, kwT0+h�jk < K, the �rst term of the above is given by

�H�1=2
HX
h=1

h�1X
j=0

s0
h�
�̂j0 ��

j
0

�
	̂0;w +�

j
0

�
	̂0;w �	0;w

�i
wT0+h�j

= Op

�
H1=2T�1=2

�
+Op

 
H�1=2�H

T�1=2

!

and under H1 and the joint asymptotic condition 1 we have

H�1=2
HX
h=1

�̂wT0;h = �H
�1=2

HX
h=1

h�1X
j=0

s0
n
�j0	0;w ��j1	1;w

o
wT0+h�j+Op

�
H1=2T�1=2

�
+Op

 
H�1=2�H

T�1=2

!
(52)
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Now using the result in Lemma 1 we have

H�1=2
HX
h=1

h�1X
j=0

�j0	0;wwT0+h�j = (Ikz+1 ��0)
�1	0;w

0@H�1=2
HX
j=1

wT0+j

1A
� (Ikz+1 ��0)

�1

0@H�1=2
HX
j=1

�H�j+10 	0;wwT0+j

1A :

But considering that k	0;wk and kwT+jk are bounded in H, and k�0k < 1 (under Assumption

2b), then we haveH�1=2
HX
j=1

�H�j+10 	0;wwT0+j

 � H�1=2
HX
j=1

k�0kH�j+1 k	0;wk kwT0+jk

� K H�1=2
k�0k

�
1� k�0kH

�
(1� k�0k)

= O
�
H�1=2

�
Hence

H�1=2
HX
h=1

�̂wT0;h =
p
Hs0

h
(Ikz+1 ��1)

�1	1;w � (Ikz+1��0)
�1	0;w

i
�wT0;H (53)

+Op

�
H1=2T�1=2

�
+Op

 
H�1=2�H

T�1=2

!
:

Therefore, under H1 : �1 6= �0, the power of the test rises with
p
H if p limH!1 �wT0;H 6= 0; and

so long as H = �T �, with � � 1=2; as T !1.4 The power of the test also depends on the size of

the di¤erence between the pre and post-intervention long-run e¤ects of the exogenous variables.

Whereas with standard stationary DSGE models the tests based on the average policy e¤ects,

d̂H , were not consistent, when there are also exogenous variables the tests are consistent.

4 Simulated policy analysis using a New Keynesian model

To illustrate the issues discussed above we calibrate a standard three equation New Keynesian

DSGE model, using parameter estimates from the literature. We assume that there is no para-

meter or speci�cation uncertainty. We �rst consider a model where the variables are all measured

in deviations from their steady states. These are Rt; the interest rate, yt; log real output, and

�t; the in�ation rate. The policy intervention takes place at time T0; with a post-intervention

sample, T0 + 1; T0 + 2; :::; T0 +H: We set out the model; examine the shock and policy impulse

response functions introduced in Section 2.1, and then examine the size and power of the tests

discussed in Section 2.3. In 4.4 we consider a second model where the in�ation target is changed.

The �rst model, where the variables are deviations from steady state is
4The same consideration also apply to the policy variable, xt. In cases where

���1�� < 1, the policy can only have
short term e¤ects.
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Rt = �RRt�1 + (1� �R)( ��t +  yyt) + uRt; (54)

yt = �yyt�1 + �E(yt+1 jIt )� � [Rt � E(�t+1 jIt )] + uyt; (55)

�t = ���t�1 + �E(�t+1 jIt ) + yt + u�t; (56)

which can be written more compactly as (1), and repeated here for convenience

A0qt= A1Et(qt+1 jIt )+A2qt�1+ut,

where qt = (Rt; yt; �t)0, ut = (uRt; uyt; u�t)0; and

A0 =

0@ 1 �(1� �r) y �(1� �r) �
� 1 0
0 � 1

1A ; A1 =

0@ 0 0 0
0 � �
0 0 �

1A ; A2 =

0@ �R 0 0
0 �y 0
0 0 ��

1A :

(57)

We also assume that the structural shocks are orthogonal and have the following diagonal covari-

ance matrix

�u =

0@ �2uR 0 0
0 �2uy 0

0 0 �2u�

1A : (58)

As in Section 2.1, the solution of the model is given by (2):

qt= �(�)qt�1 + �(�)ut; (59)

suppressing the dependence on �, for the moment, �, is the solution of A1�2�A0�+A2 = 0

and �= (A0 � A1�)
�1: The value of � can be solved by iterative back-substitution procedure

which involves iterating on an initial arbitrary choice of � say �(0) using the recursive relation

�(r) = [Ik�(A
�1
0 A1)�(r�1)]

�1(A�10 A2): (60)

See Binder and Pesaran (1995) for further details. The iterative procedure is continued until

convergence using the criteria k �(r) ��(r�1) kmax� 10�6.

