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Abstract

We investigate the role of manipulation in a model of opinion formation.

Agents repeatedly communicate with their neighbors in the social network,

can exert effort to manipulate the trust of others, and update their opinions

about some common issue by taking weighted averages of neighbors’ opinions.

The incentives to manipulate are given by the agents’ preferences. We show

that manipulation can modify the trust structure and lead to a connected

society. Manipulation fosters opinion leadership, but the manipulated agent

may even gain influence on the long-run opinions. Finally, we investigate the

tension between information aggregation and spread of misinformation.
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Consensus; Wisdom of crowds.
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1 Introduction

Individuals often rely on social connections (friends, neighbors and coworkers as well

as political actors and news sources) to form beliefs or opinions on various economic,

political or social issues. Every day individuals make decisions on the basis of these

beliefs. For instance, when an individual goes to the polls, her choice to vote for one

of the candidates is influenced by her friends and peers, her distant and close family
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members, and some leaders that she listens to and respects. At the same time, the

support of others is crucial to enforce interests in society. In politics, majorities are

needed to pass laws and in companies, decisions might be taken by a hierarchical

superior. It is therefore advantageous for individuals to increase their influence

on others and to manipulate the way others form their beliefs. This behavior is

often referred to as lobbying and widely observed in society, especially in politics.1

Hence, it is important to understand how beliefs and behaviors evolve over time

when individuals can manipulate the trust of others. Can manipulation enable a

segregated society to reach a consensus about some issue of broad interest? How

long does it take for beliefs to reach consensus when agents can manipulate others?

Can manipulation lead a society of agents who communicate and update näıvely to

more efficient information aggregation?

We consider a model of opinion formation where agents repeatedly communicate

with their neighbors in the social network, can exert some effort to manipulate the

trust of others, and update their opinions taking weighted averages of neighbors’

opinions. At each period, first one agent is selected randomly and can exert effort to

manipulate the social trust of an agent of her choice. If she decides to provide some

costly effort to manipulate another agent, then the manipulated agent weights rela-

tively more the belief of the agent who manipulated her when updating her beliefs.

Second, all agents communicate with their neighbors and update their beliefs using

the DeGroot updating rule, see DeGroot (1974). This updating process is simple:

using her (possibly manipulated) weights, an agent’s new belief is the weighted aver-

age of her neighbors’ beliefs (and possibly her own belief) from the previous period.

When agents have no incentives to manipulate each other, the model coincides with

the classical DeGroot model of opinion formation.

The DeGroot updating rule assumes that agents are boundedly rational, failing

to adjust correctly for repetitions and dependencies in information that they hear

multiple times. Since social networks are often fairly complex, it seems reasonable

to use an approach where agents fail to update beliefs correctly.2 Chandrasekhar

et al. (2012) provide evidence from a framed field experiment that DeGroot “rule

of thumb” models best describe features of empirical social learning. They run a

unique lab experiment in the field across 19 villages in rural Karnataka, India, to

discriminate between the two leading classes of social learning models – Bayesian

1See Gullberg (2008) for lobbying on climate policy in the European Union, and Austen-Smith

and Wright (1994) for lobbying on US Supreme Court nominations.
2Choi et al. (2012) report an experimental investigation of learning in three-person networks and

find that already in simple three-person networks people fail to account for repeated information.

They argue that the Quantal Response Equilibrium (QRE) model can account for the behavior

observed in the laboratory in a variety of networks and informational settings.
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learning models versus DeGroot models.3 They find evidence that the DeGroot

model better explains the data than the Bayesian learning model at the network

level.4 At the individual level, they find that the DeGroot model performs much

better than Bayesian learning in explaining the actions of an individual given a

history of play.5

Manipulation is modeled as a communicative or interactional practice, where the

manipulating agent exercises some control over the manipulated agent against her

will. In this sense, manipulation is illegitimate, see Van Dijk (2006). Agents only

engage in manipulation if it is worth the effort. They face a trade-off between their

increase in satisfaction with the opinions (and possibly the trust itself) of the other

agents and the cost of manipulation. In examples, we will frequently use a utility

model where agents prefer each other agent’s opinion one step ahead to be as close

as possible to their current opinion. This reflects the idea that the support of others

is necessary to enforce interests. Agents will only engage in manipulation when

it brings the opinion of the manipulated agent sufficiently closer to their current

opinion compared to the cost of doing so. In our view, this constitutes a natural

way to model lobbying incentives.

We first show that manipulation can modify the trust structure. If the society is

split up into several disconnected clusters of agents and there are also some agents

outside these clusters, then the latter agents might connect different clusters by

manipulating the agents therein. Such an agent, previously outside any of these

clusters, would not only get influential on the agents therein, but also serve as a

bridge and connect them. As we show by means of an example, this can lead to a

connected society, and thus, make the society reaching a consensus.

Second, we analyze the long-run beliefs and show that manipulation fosters opin-

ion leadership in the sense that the manipulating agent always increases her influence

on the long-run beliefs. For the other agents, this is ambiguous and depends on the

social network. Surprisingly, the manipulated agent may thus even gain influence

on the long-run opinions. As a consequence, the expected change of influence on

the long-run beliefs is ambiguous and depends on the agents’ preferences and the

social network. We also show that a definitive trust structure evolves in the society

3Notice that in order to compare the two concepts, they study DeGroot action models, i.e.,

agents take an action after aggregating the actions of their neighbors using the DeGroot updating

rule.
4At the network level (i.e., when the observational unit is the sequence of actions), the Bayesian

learning model explains 62% of the actions taken by individuals while the degree weighting DeGroot

model explains 76% of the actions taken by individuals.
5At the individual level (i.e., when the observational unit is the action of an individual given a

history), both the degree weighting and the uniform DeGroot model largely outperform Bayesian

learning models.
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and, if the satisfaction of agents only depends on the current and future opinions

and not directly on the trust, manipulation will come to an end and they reach a

consensus (under some weak regularity condition). At some point, opinions become

too similar to be manipulated. Furthermore, we discuss the speed of convergence

and note that manipulation can accelerate or slow down convergence. In partic-

ular, in sufficiently homophilic societies, i.e., societies where agents tend to trust

those agents who are similar to them, and where costs of manipulation are rather

high compared to its benefits, manipulation accelerates convergence if it decreases

homophily and otherwise it slows down convergence.

Finally, we investigate the tension between information aggregation and spread

of misinformation. We find that if manipulation is rather costly and the agents un-

derselling their information gain and those overselling their information lose overall

influence (i.e., influence in terms of their initial information), then manipulation re-

duces misinformation and agents converge jointly to more accurate opinions about

some underlying true state. In particular, this means that an agent for whom ma-

nipulation is cheap can severely harm information aggregation.

There is a large and growing literature on learning in social networks. Models

of social learning either use a Bayesian perspective or exploit some plausible rule of

thumb behavior.6 We consider a model of non-Bayesian learning over a social net-

work closely related to DeGroot (1974), DeMarzo et al. (2003), Golub and Jackson

(2010) and Acemoglu et al. (2010). DeMarzo et al. (2003) consider a DeGroot rule

of thumb model of opinion formation and they show that persuasion bias affects

the long-run process of social opinion formation because agents fail to account for

the repetition of information propagating through the network. Golub and Jackson

(2010) study learning in an environment where agents receive independent noisy sig-

nals about the true state and then repeatedly communicate with each other. They

find that all opinions in a large society converge to the truth if and only if the in-

fluence of the most influential agent vanishes as the society grows.7 Acemoglu et al.

