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Abstract

Network structure has a significant role in determining the outcomes

of many socio-economic relationships, including the antagonistic ones. In

this paper we study a situation in which agents, embedded in a network,

simultaneously play interrelated bilateral contest games with their neigh-

bours. Spillovers between contests induce complex local and global net-

work effects. We first characterize the equilibrium of a game on arbitrary

fixed network. Then we study a dynamic network formation model, intro-

ducing a novel but intuitive link formation protocol. As links represent

antagonistic relationships, link formation is unilateral while link destruc-

tion is bilateral. A complete k-partite network is the unique stable network

topology. As a result, the model provides a micro-foundation for the struc-

tural balance concept in social psychology, and the main results go in line

with theoretical and empirical findings from other disciplines, including

international relations, sociology and biology.
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1 Introduction

There are a number of situations where agents are involved in some kind of

contest or conflict. In these situations agents can increase the probability of

favourable outcome of the process by means of certain costly actions, such as

investment in weapons, bribing judges/politicians, hiring lawyers, etc. An agent

does not always compete with just one opponent, but rather with several different

opponents simultaneously. The contests that an agent is involved into can be,

and often are, related (i.e. an agent spends same costly resources for each contest)

which creates spillovers.

The environment of interest in language of networks can be described as a

network G = G(N,L) in which link gij ∈ L between two agents i and j indicate

the presence of this type of (negative) relation. We focus on the relations that

can be described as (bilateral) contests. Informally, a contest is an interaction in

which players exert costly effort in order to extract resources from other player

(transferable contest); or receive a larger share of pie to be divided. In the paper

we shall focus on the first case, and briefly discuss the second in section 8.

To illustrate a type of interaction we are interested, let us consider a case of

patent litigation and antitrust disputes. The U.S. Federal District Courts has

registered about 10 000 antitrust and 29 000 patent infringement cases from 2000

to 2010. These types of litigations have consequences for both conflicting parties.

The plaintiff argues for forcing another company to refrain from injurious acts

and punishments as large as tree times the economic damages sustained. On

the other hand, a plaintiff risks being counter-sued and even loosing rights to

its intellectual property. The costs of litigation are very high, reaching more

that 5 millions USD per lawsuit, excluding damages and royalties (Rea, 2009).

The transfers to be paid reach sums which are considerably higher (Sytch and

Tatarynowicz, 2013). The firms can be, and usually are, involved in more than

one such process at the same time. Other examples include international conflict,

patent races, lobbying, Massive Multi-player Role Playing Games(MMORPG),

school violence etc.

We first study a model on a fixed network, and then focus on the network for-

mation. In context described above, agents can form both positive links (friend-

ship) and negative links (antagonism, contest, conflict). We focus on the negative

links in the paper, and positive links are interpreted as a (self enforcing) commit-

ment by both agents not to engage in a contest. A negative link indicates that

agents play a bilateral contest game. Thus the model combines network forma-
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Figure 1: Strong structural Balance, (Easley and Kleinberg, 2010)

tion and game on a network. With changes of the network structure, the effort

that players devote in each particular contest will in general change. Thus, in

the dynamic model of network formation, we study coupled evolution of network

topology and play on the network.

Results of the formation model have important implications for the struc-

tural balance theory from social psychology. The concept of (strong) structural

balance, originated by (Heider, 1946), applies to situations in which relations

between agents can be either negative (antagonistic)or positive (friendship). It

states that groups of three agents, the only socially and psychologically stable

structures are those in which all three agents are friends (all links are positive)

or two of them are friends with third as a common enemy (one positive and

two negative links). So, a friendship relation is transitive. Figure 1 graphically

illustrates Heider’s theory.

As it is defined, the structural balance can be seen as a local property of

a network. The natural question is what are the global properties of networks

that satisfy structural balance. That is, given a complete network, how can we

sign links (indicating positive and negative) such that for any triad of nodes in

network is structurally balanced. Cartwright-Harary Theorem (Cartwright and

Harary, 1956) provides answer to this question. It states that there are two

network structures that satisfy structural balance property: (i) all agents are
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friends (or links are positive) or (ii) agents are divided into two groups, and links

within groups are positive and links across groups are negative. In other words,

with respect to positive links, a network that satisfies structural balance will

be complete network or a network with two components that are cliques. With

respect to negative links, it will be either empty or a complete bipartite network.

Extending on Heider’s work, (Davis, 1967) argues that in many contexts we

may witness a situation in which all links in a triad are negative. To encompass

this type of configuration, he proposed the concept of weak structural balance.

The implication for the global structure now is an emergence of the additional

balanced network structure. With respect to positive links this is a network

with more than 2 components, and each component is a clique. With respect to

negative links it is a complete k-partite network.

There are number of empirical papers that support (weak) structural balance

in the real world networks ((Sytch and Tatarynowicz, 2013), (Szell et al., 2010),

(Antal et al. 2006), (Doreian and Krachardt, 2001)). On the theoretical side,

there is no micro-founded model that explains the emergence of such networks.

The exception is (Hiller, 2012) that provides a network formation model which

results with balanced networks. However the interaction between agents is mod-

elled differently, as agents do not make decision how much to invest in negative

relations.

This paper provides a micro-founded model of network formation that pro-

duces weakly balanced networks as stable networks. Stable networks are always

weakly balanced networks (satisfy weak structural balance). The strong struc-

tural balance is satisfied in particular cases. It is important to note that the

structural balance is a concept concerned only with the sign of links, but does

not say anything about the intensities/weights assigned to links. Our model re-

sults with signed and weighted network, and thus provides implications beyond

structural balance theory.

2 Literature

The paper is related to the several different streams of literature which we review

in separate subsections.
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2.1 Games on a fixed network

The most often issues that arise when studying games on networks are multiplic-

ity of equilibria (even in very simple games), and intractability of analysis due

to complexity of the interaction structure.

One way to deal with these problems is to try to characterize the equilibria

for specific classes of games. The representative papers that use this approach

include (Ballester et al, 2006). The main results of these papers are based on

established relationship between particular measure of centrality of an agent in

a network and actions taken in equilibrium. However, the results hold only for

games with specific payoff functions.

Another approach is to assume that players have incomplete information

about network structure, which can sometimes simplify the analysis. For example

(Galeotti et al., 2010) pursues this idea and characterize equilibria in games of

strategic substitutes and games of strategic complements.

The closest paper to ours is (Franke and Ozturk, 2009). Section 4 of this

paper is parallel to their results on conflict networks, and this section of the

paper can be seen as a generalization of their results. However they do not treat

the question of network formation at all, which is the central question of this

paper.

2.2 Network formation

The main interest of our paper is the model where agents not only decide how

much to invest in the bilateral contests but also with whom to get involved in

a contest. Thus the paper is related to network formation literature, of which

prominent examples are (Jackson and Wolinski, 1996), hereafter JW and (Bala

and Goyal, 2000)), hereafter BG.

