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Abstract

Over the past three years Italy has witnessed a rapid growth in the photovoltaic energy
market, followed by an equally sudden decline when the government decided to reduce the
incentives. This sharp change in the trend of the market calls into question the achievement
of Grid Parity and the possibility that the market is able to develop independently. Starting
from the standard Grid Parity Model, widely used for the photovoltaic (PV) market, we
internalize the uncertainty surrounding both the energy price and PV module costs, to fore-
cast the dynamics of the Italian PV market. We show that these sources of uncertainty can
delay the Grid Parity timing of several years compared to current forecasts, well describing
the current market situation.

1 Introduction

Year 2011 was pivotal for the photovoltaic (PV) market in Italy. With about 9 Giga watts of
new installations, the Italian photovoltaic capacity has grown by 430% compared to 2010. This
was the result of a decrease in the cost of modules and, in particular, by the introduction of an
incentive mechanisms by the Italian Government, the Feed In Tariffs (FIT), kept forcedly high
from 2005 till 20121. For this reason, the past development of the PV market is giving way to
a high degree of uncertainty in the future. In the coming years we expect a phase out of the
FIT, able to drive the Italian energy system towards the competitiveness of photovoltaic energy.
This competitiveness, called Grid Parity, is defined as the intersection between the electricity
price and the unit cost of a plant and it represents the break-even point of the investment. Grid
Parity, which is gaining more and more attention from photovoltaic industry professionals, is
considered as the appropriate time for a cost-neutral investment and it represents the final phase
of the expansion of this technology.

However, the Grid Parity provides only a partial view of the problem. The break-even analysis
behind the Grid Parity does not take into account two important aspects of the decision to invest
in a PV system: the irreversibility of the choice and the uncertainty of some key variables. In the
specific, this paper, by using the Real Option Approach, tries to internalize both the uncertainty
related to the electricity price and the energy generation cost to assess the effect that these
variables have on the optimal investment time.

Internalizing these sources of uncertainty results in a delay of the PV Grid Parity timing
with respect to the current forecasts that place it around 2014. In particular, when the high
level of uncertainty which is actually surrounding the market is taken into account, Grid Parity
is far from being achieved and it can be moved forward by ten years. We show that this result
is robust to variations of some key parameters that affect the analysis.

The remainder of the paper is organized as follows. Section 2 discusses the related literature.
Section 3 presents empirical evidence, drawn form Italian data, of the dynamics of both the
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electricity price and the cost of energy. Section 5 models the value of a PV system in term of
Grid Parity and illustrates our main findings through numerical calibrations. Section 6 concludes.

2 Discussion of the related literature

Grid Parity is defined as the time when the unit cost of photovoltaic energy will reach the
electricity price. The dynamic model for Grid Parity is based on the historical negative relation-
ship between two trends: the decreasing PV electricity generation costs and the electricity price
showing an increasing path over time. The Grid Parity goal is considered as the final phase of
PV electricity expansion, representing cost-competitiveness of solar power generation systems.
Nowadays, PV power generation is already competitive in many off-grid installations, especially
in developing countries, while global competitiveness is expected until 2020 (Acanfora and Alcor
2011, Salvadores and Keppler 2010b).

Renewable energy technologies for producing electricity have received greater attention in
recent years, due to the rise of fossil fuel prices and concern for greenhouse gases emissions and
climate change. Following the important growth of the green-economy and the astonishing boom
of photovoltaic power generation systems, Solar Grid Parity has become a large debated issue.
Despite this growing interest – we can find many newspapers’ articles speaking about Grid Parity
– there is still no much literature available on this. The major references have to be found in
the roadmaps of the global energy associations, like the IEA (International Energy Agency), the
EPIA (European Photovoltaic Industry Association) and the IRENA (International Renewable
Energy Agency), or in some research papers commissioned by the biggest PV module producers
and in few specific works commissioned by the governments of some world regions.

A first study on Grid Parity, in chronological order, can be found in Lorenz et al. (2008),
which brought out several important issues of great interest at the present time. This article
forecasted the high level of competitiveness the market of module producers is affording today,
underlying the need to “move production to low-cost countries to maintain a stable market share”.
This contribution also depicted the need for a sustainable regulatory framework – a necessary
tool on the way to PV competitiveness – able to boost market development without doping the
PV sector2.