(2010) investigate the tension between information aggregation and spread of misin-

formation. They characterize how the presence of forceful agents affects information

aggregation. Forceful agents influence the beliefs of the other agents they meet, but

do not change their own opinions. Under the assumption that even forceful agents

obtain some information from others, they show that all beliefs converge to a stochas-

6Acemoglu et al. (2011) develop a model of Bayesian learning over general social networks, and

Acemoglu and Ozdaglar (2011) provide an overview of recent research on opinion dynamics and

learning in social networks.
7Golub and Jackson (2012) examine how the speed of learning and best-response processes

depend on homophily. They find that convergence to a consensus is slowed down by the presence

of homophily but is not influenced by network density.
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tic consensus. They quantify the extent of misinformation by providing bounds on

the gap between the consensus value and the benchmark without forceful agents

where there is efficient information aggregation.8 Friedkin (1991) studies measures

to identify opinion leaders in a model related to DeGroot. Recently, Büchel et al.

(2012) develop a model of opinion formation where agents may state an opinion

that differs from their true opinion because agents have preferences for conformity.

They find that lower conformity fosters opinion leadership. In addition, the society

becomes wiser if agents who are well informed are less conform, while uninformed

agents conform more with their neighbors.

We go further by allowing agents to manipulate the trust of others and we

find that the implications of manipulation are non-negligible for opinion leadership,

reaching a consensus, and aggregating dispersed information.

The paper is organized as follows. In Section 2 we introduce the model of opinion

formation. In Section 3 we show how manipulation can change the trust structure

of society. Section 4 looks at the long-run effects of manipulation. In Section 5 we

investigate how manipulation affects the extent of misinformation in society. Section

6 concludes. The proofs are presented in Appendix A.

2 Model and Notation

Let N = {1, 2, . . . , n} be the set of agents who have to take a decision on some

issue and repeatedly communicate with their neighbors in the social network. Each

agent i ∈ N has an initial opinion or belief xi(0) ∈ R about the issue and an initial

vector of social trust mi(0) = (mi1(0),mi2(0), . . . ,min(0)), with 0 ≤ mij(0) ≤ 1 for

all j ∈ N and
∑

j∈N mij(0) = 1, that captures how much attention agent i pays

(initially) to each of the other agents. More precisely, mij(0) is the initial weight

or trust that agent i places on the current belief of agent j in forming her updated

belief. For i = j, mii(0) can be interpreted as how much agent i is confident in her

own initial opinion.

At period t ∈ N, the agents’ beliefs are represented by the vector x(t) = (x1(t),

x2(t), . . . , xn(t))′ ∈ Rn and their social trust by the matrix M(t) = (mij(t))i,j∈N .9

First, one agent is chosen (probability 1/n for each agent) to meet and to have the

opportunity to manipulate an agent of her choice. If agent i ∈ N is chosen at t, she

can decide which agent j to meet and furthermore how much effort α ≥ 0 she would

like to exert on j. We write E(t) = (i; j, α) when agent i is chosen to manipulate at

8In contrast to the averaging model, Acemoglu et al. (2010) have a model of pairwise interac-

tions. Without forceful agents, if a pair meets two periods in a row, then in the second meeting

there is no information to exchange and no change in beliefs takes place.
9We denote the transpose of a vector (matrix) x by x′.
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t and decides to exert effort α on j. The decision of agent i leads to the following

updated trust weights of agent j:

mjk(t+ 1) =

{
mjk(t)/ (1 + α) if k 6= i

(mjk(t) + α) / (1 + α) if k = i
.

The trust of j in i increases with the effort i invests and all trust weights of j are

normalized. Notice that we assume for simplicity that the trust of j in an agent

other than i decreases by the factor 1/(1 + α), i.e., the absolute decrease in trust is

proportional to its level. If i decides not to invest any effort, the trust matrix does not

change. We denote the resulting updated trust matrix by M(t+1) = [M(t)](i; j, α).

Agent i decides on which agent to meet and on how much effort to exert according

to her utility function

ui
(
M(t), x(t); j, α

)
= vi

(
[M(t)](i; j, α), x(t)

)
− ci(j, α),

where vi
(
[M(t)](i; j, α), x(t)

)
represents her satisfaction with the other agents’ opin-

ions and trust resulting from her decision (j, α) and ci(j, α) represents its cost. We

assume that vi is continuous in all arguments and that for all j 6= i, ci(j, α) is strictly

increasing in α ≥ 0, continuous and strictly convex in α > 0, and that ci(j, 0) = 0.

Note that these conditions ensure that there is always an optimal level of effort α∗(j)

given agent i decided to manipulate j.10 Agent i’s optimal choice is then (j∗, α∗(j∗))

such that j∗ ∈ argmaxj 6=i ui
(
M(t), x(t); j, α∗(j)

)
.

Secondly, all agents communicate with their neighbors and update their beliefs

using the updated trust weights:

x(t+ 1) = [x(t)](i; j, α) = M(t+ 1)x(t) = [M(t)](i; j, α)x(t).

In the sequel, we will often simply write x(t + 1) and omit the dependence on the

agent selected to manipulate and her choice (j, α). We can rewrite this equation as

x(t+ 1) = M(t+ 1)x(0), where M(t+ 1) = M(t+ 1)M(t) · · ·M(1) (and M(t) = In

for t < 1, where In is the n× n identity matrix) denotes the overall trust matrix.

Now, let us give some examples of satisfaction functions that fulfill our assump-

tions.

Example 1 (Satisfaction functions).

10Note that for all j, vi(M(i; j, α), x) is continuous in α and bounded from above since vi(·, x) is

bounded from above on the compact set [0, 1]n×n for all x ∈ Rn. In total, the utility is continuous

in α > 0 and since the costs are strictly increasing and strictly convex in α > 0, there always exists

an optimal level of effort, which might not be unique, though.
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(i) Let γ ∈ N and

vi
(
[M(t)](i; j, α), x(t)

)
= − 1

n− 1

∑
k 6=i

(
xi(t)−

(
M(t+ 1)γ x(t)

)
k

)2
,

where M(t+1) = [M(t)](i; j, α). That is, agent i’s objective is that each other

agent’s opinion γ periods ahead is as close as possible to her current opinion,

disregarding possible manipulations in future periods.

(ii)

vi
(
[M(t)](i; j, α), x(t)

)
= −

(
xi(t)−

1

n− 1

∑
k 6=i

xk(t+ 1)

)2

,

where xk(t + 1) =
(
[M(t)](i; j, α)x(t)

)
k
. That is, agent i wants to be close to

the average opinion in society one period ahead, but disregards differences on

the individual level.

We will frequently choose in examples the first satisfaction function with param-

eter γ = 1, together with a cost function that combines fixed costs and quadratic

costs of effort.

Remark 1. If we choose satisfaction functions vi ≡ v for some constant v and all

i ∈ N , then agents do not have any incentive to exert effort and our model reverts

to the classical model of DeGroot (1974).

We now introduce the notion of consensus. Whether or not a consensus is reached

in the limit depends generally on the initial opinions.

Definition 1 (Consensus). We say that a group of agents G ⊆ N reaches a con-

sensus given initial opinions (xi(0))i∈N , if there exists x(∞) ∈ R such that

lim
t→∞

xi(t) = x(∞) for all i ∈ G.

3 The Trust Structure

We investigate how manipulation can modify the structure of interaction or trust in

society. We first shortly recall some graph-theoretic terminology.11 We call a group

of agents C ⊆ N minimal closed at period t if these agents only trust agents inside

the group, i.e.,
∑

j∈Cmij(t) = 1 for all i ∈ C, and if this property does not hold for

a proper subset C ′ ( C. The set of minimal closed groups at period t is denoted

C(t) and is called the trust structure. A walk at period t of length K is a sequence

11See Golub and Jackson (2010).
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of agents i1, i2, . . . , iK+1 such that mik,ik+1
(t) > 0 for all k = 1, 2, . . . , K. A walk is

a path if all agents are distinct. A cycle is a walk that starts and ends in the same

agent. A cycle is simple if only the starting agent appears twice in the cycle. We say

that a minimal closed group of agents C ∈ C(t) is aperiodic if the greatest common

divisor12 of the lengths of simple cycles involving agents from C is 1.13 Note that

this is fulfilled if mii(t) > 0 for some i ∈ C.