In the numerical calculations all unknown parameters are replaced by calibrated values from

the DSGE literature. Parameters of (56) are calibrated based on average estimates from eight

major economies as summarized in Table 5 of Dees et al (2009). The parameters of (55) and the

long run parameters of the Taylor rule, (54), are calibrated using the results in Dennis (2009).

The calibrated values of �0 are summarized in Table 1 below. The standard deviations of the

errors were all set equal to 0.005, or half a percent per quarter, which is similar to the US values

found in Dees et al. (2009).
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Table 1. Pre-intervention parameter values, �0; used in the Monte Carlo Analysis
� = 0:065 � = 0:57 � = 0:65  = 0:045  � = 1:5  y = 0:5

�y = 0:42 �� = 0:34 �R = 0:7 �u� = 0:005 �uy = 0:005 �uR = 0:005

The solution matrices for the pre-intervention parameters in (59) are given by:

�(�0) =

0@ 0:65 0:13 0:20
�0:17 0:62 �0:05
�0:06 0:08 0:47

1A ; �(�0) =

0@ 0:93 0:31 0:60
�0:24 1:49 �0:15
�0:08 0:19 1:39

1A : (61)

The solution is a VAR(1) and in each equation the coe¢ cient of the autoregressive term is the

largest in absolute value and the persistence of in�ation is lower than the persistence of output and

interest rates. We also note that even though the structural shocks are orthogonal the reduced

form shocks are correlated.

We consider four separate policy interventions, in which each of the parameters of the Taylor

rule are changed one at a time, leaving the other parameters unchanged. Intervention 1A increases

the interest rate persistence in the Taylor Rule, �R; from 0:7 to 0:9: Intervention 1B reduces �R

from 0:7 to 0:25: Intervention 1C increases the in�ation coe¢ cient in the Taylor rule,  �, from

1:5 to 2:5. Intervention 1D increases the output coe¢ cient in the Taylor rule,  y, from 0:5 to 1.

The values of �1 that are changed under alternative policy interventions are given in Table 2.

Table 2: Policy interventions
Interventions� �0 �1

1A �R = 0:7 �R = 0:9
1B �R = 0:7 �R = 0:25
1C  � = 1:5  � = 2:5
1D  y = 0:5  y = 1:0

* The other elements of �1 are kept at their pre-intervention values.

4.1 Shock Impulse Response Functions

As noted above, a shock impulse response function, SIRF, gives the time pro�le for a shock to one

of the structural errors assuming that the parameters are constant. For example the monetary

policy shock impulse response function represents the e¤ects of a one standard error shock to uRt,

the error in the Taylor rule, and is given by:

SIRFR(h; �
0; �uR) = �uR

�
�
�
�0
��h

�(�0)eR; (62)

where eR= (1; 0; 0)0: For a linear model this SIRF is independent of the value of qT0 , the state of

the economy at the time of the shock. In terms of the SIRF analysis the behaviour of the model

is very standard. As Figure 1 shows a contractionary monetary policy shock raises interest rates

and reduces output and in�ation, with output falling by more than in�ation.
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Figure 1: Shock impulse response functions for interest rates, Rt, output, yt, and

in�ation �t

1a. Monetary Policy Shock

1b. Demand Shock

1c. Supply Shock

A positive demand shock increases all three variables; output by the most, then interest rates,

and then in�ation. A negative supply shock, increases in�ation, the interest rate rises to o¤set
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the higher in�ation, but not by as much as in�ation and output falls. The impact e¤ects of the

monetary policy shock are given by the �rst column of �(�0) de�ned by (61), while the impact

e¤ects of the demand and supply shocks are given by its second and third columns.

4.2 Policy Impulse Response Functions

The policy impulse response function, PIRF, gives the response of the system over time to a

permanent change in the policy parameter(s) and, for a particular variable identi�ed by the

selection vector, s; is given by (5), repeated here for convenience:

PIRF (h; �1; �0;qT0) = s
0
h�
�
�
�1
��h � �� ��0��hiqT0 : (63)

As noted above, the PIRF requires knowledge of the parameters before and after the intervention

and, as can be seen from (15) and (31) above, it is the PIRF which largely determines the power

of the test to determine whether the mean e¤ect of the policy is di¤erent from zero.

Unlike SIRFs, the PIRFs and the policy ine¤ectiveness tests depend on the chose of initial

states, qT0 , at the time of the policy change. It is therefore important that the choice of qT0re�ects

a sensible combination of values of interest rate, in�ation and output. One possible approach is

to set qT0 equal to the impact e¤ects of SIRFs. For example, one could set qT0 to qR;T0 =

�uR�(�
0)eR; which is the impact e¤ect of a monetary policy shock as given by (62) for h = 0.

