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Forecasting the oil-gasoline price relationship: 

should we care about the Rockets and the Feathers? 

 

1. Introduction 

Empirical evidence suggests that in many markets the adjustment process of an output price differs 

depending on the sign of the corresponding input price variations. For instance, Peltzman (2000) 

reports that output prices tend to respond faster to input increases than to decreases in 160 out of 

242 markets. 

This tendency, known as Asymmetric Price Transmission (APT), has been widely studied also by 

energy economists. According to the so-called Rockets and Feathers hypothesis (RFH), the 

transmission mechanism of positive and negative changes in the price of oil to the price of gasoline 

is asymmetric. Surveys of the APT literature are provided by Frey and Manera (2007) and Meyer 

and von Cramon-Taubadel (2004), while Geweke (2004) focuses on the RFH. 

Although, starting from Bacon (1991), there have been many contributions addressing how 

downstream prices respond to increases in upstream prices (see, among others, Al-Gudhea, Kenc 

and Dibooglu, 2007; Balke, Brown and Yücel, 1998; Borenstein, Cameron, and Gilbert, 1997; 

Brown and Yücel, 2000; Douglas, 2010; Galeotti, Lanza and Manera, 2003; Godby, Lintner, 

Stengos, and Wandschneider, 2000; Grasso and Manera, 2007), little is known about the forecasting 

performance of reduced-form econometric models incorporating APT from crude oil to gasoline. As 

pointed out by Bachmeier and Griffin (2003), if gasoline prices respond asymmetrically to crude oil 

price variations, asymmetric cointegration models should produce more accurate forecasts than the 

symmetric Error Correction Model (ECM). These authors perform a small scale out-of-sample 

exercise, with the aim of comparing the forecasting accuracy of asymmetric and symmetric ECM 

for the wholesale price of gasoline. 

Our work fills this gap. We focus on U.S. fuel markets and model the oil-gasoline price relation 

consistently with the RFH. Specifically, we compare point, sign and probability forecasts from a 

variety of Asymmetric-ECM (A-ECM) and Threshold Autoregressive ECM (TAR-ECM) against a 

standard ECM. Forecasts from A-ECM and TAR-ECM subsume the RFH, while the ECM implies 

symmetric price transmission from crude oil to gasoline prices. The aim of our paper is to quantify 

the forecast accuracy gains due to introducing the RFH in predictive models for the prices of 

gasoline and diesel. In particular, we provide answers the following research questions: 

1. Is the RFH useful when forecasting gasoline price changes (point forecasts)?  

2. Is the RFH useful when forecasting the sign of gasoline price movements (direction-of-

change or sign forecasts)? 
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3. Is the RFH useful when forecasting the probability of gasoline price movements (probability 

forecasts)? 

4. Are asymmetries constant through time or time-varying (time-varying forecast accuracy)? 

5. At which sampling frequency (daily, weekly or monthly) are forecasts based on the RFH 

useful? 

6. At which stage of the transmission mechanism (i.e. either spot or retail, or both) are the 

forecasts based on the RFH more accurate than the forecasts obtained from symmetric models?  

Our answer to the first question is negative, while questions 2 and 3 have a positive answer. 

Asymmetries are useful for sign and probability forecasting, but they do not lead to more accurate 

point forecasts than the symmetric ECM specification. We also show that the forecasting 

performance of models changes through time: in some periods A-ECM produce more accurate 

forecasts than the ECM, while in other time periods the ECM dominates the asymmetric 

specifications. Empirical evidence also highlights that accuracy gains can be achieved mostly at 

daily or monthly sampling frequency for both spot and retail prices. 

Our findings are of great value for a number of economic agents, whose activities involve decisions 

that are inherently forward-looking. For instance, gasoline producers need accurate point forecasts 

for hedging activities and portfolio allocation. On the other hand, policy makers exploit point and 

probability forecasts for stockpiling decisions (e.g. management of inventories and strategic 

reserves). Moreover, investors rely on direction-of-change forecasts to design technical trading 

rules and on probability forecasts for risk management (e.g. Value-at-Risk). 

The plan of the paper is as follows. Section 2 describes the data. The empirical methods are 

introduced in Section 3. Section 4 describes the results and Section 5 concludes. 

 

 

2. Data 

Our analysis focuses on the U.S. fuel markets. We consider the relations between the spot price of 

West Texas Intermediate (WTI) light crude oil and the following petroleum products: 

1. spot price of New York Harbour Conventional Gasoline (NY); 

2. spot price of U.S. Gulf Coast Conventional Gasoline (GC); 

3. spot price of Los Angeles Reformulated RBOB Regular Gasoline (LA); 

4. retail price (excluding taxes) of U.S. Regular All Formulations Gasoline (G); 

5. retail price (excluding taxes) U.S. No 2 Diesel (D). 
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Table 1. Data description 
(1) (2) (3) (4) (5) (6) 

Series id Price Frequency Sample period 
No. Obs. (daily, 

weekly, monthly) 

Cushing, OK WTI Crude 
Oil WTI Spot Daily 02/06/1986 - 31/01/2013 6712, 1392, 320 
New York Harbor 
Conventional Gasoline 
Regular NY Spot Daily 02/06/1986 - 31/01/2013 6712, 1392, 320 
U.S. Gulf Coast 
Conventional Gasoline 
Regular GC Spot Daily 02/06/1986 - 31/01/2013 6712, 1392, 320 

Los Angeles Reformulated 
RBOB Regular Gasoline LA Spot Daily 01/04/2003 - 31/01/2013 2471, 514, 118 

U.S. Regular All 
Formulations Gasoline G Retail Weekly 20/08/1990 - 01/28/2013 -, 1113, 270 

U.S. No 2 Diesel  D Retail Weekly 06/01/1997 - 01/28/2013 -, 796, 193 
Notes: Columns (1) and (2) report a brief description of the series and the short-cut (id) used in the paper. Column (3) 
describes the type of price series. Column (4) illustrates the highest frequency at which the data are available. The 
sample period is shown in column (5), while the number of observations for daily, weekly and monthly data are 
reported in column (6). Retail prices excluding taxes have been calculated from prices including taxes retrieved from 
the EIA database, as detailed in the Appendix. 
 

 

We have obtained all price series from the U.S. Energy Information Administration website. Crude 

oil and gasoline spot prices have been collected at daily sampling frequency, while retail gasoline 

and diesel prices are available only at weekly frequency. 