At each period t, we can decompose the set of agents N into minimal closed

groups and agents outside these groups, the rest of the world, R(t):

N =
⋃

C∈C(t)

C ∪R(t).

Within minimal closed groups, all agents interact indirectly with each other, i.e.,

there is a path between any two agents. We say that the agents are strongly con-

nected. For this reason, minimal closed groups are also called strongly connected

and closed groups, see Golub and Jackson (2010). Moreover, agent i ∈ N is part of

the rest of the world R(t) if and only if there is a path at period t from her to some

agent in a minimal closed group C 63 i.
We say that a manipulation at period t does not change the trust structure if

C(t + 1) = C(t). It also implies that R(t + 1) = R(t). We find that manipulation

changes the trust structure when the manipulated agent belongs to a minimal closed

group and additionally the manipulating agent does not belong to this group, but

may well belong to another minimal closed group. In the latter case, the group of

the manipulated agent is disbanded since it is not anymore closed and its agents

join the rest of the world. However, if the manipulating agent does not belong to a

minimal closed group, the effect on the group of the manipulated agent depends on

the trust structure. Apart from being disbanded, it can also be the case that the

manipulating agent and possibly others from the rest of the world join the group of

the manipulated agent.

Proposition 1. Suppose that E(t) = (i; j, α), α > 0, at period t.

(i) Let i ∈ N , j ∈ R(t) or i, j ∈ C ∈ C(t). Then, the trust structure does not

change.

(ii) Let i ∈ C ∈ C(t) and j ∈ C ′ ∈ C(t)\{C}. Then, C ′ is disbanded, i.e.,

C(t+ 1) = C(t)\{C ′}.

(iii) Let i ∈ R(t) and j ∈ C ∈ C(t).

12For a set of integers S ⊆ N, gcd(S) = max {k ∈ N | m/k ∈ N for all m ∈ S} denotes the great-

est common divisor.
13Note that if one agent in a simple cycle is from a minimal closed group, then so are all.
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(a) Suppose that there exists no path from i to k for any k ∈ ∪C′∈C(t)\{C}C ′.
Then, R′ ∪ {i} joins C, i.e.,

C(t+ 1) = C(t)\{C} ∪ {C ∪R′ ∪ {i}},

where R′ = {l ∈ R(t)\{i} | there is a path from i to l}.

(b) Suppose that there exists C ′ ∈ C(t)\{C} such that there exists a path from

i to some k ∈ C ′. Then, C is disbanded.

All proofs can be found in Appendix A. The following example shows that

manipulation can enable a society to reach a consensus due to changes in the trust

structure.

Example 2 (Consensus due to manipulation). Take N = {1, 2, 3} and assume that

ui
(
M(t), x(t); j, α

)
= −1

2

∑
k 6=i

(
xi(t)− xk(t+ 1)

)2 − (α2 + 1/10 · 1{α>0}(α)
)

for all i ∈ N . Notice that the first part of the utility is the satisfaction function in

Example 1 part (i) with parameter γ = 1, while the second part, the costs of effort,

combines fixed costs, here 1/10, and quadratic costs of effort. Let x(0) = (10, 5,−5)′

be the vector of initial opinions and

M(0) =

.8 .2 0

.4 .6 0

0 0 1


be the initial trust matrix. Hence, C(0) = {{1, 2}, {3}}. Suppose that first agent

1 and then agent 3 are drawn to meet another agent. Then, at period 0, agent 1’s

optimal decision is to exert α = 2.5414 effort on agent 3. The trust of the latter is

updated to

m3(1) = (.72, 0, .28) ,

while the others’ trust does not change, i.e., mi(1) = mi(0) for i = 1, 2, and the

updated opinions become

x(1) = M(1)x(0) = (9, 7, 5.76)′ .

Notice that the group of agent 3 is disbanded (see part (ii) of Proposition 1). In the

next period, agent 3’s optimal decision is to exert α = .75 effort on agent 1. This

results in the following updated trust matrix:

M(2) =

.46 .11 .43

.4 .6 0

.72 0 .28

 .

14Stated values are rounded to two decimals for clarity reasons.
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Notice that agent 3 joins group {1, 2} (see part (iii,a) of Proposition 1) and therefore,

N is minimal closed, which implies that the group will reach a consensus, as we will

see later on.

However, notice that if instead of agent 3 another agent is drawn in period 1, then

agent 3 never manipulates since when finally she would have the opportunity, her

opinion is already close to the others’ opinions and therefore, she stays disconnected

from them. Nevertheless, the agents would still reach a consensus in this case due to

the manipulation at period 0. Since agent 3 trusts agent 1, she follows the consensus

that is reached by the first two agents.

4 The Long-Run Dynamics

We now look at the long-run effects of manipulation. First, we study the conse-

quences of a single manipulation on the long-run opinions of minimal closed groups.

In this context, we are interested in the role of manipulation in opinion leadership.

Secondly, we investigate the outcome of the influence process. Finally, we discuss

how manipulation affects the speed of convergence of minimal closed groups and

illustrate our results by means of an example.

4.1 Opinion Leadership

Typically, an agent is called opinion leader if she has substantial influence on the

long-run beliefs of a group. That is, if she is among the most influential agents

in the group. Intuitively, manipulating others should increase her influence on the

long-run beliefs and thus foster opinion leadership.

To investigate this issue, we need a measure for how remotely agents are located

from each other in the network, i.e., how directly agents trust other agents. For this

purpose, we can make use of results from Markov chain theory. Let (X
(t)
s )∞s=0 denote

the homogeneous Markov chain induced by the transition matrix M(t). The agents

are then interpreted as states of the Markov chain and the trust of i in j, mij(t), is

interpreted as the transition probability from state i to state j. Then, the mean first

passage time from state i to state j is defined as E[inf{s ≥ 0 | X(t)
s = j} | X(t)

0 = i].

Given the current state of the Markov chain is i, the mean first passage time to j is

the expected time it takes for the chain to reach state j.

In other words, the mean first passage time from i to j corresponds to the average

(expected) length of a random walk on the weighted network M(t) from i to j that

takes each link with probability equal to the assigned weight.15 This average length

15More precisely, it is a random walk on the state space N that, if currently in state k, travels

to state l with probability mkl(t). The length of this random walk to j is the time it takes for it
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is small if the weights along short paths from i to j are high, i.e., if agent i trusts

agent j rather directly. We therefore call this measure weighted remoteness of j

from i.

Definition 2 (Weighted remoteness). Take i, j ∈ N , i 6= j. The weighted remote-

ness at period t of agent j from agent i is given by

rij(t) = E[inf{s ≥ 0 | X(t)
s = j} | X(t)

0 = i],

where (X
(t)
s )∞s=0 is the homogeneous Markov chain induced by M(t).

The following remark shows that the weighted remoteness attains its minimum

when i trusts solely j.

Remark 2. Take i, j ∈ N , i 6= j.

(i) rij(t) ≥ 1,

(ii) rij(t) < +∞ if and only if there is a path from i to j, and, in particular, if

i, j ∈ C ∈ C(t),

(iii) rij(t) = 1 if and only if mij(t) = 1.