Breyer and Gerlach (2010) is the first academic study on Grid Parity. Commissioned by Q-
Cells in 2009, the authors make a first global overview on Grid Parity Event Dynamics. The aim
of the paper is to define the gradual achievement of Grid Parity in different countries, according
to their solar irradiation and to the average value of electricity prices in their domestic market.
Italy was considered to be the first to reach Grid Parity in 2010 (high solar irradiation, high
electricity prices), followed by Spain, Portugal and Cyprus. Outside Europe, California was
expected to reach Grid Parity in 2012, while almost all the central and southern States of the US
were supposed to reach the goal before 2020. It is one of the first work to apply learning curves
to the Levelised Cost Of Electricity (LCOE), in order to explain the decrease in PV production
costs.

Acanfora and Alcor (2011, 2012) set the goal of Grid Parity before 2020 for all European
countries, where (again) Italy is indicated as the first to reach it. The analysis by Salvadores and
Keppler (2010b) presents the same results. The commercial development of PV plants is divided
into three different phases, within the interval 2010 - 2020, when many countries, characterized
by good solar resources and high conventional electricity prices, will reach the Grid Parity.

Apart from these works, which provide a comprehensive vision of the phenomenon, there
are a few studies focusing on Grid Parity timing in specific countries. Bhandari and Stadler
(2009), compute the average cost of a PV power generation system in the region of Cologne
(Germany), for both residential consumers and utilities, and compare them to the respective
local electricity prices. Considering (the higher) electricity prices for end-users, Grid Parity will
be reached between 2013 and 2014. However, taking into account (the lower) wholesale electricity
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prices, Grid Parity shifts to 2023. They also present some sensitivity analysis with respect to
the PV module economic lifetime. While the standard economic lifetime is placed between 20
and 30 years – 25 are the most-used benchmark – the authors stress the analysis with a 35 to 40
years production period. This increase in the production period, applied to the wholesale Grid
Parity model, reduces Grid Parity to 2019 and 2017 respectively. Mitscher and Rutter (2012),
make a widespread analysis of the Brazilian case. In particular, the authors stress the need for
lower interest rates to reach the Grid Parity. Focusing on the problem of current credit cost
on the Brazilian market, they show how a lower cost of credit can be sufficient to achieve Grid
Parity in several Brazilian cities, even with the current PV system prices. Further, Ong et al.
(2012), concentrate their attention on the United States residential PV market. They perform
an interesting sensitivity analysis based on the rate of solar radiations. They found that the
current break-even price varies more than a factor of 10 even though the solar resource varies by
less than a factor of 2. In line with these findings, they show that only a part of the residential
users will have the necessary combination of good solar access and attractive financing options
to really consider to invest in a PV system.

Yang (2010) stress the fact that the cost-effectiveness may not guarantee commercial competi-
tiveness. Looking at the case of the Solar Heating Water market in Hawaii, where this technology
is considered to be cost-competitive, Yang shows that the break-even point has not been a pow-
erful driver for market expansion. He sets the need of further government interventions to exploit
the untapped potential of the solar PV market.

The works that is most closely related to ours is Belien et al. (2013). The authors derive
the “the best time to invest” in a PV panel by a profit maximizing investor in Flandres. Even if
they compare their work with some Grid Parity studies, they outline how their model is different
from a standard Grid Parity approach. First, Grid Parity is not a profit-maximizing model. It
focuses only on the break-even point between electricity prices and PV costs. Second, considering
subsidies in the analysis, they internalize government choices over the future values of the FIT.
Grid Parity should focus on unsubsidized prices to end-users, without taking into account any
form of incentive. The authors’ results of an optimal investment time around 2012 are in line
with the model structure. The power generation plant must be installed as early as possible,
given that future FITs are uncertain and expected to end quickly.

Finally, in the same vein, the “Solar Energy Report” by the Politecnico di Milano (2012), sees
the Grid Parity as a key point for the determination of a gradual depletion of incentives taking
account of the specificities of the different types of plant.3 The Report presents a non-standard
formulation of Grid Parity timing. It is not only the time at which electricity prices and the
unit cost of PV systems equals, it is viewed as the time in which the investment in PV plants –
without incentives – will give a positive Net Present Value.

3 Electricity Prices in Italy

Electricity is usually considered as a “commodity”, but it presents some peculiarities that dif-
ferentiate the behavior of its price from the price all other commodities. The most important
difference is probably the non-storability. Electricity cannot be physically stored in a direct way
and production and consumption have to be continuously balanced. Therefore, supply and de-
mand shocks cannot be easily smoothed out and they have a direct effect on equilibrium prices.
Furthermore, electricity is a primary commodity, so its demand is highly inelastic. These fea-
tures, coupled with the fact that the price is highly weather dependent, contribute to explain
the observed high volatility.4

We use 93 monthly data on Italian electricity prices (PUN, Prezzo Unico Nazionale), starting
from April 2004, the first operating month of the Italian Power Exchange (IPEX), to December
2011.