The spot and retail prices of petroleum products do not include taxes and are denominated in dollars 

per gallon, while the spot price of oil is expressed in dollars per barrel. 

Weekly and monthly spot prices have been calculated by averaging daily prices. Monthly retail 

prices have been computed by averaging data at weekly frequency. In all cases, in order to have 

synchronous prices, we preliminary dropped those observations for which it was not to possible to 

match gasoline or diesel prices with crude oil prices. A description of the dataset is presented in 

Table 1.1 

 

3. Models and Methods 

Let Ot be the spot price of WTI crude oil and let Pkt denote the price of the k-th petroleum product 

at time t, k = NY, GC, LA, G, D, t = 1,…,T. We use the following notation: pkt ≡ 100�ln(Pkt), ot ≡ 

100�ln(Ot), ∆pkt ≡ pkt - pkt-1, and ∆ot ≡ ot - ot-1, with ln(.) indicating the natural logarithmic 

                                                           
1 Retail prices excluding taxes are used in the analysis. To save space a more detailed description of the dataset, 
including construction of the price series and their plots, is presented in the Appendix. 
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transformation. From now on we drop the subscript k for ease of notation. Moreover, in this section 

we will use the generic expression “petroleum product” (PP) to indicate any of the petroleum 

products considered in the study. 

Following previous research on the RFH, we assume that the price of crude oil (o), being oil the 

main production input, is the only driver of the PP price (p): 

pt = ω0 + ω1 ot + zt      (1) 

where zt denotes the error term at time t. As highlighted by Bachemeier and Griffin (2003), equation 

(1) should not be given a structural interpretation. Actually, there are many other factors affecting 

the price of gasoline (e.g. inventory levels, refinery outages, changes in regulations, refining 

capacity utilization). If both the price of oil and the PP price are integrated of order one, while their 

liner combination is stationary, they are said to be co-integrated2 (Engle and Granger, 1987), and 

the forecasts for the PP price should be produced with the following Error Correction Model 

(ECM): 

∆pt = α +∑i=0
p βi ∆ot-i + ∑���

� γj ∆pt-j + θ zt-1 + εt    (2)  

where zt-1 ≡ pt-1 - ω0 - ω1 ot-1 represents the stationary linear combination (or long-run equilibrium 

relationship) between the PP price and the price of crude oil. Coefficients βi and γj measure the 

short-run impact of (lagged) crude oil and PP prices on the current PP price, while θ describes the 

speed of adjustment to long-run equilibrium. Clearly, the ECM entails a symmetric adjustment 

process, in that the response of the PP price does not depend on the sign of the disequilibrium 

between the PP price and the price of crude oil. 

A simple way to introduce an asymmetric adjustment mechanism in the ECM is to consider the 

Asymmetric ECM (A-ECM) of Granger and Lee (1989): 

∆pt = α +∑i=0
p [βi

(+) ∆ot-i � I(∆ot-i > 0) + βi
(-) ∆ot-i � I(∆ot-i ≤ 0)]+ ... 

   … + ∑���
� [γj

(-) ∆pt-j � I(∆pt-j > 0) + γj
(-) ∆pt-j � I(∆pt-j ≤ 0)] + … 

   … + θ 
(+)zt-1 � I(zt-1 > 0) + θ 

(-)zt-1 � I(zt-1 ≤ 0) + εt (3) 

where the indicator function I(.) is used to decompose co-integration residuals and lagged 

differences of crude oil and gasoline prices into positive and negative values. Notice that the A-

ECM reduces to the ECM when the following restrictions hold: βi
(+) = βi

(-); γj
(+) = γj

(-) ; θ 
(+) = θ 

(-), 

for all i and j. 

                                                           
2 Results available from the authors show that all price series are integrated of order one and that gasoline and diesel 
prices are co-integrated with the price of crude oil. 
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In order to disentangle the forecast gains deriving from short-run and long-run asymmetries, we 

also consider two variations of the previous model. An A-ECM with only short-run asymmetries 

(SR-A-ECM) is obtained by imposing θ 
(+)=θ 

(-)
  in equation (3), while restrictions βi

(+) = βi
(-) and 

γj
(+) = γj

(-) yield an A-ECM with only long-run asymmetries (LR-A-ECM). 

A simple and popular alternative for introducing asymmetries in the ECM is to consider a two-

regimes Threshold Autoregressive ECM, TAR-ECM: 

 

∆pt = [α 
(+) +∑i=0

p βi
(+)∆ot-i + ∑���

� γj
(+)∆pt-j + θ (+)zt-1] × I(qt > 0) + … 

…+ [α 
(-) +∑i=0

p βi
(-)∆ot-i + ∑���

� γj
(-)∆pt-j + θ (-)zt-1] × I(qt ≤ 0) + εt (4) 

 

where qt is a threshold variable. The TAR-ECM reduces to the ECM when α 
(+) = α 

(-), βi
(+) = βi

(-), 

γj
(+) = γj

(-) and θ 
(+) = θ 

(-), for all i and j. We consider two versions of the TAR-ECM: TAR1, for qt = 

∆ot-1; TAR2, for qt = s-1
∑i=1

s ∆ot-i, where s = 5, 4, 3 for daily, weekly and monthly data. Previous 

works based on A-ECM and TAR-ECM include Al-Gudhea et al. (2007), Balke et al. (1998), 

Douglas (2010), Galeotti et al. (2003), Godby et al. (2000), Grasso and Manera (2007) and Fosten 

(2012). 

All models have been estimated with OLS using a two-step procedure. First, we estimate the 

equilibrium relation (1) and obtain an estimate of zt. Second, we estimate the ECM, A-ECM, SR-A-

ECM, LR-A-ECM, TAR1 and TAR2 specifications and produce one step ahead forecasts. The 

optimal lag length (p, q) of each model has been selected by minimizing the Schwarz Information 

Criterion at each instant of time a new forecast is generated. 