To provide some more intuition, let us look at an alternative (implicit) formula

for the weighted remoteness. Suppose that i, j ∈ C ∈ C(t) are two distinct agents in

a minimal closed group. By part (ii) of Remark 2, the weighted remoteness is finite

for all pairs of agents in that group. The unique walk from i to j with (average)

length 1 is assigned weight (or has probability, when interpreted as a random walk)

mij(t). And the average length of walks to j that first pass through k ∈ C\{j} is

rkj(t) + 1, i.e., walks from i to j with average length rkj(t) + 1 are assigned weight

(have probability) mik(t). Thus,

rij(t) = mij(t) +
∑

k∈C\{j}

mik(t)(rkj(t) + 1) .

Finally, applying
∑

k∈Cmik(t) = 1 leads to the following remark.

Remark 3. Take i, j ∈ C ∈ C(t), i 6= j. Then,

rij(t) = 1 +
∑

k∈C\{j}

mik(t)rkj(t).

to reach state j.
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Note that computing the weighted remoteness using this formula amounts to

solving a linear system of |C|(|C| − 1) equations, which has a unique solution.

We denote by π(C; t) the probability vector of the agents’ influence on the final

consensus of their group C ∈ C(t) at period t, given that the group is aperiodic and

the trust matrix does not change any more.16 In this case, the group converges to

x(∞) = π(C; t)′ x(t)|C =
∑
i∈C

πi(C; t)xi(t),

where x(t)|C = (xi(t))i∈C is the restriction of x(t) to agents in C. In other words,

πi(C; t), i ∈ C, is the influence weight of agent i’s opinion at period t, xi(t), on

the consensus of C. Notice that the influence vector π(C; t) depends on the trust

matrix M(t) and therefore it changes with manipulation. A higher value of πi(C; t)

corresponds to more influence of agent i on the consensus. Each agent in a minimal

closed group has at least some influence on the consensus: πi(C; t) > 0 for all

i ∈ C.17

We now turn back to the long-run consequences of manipulation and thus, opin-

ion leaders. We restrict our analysis to the case where both the manipulating and

the manipulated agent are in the same minimal closed group. Since in this case the

trust structure is preserved we can compare the influence on the long-run consensus

of the group before and after manipulation.

Proposition 2. Suppose that at period t, group C ∈ C(t) is aperiodic and E(t) =

(i; j, α), i, j ∈ C. Then, aperiodicity is preserved and the influence of agent k ∈ C
on the final consensus of her group changes as follows,

πk(C; t+ 1)− πk(C; t) ={
α/(1 + α)πi(C; t)πj(C; t+ 1)

∑
l∈C\{i}mjl(t)rli(t) if k = i

α/(1 + α)πk(C; t)πj(C; t+ 1)
(∑

l∈C\{k}mjl(t)rlk(t)− rik(t)
)

if k 6= i
.

Corollary 1. Suppose that at period t, group C ∈ C(t) is aperiodic and E(t) =

(i; j, α), i, j ∈ C. If α > 0, then

(i) agent i strictly increases her long-run influence, πi(C; t+ 1) > πi(C; t),

(ii) any other agent k 6= i of the group can either gain or lose influence, depending

on the trust matrix. She gains if and only if∑
l∈C\{k,i}

mjl(t)
(
rlk(t)− rik(t)

)
> mjk(t)rik(t),

16In the language of Markov chains, π(C; t) is known as the unique stationary distribution of

the aperiodic communication class C. Without aperiodicity, the class might fail to converge to

consensus.
17See Golub and Jackson (2010).
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(iii) agent k 6= i, j loses influence for sure if j trusts solely her, i.e., mjk(t) = 1.

Proposition 2 tells us that the change in long-run influence for any agent k

depends on the effort agent i exerts to manipulate agent j, agent k’s current long-

run influence and the future long-run influence of the manipulated agent j. In

particular, the magnitude of the change increases with i’s effort, and it is zero if

agent i does not exert any effort. Furthermore, notice that dividing both sides

by agent k’s current long-run influence, πk(C; t), yields the relative change in her

long-run influence.

When agent k = i, we find that this change is strictly positive whenever she

exerts some effort. In this sense, manipulation fosters opinion leadership. It is large

if the weighted remoteness of i from agents (other than i) that are significantly

trusted by j is large. To understand this better, notice that the long-run influence

of an agent depends on how much she is trusted by agents that are trusted. Or, in

other words, an agent is influential if she is influential on other influential agents.

Thus, there is a direct gain of influence due to an increase of trust from j and an

indirect loss of influence (that is always dominated by the direct gain) due to a

decrease of trust from j faced by agents that (indirectly) trust i. This explains why

it is better for i if agents facing a large decrease of trust from j (those trusted much

by j) do not (indirectly) trust i much, i.e., i has a large weighted remoteness from

them.

For any other agent k 6= i, it turns out that the change can be positive or

negative. It is positive if, broadly speaking, j does not trust k a lot, the weighted

remoteness of k from i is small and furthermore the weighted remoteness of k from

agents (other than i) that are significantly trusted by j is larger than that from

i. In other words, it is positive if the manipulating agent, who gains influence for

sure, (indirectly) trusts agent k significantly (small weighted remoteness of k from

i), k does not face a large decrease of trust from j and those agents facing a large

decrease from j (those trusted much by j) (indirectly) trust k less than i does.

Notice that for any agent k 6= i, j, this is a trade-off between an indirect gain

of trust due to the increase of trust that i obtains from j, on the one hand, and

an indirect loss of influence due to a decrease of trust from j faced by agents that

(indirectly) trust k as well as the direct loss of influence due to a decrease of trust

from j, on the other hand. In the extreme case where j only trusts k, the direct loss

of influence dominates the indirect gain of influence for sure.

In particular, it means that even the manipulated agent j can gain influence. In

a sense, such an agent would like to be manipulated because she trusts the “wrong”

agents. For agent j, being manipulated is positive if her weighted remoteness from

agents she trusts significantly is large and furthermore, her weighted remoteness

13



from i is small. Hence, it is positive if the manipulating agent (indirectly) trusts her

significantly (small weighted remoteness from i) and agents facing a large decrease

of trust from her (those she trusts) do not (indirectly) trust her much. Here, the

trade-off is between the indirect gain of trust due to the increase of trust that i

obtains from her and the indirect loss of influence due to a decrease of trust from

her faced by agents that (indirectly) trust her. Note that the gain of influence is

particularly large if the manipulating agent trusts j significantly.

The next example shows that indeed in some situations an agent can gain from

being manipulated in the sense that her influence on the long-run beliefs increases.

Example 3 (Being manipulated can increase influence). Take N = {1, 2, 3} and

assume that

M(0) =

.25 .25 .5

.5 .5 0

.4 .5 .1


is the initial trust matrix. Notice that N is minimal closed. Suppose that agent

1 has the opportunity to meet another agent and decides to exert effort α > 0 on

agent 3. Then, from Proposition 2, we get

π3(N ; 1)− π3(N ; 0) =
α

1 + α
π3(N ; 0)π3(N ; 1)

∑
l=1,2

m3l(0)rl3(0)− r13(0)

=
α

1 + α
π3(N ; 0)π3(N ; 1)

7

10
> 0,

since π3(N ; 0), π3(N ; 1) > 0. Hence, being manipulated by agent 1 increases agent

3’s influence on the long-run beliefs. The reason is that, initially, she trusts too

much agent 2 – an agent that does not trust her at all. She gains influence from

agent 1’s increase of influence on the long-run beliefs since this agent trusts her.

In other words, after being manipulated she is trusted by an agent that is trusted

more.

Furthermore, we can use Proposition 2 to compare the expected influence on the

long-run consensus of society before and after manipulation when all agents are in

the same minimal closed group.18 For this result we need to slightly change our

notation. We denote the decision of agent i ∈ N when she is selected to meet

another agent by
(
j(i), α(i; j(i))

)
, i.e., agent i decides to exert effort α(i; j(i)) on

agent j(i).