The way to model dynamic process of network formation depends strongly

on the link formation protocol which is adopted. In JW type models, links

are formed bilaterally and destroyed unilaterally, while in BG type models links

are formed and destroyed unilaterally. The link formation protocol, of course,

depends on the interpretation of links. We propose a model in which the link

formation protocol does not coincide with any of the two mentioned above, since

the nature of links is fundamentally different. In our model links are formed

unilaterally and destroyed bilaterally (only if both agents agree to do so). This is

a natural link formation protocol, given that the links represent transfer contest.
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For example, to start a war it is enough that one party declares a war (or just

attack); while to make peace both parties must commit not o fight.

There is significant connection between the model considered in this paper

and other network formation models, as we are interested in the similar ques-

tions. However, this paper considers in some dimensions more complex model

since agents also make strategic decision on the investment in each link that

is created. This makes the paper close to the literature on formation of the

weighted networks, but also to the literature that jointly considers the network

formation and games on network.

2.3 Formation of weighted network

There is some work done on the formation of weighted networks. (Bloch and

Dutta, 2007) consider a model of formation of communication network where

agents derive positive benefits from the players with whom they are connected

to (both directly and indirectly). In their model, homogeneous agents have some

fixed endowment and they need to decide how to allocate this endowment in

establishing undirected links (with potentially different capacities) with others.

Links can be created unilaterally and the strength of the link is additively sep-

arable function of individual investments in the link, and convex in individual

investments. The convexity assumption in their model yields an incentive to

agents to concentrate their investments in a single link, which in the end makes

this model close to the two way flow BG model. (Deroian, 2006) extends this

model to the case of directed networks (BG one way flow case).

(Rogers, 2006) discusses two models of the network formation with endoge-

nous link strength, depending on the direction of benefits flow along the links. In

’asking’ model (which is close to GB one way flow variant) agents receive benefits

trough the links they (unilaterally) create.

These models include the ’partner specific’ decision on intensity of the link

that is formed. That is, players jointly decide with whom they will be connected

and what will be intensity of that connection, which is feature shared with the

model considered in this paper. However, the payoff structure and nature of

externalities in these models is quite different than in model of network formation

considered in this paper.
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2.4 Contest games

Informally contest game is defined as follows. There are n players. The players

decide (simultaneously or sequentially) on the level of investment in the con-

test. The investments determine the probability of winning the (endogenous or

exogenous) prize according to Contest Success Function (CSF). An example is

lobbying where the prize can represent the value of a certain public policy that

need to be adopted.

There are two prominent ways to model CSF. The first is to assume that

the probability of winning is a function of ratios of efforts, which is introduced

by (Tullock,1980) and is approach that we use here. The second assumes that

probability of winning is a function of difference between effort levels and is

introduced in (Hirschleifer,1987).

A nice, albeit dated, overview of literature can be found in (Crochon, 2007)

and (Garfinkel and Skepardas, 2006). In this paper we consider transferable

contests as introduced in (Hillman and Riley, 1989) using the variant of Tullock’s

specification introduced by (Nti, 1997)

An alternative model, which is offered in the appendix, gives a model for-

mulation as colonel Blotto game with Tullock CSF. There is a vast literature on

Blotto games and I will not review it here.

3 Bilateral contest game

In this section we introduce the bilateral contest game which will serve as a

building block of the model. There are two players, i and j competing over

a prize with exogenous size R. In order to increase the probability of wining,

players choose a non-negative action (effort, investment). The strategy space is

thus given with the set of non-negative real numbers R+
0 := [0,+∞) The effort is

transformed into contest specific resource (contest input) by means of function

referred here as a technology function. One can think of this function as an

analogue to the production function in a classic market setting. Here we assume

that technology function φ : R+
0 → R+

0 is function that satisfies the following

properties:

Assumption 1. Technology function φ : R+
0 → R+

0 is:

(i) Continuous and twice differentiable

(ii) increasing and (weakly) concave (φ′ > 0, φ′′ ≤ 0)

7



(iii) φ(0) = 0

The first two assumptions are standard, while the third one states that zero

effort implies zero contest input.

The actions determine the probabilities of wining the prize trough contest

success function. We choose Tullock ratio form specification of CSF suggested

in (Nti, 1997), assuming that the probability that player i when taking action

sij will win the contest against player j is given with:

pij =
φ(sij)

φ(sij) + φ(sji) + r
(1)

In (1) r ∈ R+
0 determines probability of draw (no player wins the prize). In the

paper we shall maintain the assumption that r is small.

Following (Hillman and Riley, 1989) we consider transferable contest game,

that is the game in which the prize is transfer from looser to winner. Assuming

fixed prize, payoff function of player i is given with

πij = pijR− pjiR− c(sij)

where R is a transfer from loser to winner. We assume that (potential)

transfer from i to j is the same as a transfer from j to i, although of course in

general this does note to be the case. c : R+
0 → R+

0 is a cost function, and we

assume it to be twice continuously differentiable, increasing and convex.

The bilateral contest game has the unique (symmetric) NE equilibrium in the

pure strategies, which is interior for r low enough. In this case, the equilibrium

strategy of player i is defined with the following implicit function:

φ′(s∗ij)R = (r + 2φ(s∗ij))c
′(s∗ij)

4 Game on a fixed network

Let G = (N,L) be (undirected) network with set of nodes N and set of links

L. The nodes represent players, and link gij ∈ L indicates contest relation

between players. Let us also denote the set of neighbours of agent i as Ni, and

let di = |Ni| denote the degree of node i. Strategy space of a player i is a

set Si = R+
0
di . A (pure) strategy of player i is di touple of levels investments

si = (sij1 , ..., sijdi ) ∈ Si. We assume that size of the transfer R is independent of
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network structure and same for every contest gij
1, and normalize R = 1.

Here we focus on the negative links. As we shall discuss in the section con-

cerned with network formation, the absence of negative links can be interpreted

as a commitment not to initiate contest and thus a positive (friendly) link.

The payoff of player i is given with

πi(si, s−i G) =
∑
j∈Ni

(
φ(sij)

φ(sij) + φ(sji) + r
− φ(sji)

φ(sij) + φ(sji) + r

)
− c(Ai) (2)

where Ai =
∑

j sij is the overall investment, and s−i denotes strategies of

players other than i. Such specification of cost function generates externalities

between the contest that agent i is involved in, making it more interesting to

study this model on a network.

It is clear that payoff function πi is twice differentiable on its domain. Fur-

thermore, the payoff function of player i is concave in si. To see this, note that

∂2πi

∂sij
2 =

(r + 2φ(sji)) (φ′′(sij)(r + φ(sij) + φ(sji))− 2φ′(sij)
2)

(r + φ(sij) + φ(sji))3
− c′′(Ai) ≤ 0

∂2πi
∂sij∂sik

= c′′(Ai) < 0 ∀j, k ∈ Ni

Above inequality holds given properties of function φ stated in Assumption

1, and since c is strictly convex. Thus, the Hessian Hi of function πi with respect

to si is the sum of diagonal matrix Hi1 with diagonal elements equal to:

(r + 2φ(sji)) (φ′′(sij)(r + φ(sij) + φ(sji))− 2φ′(sij)
2)

(r + φ(sij) + φ(sji))3
< 0

and matrix Hi2 which has all the elements equal to −c′′(Ai) < 0. Matrix Hi1is

negative definite and matrix Hi2 is negative semidefinite, thus Hessian Hi =

Hi1 +Hi2 is negative definite.