 

3.1 Forecast Evaluation 

We denote with ft+1 ≡ f (m)
kt+1|t the one step ahead point forecast for the k-th oil product (k = NY, GC, 

LA, GR, DR), issued at time t using model m, m = ECM, A-ECM, SR-A-ECM, LR-A-ECM, TAR1, 

TAR2. For each model, a total of H forecasts have been obtained with a rolling window estimation 

scheme.3 The evaluation of point forecasts relies on the mean squared forecast error (MSFE): 

MSFE = H-1
∑	��

 (∆pt+h - ft+h)

2     (5)  

Direction-of-change (or sign) forecasts are evaluated by comparing the sign of the PP price forecast 

ft+1 with the realized sign of the PP price change ∆pt+1. Sign forecasts are particularly relevant for 

                                                           
3 More details are provided in the Appendix. An explanation of why forecasts are based on the rolling window scheme 
is provided in Footnote 5. 
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investors aiming to design market timing strategies. We employ two metrics of accuracy, namely 

the mean forecast trading return (MFTR) and the Success Ratio (SR):  

MFTR = H-1
∑	��

 sign(ft+h)∆pt+h     (6) 

SR = 100 × [T (+,+) + T (-,-)]/H       (7)  

where sign(x) ≡ I(x > 0) – I(x < 0), while T (+,+) and T (-,-) denote the number of correctly predicted 

price increases and decreases. 

The MFTR evaluates the average rate of return from a forecast (Hong and Lee, 2003), while the SR 

measures the percentage of forecasts that correctly predict the sign of price movements. 

For each model and product, we form the corresponding probability forecast prt+1 = Pr(∆pkt+1 < 0| 

Ωt) as F(-ft+1/σt+1), where F(.) is the Normal cumulative density function4 and σt+1 is a (rolling 

window) volatility forecast obtained by fitting a GARCH(1,1) model to ∆pkt. 

Probability forecasts are evaluated using the quadratic probability score (QPS): 

 

QPS = H-1
∑	��

 2[pt+h – I(∆pt+h < 0) ]2    (8) 

 

The QPS, also known as the Brier score, ranges from 0 to 2, with 0 indicating perfect accuracy (see 

Diebold and Rudebusch, 1989). 

For each of the previous performance measures (PM) we compute the percentage ratio, ∆(PM), as 

100×[(PMU- PMECM)/ PMECM], where PM = MSFE, MFTR, SR, QPS and subscript “U” denoting 

forecasts from A-ECM or TAR-ECM. 

More accurate forecasts are associated to lower MSFE or QPS and higher MFTR or SR. Therefore, 

in the case of point and probability forecasts, the ECM is outperformed by an asymmetric model 

when ∆(PM)<0, while for sign forecasts this happens when ∆(PM)>0. 

 

3.2 Testing the out-of-sample usefulness of asymmetries 

The out-of-sample usefulness of the RFH for point and probability forecasts is investigated with the 

test put forth by Carriero and Giacomini (2011), CG henceforth.5 

                                                           
4 Experiments with a Logit distribution confirm our results. 
5 The test cannot be applied to sign forecasts, because neither MFTR, nor SR comply with its underlying assumptions. 
Actually, in addition to some primitive conditions necessary for the law of large numbers and the central limit theorem 
to apply, the test is derived under the assumptions of convexity and differentiability of the loss function and using a 
fixed estimation sample. More precisely, the asymptotic distributions of the test is obtained by assuming H→∞, where 
H is the size of the forecast evaluation sample, while the size of the estimation sample and the forecast horizon must be 
finite. This also explains why forecasts have been obtained with a rolling window estimation scheme. 
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Since each of the asymmetric models considered in this paper reduces to the symmetric ECM if an 

appropriate set of parameter restrictions is imposed, we label the forecasts from A-ECM and TAR-

ECM as “unrestricted forecasts”, ft
U. Similarly, forecasts from the ECM, ft

ECM, are referred to as 

“restricted forecasts”. 

The CG statistic can be thought as an out-of-sample forecast combination test. Actually, it is 

possible to write the combination of the unrestricted/asymmetric and restricted/ECM forecasts, ft
C, 

as: 

ft
C = ft

ECM + (1-λ)( ft
U - ft

ECM)     (9)  

where λ is the weight associated to the restricted ECM forecast. Therefore, asymmetric forecasts are 

useless if λ=1, that is: ft
C = ft

ECM. Conversely, if λ = 0, then ft
C = ft

U or, equivalently, asymmetric 

forecasts are useful, with ECM receiving zero weight in the forecast combination. 

The following null hypotheses are separately tested: H0: λ = 1 and H0: λ = 0. The RFH is useful out-

of-sample when H0: λ = 1 is rejected, while H0: λ = 0 is not rejected. 

The implementation of the CG test requires the estimation of the combining weight λ. For point 

forecasts, λ can be estimated with OLS, while for probability forecasts it can be estimated with non-

linear least squares (see Kamstra and Kennedy, 1998 for details). 

CG propose two versions of the test. Since the procedure discussed above is based on a single 

estimate of λ over the entire forecast evaluation sample, the CG test under the assumption that λ is 

constant through time can be thought as a test of “global usefulness” of the RFH. The second 

version of the CG test relies on time-varying estimates of the combining weight, denoted as λt, t = 

1,...,H, and provides information about the “local usefulness” of the RFH. Within this alternative 

setting, if H0: λt = 1 is rejected (for any t), while H0: λt = 0 is never rejected, then the RFH is 

“locally” useful. Moreover, a plot of λt can be used to assess whether and how the usefulness of 

forecasts obtained from symmetric and asymmetric models has changed through time. 

 

 

4. Results 

In this section we offer a detailed discussion of the results for the spot price of NY gasoline, a 

synthetic presentation of the results for the other petroleum products, as well as a summary of the 