18Notice that if not all agents are in the same minimal closed group, then the group in question

could be disbanded with some probability and hence would not anymore reach a consensus.
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Corollary 2. Suppose that at period t, C(t) = {N} and that N is aperiodic. Then,

aperiodicity is preserved and, in expectation, the influence of agent k ∈ N on the

final consensus of the society changes as follows from period t to t+ 1,

E[πk(N ; t+ 1)− πk(N ; t) | M(t), x(t)] =

πk(N ; t)

n

[∑
i∈N

(
α(i; j(i))

1 + α(i; j(i))
πj(i)(N ; t+ 1)

∑
l 6=k

mj(i)l(t)rlk(t)

)
−

∑
i 6=k

α(i; j(i))

1 + α(i; j(i))
πj(i)(N ; t+ 1)rik(t)

]
.

Notice that an agent gains long-run influence in expectation if and only if the

term in the square brackets is positive. For this to hold, it is necessary that

α(i; j(i)) > 0 for some i ∈ N at period t. Moreover, it follows from Corollary

1 part (i) that α(k; j(k)) > 0 and α(i; j(i)) = 0 for all i 6= k at period t (i.e., only

agent k would manipulate if she was selected at t) is a sufficient condition for that

she gains influence in expectation. The reason is that agent k gains influence for sure

when she manipulates herself, and since no other agent manipulates when selected,

she gains in expectation. Notice that by dividing both sides by agent k’s current

long-run influence, πk(C; t), we get the expected relative change in her long-run

influence.

4.2 Convergence

We now determine where the process finally converges to. First, we look at the case

where all agents are in the same minimal closed group. Given the group is aperiodic,

we show that if the satisfaction level only depends on the opinions (before and after

manipulation), i.e., a change in trust that does not affect opinions does not change

the satisfaction of an agent, and if there is a fixed cost for exerting effort, then

manipulation comes to an end, eventually. At some point, opinions in the society

become too similar to be manipulated. Second, we determine the final consensus

the society converges to.

Lemma 1. Suppose that C(0) = {N} and that N is aperiodic. If for all i, j ∈ N
and α > 0,

(i) vi
(
M(i; j, α), x

)
− vi

(
M(i; j, 0), x

)
→ 0 if ‖x(i; j, α)− x(i; j, 0)‖ → 0, and

(ii) ci(j, α) ≥ c > 0,

then, there exists an almost surely finite stopping time τ such that from period t = τ
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on there is no more manipulation, where ‖·‖ is any norm on Rn.19 The society

converges to the random variable

x(∞) = π(N ; τ)′ M(τ − 1) x(0).

Now, we turn to the general case of any trust structure. We show that after

a finite number of periods, the trust structure settles down. Then, it follows from

the above result that, under the beforementioned conditions, manipulation within

the minimal closed groups that have finally been formed comes to an end. We also

determine the final consensus opinion of each aperiodic minimal closed group.

Proposition 3.

(i) There exists an almost surely finite stopping time τ such that for all t ≥ τ ,

C(t) = C(τ).

(ii) If C ∈ C(τ) is aperiodic and for all i, j ∈ C, α > 0,

(1) vi
(
M(i; j, α), x

)
−vi

(
M(i; j, 0), x

)
→ 0 if ‖x(i; j, α)−x(i; j, 0)‖ → 0, and

(2) ci(j, α) ≥ c > 0,

then, there exists an almost surely finite stopping time τ̂ ≥ τ such that at all

periods t ≥ τ̂ , agents in C are not manipulated. Moreover, they converge to

the random variable

x(∞) = π(C; τ̂)′ M(τ̂ − 1)|C M(τ̂ − 2)|C · · ·M(1)|C x(0)|C .

In what follows we use τ and τ̂ in the above sense. We denote by πi(C; t) the

overall influence of agent i’s initial opinion on the consensus of group C at period

t given no more manipulation affecting C takes place. The overall influence is

implicitly given by Proposition 3.

Corollary 3. The overall influence of the initial opinion of agent i ∈ N on the

consensus of an aperiodic group C ∈ C(τ) is given by

πi(C; τ̂) =

{ (
π(C; τ̂)′ M(τ̂ − 1)|C M(τ̂ − 2)|C · · ·M(1)|C

)
i

if i ∈ C
0 if i /∈ C

.

It turns out that an agent outside a minimal closed group that has finally formed

can never have any influence on its consensus opinion.

19In our context, this means that τ is a random variable such that the event τ = t only depends

on which agents were selected to meet another agent at periods 1, 2, . . . , t, and furthermore τ is

almost surely finite, i.e., the event τ < +∞ has probability 1.
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4.3 Speed of Convergence

We have seen that within an aperiodic minimal closed group C ∈ C(t) agents reach a

consensus given that the trust structure does not change anymore. This means that

their opinions converge to a common opinion. By speed of convergence we mean the

time that this convergence takes. That is, it is the time it takes for the expression

|xi(t)− xi(∞)|

to become small. It is well known that this depends crucially on the second largest

eigenvalue λ2(C; t) of the trust matrix M(t)|C , where M(t)|C = (mij(t))i,j∈C denotes

the restriction of M(t) to agents in C. Notice that M(t)|C is a stochastic matrix

since C is minimal closed. The smaller the eigenvalue in absolute value, the faster

the convergence to consensus (see Jackson, 2008).

Thus, the change in the second largest eigenvalue due to manipulation tells

us whether the speed of convergence has increased or decreased. In this context,

the concept of homophily is important, that is, the tendency of people to interact

relatively more with those people who are similar to them.20

Definition 3 (Homophily). The homophily of a group of agents G ⊆ N at period

t is defined as

Hom(G; t) =
1

|G|

∑
i,j∈G

mij(t)−
∑

i∈G,j /∈G

mij(t)

 .

The homophily of a group of agents is the normalized difference of their trust in

agents inside and outside the group. Notice that a minimal closed group C ∈ C(t) at-

tains the maximum homophily, Hom(C; t) = 1. Consider a cut of society (S,N\S),

S ⊆ N , S 6= ∅, into two groups of agents S and N\S.21 The next lemma establishes

that manipulation across the cut decreases homophily, while manipulation within a

group increases it.

Lemma 2. Take a cut of society (S,N\S). If i ∈ N manipulates j ∈ S at period

t, then

(i) the homophily of S (strictly) increases if i ∈ S (and
∑

k∈Smjk(t) < 1), and

(ii) the homophily of S (strictly) decreases if i /∈ S (and
∑

k∈Smjk(t) > 0).

20Notice that we do not model explicitly the characteristics that lead to homophily.
21There exist many different notions of homophily in the literature. Our measure is similar to

the one used in Golub and Jackson (2012). We can consider the average homophily (Hom(S; t) +

Hom(N\S; t))/2 with respect to the cut (S,N\S) as a generalization of degree-weighted homophily

to general weighted averages.
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Now, we come back to the speed of convergence. Given the complexity of the

problem for n ≥ 3, we consider an example of a two-agent society that suggests that

homophily helps to explain the change in speed of convergence.

Example 4 (Speed of convergence with two agents). Take N = {1, 2} and suppose

that at period t, N is minimal closed and aperiodic. Then, we have that λ2(N ; t) =

m11(t)−m21(t) = m22(t)−m12(t). Therefore, we can characterize the change in the

second largest eigenvalue as follows:

|λ2(N ; t+ 1)| ≤ |λ2(N ; t)| ⇔ |m11(t+ 1)−m21(t+ 1)| ≤ |m11(t)−m21(t)|
⇔ |m22(t+ 1)−m12(t+ 1)| ≤ |m22(t)−m12(t)|.

It means that convergence is faster after manipulation if afterwards agents behave

more similar, i.e., the trust both agents put on agent 1’s opinion is more similar

(which implies that also the trust they put on agent 2’s opinion is more similar).