To be able to study network formation, we need to know if the equilibrium

strategies on a fixed network are uniquely determined. In this section we prove

the uniqueness of the equilibrium on the fixed network (this part is generalization

of similar result in (Franke and Ozturk, 2009))

We shall prove two propositions. The first states uniqueness and the second

1We use gij when we talk about link gij ∈ L but also when referring to contest between
players i and j
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that gives conditions for equilibrium to be interior. The first proposition relies

on the results from (Rosen, 1965). For the sake of the presentation let us first

introduce the following definition:

Definition 1. A game is n persons concave game if (i) Strategy space of game

S is product of closed, convex and bounded subsets of m dimensional Euclidian

space, S = {S1 × S2 × ... × Sn|Si ⊂ Emi} 2 and (ii) payoff function of every

player 2, ..., sn), and concave in si ∈ Si, for each fixed value s−i ∈ S−i

Let us also introduce function σ : S×R+
0
n → R assigned to n persons concave

game given with σ(s, z) =
n∑
i=1

ziπi(s). Rosen’s results states that:

1. There exists a pure strategy equilibrium of n persons concave game

2. If function σ is diagonally strictly concave for some z ≥ 0 then the equi-

librium point is unique

Proposition 1. There exists unique pure strategy Nash equilibrium of contest

game on a network.

Proof. As discussed above, the payoff function of every player i is continuous and

concave in si. Strategy space of is in general unbounded, but since the transfer R

is finite, and cost function c is strictly increasing, there will exit a point M ∈ R
such that c(M) > R. No player will ever wish to exert effort larger than M , and

therefore we can bound the strategy space from above, and apply Rosen’s result.

Thus, considered game is n persons concave game as defined above. Following

(Rosen, 1965) there exist pure strategy equilibrium of the game. To prove the

uniqueness we will use the following specification of diagonally strictly concave

function proposed by (Goodman,1980), that states states that σ(s, z) will be

diagonally strictly concave if payoff functions are such that for every player i: (i)

πi(s) is strictly concave in si, (ii) πi(s) is convex in s−i and (iii)σ(s, z) is concave

in s for some z ≥ 0.

For the game that we are considering we have already shown above that πi

has a negative definite Hessian with respect to si

We also have that:

2Rosen actually proved more general result when strategy space is ’coupled’, that is when
S ⊂ Em = Em1 ×Em2 × ...×Emn is closed, convex and bounded set. Here we consider special
case when strategy space is ’uncoupled’
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∂2πi
∂s2ji

=
(r + 2φ(sij)) (2φ′(sji)

2 − φ′′(sji)(r + φ(sij) + φ(sji)))

(r + φ(sij) + φ(sji))3
> 0

when there is link gij. Furthermore, (∀gjk ∈ L : k 6= i), ∂2πi
∂s2jk

= 0 and ∂2πi
∂sjk∂slt

= 0

for any other combination of players, j, k, l and t. Thus Hessian of πi with respect

to s−i is diagonal matrix with all entries positive or zero and therefore positive

semi-definite.

To prove concavity of σ(s, z) in s we choose r = 1. Then:

σ(s,1) =
∑
i

∑
j∈Ni

(
φ(sij)

φ(sij) + φ(sji) + r
− φ(sji)

φ(sij) + φ(sji) + r
Ri − c(Ai)

)
= −

∑
i

c(Ai)

The later equality holds since every summand
φ(sij)

φ(sij)+φ(sji)+r
appears exactly

once with positive sign (as a part of payoff function πi) and exactly once with a

negative sign (as part of function πj). Function −
∑
i

c(Ai) is strictly concave

due to strict convexity of function c.

Proposition 2. The equilibrium is interior when r > 0 is small enough

Proof. Consider two arbitrary connected players i and j. Let us first prove that

in equilibrium it cannot be sij = sji = 0 ∀r > 03. Assume otherwise. Then

the payoff for both players in contest gij will be 0. Consider the deviation of

player i from sij = 0 to sij = r Now the probability of wining for player i

becomes pij = φ(r)
φ(r)+r

= α > 0 and the probability of loosing will still be 0. This

deviation will be profitable as long as c(Ãi) − c(Ai) < α , where Ãi = Ai + r

As c is continuous, we can always find such r so that |c(Ãi) − c(Ai)| < α when

|Ãi−Ai| ≤ r Therefore, for such r, it cannot be that sij = sji = 0 in equilibrium.

Let us now prove that for two arbitrary connected players i and j it cannot

be that sij 6= 0 ∧sji = 0 ∀r > 0. Again, suppose this is the case. that is the

case, then necessary conditions imply that in the equilibrium we have

∂πi
∂sij
|(sij,0) =

(r + 2φ(0))φ′(sij)

(r + φ(sij) + φ(0))2
− c′(Ai) =

rφ′(sij)

(r + φ(sij))2
− c′(Ai) = 0 (3)

3We omit ∗ with equilibrium actions in the rest of the proof, but it is clear when sij denotes
action in equilibrium
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We can always find r small enough such that (3) cannot hold for any value

sij > 0 and Ai > 0. Indeed, since the reward is finite and the number of nodes in

the network is finite, then Ai must be finite for any node i in arbitrary network.

For any cost function c ∈ C2 satisfying assumptions for we can find U > 0 such

that c′(Ai) < U for every Ai. But we can always choose r > 0 small enough such

that
rφ′(sij)

(r+φ(sij))2
> U ∀sij ∈ [0,M ], since

rφ′(sij)
(r+φ(sij))2

→∞ when r → 0 for any fixed

sij.

In what follows, we will assume that r is chosen in such way that interiority

of equilibrium is guaranteed. Note also that above results imply that the equi-

librium of the game on a fixed network is defined with FOC system of equations.

Consider now two connected players i and j. The first order conditions that

characterize their behaviour in a contest gij are given with:

(
(r + 2φ(sji))φ

′(sij)

(r + φ(sij) + φ(sji))2
− c′(Ai) = 0

)
∧
(

(r + 2φ(sij))φ
′(sji)

(r + φ(sij) + φ(sji))2
− c′(Aj) = 0

)
(4)

From (4) we get:

(r + 2φ(sji))φ
′(sij)

(r + 2φ(sij))φ′(sji)
=
c′(Ai)

c′(Aj)
(5)

As φ′ > 0 and φ′′ ≤ 0 and c′′ > 0 we have: Ai > Aj ⇔ c′(Ai)
c′(Aj)

> 1 ⇔
(r+2φ(sji))φ

′(sij)
(r+2φ(sij))φ′(sji)

⇔ sji > sij where last equvialence is due to the fact that φ is

increasing and φ′ is decreasing function.