main findings for all the fuel markets analysed in the paper. 
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Table 2. Accuracy of point forecasts: the N.Y. Gasoline spot price 
Panel (a): Daily data 
Model MSFE ∆(MSFE)% λ t(λ = 0) t(λ = 1) 
ECM 4.894 - - - - 
A-ECM 4.922 0.565 1.475  2.249** 0.724 
SR-A-ECM 4.916 0.435 1.843  2.178** 0.996 
LR-A-ECM 4.904 0.197 1.349 1.612 0.417 
TAR1 4.980 1.748 1.455  3.186*** 0.997 
TAR2 5.004 2.244 1.421  2.910*** 0.862 
Avg. Asy. 4.926 0.653 - - - 
Panel (b): Weekly data 
Model MSFE ∆(MSFE)% λ t(λ = 0) t(λ = 1) 
ECM 15.073 - - - - 
A-ECM 15.117 0.293 0.587 1.260 -0.885 
SR-A-ECM 15.045 -0.185 0.436 0.813 -1.050 
LR-A-ECM 15.158 0.568 1.624  2.003** 0.770 
TAR1 15.435 2.399 1.002  2.905*** 0.007 
TAR2 15.548 3.151 0.990  3.190*** -0.032 
Avg. Asy. 15.096 0.152 - - - 
Panel (c): Monthly data 
Model MSFE ∆(MSFE)% λ t(λ = 0) t(λ = 1) 
ECM 35.175 - - - - 
A-ECM 33.714 -4.154 0.166 0.687 -3.443*** 
SR-A-ECM 33.622 -4.416 0.139 0.619 -3.839*** 
LR-A-ECM 35.636 1.311 1.589 1.457 0.540 
TAR1 38.377 9.103 0.923  3.959*** -0.330 
TAR2 44.897 27.639 0.887  9.376*** -1.195 
Avg. Asy. 34.232 -2.681 - - - 
Notes: Models are listed in column 1. Columns 2 and 3 show the Mean Squared Forecast Error (MSFE, see Eq. 5) and the percentage MSFE ratio 
defined as ∆(MSFE)% = 100*[(MSFEU-MSFEECM)/MSFEECM], for U= A-ECM, SR-A-ECM, LR-A-ECM, TAR1, TAR2, Avg. Asy. “Avg. Asy.” 
denotes the combined forecast from asymmetric/unrestricted models (i.e. A-ECM, SR-A-ECM, LR-A-ECM, TAR1, TAR2). A negative ∆(MSFE)% 
indicates that point forecasts from model U are on average more accurate than ECM forecasts. Results of the test of Carriero and Giacomini (2011) 
are shown in columns 4-5. The value of λ in column 4 is the estimated combination weight associated to the restricted/ECM forecast, see equation (9). 
The statistic t(λ=0)is used to test the null hypothesis that the restricted/ECM forecasts are not useful. The statistic t(λ=1)is used to test the null 
hypothesis that the unrestricted/asymmetric forecasts are useless. A non-rejection of H0: λ = 0, coupled with a rejection of H0: λ = 1, provides 
evidence that the unrestricted/asymmetric forecasts from model U, are useful. On the contrary, a rejection of H0: λ = 0, coupled with a non-rejection 
H0: λ = 1, provides evidence that asymmetric forecasts are useless. Asterisks *, **, *** denote rejection of the null hypothesis at the 10%, 5%, and 
1% significance levels. 

 

 

4.1 Forecasting the spot price of New York Harbour Conventional Gasoline 

Results for daily, weekly and monthly point forecasts are reported in Panels a), b), and c) of Table 

2, where MSFE and percentage MSFE ratios (∆(MSFE)%), are shown in columns 2 and 3. 

Since the exact nature of the asymmetry is unknown, we also calculate the sample average of all A-

ECM and TAR-ECM predictions to form an equally weighted combination of the RFH forecasts 

(Avg. Asy.). 

The MSFE ratios in Panel a) are always positive, thus for daily data asymmetric models are 

outperformed by the symmetric ECM. The usefulness of ECM forecasts compared to the RFH 

forecasts is confirmed by the estimates of the combining weight, λ (column 4 of Table 2). These 

estimates are always close to one, suggesting that a combined forecast should assign a unit weight 
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to the ECM, while forecasts from the models incorporating the RFH should receive zero weight. 

Furthermore, the CG tests in column 5 and 6 of Table 2 lead to a rejection of λ = 0, coupled with a 

non-rejection of λ = 1 in 4 cases out of 5. 

A look at Panel b) of Table 2 shows that in general the results for weekly point forecasts are quite 

similar. A notable exception is represented by the negative MSFE ratio associated with the SR-A-

ECM specification, which is on average slightly more accurate than the ECM. Interestingly, the CG 

tests indicate that the RFH is useless only for TAR and LR-A-ECM. Although the tests are 

inconclusive in the remaining cases, for both A-ECM and SR-A-ECM the estimated optimal 

combining weight is close to 0.5, which supports the interpretation that the introduction of some 

form of asymmetric price adjustment in the ECM could result in more accurate point forecasts. 

Panel c) of Table 2 shows that A-ECM and SR-A-ECM forecasts are the best option for monthly 

price data. If compared with the ECM, these specifications yield a 4% MSFE reduction (see column 

3 of Table 2). The superior performance of these forecasts is confirmed by the output of the CG 

tests in the last three columns of Table 2. The estimates of λ are close to zero and statistically 

insignificant. Moreover, since the null hypothesis that λ is unity is rejected, an optimal combination 

of forecasts should assign zero weight to the symmetric ECM forecasts. On the contrary, results for 

the remaining models suggest that the RFH is useless for forecasting the NY spot price of gasoline. 

A joint inspection of all panels of Table 2 shows that the least accurate models, as measured by the 

MSFE, are the TAR-ECM, while, among the asymmetric forecasts, the best choice is either the A-

ECM or the SR-A-ECM. Lastly, combined forecasts are always associated to quite low MSFE. 

The accuracy of direction-of-change or sign forecasts is analyzed in Table 3. On the whole, the 

specifications based on the RFH can be fruitfully used to improve sign forecasts. 

Looking at Success Ratios (column 4 of Table 3), in most of the cases forecasts from asymmetric 

ECM specifications are to be preferred to symmetric ECM sign predictions. The last column of 

Table 3 shows that the increase in directional accuracy associated to asymmetric ECM ranges from 

0.1% for daily data to 2.1% for monthly data. From a joint inspection of all directional accuracy 

metrics in Panel b) of Table 3, at weekly frequency the ECM outperforms most of the asymmetric 

models. 

At daily horizon, the overall ranking of asymmetric models is broadly consistent with the results for 

point forecasts. Asymmetric ECM specifications are better than TAR-ECM, although in this case 

the former class of models outperforms the symmetric ECM. 