As we can see from Figure 1, after three years of growth, in 2007 we can notice the first
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Figure 1: IPEX Price, April 2004 - December 2011 (Monthly data from www.gse.it)

decline of the PUN. This is primarily due to the relationship between electricity prices and
Brent prices. Although the level of oil prices in 2007 is steadily increased, this growth has been
compensated by two different phenomena: the significant strengthening of the Euro against the
U.S. Dollar and the delay with which the variations in Brent prices reflect on Italian electricity
prices5. There is some evidence of a lagged relationship between oil prices and electricity prices,
due to the contractual structure of fuel supply. Furthermore, electricity prices depend on the
marginal class of power generation plants – i.e. Natural Gas (NG) power plants. Given that the
cost structure of NG power plants is dominated by NG fuel cost, their strong correlation with
oil prices reflects on electricity prices. In line with this lagged relationship, we can notice peak
values of the PUN in 2008, followed by a strong price decrease in 2009. This last phenomenon is
the result of the decrease in fuel prices and electricity consumption caused by the economic crisis
– in 2009 the PUN reaches the lowest values since 2005. In 2010, despite a strong increase in
crude oil prices, the PUN has maintained its lower levels, with a moderate increase at the end of
the year. Finally, the graph shows an important upward trend in 2011. This growth is partially
mitigated by a persistent level of overcapacity, which has been boosted by the important increase
in photovoltaic plants.

Denoting by Pt the IPEX price we test whether it follows a Geometric Brownian motion
(GBM) and then the appropriate parameter values will be calculated. The GBM is a simple par-
simonious process, which requires only the computation of two parameters (drift and volatility)
to be fitted, i.e.6:

dPt = αP Pt dt+ σP Pt dBt with Pt0 = P0 (1)

where dBt is the increment of a standard Wiener process (Brownian motion), αP is the drift
term and σP the instantaneous volatility of the process. Applying Itô’s formula, we rewrite the
basic stochastic equation (1) as follows:

d lnPt =

(
αP −

σ2P
2

)
dt+ σP dBt (2)

where the increments of lnPt are normally independent identically distributed with mean
(
αP −

σ2
P
2

)
dt

and variance σ2P dt. Using STATA software we test the independence assumption by plotting
the autocorrelations of the log returns rt = lnPt+1

lnPt
:

Figure 2 shows that we do not have significant autocorrelations till the 12th lag. All the other
values are below the confidence interval. This is a usual behavior for electricity prices, which are
characterized by seasonality. To test for the normality of electricity prices returns, we plot in
Figure 3 the sample data of log returns against the standard normal distribution.

The quantiles of the log return distribution are plotted on the Y-axis and the quantiles of the
standard normal distribution are plotted on the X-axis. Figure 3, shows that the distribution of
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Figure 2: IPEX price - Autocorrelogram

Figure 3: IPEX Price - Testing for normality

log-returns fits well the normal distribution7. Finally, we run the Dickey Fuller unit root test to
support the assumption that Pt is a GBM. The Dicky-Fuller critical F – value at the 5% level
(for number of observations lower than 80) – is −2.706, so the null hypothesis of GBM cannot
be rejected (See Appendix A).

Having established that the increments of lnPt exhibit GBM, we proceeded by estimating
the relevant trend and uncertainty parameters αP and σP . For the the volatility we calculated
σP =

∑n
i=1

(ri−m̂)2

n , where m̂ is the sample mean of rt. The monthly volatility is equal to
10, 09% that corresponds to 34, 95% in annual terms8. This value is consistent with the estimates
in Escribano et al. (2011) and Crespo et al. (2012). To estimate the drift αP , we exploit the
equation of log-returns to set a linear regression as follow:

rt = βt+ εt

where: β = αP −
σ2
P
2 and εt = σP (Bt+1 −Bt). By running OLS we obtain a monthly drift equal

to 0,509%. This corresponds to a growth rate of 6,11% in annual terms, which is quite above
the value for Italy by Acanfora and Alcor (2012).