Thus, if for instance

m22(t) > (1 + α)m12(t), (1)

then agent 1 manipulating agent 2 accelerates convergence. However, if m22(t) <

m12(t), it slows down convergence since manipulation increases the already existing

tendency of opinions to oscillate. The more interesting case is the first one, though.

We can write (1) as

(1 + α)Hom({1}, t) + Hom({2}, t) > α,

that is, manipulation accelerates convergence if there is sufficient aggregated ho-

mophily in the society and agent 1 does not exert too much effort.

The example shows that manipulation can speed up or slow down the convergence

process. More important, it suggests that in a sufficiently homophilic society where

exerting effort is rather costly, manipulation reducing homophily (i.e., across the

cut, see Lemma 2) increases the speed of convergence. Notice that manipulation

increasing homophily (i.e., within one of the groups separated by the cut) is not

possible in this simple setting since both groups are singletons. However, it seems

plausible that it would slow down convergence in homophilic societies.22

4.4 Three-agents Example

Finally, let us consider an example with three agents to illustrate the results of this

section. We use a utility model that is composed of the satisfaction function in

22In the above example, increasing homophily is attained by increasing the weight of an agent

on herself, which leads to an increase of the second largest eigenvalue in sufficiently homophilic

societies.
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Example 1 (i) and a cost function that combines fixed costs and quadratic costs of

effort.

Example 5 (Three-agents society). Take N = {1, 2, 3} and assume that

ui
(
M(t), x(t); j, α

)
= −1

2

∑
k 6=i

(
xi(t)− xk(t+ 1)

)2 − (α2 + 1/10 · 1{α>0}(α)
)

for all i ∈ N . Let x(0) = (10, 5, 1)′ be the vector of initial opinions and

M(0) =

.6 .2 .2

.1 .4 .5

0 .6 .4


be the initial trust matrix. Notice that this society is connected. The vector of

initial long-run influence – and of long-run influence in the classical model without

manipulation – is π(N ; 0) = πcl = (.12, .46, .42)′ and the initial speed of convergence

is measured by λ2(N ; 0) = λ2,cl = .55. At period 0, any agent selected to exert effort

would do so. It is either E(0) = (1; 3, 1.46), (2; 1, .6) or (3; 1, 1.4). In expectation, we

get E[π(N ; 1)] = (.2, .41, .39)′ and E[λ2(N ; 1)] = .21. So, on average agent 1 profits

from manipulation. Since initially the other agents almost did not listen to her and

also her opinion was far apart from the others’ opinions, she exerts significant effort

when selected. In particular, the society is homophilic: taking the cut ({1}, {2, 3}),
we get

Hom({1}, 0) = .2 and Hom({2, 3}, 0) = .9.

So, since with probability one the manipulation is across the cut, the strong decrease

in the (expected) second largest eigenvalue supports our suggestion from Section 4.3

that manipulation reducing homophily (i.e., across the cut) increases the speed of

convergence.

At the next period, there is only manipulation if at the last period an agent

other than agent 3 was selected to manipulate. In expectation, we get E[π(N ; 2)] =

(.22, .41, .38)′ and E[λ2(N ; 2)] = .17. Again, agent 1 profits on average from ma-

nipulation, but only slightly since opinions are already closer and since she is not

as isolated as in the beginning. The convergence gets, on average, slightly faster as

well.

Manipulation ends here, that is, with probability one no agent exerts effort from

period 2 on, i.e M(t) = M(2) for all t ≥ 2. Hence, the expected influence of the

agents’ initial opinions on the consensus is

E[π(N ; 2)′] = E[π(N ; 2)′ M(1)] = E[π(N ; 2)′ M(1)] = (.21, .41, .38).

Thus, the expected consensus that society reaches is

E[x(∞)] = E[π(N ; 2)′]x(0) = 4.53.
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Compared to this, the classical model gives xcl(∞) = π′clx(0) = 3.88 and hence,

our model leads to an average long-run belief of society that is closer to the initial

opinion of agent 1 since she is the one who (on average) gains influence due to

manipulation.

5 The Wisdom of Crowds

We now investigate how manipulation affects the extent of misinformation in society.

In this section, we assume that the society forms one minimal closed and aperiodic

group. Clearly, societies that are not connected fail to aggregate information.23 We

use an approach similar to Acemoglu et al. (2010) and assume that there is a true

state µ = (1/n)
∑

i∈N xi(0) that corresponds to the average of the initial opinions

of the n agents in the society. Information about the true state is dispersed, but

can easily be aggregated by the agents: uniform overall influence on the long-run

beliefs leads to perfect aggregation of information.24 Notice that, in general, agents

cannot infer the true state from the initial information since they only get to know

the information of their neighbors.

At a given period t, the wisdom of the society is measured by the difference

between the true state and the consensus they would reach in case no more manip-

ulation takes place:

π(N ; t)′ x(0)− µ =
∑
i∈N

(
πi(N ; t)− 1

n

)
xi(0).

Hence, ‖π(N ; t) − (1/n)I‖2 measures the extent of misinformation in the society,

where I = (1, 1, . . . , 1)′ ∈ Rn is a vector of 1s and ‖x‖2 =
√∑

k∈N |xk|2 is the

standard Euclidean norm of x ∈ Rn. We say that an agent i undersells (oversells)

her information at period t if πi(N ; t) < 1/n (πi(N ; t) > 1/n). In a sense, an agent

underselling her information is, compared to her overall influence, (relatively) well

informed.

Definition 4 (Extent of misinformation). A manipulation at period t reduces the

extent of misinformation in society if

‖π(N ; t+ 1)− (1/n)I‖2 < ‖π(N ; t)− (1/n)I‖2,

otherwise, it (weakly) increases the extent of misinformation.

23However, as in Example 2, we can observe that manipulation leads to a connected society and

thus such an event can also be viewed as reducing the extent of misinformation in the society.
24We can think of the initial opinions as being drawn independently from some distribution with

mean µ. Then, uniform overall influence leads as well to optimal aggregation, the difference being

that it is not perfect in this case due to the finite number of samples.
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The next lemma describes, given some agent manipulates another agent, the

change in the overall influence of an agent from period t to period t+ 1.

Lemma 3. Suppose that C(0) = {N} and that N is aperiodic. For k ∈ N , at period

t,

πk(N ; t+ 1)− πk(N ; t) =
n∑
l=1

mlk(t)
(
πl(N ; t+ 1)− πl(N ; t)

)
.

In case there is manipulation at period t, the overall influence of the initial

opinion of an agent increases if the agents that overall trust her gain (on average)

influence from the manipulation. Next, we provide conditions ensuring that a ma-

nipulation reduces the extent of misinformation in the society. First, manipulation

should not be too cheap for the agent who is manipulating. Second, only agents

underselling their information should gain overall influence. We say that π(N ; t) is

generic if for all k ∈ N it holds that πk(N ; t) 6= 1/n.

Proposition 4. Suppose that C(0) = {N}, N is aperiodic and that π(N ; t) is

generic. Then, there exists α > 0 such that E(t) = (i; j, α), α > 0, reduces the

extent of misinformation if

(i) α ≤ α, and

(ii)
∑n

l=1mlk(t)
(
πl(N ; t+ 1)− πl(N ; t)

)
≥ 0 if and only if k undersells her infor-

mation at period t.

Intuitively, condition (ii) says that (relatively) well informed agents (those that

undersell their information) should gain overall influence, while (relatively) badly

informed agents (those that oversell their information) should lose overall influence.