Similarly, for the demand and supply shocks qT0 can be set to qy;T0 = �u y�(�
0)ey and q�;T0 =

�u��(�
0)e�, respectively, where ey = (0; 1; 0)0 and e� = (0; 0; 1)0.5 Considering values of the

initial states, qT0 , that correspond to impact e¤ects of structural shocks seems sensible given

the focus of the literature on SIRFs. One could also consider multiples of the e¤ects of such

shocks as representing di¤erent degrees of deviations from equilibrium. The power of the policy

ine¤ectiveness test will then be an increasing function of the extent to which, at the time of the

policy change, the economy has deviated from the equilibrium.

Figure 2 shows PIRFs for the e¤ects of changing the degree of persistence (or the interest rate

smoothing) associated with the Taylor rule, Figure 2a shows the e¤ect of intervention 1A and

Figure 2b of 1B. These are the only policy changes which have much e¤ect. This is consistent

with the theoretical results that it is the dynamics that are central to policy having mean e¤ects.

We set the initial states at qR;T0 = �uR�(�
0)eR; the values of the variables that result from

the monetary policy shock on impact. Intervention 1A increases the degree of persistence from

�R = 0:7; to �R = 0:9: This causes the interest rate to rise and output and in�ation to fall initially,

with a maximum e¤ect after about three periods before returning to zero. Intervention 1B reduces

the degree of persistence from �R = 0:7; to �R = 0:25: This has the opposite e¤ect causing the

5As noted above these values are given by the columns of �(�0) de�ned by (61).

23



interest rate to fall, by more than it rose in case 1A; and output and in�ation to rise by rather less

than they fell under case 1A. The initial e¤ects are the same as the values of
�
�
�
�1
�
��

�
�0
��
for

the two cases. When the degree of persistence is low as in intervention 1B, the variables return to

zero much faster, making the mean e¤ect of policy much smaller. As we shall see, this is re�ected

in the power of the policy ine¤ectiveness tests to be discussed below.

Figure 2: Policy Impulse Response Functions: qR;T0 = �uR�(�
0)eR.

2a. Intervention 1A : �R = 0:7; to �R = 0:9

2b. Intervention 1B : �R = 0:7; to �R = 0:25

4.3 Policy Ine¤ectiveness tests

The test performance was evaluated using the calibrated values of �0 ignoring estimation error

and for various settings of the initial states, qT0 . Values of qT0+h; h = 1; 2; :::;H; for horizons

H = 8; and H = 24: are generated from (59) assuming u(b)t s IIDN(0;�u); where �u is given
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in (58) for b = 1; 2; ::; 2000; replications.6 For replication b the policy e¤ects are simulated as

d̂
(b)
T0+h

= q
(b)
T0+h

�
�
�
�
�0
��h

qT0 ; (64)

for h = 1; 2; :::;H. The policy mean e¤ect is calculated as

d̂
(b)

H =
1

H

HX
h=1

d̂
(b)
T0+h

;

and the test statistic as

T (b)d;H =

p
Hd̂

(b)

H

!̂0q
;

where

!̂20q =

8<:H�1
HX
j=1

AH�j
�
�(�0)

�
�"
�
�0
�
A0H�j

�
�(�0)

�9=; ;

AH�j
�
�(�0)

�
= Ikz+1 +�(�

0) +
�
�(�0)

�2
+ :::+

�
�(�0)

�H�j
:

Table 3 shows the size and power of the policy ine¤ectiveness tests against four alternative

policy interventions, two evaluation horizons and three initial states. The size was calculated

when q(b)T0+h was generated using �
0; the power was calculated when q(b)T0+h was generated using

one of the four alternative policy interventions which change �0 to �1A; :::; �1D, as set out in Table

2. The initial states are given in di¤erent rows of the Table. The rows labelled qR;T0 give the

rejection frequencies for the initial state corresponding to the e¤ects of a one standard deviation

monetary policy shock, ; the rows labelled qy;T0 a demand shock and and the rows labelled q�;T0

a a supply shock.

The size seems very well controlled. The power is highest for intervention, 1A, where the

degree of persistence of the Taylor rule increases from �R = 0:7; to �R = 0:9; con�rming what was

apparent from the PIRFs. However, even in this case the power is not high. At H = 8 the highest

power is 20% for testing the e¤ect on yt and using the initial state, qR;T0 or q�;T0 : At H = 24

the highest power is 25% for testing the e¤ect on yt. The test has little power against the other

three types of interventions.7 Whereas the test has power against the increase in persistence of

the Taylor rule it has less power against the reduction in the persistence of the Taylor rule for

output and in�ation because the variables return to zero quickly. The test has little power against

changes in the coe¢ cients of in�ation and output in the Taylor rule because they have relatively

little e¤ect on the other variables on impact.