The importance of asymmetries for sign forecasting appears to be particularly relevant at monthly 

horizon. Interestingly, the highest average rate of return, as measured by the MFTR reported in 

column 2 of Table 3, is associated to the TAR1 model and is equal to 7.5%.  
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Table 3. Accuracy of direction-of-change forecasts: the N.Y. Gasoline spot price 
Panel (a): Daily data 
Model MFTR ∆(MFTR)% SR ∆(SR) 
ECM 1.512 - 76.896 - 
A-ECM 1.514 0.148 77.059 0.211 
SR-A-ECM 1.517 0.308 77.004 0.141 
LR-A-ECM 1.516 0.231 77.221 0.423 
TAR1 1.488 -1.609 76.327 -0.740 
TAR2 1.508 -0.250 76.490 -0.528 
Avg. Asy. 1.512 -0.023 76.842 -0.070 
Panel (b): Weekly data 
Model MFTR ∆(MFTR)% SR ∆(SR) 
ECM 2.926 - 76.893 - 
A-ECM 2.868 -1.989 76.240 -0.849 
SR-A-ECM 2.910 -0.526 77.154 0.340 
LR-A-ECM 2.886 -1.362 77.024 0.170 
TAR1 2.901 -0.866 76.762 -0.170 
TAR2 2.913 -0.437 76.762 -0.170 
Avg. Asy. 2.924 -0.078 77.154 0.340 
Panel (c): Monthly data 
Model MFTR ∆(MFTR)% SR ∆(SR) 
ECM 7.376 - 81.818 - 
A-ECM 7.487 1.511 83.523 2.083 
SR-A-ECM 7.483 1.450 83.523 2.083 
LR-A-ECM 7.455 1.071 82.386 0.694 
TAR1 7.519 1.940 82.386 0.694 
TAR2 6.914 -6.263 80.114 -2.083 
Avg. Asy. 7.460 1.136 82.955 1.389 
Notes: Models are listed in column 1. Columns 2 and 3 show the Mean Forecast Trading Return (MFTR, see Eq. 6) and the percentage MFTR ratio 
defined as ∆(MFTR)% = 100*[(MFTRU-MFTRECM)/MFTRECM], U= A-ECM, SR-A-ECM, LR-A-ECM, TAR1, TAR2, Avg. Asy. “Avg. Asy.” 
denotes the combined forecast from asymmetric/unrestricted models (i.e. A-ECM, SR-A-ECM, LR-A-ECM, TAR1, TAR2). Columns 2 and 3 show 
the Success Ratio (MFTR, see equation 7) and the percentage SR ratio defined as ∆(SR)% = 100*[(SRU-SRECM)/SRECM]. A positive ∆(MFTR)% or 
∆(SR)% indicates that direction-of-change forecasts from model U are on average more accurate than ECM forecasts. 

 

 

The highest SR, about 85% of correctly predicted signs, are obtained with A-ECM and SR-A-ECM. 

Probability forecasts are evaluated in Table 4. At all sampling frequencies, the most accurate 

probability forecasts are associated to A-ECM and SR-A-ECM specifications, which always lead to 

reductions of the QPS. For these models, the CG procedure leads to estimates of the combining 

weights, λ, that are not statistically different from zero, while they are always statistically different 

from unity. 

Hence, irrespective of the sampling frequency, probability forecasts from the ECM are useless. 

Actually, an optimal combination of forecasts would attach full weight to either A-ECM or SR-A-

ECM forecasts. 

Conversely, when comparing TAR-ECM against ECM, the latter model is often preferred. Overall, 

there is evidence that A-ECM and SR-A-ECM yield the most accurate probability forecasts. 
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Table 4. Accuracy of probability forecasts: N.Y. Gasoline prices 
Panel (a): Daily data 
Model QPS ∆(QPS)% λ t(λ = 0) t(λ = 1) 
ECM 0.348 - - - - 
A-ECM 0.347 -0.167 -0.313 -0.587 -2.463** 
SR-A-ECM 0.348 -0.086 -0.281 -0.394 -1.796* 
LR-A-ECM 0.348 -0.061 -0.088 -0.114 -1.409 
TAR1 0.349 0.219 0.876 2.656*** -0.377 
TAR2 0.350 0.642 1.415 4.566*** 1.339 
Avg. Asy. 0.348 -0.015 - - - 
Panel (b): Weekly data 
Model QPS ∆(QPS)% λ t(λ = 0) t(λ = 1) 
ECM 0.335 - - - - 
A-ECM 0.333 -0.505 -0.092 -0.159 -1.893* 
SR-A-ECM 0.333 -0.626 -0.348 -0.564 -2.182** 
LR-A-ECM 0.336 0.243 1.728 1.415 0.596 
TAR1 0.338 0.929 1.085 2.442** 0.192 
TAR2 0.333 -0.602 0.221 0.622 -2.191** 
Avg. Asy. 0.333 -0.476 - - - 
Panel (c): Monthly data 
Model QPS ∆(QPS)% λ t(λ = 0) t(λ = 1) 
ECM 0.256 - - - - 
A-ECM 0.247 -3.488 -1.026 -1.442 -2.847*** 
SR-A-ECM 0.246 -3.676 -1.217 -1.681* -3.061*** 
LR-A-ECM 0.257 0.607 2.370 1.173 0.678 
TAR1 0.259 1.193 0.806 1.382 -0.334 
TAR2 0.291 14.035 1.421 3.302*** 0.979 
Avg. Asy. 0.254 -0.504 - - - 
Notes: Models are listed in column 1. Columns 2 and 3 show the Quadratic Probability Score (QPS, see Eq. 8) and the percentage QPS ratio defined 
as ∆(QPS)% = 100*[(QPSU-QPSECM)/QPSECM], U= A-ECM, SR-A-ECM, LR-A-ECM, TAR1, TAR2, Avg. Asy. “Avg. Asy.” denotes the combined 
forecast from asymmetric/unrestricted models (i.e. A-ECM, SR-A-ECM, LR-A-ECM, TAR1, TAR2). A negative ∆(QPS)% indicates that probability 
forecasts from model U are on average more accurate than ECM forecasts. Results of the test of Carriero and Giacomini (2011) are shown in columns 
4-5. The value of λ in column 4 is the estimated combination weight associated to the restricted/ECM forecast, see equation (9). The statistic t(λ=0)is 
used to test the null hypothesis that the restricted/ECM forecasts are not useful. The statistic t(λ=1)is used to test the null that the 
unrestricted/asymmetric forecasts are useless. A non-rejection of H0: λ = 0, coupled with a rejection of H0: λ = 1, provides evidence that the 
unrestricted/asymmetric forecasts from model U are useful. On the contrary, a rejection of H0: λ = 0, coupled with a non-rejection H0: λ = 1, provides 
evidence that asymmetric forecasts are useless. Asterisks *, **, *** denote rejection of the null hypothesis at the 10%, 5%, and 1% significance 
levels. 

 

 

The greater accuracy of some specifications based on the RFH is corroborated also by the result that 

combined forecast are always associated with lower QPS than the ECM. 

This suggests that some form of asymmetric price transmission from the price of crude oil to the 

price of gasoline should be incorporated when the aim is probability forecasting. 

For both point and probability forecasts, the results of the CG tests rest on the implicit assumption 

that the weight associated to the symmetric ECM forecasts, λ, is constant through time. 