This means that in the equilibrium a player with lower total spending will

win a contest with the higher probability. This observation reflects the fact

that more ’exhausted’ (one that spend more resources in equilibrium) player

performs worst in an contest, because the additional unit of resources is more

costly to him (his marginal costs are higher). Note that it does not necessarily

mean that player involved in more contests will have higher total spending in

the equilibrium, although the total spending is increasing in number of contests

(keeping everything else fixed). It will be rather a player who has many and more

intensive contests. Which contest will be more intensive, depends on the global

position of players in the network. Identification of the characteristic of a node

in network that would determine total spending of that node in the equilibrium

proved to be very challenging task. A property of a node that would determine

total spending in equilibrium is a nonlinear measure of centrality in a network.
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Finding such a measure, although interesting, is a very complex task.

The equation (5) gives us an additional interesting result. Each link gij has

a two actions assigned to it sij and sji, and we can interpret them as a weights

assigned to directed links i→ j and j → i respectively. Then in equilibrium, for

any cycle (path starting and ending at the same node), we have 4 (we omit ∗):

φ(s12)

φ(s21)

φ(s23)

φ(s32)
...
φ(sn−1n)

φ(snn−1)

φ(sn1)

φ(s1n)
=
c′(A2)

c′(A1)

c′(A3)

c′(A2)
...

c′(An)

c′(An−1)

c′(A1)

c′(An)
= 1

that is:

φ(s12)φ(s23)...φ(sn−1n) = φ(snn−1)φ(sn−1n−1)....φ(s21) (6)

That is product of contest inputs assigned to some cycle is the same in both

directions.

5 Network formation

The fact that a player with a higher total spending in equilibrium looses in

expectation from a player with lower equilibrium spending, gives some hints on

how agents behave when contest are determined endogenously. But one must

note that the results from previous part are ex-post, and cannot be directly used

in a network formation model. This is because the fact that A∗i < A∗j in the

equilibrium on network G does not imply that we will still have A∗i < A∗j in the

equilibrium on network G+ gij (where + denotes addition of the link gij to the

network). When a link gij is created, players i and j will, in general, change their

efforts in all other contests that they are involved into. This will, furthermore,

result with changes in equilibrium actions of all opponents of i and j in all of

their contests; all according to the system of nonlinear equations defined with

(4). Given the general structure of the network, one can see why the effects of

a link creation, which is a ’fundamental’ action of network formation game, are

in general case very hard to completely characterize. An example of the global

effects that addition of link causes in a very simple network is given in Appendix

B.

Because of the complex spillover effects we shall assume that agents are not

able to fully take into account these effects when making decision to create or

4letting r → 0, but analogue result holds for any r as long as the equilibrium is interior
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severe a link. Informally, we assume that when deciding on creating or destroying

link, agents do not take into the account the complex adjustment in actions

that will occur in all other contests, given the change of the network topology.

Instead, they assume that all other actions in the network will remain constant

when making this decision. If the action is to create the link, the assumption is

that equilibrium efforts of that particular contest game will be according to the

NE of the bilateral contest game discussed above, keeping all other actions in

the network fixed.

We believe that the bounded rationality assumption here is more realistic,

and it makes the analysis more tractable.

In what follows we assume that r is sufficiently small, so that the equilibrium

of the game on fixed network is always interior. We shall also assume that φ is

identity mapping. However, all results hold when φ has a general specification

from the previous section.

We consider two coupled dynamics processes. The first, which happens on

the ’slow’ scale, governs the evolution of network topology. The second, on much

faster scale, is what we call the action adjustment process. It is the process that

describes how actions of players adjust to the new NE when network changes.

The reason for the second process is to be consistent with the assumption of

bounded rationality that we made in the network formation process.

Let us now be more precise. Time is indexed with t ∈ N ∪ {0}. In period

t = 0 an arbitrary contest network G(N,L) is given. 5 We say that network G

is in the actions equilibrium when all players play the equilibrium strategy of a

contest game on a fixed network described above.

Definition 2 (Actions equilibrium). A network G(N,L) is in actions equilibrium

if all actions sij and sji assigned to every link gij ∈ L are part of equilibrium of

a game on a fixed network.

Given the definition we can describe the dynamics process that we consider:

For every period t:

(i) At the beginning of period t the network from t − 1 is in the actions

equilibrium

5Due to ’zero sum like’ nature of the game, the empty network will always be a stable in our
model. In order to describe the dynamic process that leads to the non-empty stable networks
we assume that, because of some non modelled mutation or a tremble the initial conditions are
given with the non-empty arbitrary network
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(ii) Random player i is chosen and she updates her links according to the link

formation protocol, resulting with network Gt+1

(iii) Second dynamic process (on the fast scale) starts, in which all agents up-

date their strategies according to the process formally described in the

section 6 (better reply dynamics), until the actions equilibrium is reached

Steps (ii) and (iii) deserve some further explanation. First let us define the

link formation protocol.

Definition 3 (Link formation protocol). A link gij will be formed if player i or

j decide to form it. A link gij will be destroyed if both i and j agree to destroy it.

This means that the link formation is unilateral and the link destruction is a

bilateral action. It is the only natural to define a link formation protocol for the

antagonistic (purely competitive) relations in this fashion. A decision to start a

contest (i.e. war, litigation) is unilateral by nature, and the ’attacked’ player,

weather she decides to fight back or not, cannot change that. To make a peace

it is necessary that both parties agree to do it. This is the first paper to our

knowledge that considers such link formation protocol.

We assume that in each period t a random player can update his linking

strategy according to the link formation protocol defined above. Given this, we

define the stability concept, named Myopically stable network as follows:

Definition 4 (Myopically stable network). A network G = G(N,L) is Myopi-

cally stable network if for any player i and any two (possibly empty) sets of nodes

A ⊂ N and B ⊂ N .

πi(G+ {gij}j∈A − {gij}j∈B) > πi(G)⇒ (∃j ∈ B) : πj(G− gij) < πj(G)

πi(G+ {gij}j∈A) < πi(G)

This definition assumes that no player will wish to change her linking strategy

- destroy or create links. The possibility of replacing a link is essential for the

results, however it does not matter if a player can only replace one or more of

his links or destroy/create one or more links at the same time. The results will

(qualitatively) hold for example if we would consider a process in which an agent

in a single period can only crate a link, destroy a link or replace a link. That is

if we would consider the following definition of stability:
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Definition 5 (Myopically stable network - alternative). A network G = G(N,L)

is Myopically stable network if the following conditions hold:

πi(G− gij) > πi(G)⇒ πj(G− gij) < πj(G) (∀i, j ∈ N)

πi(G+ gik − gij) > πi(G)⇒ πj(G− gij) < πj(G) (∀i, j, k ∈ N)

πi(G+ gij) < πi(G) (∀i ∈ N)

Let us now clarify what do we exactly mean when say that agents update

the connections myopically. When deciding on his connections agent i knows the

total spending of all players in the existing network. The effort levels (sij, sji)
6

assigned to newly formed link are determined as the solution of a bilateral contest

game, keeping all other actions in the network fixed. To fix ideas, consider a case

of quadratic cost function c(x) = 1
2
x2. When link gij is created the corresponding

actions sijand sji are determined as an equilibrium actions of a bilateral contest

game between players i and j keeping the spending of these two players fixed in

all other contest.