6More speci�cally, q(b)T0+h= �(�)q
(b)
T0+h�1 + �(�)u

(b)
T0+h

, for h = 1; 2; :::; H, with q(b)T0 = qT0 .
7Similar outcomes are also reported by Rudebusch (2005) who, in the context of the Lucas Critique, shows that

the apparent policy invariance of reduced forms is consistent with the magnitude of historical policy shifts and the
relative insensitivity of the reduced forms of plausible forward looking macroeconomic speci�cations to policy shifts.
However, here we use formal tests based on structural models.

25



Table 3: Size, �0, and power of policy ine¤ectiveness tests

against 4 alternatives �1A; �1B; �1C ; �1D ; horizons H = 8; 24; 3 initial states

Size (�0) Power (�1A) Power (�1B) Power (�1C) Power (�1D)
R y � R y � R y � R y � R y �

H = 8

qR;T0 0.05 0.05 0.05 0.03 0.20 0.13 0.13 0.04 0.08 0.11 0.06 0.03 0.07 0.02 0.07
qy;T0 0.04 0.05 0.05 0.03 0.18 0.12 0.11 0.04 0.07 0.10 0.06 0.03 0.07 0.01 0.06
q�;T0 0.05 0.04 0.05 0.04 0.20 0.12 0.12 0.04 0.08 0.12 0.05 0.03 0.07 0.02 0.06

H = 24

qR;T0 0.05 0.05 0.05 0.04 0.25 0.17 0.11 0.04 0.09 0.10 0.06 0.02 0.07 0.02 0.07
qy;T0 0.05 0.06 0.05 0.04 0.25 0.16 0.11 0.03 0.09 0.10 0.05 0.02 0.07 0.01 0.06
q�;T0 0.05 0.04 0.05 0.04 0.24 0.18 0.12 0.04 0.09 0.10 0.07 0.02 0.07 0.02 0.06

Notes: The rows labelled qR;T0 set the initial state qT0 = �uR�(�
0)eR. Similarly for qy;T0 = �uy�(�

0)ey, and

q�;T0 = �u��(�
0)e�. The alternative hypotheses are set out in Table 2.

Figure 3 shows the rejection frequency for intervention 1A, increasing the degree of interest

rate smoothing, against the impact of a k standard deviation monetary policy shock, qR;T0 . The

rejection frequencies increase with the deviation of the initial value from zero and are roughly

symmetric for positive and negative values. The rejection frequencies are highest for output,

intermediate for in�ation and lowest for interest rates. The graphs were similar but with lower

rejection frequencies when the initial states are set to multiples of demand and supply shocks.

Figure 3. Rejection frequencies for intervention 1A (increasing �R from 0:7 to 0:9)

with the initial states at k standard deviations of qR;T0, and H = 8 quarters
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These simulations con�rm the theoretical results. The size of the test is correct. The e¤ect of

the policy intervention depends on the dynamics, reductions in the degree of persistence reduce

the e¤ect of changing the policy parameters. The power of the test depends on the state of the

economy at the time of the policy intervention. In our example, the test has some power against

increases in the persistence of the Taylor rule, but not against the other policy changes considered.

However, the e¤ects of all these policy changes are transitory, none have any e¤ect on the steady

states. We now consider interventions that change the steady states.

4.4 In�ation targeting as a policy change

As an example of a policy intervention that changes the steady states, consider an in�ation

targeting regime when the policy maker changes the target rate of in�ation which we denote

by ��. We assume the announcement of the change in the in�ation target is credible and fully

understood.8 To represent this intervention in the New Keynesian example, where the variables

are measured as deviations from steady state, we need to re-write the in�ation and interest rate

deviations in terms of their realized values which we denote by ��t and �Rt; namely ��t = �t + ��

and �Rt = Rt � (r + ��); where �� is the target rate of in�ation, and r denotes the steady state

value of the real interest rate. In terms of the realized values of in�ation and interest rates, ��t

and �Rt; and deviations yt; for the output gap, we have

�Rt = (1� �R) [r + (1�  �)��] + �R�Rt�1 + (1� �R)( ���t +  yyt) + uRt

yt = ��r + �yyt�1 + �E(yt+1 jIt )� �
h
�Rt � E(��t+1 jIt )

i
+ uyt

��t = (1� �� � �)�� + ����t�1 + �E(��t+1 jIt ) + yt + u�t:

and setting�qt = (�Rt; yt;��t)0, we obtain

A0�qt = A1Et(�qt+1) +A2�qt�1 +A3st + ut;

which corresponds to the RE model (32) with exogenous variables, with st replaced by 1, and

A3 =

0@ (1� �R) [r + (1�  �)��]
��r

(1� �� � �)��

1A :

The other matrices, A0, A1, and A2; are given as before by (57). The solution in terms of�qt is

given by

�qt = [I3 ��(�)]�q� +�(�)�qt�1 + �(�)ut;
8Kulish and Pagan (2014) consider a change in in�ation target when there is both perfect and imperfect credi-

bility.
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where�q� = (r+ ��; 0; ��)0, and �(�) and �(�) are de�ned as before. This solution can be viewed

as an example of the model with policy invariant variables discussed in Section 3 where in the

solution (36), 	x (�)xt is set to zero and 	w (�)wt is set to [I3 ��(�)]�q�.