However, given the turmoil that has characterized energy, financial markets and, more generally, 

the world economy in recent years, the assumption of time-invariant forecast accuracy could turn 

out to be very restrictive. 
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Figure 1. Local usefulness of asymmetries for point forecasts of the NY gasoline spot price 

 (a) daily data (b) weekly data (c) monthly data 

 
Notes: this figure shows the results of the CG test for the local usefulness of restrictions for point forecasts at daily (first column), 
weekly (second column) and monthly (third column) frequencies.. The restricted model is the Error Correction Model (ECM), while 
the model that labels the graph produces the unrestricted forecasts. The blue solid line is the estimated optimal weight. The red 
dashed and the black continuous horizontal lines are drawn in correspondence of λt = 1 and λt = 0, for all t, respectively. The green 
dotted lines represent the 95% confidence bands. The null hypothesis λt = 0 (λt = 1) for all t is rejected if the value 0 (the value 1) 
falls outside the 95% confidence bands for at least one t. The null hypothesis  λt = 1 is used to test that the unrestricted forecast is 
useless. The null hypothesis  λt = 0 is used to test that the restricted forecast is useless. Thus, rejection of λt = 1 and non-rejection λt = 
0 imply that the asymmetric model is useful. 

 

 

As already anticipated in the methodological section of this paper, this issue can be addressed with 

a test of local usefulness of forecasts. 
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Figure 2. Local usefulness of asymmetries for probability forecasts of the NY gasoline spot 

price 

 (a) daily data (b) weekly data (c) monthly data 

 
Notes: see Figure 1. 

 

Results for point forecasts at daily, weekly and monthly horizons are shown in columns 1, 2 and 3 

of Figure 1. A joint inspection of all graphs reveals that the combining weight associated to the 

ECM forecasts is not constant through time. 

Focusing on daily forecasts (first column in Figure 1), in most cases at the beginning (i.e. 2002-late 

2005) and at the end (i.e. 2010-2012) of the forecast evaluation sample, the estimates of λ range 

between 0 and 1, that is some form asymmetric price transmission might be helpful for point 
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forecasting. However, from 2005 to 2009, the period that includes the oil price bubble that 

originated in March 2008 (Phillips and Yu, 2011), the estimated combining weight associated to the 

ECM model is much larger, ruling out the possibility to improve forecasts with asymmetric models. 

This result is confirmed by inspecting the 95% confidence intervals. In many cases, the null 

hypothesis that λt = 0 is rejected for at least one time period, while the null hypothesis that the ECM 

should receive a combining weight equal to unity is never rejected. 

Looking at the graphs in the second column of Figure 1, we see that the estimates of λt are generally 

close to one starting from late 2008, meaning that after the burst of the oil price bubble weekly 

point forecasts cannot be improved by incorporating the RFH in the models. On the contrary, since 

the estimates of λt during the period 2002-early 2008 are quite close to zero, asymmetric models 

might have been more accurate than the ECM. In particular, in the time period spanning 2006 

through 2009, the GC test leads to a rejection of the null hypothesis that λt = 1 for A-ECM and SR-

A-ECM. Moreover, since the null hypothesis that ECM should receive a zero combination weight is 

never rejected for those specifications, we can conclude that during the oil price bubble the RFH 

would have led to more accurate point forecasts. 

The tests of local usefulness for monthly data, shown in the last column of Figure 1, display a very 

similar pattern, suggesting that both A-ECM and SR-A-ECM have outperformed the ECM. 

To sum up, results in Figure 1 highlights that the forecasting performance of the models is not 

constant through time and that A-ECM and SR-A-ECM might outperform the ECM at weekly and 

monthly horizon. Lastly, we notice that when the RFH is captured by means of LR-A-ECM and 

TAR-ECM specifications, the ECM always yields more accurate forecasts, irrespective of the 

sampling frequency of the data. 

The local usefulness of asymmetric models for probability forecasting can be assessed by looking at 

the graphs reported in Figure 2. The estimates of λt are more often closer to zero than to one, that is 

asymmetries are useful for probability forecasting. Confidence intervals for the estimates of λt show 

that, irrespective of the sampling frequency of the data, there are several cases where the value zero 

always lies within the interval, while the value one is outside the interval. For A-ECM and SR-A-

ECM point forecasts, this finding is confirmed in the majority of cases. 

Our analysis on the NY gasoline spot price allows to draw some interesting conclusions. First, some 

asymmetric models yield more accurate probability and sign forecasts than the ECM. Second, there 

is evidence that the relative performance of the models changes through time.  

Third, even if the improvements in forecast accuracy obtained by embedding the RFH are quite 

low, our results point out that at weekly and monthly horizons asymmetric ECM specifications 

outperform the standard ECM. 
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Table 5. Accuracy of point, direction-of-change and probability forecasts: Gulf Coast and Los 
Angeles gasoline spot prices, diesel and gasoline retail prices 
Panel (a): Point Forecasts 

  Spot prices Retail prices 

  Gulf Coast (GC) Los Angeles (LA) Regular (G) Diesel (D) 

Frequency Min MSFE Median λ Min MSFE Median λ Min MSFE Median λ Min MSFE Median λ 

Daily ECM 1.548 Avg. Asy. 0.662 - - - - 

Weekly LR-A-ECM 1.002 ECM 1.587 SR-A-ECM 0.901 SR-A-ECM 0.587 

Monthly Avg. Asy. 0.745 LR-A-ECM 0.989 ECM 1.365 Avg. Asy. 1.750 
Panel (b): Sign Forecasts 

  Spot prices Retail prices 
  Gulf Coast (GC) Los Angeles (LA) Regular (G) Diesel (D) 

Frequency Max MFTR Max SR Max MFTR Max SR Max MFTR Max SR Max MFTR Max SR 
Daily A-ECM SR-A-ECM Avg. Asy. Avg. Asy. - - - - 
Weekly ECM A-ECM TAR2 LR-A-ECM SR-A-ECM Avg. Asy. TAR2 A-ECM 
Monthly SR-A-ECM SR-A-ECM SR-A-ECM SR-A-ECM SR-A-ECM TAR2 TAR1 Avg. Asy. 
Panel (c): Probability Forecasts 

  Spot prices Retail prices 
  Gulf Coast (GC) Los Angeles (LA) Regular (G) Diesel (D) 

Frequency Min QPS Median λ Min QPS Median λ Min QPS Median λ Min QPS Median λ 
Daily A-ECM 0.015 Avg. Asy. 0.682 - - - - 
Weekly SR-A-ECM 0.552 ECM 1.201 SR-A-ECM 0.796 A-ECM 0.648 
Monthly SR-A-ECM 0.944 A-ECM -0.195 TAR2 1.141 TAR1 0.483 
Notes: in Panels a), b) and c), entries headed "min MSFE", "max MFTR", "max SR" and "min QPS" indicate the most accurate forecasting model. In 
Panels a) and c), "Median λ" is the median of the estimates of λ from the CG test. If λ=0, an optimal combination of forecasts should assign unit 
weight to one of the asymmetric models (i.e. A-ECM, SR-A-ECM, LR-A-ECM, TAR1, TAR2) and zero weight to the ECM; vice versa, when λ=1 
the optimal combined forecast coincides with the symmetric ECM. "Avg. Asy." denotes a combined forecasts obtained as the simple average of the 
forecasts from asymmetric models. 