Then, this leads to a distribution of overall influence in the society that is more

equal and hence reduces the extent of misinformation in the society – but only

if i does not exert too much effort on j (condition (i)). Otherwise, manipulation

makes some agents too influential, in particular the manipulating agent, and leads

to a distribution of overall influence that is even more unequal than before. In

other words, information aggregation can be severely harmed when for some agents

manipulation is rather cheap.

We now introduce a true state of the world into Example 5. On average, manipu-

lation reduces the extent of misinformation in each period and the society converges

to a more precise consensus.

Example 6 (Three-agents society, cont’d). Recall that N = {1, 2, 3} and that

ui
(
M(t), x(t); j, α

)
= −1

2

∑
k 6=i

(
xi(t)− xk(t+ 1)

)2 − (α2 + 1/10 · 1{α>0}(α)
)
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for all i ∈ N . Furthermore, x(0) = (10, 5, 1)′ and

M(0) =

.6 .2 .2

.1 .4 .5

0 .6 .4

 .

Hence, µ = (1/3)
∑

i∈N xi(0) = 5.33 is the true state. The vector of initial overall

influence is π(N ; 0) = π(N ; 0) = (.12, .46, .42)′. Recall that in expectation, we

obtain E[π(N ; 1)] = E[π(N ; 1)] = (.2, .41, .39)′, E[π(N ; 2)] = (.21, .41, .38)′ and that

there is no more manipulation from period 2 on. Thus,

‖π(N ; 0)− (1/3)I‖2 = .268 > ‖E[π(N ; 1)]− (1/3)I‖2 = .161

> ‖E[π(N ; 2)]− (1/3)I‖2 = .158.

So, in terms of the expected long-run influence, manipulation reduces the extent

of misinformation in society. And indeed, the agents reach the expected consensus

E[x(∞)] = 4.53, which is closer to the true state µ = 5.33 than the consensus they

would have reached in the classical model of DeGroot, xcl(∞) = 3.88.

This confirms the intuition that manipulation has the most bite in the begin-

ning, before potentially misleading opinions have spread. Furthermore, this example

suggests that manipulation can have positive effects on information aggregation if

agents have homogeneous preferences for manipulation.

6 Conclusion

We investigated the role of manipulation in a model of opinion formation where

agents have beliefs about some question of interest and update them taking weighted

averages of neighbors’ opinions. Our analysis focused on the consequences of manip-

ulation for the trust structure and long-run beliefs in the society, including learning.

We showed that manipulation can modify the trust structure and lead to a

connected society, and thus, to consensus. Furthermore, we found that manipulation

fosters opinion leadership in the sense that the manipulating agent always increases

her influence on the long-run beliefs. And more surprisingly, this may even be the

case for the manipulated agent. The expected change of influence on the long-run

beliefs is ambiguous and depends on the agents’ preferences and the social network.

We also showed that the trust structure of the society settles down and, if the

satisfaction of agents does not directly depend on the trust, manipulation will come

to an end and they reach a consensus (under some weak regularity condition). To

obtain insights on the relation of manipulation and the speed of convergence, we pro-

vided examples and argued that in sufficiently homophilic societies where manipula-
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tion is rather costly, manipulation accelerates convergence if it decreases homophily

and otherwise it slows down convergence.

Regarding learning, we were interested in the question whether manipulation is

beneficial or harmful for information aggregation. We used an approach similar to

Acemoglu et al. (2010) and showed that manipulation reduces the extent of misin-

formation in the society if manipulation is rather costly and the agents underselling

their information gain and those overselling their information lose overall influence.

Not surprisingly, agents for whom manipulation is cheap can severely harm infor-

mation aggregation. Furthermore, our main example suggests that homogeneous

preferences for manipulation favor a reduction of the extent of misinformation in

society.

We should notice that manipulation has no bite if we use the approach of Golub

and Jackson (2010). They studied large societies and showed that opinions converge

to the true state if the influence of the most influential agent in the society is

vanishing as the society grows. Under this condition, manipulation does not change

convergence to the true state since its consequences are negligible compared to the

size of the society. In large societies, information is aggregated before manipulation

(and possibly a series of manipulations) can spread misinformation. The only way

manipulation could have consequences for information aggregation in large societies

would be to enable agents to manipulate a substantial proportion of the society

instead of only one agent. Relaxing the restriction to manipulation of a single agent

at a time is left for future work.

We view our paper as first attempt in studying manipulation and misinforma-

tion in society. Our approach incorporated strategic considerations in a model of

opinion formation à la DeGroot. We made several simplifying assumptions and de-

rived results that apply to general societies. We plan to address some of the open

issues in future work, e.g., extending manipulation to groups and allowing for more

sophisticated agents.

A Appendix

Proof of Proposition 1

(i) Follows immediately since all minimal closed groups remain unchanged.

(ii) If agent i manipulates agent j, then mji(t + 1) > 0 and thus, since C ′ 3 j

is minimal closed at period t, there exists a path at t + 1 from l to i for all

l ∈ C ′. Since C is still minimal closed, it follows that R(t + 1) = R(t) ∪ C ′,
i.e., C(t+ 1) = C(t)\{C ′}.
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(iii) (a) If agent i manipulates agent j, then it follows that
∑

l∈C∪{i}mkl(t+1) = 1

for all k ∈ C since C is closed at t. Furthermore, since by assumption

there is no path from i to k for any k ∈ ∪C′∈C(t)\{C}C ′ and by definition

of R′,
∑

l∈C∪R′∪{i}mkl(t + 1) = 1 for all k ∈ R′ ∪ {i}. Hence, it follows

that
∑

l∈C∪R′∪{i}mkl(t+ 1) = 1 for all k ∈ C ∪R′ ∪ {i}, i.e., C ∪R′ ∪ {i}
is closed.

Note that moreover, since by assumption there is no path from i to k for

any k ∈ ∪C′∈C(t)\{C}C ′, there is a path from i to j (otherwise R′∪{i} was

closed at t). Thus, since C is minimal closed and i manipulates j, there

is a path from k to l for all k, l ∈ C ∪ {i} at t + 1. Then, by definition

of R′, there is also a path from k to l for all k ∈ C ∪ {i} and l ∈ R′.

Moreover, again by assumption and definition of R′, there exists a path

from k to l for all k ∈ R′ and all l ∈ C (otherwise a subset of R′ was

closed at t).

Combined, this implies that the same holds for all k, l ∈ C ∪ R′ ∪ {i}.
Hence, C ∪ R′ ∪ {i} is minimal closed, i.e., C(t + 1) = C(t)\{C} ∪ {C ∪
R′ ∪ {i}}.

(b) If agent i manipulates agent j, then mji(t+ 1) > 0 and thus, since C 3 j
is minimal closed at period t, there exists a path at t+1 from l to i for all

l ∈ C. Hence, by assumption there exists a path from agent j to k, but

not vice versa since C ′ 3 k is minimal closed. Thus, R(t+ 1) = R(t)∪C,

which finishes the proof.

Proof of Proposition 2

Suppose w.l.o.g. that C(t) = {N}. First, note that aperiodicity is preserved since

manipulation can only increase the number of simple cycles. We can write

M(t+ 1) = M(t) + ejz(t)′,

where ej is the j-th unit vector, and

zk(t) =

{
(mji(t) + α) / (1 + α)−mji(t) if k = i

(mjk(t)) / (1 + α)−mjk(t) if k 6= i

=

{
α(1−mji(t))/ (1 + α) if k = i

−αmjk(t)/ (1 + α) if k 6= i
.
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From Hunter (2005), we get

πk(N ; t+ 1)− πk(N ; t) = −πk(N ; t)πj(N ; t+ 1)
∑
l 6=k

zl(t)rlk(t)

=

{
α/ (1 + α) πi(N ; t)πj(N ; t+ 1)

∑
l 6=imjl(t)rli(t) if k = i

α/ (1 + α) πk(N ; t)πj(N ; t+ 1)
(∑

l 6=kmjl(t)rlk(t)− rik(t)
)

if k 6= i
,

which finishes the proof.