Suppose now that the policy intervention at time T0 took the form of changing the in�ation

target from �0� to �
1
�. In this case the policy e¤ects are given by (39) with 	w (�)wt replaced by

[I3 ��(�)]�q�, namely

d̂T0+h = s
0�qT0+h � s0

h
�
�
�̂0T

�ih
�qT0 � s0

h�1X
j=0

h
�
�
�̂0T

�ij h
I3 ��

�
�̂0T

�i
�q0�;

where�q0� = (r + �
0
�; 0; �

0
�)
0

d̂T0+h = s
0�qT0+h � s0

h
�
�
�̂0T

�ih
�qT0 � s0

�
I3 �

h
�
�
�̂0T

�ih�
�q0�; (65)

The policy ine¤ectiveness test is given by (48), noting that there are no policy exogenous variables,

xt, in this example. In the case where only the in�ation target is changed the power of the test

rises with
p
Hs0

�
�q1� ��q0�

�
=
p
H
�
�1� � �0�

�
(1; 0; 1)0s, and tends to unity in the case of in�ation

and the nominal interest rate, as to be expected, and has no power as H ! 1, if real output

deviations, yt, are considered. Nevertheless, the change in the in�ation target does have short

run e¤ects on real output. This is re�ected in the policy impulse response function and the test

outcomes. The policy impulse response function when only the in�ation taget is changed is given

by

PIRF (h; �1� � �0�; �) =
�
�1� � �0�

�n
I3 � [� (�)]h

o0@ 1
0
1

1A ; for h = 1; 2; :::;H: (66)

It is clear that in the limit as H !1, the PIRF tends to
�
�1� � �0�

�
(1; 0; 1)0, which also con�rms

that in the NK model only nominal values are a¤ected in the long run by changes in the in�ation

target.

The short run impacts of changes in the in�ation target can be illustrated using the para-

metrization given above. For this purpose we consider two scenarios, a reduction of �0� from 2%

to 1% per quarter and an increase of �0� from 1% to 2% per quarter. The increase in the target

in�ation is interesting in the context of the Japanese experience. Initially we do not change any

of the other policy parameters, which are kept at the baseline values listed in Table 1. Figure

4a gives the responses to the reduction and 4b to the increase in the in�ation target. In the case

of a reduction, in�ation falls more than the interest rate, raising the real interest rate on impact

to 0.44% and thus depressing output. The real interest rate and output return to zero, leaving

the nominal interest rate and in�ation rate at the new target 1% lower after about seven quar-

ters. When the target rate of in�ation is increased the e¤ects are reversed: in�ation jumps more
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than interest rates, the real interest rate falls on impact to -0.44%, temporarily raising output.

Although the two cases are symmetrical numerically, they are not symmetrical in welfare terms,

since the output loss associated with the reduction in in�ation is something that one would wish

to avoid.

Figure 4: Policy impulse response functions for changes in target rates of in�ation

4a. Reduction of �0� = 2% to �1� = 1% per quarter

4b. Increase of �0� = 1% to �1� = 2% per quarter

In the case where there is both a change in the steady state and a change in the policy rule

parameters, the policy impulse response functions are given by

PIRF (h; �1�; �
1; �0�; �

0) =
h�
�
�
�1
��h � �� ��0��hi�qT0 + nI3 � �� ��1��ho�q1� � nI3 � �� ��0��ho�q0�;

=
n�
�
�
�1
��h � �� ��0��ho��qT0 ��q0��+ �I3 �� ��1��h ��q1� ��q0��

29



where

�q0� =

0@ r + �0�
0
�0�

1A ;�q1� ��q0� =
�
�1� � �0�

�0@ 1
0
1

1A :

More speci�cally, for a unit MP shock at the point of intervention, we set�qT0 = q
0
�+�uR�(�̂

0
T )eR,

and hence

PIRF (h; �1�; �
1; �0�; �

0) = �uR

n�
�
�
�1
��h � �� ��0��ho�(�0)eR (67)

+
�
�1� � �0�

� �
I3 ��

�
�1
��h0@ 1

0
1

1A :

which reduces to (66) when only the in�ation target is changed. Similar expressions can be

obtained when the initial state is set to values of�q that arise on impact from demand or supply

shocks.