 

 

Fourth, in most cases the type of asymmetric adjustment captured by the TAR-ECM is useless for 

forecasting. Fifth, A-ECM and SR-A-ECM appear to be the best alternatives to incorporate the RFH 

in forecasting models. 

 

4.2 Forecasting the Gulf Coast and Los Angeles gasoline spot prices, and the diesel and 

gasoline retail prices  

The evaluation of forecasts of the Gulf Coast and Los Angeles spot prices, and of the retail prices of 

regular gasoline and diesel is reported in Table 5. 

Panel a) of Table 5 shows that A-ECM specifications are often associated to the minimum MSFE, 

suggesting that the RFH might lead to more accurate point forecasts. However, when taking into 

account the value of the combining weight, λ, it emerges that, irrespective of the type of price, 

whether spot or retail, the median of the estimates of λ is close to one in most cases. This means 

that the ECM specification actually receives full weight in a forecast combination and the RFH does 

not improve the forecast accuracy of the estimated models. Although these results are not 

supportive of the usefulness of asymmetries, they can be helpful to draw some indications on the 
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relative validity of the different asymmetric specifications. For instance, in coherence with the 

results described in the previous section, TAR-ECM models are never selected as the best option. 

Notice that none of the asymmetric ECM clearly dominates, since the relative accuracy of A-ECM, 

SR-A-ECM and LR-A-ECM depends on the series under analysis and on the sampling frequency of 

the data. Moreover, the combination of forecasts from the asymmetric models often leads to the 

highest MSFE reduction, thus reinforcing our conclusion that the empirical evidence of superior 

forecasting performance due to the RFH is scarce and that none of the asymmetric specifications 

taken into account can fully describe the price transmission mechanism from crude oil to petroleum 

products. 

In the case of sign forecasts results are quite different. From Panel b) of Table 5 we see that the 

RFH yields more accurate direction-of-change forecasts in 19 comparisons out of 20. The 

asymmetric ECM specifications are more often associated to higher MFTR or SR than the TAR-

ECM models. Consistently with the results for the NY gasoline spot price, the SR-A-ECM appears 

to be a good choice also for the Gulf Coast and Los Angeles gasoline spot prices. The adequacy of 

the SR-A-ECM indicates that only short-run asymmetries matter for sign forecasting. 

Panel c) of Table 5 confirms these results when probability forecasts are considered. Moreover, as 

opposed to what has been observed for point forecasts, the median value of the combining weight, 

λ, is more often closer to zero than to one, that is the RFH can be exploited in most cases to produce 

more accurate probability forecasts. 

Notice that for probability forecasts the ECM is selected as the most accurate specification only 

once, while in 5 comparisons out of 10 either A-ECM or SR-A-ECM minimize the QPS. 

 

 

4.3. Summary of results 

Table 6 provides a summary of the main results of the paper. Entries of this table represent the 

number and percentage of comparisons according to which forecasts embedding the RFH 

outperform the standard ECM. 

Panel a) of Table 6 shows that accuracy gains due to the RFH are rare when point forecasts are 

considered: asymmetric models yield more accurate predictions than the ECM only 18.5% and 

20.8% of the cases for spot and retail prices, respectively. The presence of accuracy gains due to the 

RFH is influenced by the sampling frequency of the data. The largest number of cases in which 

asymmetric models outperform the ECM is recorded at monthly sampling frequency for spot prices, 

while it is at weekly sampling frequency for retail prices.  
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Table 6. Summary of results 
Panel (a): Point Forecasts (MSFE reductions due to the RFH) 

Spot Retail                         
New York Gulf Coast Los Angeles Regular Diesel Spot Retail Spot & Retail 

  # % # % # % # % # % # % # % # % 
Daily 0 / 6 0.0 0 / 6 0.0 2 / 6 33.3 - / - - - / - - 2 / 18 11.1 - / - - - / - - 
Weekly 1 / 6 16.7 1 / 6 16.7 0 / 6 0.0 2 / 6 33.3 2 / 6 33.3 2 / 18 11.1 4 / 12 33.3 6 / 30 20.0 
Monthly 3 / 6 50.0 2 / 6 33.3 1 / 6 16.7 0 / 6 0.0 1 / 6 16.7 6 / 18 33.3 1 / 12 8.3 7 / 30 23.3 
Total 4 / 18 22.2 3 / 18 16.7 3 / 18 16.7 2 / 12 16.7 3 / 12 25.0 10 / 54 18.5 5 / 24 20.8 13 / 78 16.7 
Panel (b): Directional accuracy (SR increases due to the RFH) 

Spot Retail                         
New York Gulf Coast Los Angeles Regular Diesel Spot Retail Spot & Retail 

  # % # % # % # % # % # % # % # % 
Daily 3 / 6 50.0 5 / 6 83.3 5 / 6 83.3 - / - - - / - - 13 / 18 72.2 - / - - - / - - 
Weekly 3 / 6 50.0 3 / 6 50.0 3 / 6 50.0 3 / 6 50.0 6 / 6 100.0 9 / 18 50.0 9 / 12 75.0 18 / 30 60.0 
Monthly 5 / 6 83.3 3 / 6 50.0 5 / 6 83.3 5 / 6 83.3 4 / 6 66.7 13 / 18 72.2 9 / 12 75.0 22 / 30 73.3 
Total 11 / 18 61.1 11 / 18 61.1 13 / 18 72.2 8 / 12 66.7 10 / 12 83.3 35 / 54 64.8 18 / 24 75.0 40 / 78 51.3 
Panel (c): Probability Forecasts (QPS reductions due to the RFH) 