2sji − r
(sij + sji + r)2

= (Ai + sij) ∧ 2sij − r
(sij + sji + r)2

= (Aj + sji)

Solution of this system is given with:

sij =
2 + A′i

(
A′i + A′j −

√
4 + (A′i + A′j)

2
)

2
√

4 + (A′i + A′j)
2

> 0 (7)

and symmetric for sji, where A′i = Ai − r/2. Player i will whish to form link

when :
sij − sji

(sij + sji + r)
+ A2

i − (Ai + sij)
2 > 0 (8)

and (sij, sji) are determined with (7), and analogously for player j.

On the other hand, existing link ij will be destroyed if both players agree

to destroy it, that is when πi(si, s−i, G− gij) > πi(si, s−i, G) and πj(sj, s−j, G−
gij)) > πi(sj, s−j, G)). This will be the case when:

A2
i − (Ai − sij)2 −

sij − sji
(sij + sji + r)

≥ 0 ∧ A2
j − (Aj − sji)2 −

sji − sij
(sij + sji + r)

≥ 0

6We omit time index t
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A decision to destroy a link is, again, done assuming that all other actions

in the network will remain fixed. Creation and destruction of more links simul-

taneously is defined analogously. We additionally assume that player will create

link only if it is strictly beneficial to do so. If a player is indifferent between

keeping or destroying link, link will be destroyed. So, player prefers to have less

links. This could be justified by saying that there is some infinitesimal fixed cost

associated to maintaining the link, and easily included in the model. This tie

breaking rule does not affect the results.

If after some period t∗ no player wish to destroy or create link we say that

process has reached the steady state. Thus a network is stable if no player can

myopically improve his payoff by changing his linking strategy.

Consider a network G which is in a actions equilibrium. We can sort the nodes

in increasing order with respect to their total spending (A1 < A2 < ... < AK),

K ≤ n where K is the number of different total spending levels in a network.

Note that we use Ai to denote both total spending of player i and the i − th

smallest level of total spending in network. From the context it will be always

clear what Ai stands for. Recall also that the equation (5) implies that in any

bilateral contest node that has a larger overall spending looses in expectation.

Denote with Ai the class of nodes that have total spending Ai. Let K ≤ n

denotes the number of classes in network G. When a player i ∈ N has a total

spending Ai we denote that as i ∈ Ai. We say that a player i has a control over

link gij if it is beneficial for player j to destroy a link gij. Thus, when a player i

is in control over a link it is completely up to him will the link be destroyed.

If Ai > Aj in the actions equilibrium we will say that player j is stronger

than player i or that player i is weaker than player j and will refer to Ai as a

strength of player i. It is clear that when i is stronger than j then i controls

link gij. Furthermore, both players i and j shall have control over link gij if this

link is not beneficial for them. A link gij is said to be beneficial for player i if

a creation of this link (if it does not exist) makes player i better off and if a

destruction of this link (if it does exist) makes player i worst off.

In what follows we provide a characterization of stable networks. We proceed

by stating and proving series of propositions and lemmas. Abusing the notation

let πi(s
∗
ij, gij) =

s∗ij−s∗ji
(s∗ij+s

∗
ji+r)
− c(A∗i ) denote the equilibrium payoff of player a from

link gab in actions equilibrium. Then the following holds:

Proposition 3. Let a ∈ Ai, b ∈ Aj, c ∈ Ak and i < j < k. Then s∗ab > s∗ac,

s∗ba > s∗ca and furthermore πa(s
∗
ab, gab) < πa(s

∗
ac, gac)
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Proof. Recall that FOC that determine s∗ab is given with. Recall that FOC for

any a, b contest are given as:

2s∗ab + r

(s∗ab + s∗ba + r)2
= c′(A∗b) and

2s∗ba + r

(s∗ab + s∗ba + r)2
= c′(A∗a) (9)

Expressing s∗ab and s∗ba from (9) we get that, in equilibrium:

s∗ab =
2c′(A∗b)

(c′(A∗a) + c′(A∗b))
2
− r

2
, s∗ba =

2c′(A∗a)

(c′(A∗a) + c′(A∗b))
2
− r

2
(10)

The function f(x, y) = 2c′(x)
(c′(y)+c′(x)2

− r
2

is strictly decreasing in x as long as x > y

and strictly increasing when x < y. f is always strictly decreasing in y

∂f

∂x
=

2 (−c′(x) + c′(y)) c′′(x)

(c′(x) + c′(y))3
≶ 0 when x ≷ y and

∂f

∂y
= − 4c′(x)c′′(y)

(c′(x) + c′(y))3
< 0

This, together with (10) and A∗a < A∗b < A∗c implies that s∗ab > s∗ac and s∗ba > s∗ca.

To prove that πa(s
∗
ab, gab) < πa(s

∗
ac, gac) we use (10) and (after some algebra)

get:

πa(s
∗
ab, gab) =

s∗ab − s∗ba
(s∗ab + s∗ba + r)

= 1− 2c′(Aa)

c′(Aa) + c′(Ab)

It is clear that πa is strictly increasing in Ab due to strict convexity of function

c. Thus, A∗c > A∗b > A∗a =⇒ πa(s
∗
ac, gac) > πa(s

∗
ab, gab)

The previous proposition implies that the contest between two players who

are more equal in strength is more costly. A strong player spends less when

compete with weaker player and has highest payoff from that contest. The

results of this claim illustrates the incentive that strong player has to compete

with the weakest player, given that the transfer for every contest is the same.

This effect is self-reinforcing in the sense that it makes the weak player even

weaker, and thus more probable target for other strong players. For the sake of

the exposition let us state the following definition.

Definition 6. Player a ∈ Ai is an attacker (winner) if has has all of his links

with players from family of classes Ai = {Aj|j > i}. Player a ∈ Ai is mixed

type if there exist players b and c such that gab, gac ∈ G and Ab > Aa > Ac.

Player a ∈ Ai is victim(looser) if he has all of his links with players from classes

Ai = {Aj|j < i}

It is clear than every player a must be one of these types. Note also that
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in a stable network all attackers must have positive payoff. If this is not true

for some attacker a then, since he controls all of his links, he could profitably

deviate destroying his links.

Lemma 1. Let a ∈ A and A is the class of attackers. Let b and c be two nodes

in the network such that A∗b ≤ A∗c , gab ∈ G and gac /∈ G. Then the deviation of

player a such that he replaces contest gab with gac is payoff improving.

Proof. From (10) we have that sac in case of the deviation is given with:

s∗ac =
2c′(A∗c + s∗ca)

(c′(A∗a − s∗ab + s∗ac) + c′(A∗c + s∗ca))
2
− r

2

and we can write.

s∗ab =
2c′(A∗b − s∗ba + s∗ba)

(c′(A∗a − s∗ab + s∗ab) + c′(A∗b − s∗ba + s∗ba))
2
− r

2

Because of the interiority of the equilibrium, A∗c+s
∗
ca > A∗c ≥ A∗b > A∗b−s∗ba. Since

A∗c + sca > A∗b the proposition 3 implies that this deviation is profitable.