We now consider combining the change in the in�ation target with changes in the degree of

in�ation smoothing. Figure 5a presents the e¤ects of simultaneously reducing the in�ation target

from 2% to 1% and increasing the in�ation smoothing parameter, �R, from 0:7 to 0:9, intervention

1A above, with the initial state set to�qR;T0 . This intervention causes in�ation to drop sharply,

overshooting its steady state of 1%, hitting 1.55% after about 4 quarters. The real interest rate

rises to 1.25%, depressing output, before the variables return to their steady state. Figure 5b

shows that increasing the target rate of in�ation has similar but the opposite e¤ects. Comparing

the reduction in the target rate of in�ation in Figure 5a with that in Figure 4a, the increased

interest rate smoothing has resulted in a much larger loss of output. Whereas in Figure 4a the

maximum loss of output was 0.3% per quarter, in �gure 5a the maximum loss was 1.1%, in both

cases around quarter 3.
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Figure 5: Policy impulse response functions for changes in target rates of in�ation

plus increased interest rate smoothing

Intervention 1A : �R from 0:7 to 0:9, initial state�qR;T0

5a. Reduction of �0� = 2% to �1� = 1% per quarter

5b. Increase of �0� = 1% to �1� = 2% per quarter

Figure 6 shows the results when the change in in�ation target is combined with reduced

interest rate smoothing. For a credible reduction in the in�ation target and very little interest

rate smoothing, the interest rate and the in�ation rate reduce by almost exactly the same amount

and output hardly falls. With a credible increase in the in�ation target and reduced interest rate

smoothing, in�ation increases more than interest rates and the lower real interest rates provides

a boost to output. While the results are speci�c to this parameterisation and the assumption of

credibility, it seems likely that less interest rate smoothing is optimal when reducing the target rate
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of in�ation, as in Figure 6a, since this causes less output loss, and more interest rate smoothing

seems more appropriate when increasing the target rate of in�ation, as in the Japanese case, since

this provides a bigger boost to output.

Figure 6: Policy impulse response functions for changes in target rates of in�ation

plus reduced interest rate smoothing

Intervention 1B : �R from 0:7 to 0:25, initial state�qR;T0

6a. Reduction of �0� = 2% to �1� = 1% per quarter

6b. Increase of �0� = 1% to �1� = 2% per quarter

We now consider the e¤ect on size and power of the policy ine¤ectiveness test in detecting the

e¤ects of changes in the target rate of in�ation on in�ation, output deviations and the interest

32



rate. We only consider the case where the in�ation target is reduced from 2% to 1% per quarter,

the results for an increase were almost identical. We consider two interventions. In the �rst, called

�1E ; the interest rate smoothing parameter is left unchanged at �R = 0:7, in the second, called

�1F ; �R is increased to 0:9 at the same time as the reduction in the in�ation target is announced.

If the target rate is reduced without any other policy changes, the power of the tests based on the

nominal interest rate and the in�ation rate are quite high and rise substantially as the horizon

of the test is increased from H = 8 to 24 quarters. In contrast, and as to be expected noting

the PIRFs depicted in Figure 4, the test has little power for output, since the e¤ect of a change

in the in�ation target on the real output is small and transitory. Under intervention �1F ; when

there is both a change in the in�ation target and an increase in interest rate smoothing, the power

of the test based on in�ation outcomes is increased, but for interest rates the power is reduced

relative to the case �1E ; since the increased smoothing means that interest rates do not change as

much. The increased smoothing causes a larger movement in real interest rates as noted above

and this causes a greater e¤ect on output hence a higher power in detecting the e¤ects of the

policy change on realized values of output deviations. Whereas for interest rates and in�ation,

the power increases as the horizon is extended, for output deviations, which is moving back to its

steady state value of zero, the power falls as the horizon is extended.

Table 4: Size and power of policy ine¤ectiveness tests against reducing the in�ation

target only (�1E) and when in�ation target reduction is accompanied by a rise in

interest rate smoothing (�1F )- Horizons H = 8; 24; 3 initial states (�qT0)

Size (�0) Power (�1E) Power (�1F )
R y � R y � R y �

Initial states H = 8

�qR;T0 0.05 0.05 0.05 0.29 0.07 0.72 0.13 0.39 0.90
�qy;T0 0.06 0.05 0.06 0.26 0.07 0.68 0.17 0.33 0.86
�q�;T0 0.05 0.06 0.06 0.28 0.06 0.70 0.16 0.35 0.88

H = 24

�qR;T0 0.06 0.04 0.05 0.73 0.07 0.99 0.65 0.30 0.98
�qy;T0 0.05 0.06 0.05 0.73 0.05 0.99 0.70 0.28 0.98
�q�;T0 0.05 0.05 0.05 0.71 0.05 0.99 0.68 0.29 0.99

Notes: See notes to Table 3. Alternative hypothesis �1E assumes that the in�ation target is reduced from

�0� = 2% to �1� = 1% per quarter. Alternative hypothesis �1F combines the reduction of the in�ation target from

�0� = 2% to �1� = 1% per quarter with a higher degree of interest rate smoothing, raising �R from 0:7 to 0:9.