Spot Retail                         
New York Gulf Coast Los Angeles Regular Diesel Spot Retail Spot & Retail 

  # % # % # % # % # % # % # % # % 
Daily 4 / 6 66.7 4 / 6 66.7 1 / 6 16.7 - / - - - / - - 9 / 18 50.0 - / - - - / - - 
Weekly 4 / 6 66.7 3 / 6 50.0 0 / 6 0.0 2 / 6 33.3 2 / 6 33.3 7 / 18 38.9 4 / 12 33.3 11 / 30 36.7 
Monthly 3 / 6 50.0 3 / 6 50.0 4 / 6 66.7 3 / 6 50.0 3 / 6 50.0 10 / 18 55.6 6 / 12 50.0 16 / 30 53.3 
Total 11 / 18 61.1 10 / 18 55.6 5 / 18 27.8 5 / 12 41.7 5 / 12 41.7 26 / 54 48.1 10 / 24 41.7 27 / 78 34.6 
Notes: entries in this table represent the number and percentage of comparisons for which models incorporating the RFH lead to more accurate point (Panel a), sign (Panel b) and 
probability forecasts (Panel c). Columns headed "#" can be read as follows: “no. of cases / no. of comparisons”, where “no. of cases” corresponds to the number of comparisons in 
which asymmetric models outperform the ECM. Rows headed “Total” sum over the “#” columns. Percentages are based on those figures. For each series and sampling frequency the 
figures in the table represent the forecasting comparison of the ECM against the following asymmetric models: A-ECM, SR-A-ECM, LR-A-ECM, TAR1, TAR2, Avg. Asy.. 
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Figure 3. Local usefulness of asymmetries for point and probability of spot and retail prices 

  

  

Notes: this figure summarizes the CG test for the local usefulness of restrictions for point forecasts (first column) and probability forecasts (second 
column) at monthly frequency, and for spot prices (first row) and retail prices (second row). The grey area is the spot price of WTI crude oil, the red 
line is the median of the estimates of the optimal combining weight λt (i.e. the median of the estimates of λt from the comparison of all asymmetric 

models against the ECM, for both spot and retail prices), the black dashed lines are drawn in correspondence of λt = 1 and λt = 0. When λt = 1, 

forecasts from asymmetric models are useless. Conversely, if λt = 0, ECM forecasts is useless. Median estimates of λt lower than one and larger than 
zero indicate that combining asymmetric and ECM forecasts leads to more accurate predictions. 

 

These results are confirmed by the graphs reported in Panels a) and c) of Figure 3, which illustrate 

the dynamics of the median value of the estimates of the combining weight, λ, for point forecasts of 

spot and retail prices. Some interesting considerations can be made. First, Panel a) shows that the 

median estimate of λ for spot prices is between zero and one most of the time. 

This evidence implies that forecast combination might lead to more accurate predictions. Second, 

after the collapse of WTI price in 2008, the median estimate of λ is close to one, in which is 

equivalent to say that in this period the RFH was useless. Therefore, the ability of asymmetric 

models to improve the accuracy of monthly point forecasts of the spot price of gasoline is time-

varying, and it is higher when the level of oil price volatility is low. Third, the median estimate of λ 

for retail prices reported in Panel c) is always close to one, meaning that the RFH is almost useless. 

Results for sign forecasts are completely different. Panel b) of Table 6 illustrates that asymmetric 

models lead to more accurate forecasts than the ECM in most of the comparisons. As for spot 

prices, this happens 64% of the cases, and more often for monthly and daily forecasts than for 

weekly forecasts. When retail prices are considered, this percentage increases to 75%, and does not 
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(b) Monthly probability forecasts, spot prices
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(c) Monthly point forecasts, retail prices
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(d) Monthly probability forecasts, retail prices
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change with the sampling frequency of the data. Lastly, we notice that the directional accuracy is 

higher for the price of diesel than for the price of regular gasoline. 

The results for probability forecasts are similar to the findings obtained  for sign forecasts (Panel c 

of Table 6). However, the number of cases favourable to asymmetric models is slightly lower. 

Accuracy gains due to the RFH are more frequent for daily and monthly data. Moreover, Panels b) 

and d) of Figure 3 illustrate that the relative accuracy of models changes through time. 

 

 

5. Conclusions 

Should we care about the Rockets and the Feathers when forecasting the price of petroleum 

products? While we believe that more work in this area is necessary to confirm our findings, our 

concise answer to this question is mixed:  “yes” for sign and probability forecasts, “no” for point 

forecasts. Our results have also highlighted that the forecasting performance of the estimated 

models is time-varying and depends on the sampling frequency of the data. 

Consistently with Bachmeier and Griffin (2003), we have shown that models based on the RFH 

have limited value if the aim is to produce accurate point forecasts. More precisely, according to our 

results, A-ECM forecasts are at most as accurate as the benchmark forecasts obtained by a standard 

ECM, while TAR-ECM have always been ranked last in terms of forecast accuracy. 

However, we have documented that direction-of-change forecasts from asymmetric ECM often 

outperform those from the benchmark ECM. These results hold for spot price data at daily and 

monthly sampling frequencies and for retail price series. As shown by Leitch and Tanner (1991), 

directional accuracy is highly correlated with the profits that economic agents can make by relying 

on a given model. Therefore, the accuracy metrics used in this paper, namely MFTR and SR, can be 

interpreted as economic measures of performance. On the basis of our findings, investors should 

rely on direction-of-change forecasts from A-ECM specification in order to design profitable 

market-timing trading strategies. 

In the case of probability forecasts, asymmetric ECM perform significantly better than the ECM, at 

all sampling frequencies for retail data, while at daily and monthly frequencies for spot data. This 

result suggests that the design of forecast scenarios for gasoline and diesel prices might be 

improved if the RFH is taken into account. 

Moreover, the Carriero-Giacomini test shows that the relative forecasting performance of 

symmetric and asymmetric price transmission models is not constant through time at all sampling 

frequencies and for all price series. This implies that the usefulness of models has to be evaluated 
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conditionally on the state of the crude oil market, and that the forecasting performance of each 

specification changes through the business cycle. 

The result that TAR-ECM specifications are often outperformed by asymmetric ECM reveals that 

the way the RFH is described is important for model building. This finding is reinforced by the 

result that forecast combination from different models often leads to forecast accuracy gains. Lastly, 

we have shown that the RFH is more useful at daily and monthly sampling frequency than for 

weekly data. 
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