From the previous lemma the we have directly get.

Corollary 1. If in stable network player a ∈ Ai has a link with player b ∈ Aj
then she has a link with every player c ∈ Aj+k k = 1, 2, ..K − j

Proof. Assume not. If link gab is not profitable for player a then, as noted before,

it is not profitable for player b. Then link gab cannot be part of a stable network.

So it must be that link gab is profitable for player a. Let c ∈ Aj+k be a node such

that link gac does not exist. Then, from the Lemma 1 the deviation of player a

such that she destroys link gab and creates link gac will be profitable.

Lemma 2. A stable network must be connected if not empty

Proof. Suppose not 7. Then there are at least two components. Choose two

arbitrary components from the network and denote them with C1 and C2. Let

two players with the highest total spending in these components as h1 ∈ Ac1
and h2 ∈ Ac2 . Assume, without lost of generality, that Ac1 ≥ Ac2 . Then, for any

player in that attacks player h2 (and there must be at least one) it is profitable

to attack player h1 instead.

From now on we always talk about connected network.

7We omit ∗, but it is clear from context that we are considering the equilibrium strategies
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Lemma 3. If in a stable network two players belong to the same class of attackers

A than they have the same neighborhood

Proof. Consider two nodes a, b ∈ A. Let us first prove that they must have equal

degree. Suppose that this is not true, so suppose, W.L.O.G., that db > da where

di denotes degree of a node i. Let Ni denote neighborhood of player i. It cannot

be that Na ⊂ Nb because then the total spending of a and b could not be equal

(they would not belong to the same class). If Na = Nb the proof is completed,

if not there must be some node h ∈ Na\Nb and some node k ∈ Nb\Na. Suppose,

W.L.O.G., that Ak ≥ Ah. Than it would be better for player a to replace link

gah with link gak according to the Lemma 1. This is profitable deviation which is

contradiction to the assumption that network is stable. So it must be da = db.

Let us now prove that there must be Na = Nb. Again, assume this is not

true. This means that we can find two nodes h ∈ Na\Nb k ∈ Nb\Na such that,

W.L.O.G., Ak ≥ Ah. But then it would be better for player a to replace link gah

with link gak according to the Lemma 1. Thus, network G cannot be stable. The

assumption that Na 6= Nb led us to a contradiction and thus must be rejected.

Since all attackers in the same class have the same neighborhood it must be

they have the same payoff in a stable network. Next Lemma shows that there

can be only one class of the winners (attackers) in equilibrium.

Lemma 4. There is only one class of attackers in a stable network

Proof. We again use the proof by contradiction. Suppose there are two different

classes of attackers and denote them with A1 and A2 and let A2 > A1. Since

players in A1 and A2 are attackers they have control over all of their links. Since

Lemma 3 implies that all members of a same class of attackers have the same

neighborhood, we restrict our attention to the representative nodes a ∈ A1 and

b ∈ A2. Let us first prove that it must be πa = πb. Assume this is not the case.

Then it must be that Na 6= Nb. Since A2 > A1 there are two possible situations

that we need to consider.

(i) Na ⊂ Nb then then if πa > πb player b could mimic player a (as he is

attacker), and if πb > πa the opposite will hold.8

(ii) Na 6⊂ Nb =⇒ (∃k ∈ Na\Nb∧∃h ∈ Nb\Na). But then, if Ak ≥ Ah Lemma

1 implies that b has a profitable deviation, and if not, same Lemma implies that

a has a profitable deviation.

8Recall that we assume that when a player is payoff indifferent between two actions he
prefers to have less links.
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We have proved that in stable network it must be πa = πb. Since A2 > A1

then it must be that db > da or that the distribution of total spending a′s and

b′s opponents is different. We show that in both cases there is possible deviation

which makes one of the players better off.

Let us first consider the case when db > da. If Na ⊂ Nb we have (i) from

above. So there must exist nodes k ∈ Na\Nb and h ∈ Nb\Na. If Ak ≥ Ah then

player b would be better off by replacing contest gbd with gbc. If not, player a can

make analogue profitable deviation.

If da = db then, since A2 > A1, the strengths (total equilibrium spending)

of a′s opponents are different than strength of the b′s opponents. Let q be the

strongest node from (Na∪Nb)\(Na∩Nb) 6= ∅. If link gaq exists, then it is profitable

for a to switch from q to any node in the set Nb\Na . If gbq exists, then deviation

is switching from q to some node in Na\Nb, and the proof is completed.

Note that previous Lemma and corollary implies that members of (unique)

class of attackers are connected to all other nodes in the network. This is due to

the fact that class A2 must be a class of mixed types or losers. In either case,

previous lemma together with the fact that two players from a same class cannot

be connected in a stable network implies that all members of A1 and A2 are

connected.

Let us now say something about mixed types in stable network.

Lemma 5. In stable network all members of all existing mixed type classes A
are connected to all other nodes in the network except nodes belonging to their

class.

Proof. If there are only two classes of nodes in network A1 and A2 then there

are no mixed types. Suppose there are more than two classes in the network.

Consider first the strongest mixed type class (A2). A node m ∈ A2 must be

connected to all of the nodes in the class of winners A1. This is because as a

mixed type m must be connected with at least one stronger player, which must

be a winner because of the choice of m. Lemma 4 implies then that m must be

connected to all players from the class A1. Let us now prove that all members

of the class A2 have the same neighborhood. Suppose not. Let {m1, m2} ⊂
A2 ∧ Nm1 6= Nm2 . We have (A1 ⊂ Nm1 ∧ A1 ⊂ Nm2) =⇒ ((Nm1/Nm2) ∪
(Nm2/Nm1)) ∩ A1 = ∅. Thus if they differ, neighborhoods of m1 and m2 must

differ only in the part where m1 and m2 have control over their link. It cannot be

Nm1 ⊂ Nm2 ∨ Nm2 ⊂ Nm1 because than it cannot be Am1 = Am2 . Consider two
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nodes, k ∈ Nm1\Nm2 and l ∈ Nm2\Nm1 . Note that sets Nm1\Nm2 and Nm2\Nm1

cannot be empty. If Ak ≥ Al then m2 has a profitable deviation switching from

gm2l to gm2k. If not, than m1 has analogue profitable deviation.

Let A3 be the third strongest class in the network. If this is the weakest class

(if K = 3) then, by definition, all players from m ∈ A2 must be connected to

some of the players of A3, because otherwise they would not be mixed types.

Note that if player i ∈ A3 is connected to some player from class A2 that he is

connected to all players from class A2 since we have showed that all members of

class A2 have the same neighborhood. If there exist some player j ∈ A3 who is

not connected to a player from A2 than he is connected only to players from A1

but than it cannot be Ai = Aj, that is i and j cannot belong to the same class.

Thus, if K = 3 the claim holds.