5 Conclusion

In this paper we have derived tests for the null hypothesis of the ine¤ectiveness of a policy

intervention, de�ned as a change in the parameters of a policy rule. We consider tests conducted
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using full structural models both of the standard form, where all the variables including the policy

variable are endogenous, as well as where the system is augmented with exogenous variables,

including, perhaps, exogenous policy variables. The augmented system allows us to consider

policy interventions that change steady states, such as changes in the in�ation target.

The tests are based on the average di¤erences, over a given policy evaluation horizon, between

the post-intervention realizations of the target variable and the associated counterfactual outcomes

based on the parameters estimated using data before the policy intervention. The Lucas Critique

is not an issue since the counterfactual, given by the predictions from the model estimated on

pre-intervention data, will embody pre-intervention parameters, while the actual post-intervention

outcomes will embody any e¤ect of the change in policy, the change in parameters and the conse-

quent change in expectations. The tests do not require knowing the post-intervention parameters.

We derive the asymptotic distribution of the policy ine¤ectiveness tests under alternative

assumptions concerning the type of model, the future error processes and the pre and post-

intervention sample sizes. The power of the proposed tests depends on the size of the parameter

change, the dynamics of the system, the state of the economy at the time of the intervention, the

size of the policy evaluation horizon and whether the model contains policy invariant exogenous

variables. However, the power of the policy ine¤ectiveness tests are likely to be low unless the

underlying DSGE model contains exogenous variables, or equivalently the policy changes the

steady states.

The size and power of the proposed tests are investigated by simulations using a standard

three equation New Keynesian DSGE model. These simulations are in accord with the theoretical

results. The size of the test is correct, and the tests have power against increases in the persistence

of the Taylor rule, but little power against increases in the responses of interest rates to in�ation

and output. The test does have power against policy interventions that change steady states, such

as changes in the target rate of in�ation which has a permanent e¤ect on in�ation and interest

rates but only a transitory e¤ect on output, which eventually returns to its steady state.

The focus of this paper has been on the mean e¤ects of policy changes. But, as mentioned at

the end of Section 2.1, the volatility e¤ects of policy change are also of interest. In that simple

case, where there are no dynamics and no exogenous variables, the variance of qt changes following

the policy intervention from �"(�
0) = �(�0)�u�(�

0)0 to �"(�1) = �(�1)�u�(�1)0, assuming that

�u remains constant. However, in many cases, such as the Great Moderation, the central issue is

whether the reduction in the variance of output growth is due to good policy (changes in policy

parameters �p) or good luck (reductions in k�uk). The same issues arise when there is dynamics.

In the case where the model include exogenous variables, the variance of qt can be derived from

the RE solution for qt given by equation (36). In this case there is an extra contribution to
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the change in the variance of qt after the policy intervention that comes from any change in

the variance of the non-policy exogenous variables. An interesting subject for future research

is the decomposition of the change in the variance of qt into components due to the change in

policy parameters, the change in non-policy innovation variances and the change in the variance

of the exogenous variables. Unlike the policy ine¤ectiveness test, such a decomposition requires

estimating the parameters of a full structural model before as well as after the intervention.

Appendix: Statement and Proof of Lemmas

Lemma 1 Let A be a k�k matrix and xT+h�j a k�1 vector, and suppose that Ik�A is invertible,

then

H�1
HX
h=1

h�1X
j=0

AjxT+h�j = H�1
HX
j=1

�
Ik+A+ :::+A

H�j�xT+j
= H�1 (Ik�A)�1

HX
j=1

�
Ik �AH�j+1

�
xT+j

= (Ik�A)�1
0@H�1

HX
j=1

xT+j

1A� (Ik�A)�1
0@H�1

HX
j=1

AH�j+1xT+j

1A :

Proof. The result follows by direct manipulation of the terms.