Proof of Corollary 1

We know that πk(C; t), πk(C; t + 1) > 0 for all k ∈ C. Note that if i manipulates

j, i.e., α > 0, then it must be that mji(t) < 1 since otherwise [M(t)](i; j, α) =

[M(t)](i; j, 0) and thus the agent would not have exerted effort. Thus, by Remark

2,
∑

l∈C\{i}mjl(t)rli(t) > 0 and hence πi(N ; t+ 1) > πi(N ; t), which proves part (i).

Part (ii) is obvious. Part (iii) follows since mjk(t) = 1 implies
∑

l∈C\{k}mjl(t)rlk(t) =

0, which finishes the proof.

Proof of Lemma 1

By Proposition 1, we know that C(t) = {N} for all t ≥ 0, and furthermore, also

aperiodicity is preserved. First, we show that the opinions converge to a consensus

x(∞). Therefore, suppose to the contrary that the opinions (with positive prob-

ability) do not converge. This implies that there exists a periodic trust matrix

M∗ ∈ Rn×n such that for some sequence of agents {i∗(t)}t≥0 chosen to manipulate,

M(t) → M∗ for t → ∞. Denote the decision of i∗(t) at period t by (j∗(t), α∗(t)).

Notice that since M(t) is aperiodic for all t ≥ 0, i.e., M(t) 6= M∗ for all t ≥ 0, this

is only possible if there are infinitely many manipulations. (2)

Denoting by x∗(t) the opinions and by M∗(t) the trust matrix at period t in the

above case, we get∥∥[x∗(t)]
(
i∗(t); j∗(t), α∗(t)

)
− [x∗(t)]

(
i∗(t); j∗(t), 0

)∥∥
=
∥∥[M∗(t)]

(
i∗(t); j∗(t), α∗(t)

)
x∗(t)−M∗(t)x∗(t)

∥∥
→ 0 for t→∞,

and thus, by assumption,

vi∗
(
[M∗(t)]

(
i∗(t); j∗(t), α∗(t)

)
, x∗(t)

)
− vi∗

(
[M∗(t)]

(
i∗(t); j∗(t), 0

)
, x∗(t)

)
→ 0 < c ≤ ci∗(j

∗(t), α∗(t)) for t→∞,

which is a contradiction to (2). Having established the convergence of opinions,

it follows directly that ‖[x(t)](i; j, α) − [x(t)](i; j, 0)‖ → 0 for t → ∞, any i se-

lected at t and her choice (j, α). Hence, by assumption, vi
(
[M(t)](i; j, α), x(t)

)
−
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vi
(
[M(t)](i; j, 0), x(t)

)
→ 0 < c ≤ ci(j, α) for t → ∞, any i selected at t and her

choice (j, α), which shows that there exits an almost surely finite stopping time τ

such that for all t ≥ τ , E(t) = (i; ·, 0) for any i chosen to manipulate at t.

Furthermore, since M(τ) is aperiodic and no more manipulation takes place,

agents reach a (random) consensus that can be written as

x(∞) = π(N ; τ)′x(τ) = π(N ; τ)′M(τ)x(τ − 1)

= π(N ; τ)′M(τ − 1)M(τ − 2) · · ·M(1)x(0)

= π(N ; τ)′M(τ − 1)x(0),

where the second equality follows from the fact that π(N ; τ) is a left eigenvector of

M(τ) corresponding to eigenvalue 1, which finishes the proof.

Proof of Proposition 3

Suppose that the sequence (τk)
∞
k=1 of stopping times denotes the periods where the

trust structure changes, i.e., at t = τk the trust structure changes the k-th time.

Notice that τk = +∞ if the k-th change never happens. By Proposition 1, it follows

that when τk < +∞, either

(a) 1 ≤ |C(τk + 1)| < |C(τk)| and |R(τk + 1)| > |R(τk)|, or

(b) |C(τk + 1)| = |C(τk)| and 0 ≤ |R(τk + 1)| < |R(τk)|

holds. This implies that the maximal number of changes in the trust structure

is finite, i.e., there exists K < +∞ such that there are at most K changes in the

structure and thus, almost surely τK+1 = +∞. Hence, τ = max{τk + 1 | τk <
+∞} < +∞, where τ0 ≡ 0, is the desired almost surely finite stopping time, which

finishes part (i). Part (ii) follows from Lemma 1. The restriction to C of the matrices

M(t) in the computation of the consensus belief is due to the fact that M(t)|C is a

stochastic matrix for all t ≥ 0 since C is minimal closed at t = τ̂ , which finishes the

proof.
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Proof of Lemma 2

Suppose that i ∈ S. Since
∑

k∈Smjk(t)−
∑

k/∈Smjk(t) ≤ (<)1, it follows that∑
k∈S

mjk(t)−
∑
k/∈S

mjk(t)

≤ (<)

(∑
k∈S

mjk(t)−
∑
k/∈S

mjk(t)

)
/(1 + α) + α/(1 + α)

=

 ∑
k∈S\{i}

mjk(t)−
∑
k/∈S

mjk(t)

 /(1 + α) + (mji(t) + α)/(1 + α)

=
∑
k∈S

mjk(t+ 1)−
∑
k/∈S

mjk(t+ 1)

and hence Hom(S; t + 1) ≥ (>)Hom(S; t), which finishes part (i). Part (ii) is anal-

ogous, which finishes the proof.

Proof of Lemma 3

We can write

πk(N ; t+ 1) =
n∑
l=1

mlk(t)πl(N ; t+ 1)

=
n∑
l=1

mlk(t)
(
πl(N ; t+ 1)− πl(N ; t)

)
+

n∑
l=1

mlk(t)πl(N ; t)

=
n∑
l=1

mlk(t)
(
πl(N ; t+ 1)− πl(N ; t)

)
+

n∑
l=1

mlk(t− 1)πl(N ; t)︸ ︷︷ ︸
=πk(N ;t)

,

where the last equality follows since π(N ; t) is a left eigenvector of M(t), which

finishes the proof.

Proof of Proposition 4

Let N∗ ⊆ N denote the set of agents that undersell their information at period

t. Then, the agents in N∗ = N\N∗ oversell their information and additionally,

N∗, N
∗ 6= ∅. By Proposition 2, we have πk(N ; t+ 1)− πk(N ; t)→ 0 for α→ 0 and

all k ∈ N and thus by Lemma 3 we have

πk(N ; t+ 1)− πk(N ; t)→ 0 for α→ 0 and all k ∈ N . (3)

Let k ∈ N∗, then by (ii) and Lemma 3, πk(N ; t + 1) ≥ πk(N ; t). Hence, by (3),

there exists α(k) > 0 such that

1/n ≥ πk(N ; t+ 1) ≥ πk(N ; t) for all 0 < α ≤ α(k).
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Analogously, for k ∈ N∗, there exists α(k) > 0 such that

1/n ≤ πk(N ; t+ 1) < πk(N ; t) for all 0 < α ≤ α(k).

Therefore, setting α = mink∈N α(k), we get for 0 < α ≤ α

‖π(N ; t)− (1/n) · I‖22 =
∑
k∈N

|πk(N ; t)− 1/n|2

=
∑
k∈N∗

|πk(N ; t)− 1/n|2︸ ︷︷ ︸
≥|πk(N ;t+1)−1/n|2

+
∑
k∈N∗

|πk(N ; t)− 1/n|2︸ ︷︷ ︸
>|πk(N ;t+1)−1/n|2

>
∑
k∈N

|πk(N ; t+ 1)− 1/n|2

= ‖π(N ; t+ 1)− (1/n) · I‖22,

which finishes the proof.
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