If not than A3 is a mixed type class. Corollary 1 implies that all members

of A1 must be connected to all members of A3 since they are connected to all

the members of A2 and A2 < A3. Suppose that there does not exist link gij such

that i ∈ A2 and j ∈ A3. Since all players from A2 have the same neighborhood

there are no any links between members of class A2 and A3. This means that

players from A3 loose only in contest with players from A1, so they have control

over all of their links except those that connect them to players A1. Furthermore,

A2 < A3 =⇒ Ni 6= Nj. As before, we consider first case when πi 6= πj.

(i) Ni ⊂ Nj then j can destroy links towards all players Nj/Ni and have same

payoff as i (if πi ≥ πj), or player i can create links to all players in Nj/Ni (if

πi < πj)

(ii) Ni 6⊂ Nj =⇒ (∃k ∈ Ni\Nj ∧∃h ∈ Nj\Nh). But then, if Ak ≥ Ah Lemma

1 implies that j has a profitable deviation, and if not, same Lemma implies that

i has a profitable deviation.

If πi = πj since A2 > A1 then it must be that dj > di or that the distribution

of total spending i′s and j′s opponents is different. We show that in both cases

there is possible deviation which makes one of the players better off.

Let us first consider the case when di > dj. If Ni ⊂ Nj we have (i) from

above. If not we have analogue of (ii).

If di = dj then, since A2 > A1, the strengths (total equilibrium spending)

of i′s opponents are different than strength of the j′s opponents. Let q be the

strongest node from (Na ∪ Nb)\(Na ∩ Nb) 6= ∅. If link giq exists, then it is

profitable for i to switch from q to any node in the set Nj\Ni . If gjq exists, then

deviation is switching from q to some node in Ni\Nj. We have showed that it
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cannot be that there are no links between A2 and A3, thus every player from A2

is connected to every player from A3.

Proceeding in the same manner we can show that all players from Ak must

be connected to all players from Ak+1. Since number of nodes is finite, number

of classes is finite and this procedure reaches AK in finite number of steps9.

Corollary 2. There is only one class of victims and all victims have same neigh-

borhood

Let us say something about size of partitions in the stable network. Let |Ak|
denote number of nodes that belong to class Ak, the following lemma holds.

Lemma 6. |Ak| > |Ak+1| ∀k ∈ {1, ..., K}

Proof. Suppose not. Note that FOC imply that s∗ij = s∗ih ∀{i, j, h} ∈ N ∧
{j, h} ∈ Al. If |Ak| < |Ak+1| Lemma (previous) implies that Ak =

∑
i 6=k
|Ai|ski

and Ak+1 =
∑

i 6=k+1

|Ai|sk′i for any two nodes k ∈ Ak and k′ ∈ Ak+1. Recall that s∗ij

is strictly decreasing in A∗i which implies that s∗kj > s∗k′j ∀j ∈ {1, .., K}\{k, k′}.
Also, Ak < Ak+1 =⇒ skk′ > sk′k. But then |Ak| < |Ak+1| =⇒ (Ak =∑
i 6=k
|Ai|ski > Ak+1 =

∑
i 6=k+1

|Ai|sk′i), contradiction! It must be |Ak| > |Ak+1|

It is clear that |Ak| > |Ak+1| is not sufficient condition for stability of net-

work. The difference |Ak| > |Ak+1| must be large enough so that members of

the stronger class do not find it payoff improving to delete links with members

of the weaker class. Previous Lemmas imply the following proposition, which is

the main result of this section.

Proposition 4. Stable network is either empty network or complete k-partite

with partitions of different sizes. The payoff of members is increasing in size of

the partition and total spending per node is decreasing with the size of partition

that she belongs to.

Complete k-partite network is the only network topology that satisfies weak

structural balance property, as discussed before. Note that if cost function is

too steep, or the transfer size is too small, the only stably network would be

complete bipartite network. The complete bipartite network (with respect to

negative links) is the only network topology that satisfies strong structural bal-

ance property.

9If n is not finite the claim is easily proved using mathematical induction
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Not all complete k-partite networks will be stable. In order for them to be

stable, no player must have an incentive to create or destroy a link. As only

links that can be crated are between players from the same partition, no player

will wish to create link. This is because a link gij between players i and j such

that Ai = Aj = A cannot be profitable (they will exert the same effort in the

equilibrium and thus win and loose contest with the same probability, and since

the effort is costly, have a negative net payoff from contest gij). No player will

wish to destroy a link if all links bring a positive payoff to a winner. Combining

equilibrium conditions for players i and j we get that in equilibrium 10

(
sij =

c′(Aj)

c′(Ai)
sji ∧

2sji
(sij + sji)2

= c′(Ai)

)
⇒ sij =

2c′(Aj)

(c′(Ai) + c′(Aj))2
(11)

Using (11) equality we can express sufficient conditions for stability of the net-

work in terms of the total spending in the eqilibrium, that is we have that a

complete k-partite network will be stable when for any contest gij we have:

2
c′(Aj)− c′(Ai)
c′(Aj) + c′(Ai)

> c(Ai)− c
(

2c′(Aj)

(c′(Ai) + c′(Aj))2

)
Let us consider a particular example of complete bipartite network. Note

that in this case (due to symmetry) agents will play the same strategy in every

contest gij they are involved in. Then all the contest gij will result with positive

net payoff iff members of the larger partition have a (total) positive payoff in

equilibrium. Denote the two partitions with X and Y , and sizes of partitions

with x and y respectively, and let x > y. Then total efforts of members of two

partitions can be written as AX = ysX and AY = xsY , where si, i ∈ {X, Y } is

the equilibrium effort level in each particular contest of members of partition i.

Using (11) we get that:

πX(sX , sY ) > 0⇔ y
c′(AY )− c′(AX)

c′(AY ) + c′(AX)
− c(AX) > 0⇔ c′(AY )

c′(AX)
>
y + c(AX)

y − c(AY )
(12)

With cost function c(x) = 1
2
x2, sX =

√ √
x

√
y(
√
x+
√
y)

2

Payoff of an agent from partition X is then:

πX(sX , sY ) = b
sX − sY
sX + sY

− (bsX)2 =
x
(
x− y −√xy

)
√
x+
√
y

(13)

10To simplify calculations we consider the case r → 0
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and from here

πX(sX , sY ) > 0⇔ x > y

(
3 +
√

5

2

)
(14)

We have proved the following proposition:

Proposition 5. For c(x) = 1
2
x2 and φ(x) = x a complete bipartite network will

be stable when x > y
(

3+
√
5

2

)
where x and y are sizes of partitions.

Payoff of players in the larger partition will be increasing in the number

of members of own partition, and increasing in the number of players in the

smaller partition for b ≤ b
6

(
14 +

3
√

1475 + 8
√

41 +
3
√

1475− 8
√

41
)
≈ 6.07b,

and decreasing otherwise. There are two effects on payoff of members of larger

partition when increasing the number of players in the smaller partition. The first

one is that the contests become more costly, as the members of smaller partition

become ’stronger’. The second effect is that there are more opportunities to

extract rents. Depending on which effect dominates, payoff of an agent from

larger partition will increase or decease with the size of partition.