Lemma 2 Suppose that the k � k matrices A and B have bounded spectral norms kAk � � and

kBk � �, for some �xed positive constant �. ThenAh �Bh � h�h�1 kA�Bk ; for h = 1; 2; :::: (68)

Proof. We establish this result by backward induction. It is clear that it holds for h = 1. For

h = 2, using the identity

A2 �B2 = A(A�B) + (A�B)B;

the result for h = 2 follows

A2 �B2 � (kAk+ kBk) kA�Bk = 2� kA�Bk :
More generally, we have the identity

Ah �Bh = Ah(A�B) + (A�B)Bh +A(Ah�2 �Bh�2)B:
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Now suppose now that (68) holds for h� 2, and using the above note thatAh �Bh � Ah�1 kA�Bk+ kA�BkBh�1+ kAkAh�2 �Bh�2 kBk
� kAkh�1 kA�Bk+ kA�Bk kBkh�1 + kAk

Ah�2 �Bh�2 kBk
� 2�h�1 kA�Bk+ �2

Ah�2 �Bh�2
� 2�h�1 kA�Bk+ �2

h
(h� 2)�h�3 kA�Bk

i
� h�h�1 kA�Bk :

Hence, if (68) holds for h � 2; then it must also hold for h. But since we have established that

(68) holds for h = 1 and h = 2, then it must hold for any h.

Lemma 3 Consider the k � k matrix A(�) = (aij(�)), where k is a �nite integer and aij(�),

for all i; j = 1; 2; ::; k; are continuously di¤erentiable real-valued functions of the p � 1 vector of

parameters, � 2 �. Suppose that aij(�) has �nite �rst order derivatives at all points in �, and

assume that �̂T is a
p
T consistent estimator of �0. ThenA(�̂T )�A(�0) � aT

�̂T � �0 ; (69)A(�̂T ) � A(�0)+ aT �̂T � �0 ; (70)

where aT =
@A ���T � =@�0 is bounded in T , and elements of ��T2 � lie on the line segment

joining �0 and �̂T

Proof. Consider the mean-value expansions

aij

�
�̂T

�
� aij

�
�0
�
=
@aij

�
��T
�

@�0

�
�̂T � �0

�
; for i; j = 1; 2; :::; k;

where elements of ��T lie on the line segment joining �0 and �̂T . Given that �̂T is consistent for

�0, it must also be that ��T !p �
0; as T !1. Collecting all the k2 terms we have

A(�̂T )�A(�0) =
 
@A

�
��T
�

@�0

!h
Ik 


�
�̂T � �0

�i
;

where 
 denotes the Kronecker matrix product. HenceA(�̂T )�A(�0) �
@A

�
��T
�

@�0

�̂T � �0 ;
A(�̂T ) =

A(�0) +
 
@A

�
��T
�

@�0

!h
Ik 


�
�̂T � �0

�i � A(�0)+
@A

�
��T
�

@�0

�̂T � �0 :
The results (69) and (70) now follow since ��T !p �

0, and by assumption the derivatives @aij
�
�0
�
=@�0

exist and are bounded in T .
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Lemma 4 Suppose that �T = �+ T�1=2aT , aT > 0 and bounded in T , �T 6= 1, H = �T �, where

� � 1=2, 0 < � < 1, and � is a positive �xed constant. Then

HX
h=1

h�h�1T =
1

(1� �)2
+Op

�
T�1=2

�
+Op

�
H�H

�
; (71)

and
HX
h=1

h�1X
j=0

j�j�1T =
1

(1� �)2

�
H � 1 + �

1� �

�
+Op

�
T�1=2

�
+Op

�
H�H

�
: (72)

Proof. We �rst note that

HX
h=1

h�h�1T =
@

@�T

 
HX
h=1

�hT

!

=
1� �HT
(1� �T )2

� H�HT
(1� �T )

; (73)

Also since �T = �+Op
�
T�1=2

�
HX
h=1

h�h�1T =
1

(1� �)2
+Op

�
T�1=2

�
+Op

�
H�HT

�
: (74)

But,

�HT =
�
�+ T�1=2aT

�H
= �H

 
1 +

T�1=2aT
�

!H
= Op

�
�HedTH=

p
T
�
; (75)

where dT = aT =�, which is also bounded in T . Finally, H=
p
T = T 1��=2 and for � � 1=2, edTH=

p
T

will be bounded in T . Using this result in (74) yields (71), as desired. Similarly,

HX
h=1

h�1X
j=0

j�j�1T =
HX
h=1

"�
1� �hT

�
� h(1� �T )�h�1T

(1� �T )2

#

=
1

(1� �T )2

"
HX
h=1

h�
1� �hT

�
� h(1� �T )�h�1T

i#

=
1

(1� �T )2

"
H �

HX
h=1

�hT � (1� �T )
HX
h=1

h�h�1T

#
:

Using (73) we have

HX
h=1

h�1X
j=0

j�j�1T =
1

(1� �T )2

(
H � �T � �H+1T

1� �T
� (1� �T )

�
1� �HT
(1� �T )2

� H�HT
(1� �T )

�)
:

Now using (75) and recalling that �T = �+Op
�
T�1=2

�
, we obtain (72).
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