6 Action adjustment process

As we have discussed in the section 3, after network structure is changed, players

update their strategies in a myopic way until the actions equilibrium on the new

networks is reached.In this section we describe this process and prove the it’s

global stability property. The actions adjustment process is defined as follows:

dsi
dt

= α∇iπi(s), α > 0, i = 1, .., n (15)

where πi(s) = πi(s1, s2, ..., si, ...sn) and ∇iπi(s) =
(
∂πi
∂si1

∂πi
∂si1

... ∂πi
∂sidi

)
is gra-

dient of the payoff function with respect to own strategy. It is clear that Nash

equilibrium is steady state of this dynamics. We prove in what follows that NE

is globally asymptotically stable state of this dynamic system. Let us define

function J :
∏

i[0,M ]di →
∏

i[0,M ]di with:

J(s) =


∇1π1(s)

∇2π2(s)

...

∇nπn(s)

 (16)
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Let us define matrix G as the Jacobian of matrix J with respect to s. We can

write system (16) in more compact form

ṡ = αJ(s) (17)

To prove global stability we need to show that rate of change of ||J || = JJ ′ is

always negative (and equal to 0 in equilibrium). So let us check d
dt
||J ||. We get:

d

dt
JJ ′ = (Gṡ)′J + J ′Gṡ = (J ′G′J + J ′GJ) = J ′(G′ +G)J

where G is he Jacobian of matrix J with respect to s. As proved in (Goodman,

1982) the conditions (i)-(iii) discussed in the proof of Proposition 1 imply that

(G′+G) is negative definite. This implies that d
dt
JJ ′ < 0 which is what we need

to prove.

Thus if every player adjusts his action according adjustment process in (17)

we have that the process converges. The process (16) can be made discrete

without loosing the convergence properties. The discussion from above proves

the following proposition:

Proposition 6. The action adjustment process is globally asymptotically stable

7 Efficiency

It is easy to show that the unique network that maximize total utility of society

is the empty network. This is direct consequence of transferable nature of contest

game as the all rent seeking effort is wasteful. Indeed, total payoff that society

obtains from network G can be expressed as:

U(G) =
∑
i

πi(si, s−i;G) = (18)

=
∑
i

∑
j∈Ni

[
φ(sij)

φ(sij) + φ(sji) + r
− φ(sji)

φ(sij) + φ(sji) + r
− c(Ai)

]
= −

∑
i

c(Ai)

From (18) we have:

Proposition 7. The efficient network is empty network
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8 Final remarks

A player will be stronger in equilibrium if his enemies are weaker(recall that we

refer to the total spending of a node in the equilibrium as strength of a player.).

The enemies a player (his first neighbours) will be weaker if they have stronger

opponents, which are, apart from player i, the second neighbours of player i,

and so on. That is, strong odd order neighbours (can be reached in path of

odd length) will make an agent weaker, while the opposite is true for even order

neighbours. The strength of a node i is thus endogenous, and intuitively can be

understand using the thought experiment from above. If this effect was linear,

the strength of a node would be a global linear centrality measure (like Katz-

Bonacich centrality) but with negative decay factor β. In this model, although

the logic is similar, the strength of a node is a non-linear centrality of a node.

Characterizing this measure is, for this and similar models, a challenging task

for a future.

Replacing transferable contest with a ’classic’ contest (i.e. one in which play-

ers compete to get a larger share of a pie) would not change anything in terms

of existence and uniqueness results for a game on a fixed network. However, as

two types of contest have a different interpretation, the link formation protocol

in the formation model needs to be adjusted. Now it is not clear why should

link destruction be a bilateral decision, if a pie exist independently of contests.

Innovation contest/patent race is a situation which more natural to model in

this way (Baye and Hoppe, 2003). This approach could be naturally extended to

hypergraphs. For example, consider a situation in which there are n firms and m

markets (possible contests) in which firms can innovate. Then a linking strategy

of a firm would be to decide in which of these m contests to participate, creating

a hyperlink to other participants in these contests. The results for existence and

uniqueness will for a fixed hypernetwork will hold if we specify a contest success

function for market k as:

pik =
φ(sik)∑

j∈(Nk) φ(sjk)

where Nk is set of players competing in contest k, pik is the probability with

which i wins the contest k and rest of the notation is analogue.

The extension that we are currently working on is modelling positive links

explicitly, elaborating more on the role of the positive links. The preliminary

results indicate that if the effect of positive links is reducing marginal costs of

effort in contest, the qualitative results of the paper will not change.
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Appendix A

An alternative formulation

Suppose that instead of a general convex cost function, we have the Blotto type

game. That is, each player is endowed with equal amount of resources (time)

and the strategy is how to distribute the resources on different contest. Note

that this also define ’cost’ function to be convex, as resources are free up to some

point and then prohibitively costly.

So, suppose for simplicity
∑

j∈Ni
sij = 1 ∀i, j. Keeping the same CSF we also

have that existence, uniqueness and interiority guaranteed by the (Rosen, 1965)

result. Let λi denotes Lagrange multiplier associated to the budget constraint

for agent i. Then FOC read (setting r = 0 for simplicity):

Consider now two connected players i and j. The first order conditions that

characterize their behaviour in a contest gij are given with (again assuming r is

small so the equilibrium is interior):

(r + 2φ(s∗ji))φ
′(s∗ij)

(r + φ(s∗ij) + φ(s∗ji))
2
− λi = 0

(r + 2φ(s∗ij))φ
′(sji)

∗

(r + φ(s∗ij) + φ(s∗ji))
2
− λj = 0∑

k∈Ni

s∗ik = 1∑
k∈Nj

s∗jk = 1

and from here, we get:

(r + 2φ(s∗ji))φ
′(s∗ij)

(r + 2φ(s∗ij))φ
′(s∗ji)

=
λi
λj

(19)

Thus role of λi is analogous to the role of A∗i . Higher A∗i implied higher

marginal cost of additional unit of effort, and λi is the shadow price of the

resource for player i in this formulation.
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Appendix B

Let us consider the following example to illustrate the complexity of global ef-

fects in the network.

1

2

3

4

5

6

Calculating the equilibrium action (using the action adjustment proceess al-

gorithm based on the results from section()) we get that matrix of the equilbrium

efforts S is given with:

S =



0 0.289 0.289 0.286 0 0

0.292 0 0.292 0 0 0.269

0.289 0.289 0 0 0.286 0

0.350 0 0 0 0.354 0

0 0 0.350 0.354 0 0

0 0.479 0 0 0 0


And the assigned payoffs are:

π = (−0.854,−0.999,−0.854,−0.395,−0.395, 0.050)

Deleting link g13 we get a network with

1

2

3

4

5

6
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and

S̄ =



0 0.351 0 0.354 0 0

0.290 0 0.290 0 0 0.270

0 0.351 0 0 0.354 0

0.353 0 0 0 0.353 0

0 0 0.353 0.353 0 0

0 0.480 0 0 0 0


and payoffs

π = (−0.402,−1.193,−0.402,−0.501,−0.501, 0.048)
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