As usual for many commodities the electricity price is known to have a mean reverting
behavior (Escribano et al. 2011). When a shift in demand increases the price, there is an economic
incentive for more expensive generators to start producing, which, in turn, reverts the dynamics
of prices. However, although a significant autocorrelation at the 12th lag can be an indication of
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Table 1: OLS regression

this effect, the time series of the PUN is too short to exploit such a behavior. Therefore, instead
of estimating a mean-reverting process, we decided to lower the GBM trend which tends to be
too high. We do this by correcting αP by a measure of the speed the process takes to converge to
the mean if it had been of mean-reverting type. For example in a Ornstein-Uhlenbeck process the
conditional distribution of Pt at time t is normal with mean E(Pt) = P0 e

−ηt+(1−e−ηt)P̄ , where
P̄ is the “long run mean” to which the process tends to revert and η is the speed of reversion.
By using the IPEX data we estimate η = 0.0252 (in annual term)9, then the adjusted drift αP
becomes 0.0359 which is in line with Acanfora and Alcor (2012) estimates.

3.1 IPEX price and what the end user pays

The price that results from daily exchanges on the electricity market is only a fraction of the
whole electricity price paid by end-users, both industrial users and domestic ones. The price
paid by consumers includes other variables that should be considered. In the specific we anal-
yses the components of the final prices used by the Italian Authority for Electricity and Gas
(AEEG, Autorità garante per l’Energia Elettrica ed il Gas), and how these components can be
incorporated in the Grid Parity model.

Figure 4 compares the IPEX (red line) with two different quarterly time series about domestic
and industrial electricity prices. The domestic price (green line) and the industrial price (violet
line), are the average prices calculated as the total amount paid by the end user weighted for the
total energy consumption.

The most important factor of final electricity price is the PE (Price of Energy), this represents
on average 50% of the final price. The PE is slightly different from the PUN. While the PUN
is a market price, obtained from the arithmetical mean of hourly or daily prices, the PE is a
weighted average of hourly prices and traded volumes. The PD (Dispatching Price) is the second
major component of the final price, it represents the cost of dispatching energy into the grid and
presents little changes over time. Then we must add costs for equalization and commercialization
of energy, taxes, general system charges and network costs.

The key issue is to understand if we can use the dynamic of the PUN, previously described
as a GBM, to identify the movements of the real price paid by end users, which can be identified
with the average price published by the AEEG 10. The answer has to be found in the nature of
the different components of the end-user price. In fact, while the PED = PE + PD (Price of
Energy + Dispatching Price), is strictly linked to the PUN (see GME (2011)), it is impossible
to find a dynamic for the other components. They are strictly exogenous and depend mainly on
political choices.

So, for matter of tractability, we take the PUN as a good proxy for the dynamics of PED
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Figure 4: PUN comparison - data from http://www.autorita.energia.it

while, as starting point P0,we use the “Residential User” and “Utility” prices taken from the
AEEG publications (www.autorita.energia.it). Those prices exclude taxes and are computed as
an average of the 2011 end-users price. In the following Table we sum up the value of the drift
and diffusion terms of price dynamics. The drift terms are presented for the GBM and for the
Adj-GBM case.

Table 2: Drift and diffusion terms of electricity prices dynamic

4 PV Electricity Generation Costs

To analyse the dynamics of the generation costs of a PV plant we use the LCOE (Levelised Cost
of Electricity). The LCOE is an easy tool used to compare the unit costs of different power
generation technologies along their economic lifetime. It can be used even if different scales of
operation, investment or operating time periods exist. It captures capital costs, on-going system-
related costs and fuel costs – along with the amount of electricity produced – and converts them
into a common metric (See Appendix B).

The LCOE is an important tool for both policy makers and private investors to understand
the main cost drivers of electricity systems. However a full analysis of an investment project
would complement the LCOE with a more comprehensive risk analysis, where multiple risks are
taken into account. In this respect, as it will be explained in the following paragraphs, our grid
parity analysis will be made according to two different perspectives. We consider the investment
decision by a public institution (“Public Analysis” case), and compare it to the investment choice
by a private investor (“Private Investor Analysis” case).

The values of LCOE are taken from two different sources. A first set of data is taken from
Marchesi et al. (2010). This study has been commissioned to the Politecnico di Milano by
AEEG. A second set of data is taken by a comprehensive study on the unit cost of different
power generation technologies prepared by Salvadores and Keppler (2010a) for the IEA.

7



The LCOE of a PV system is highly sensitive to variations in the load factor and in the
construction costs11. The load factor, or capacity factor, is particularly important since it defines
the amount of electricity produced per unit of generating capacity. It has a high impact on the
unit cost because the percentage of fixed investment costs is really high for PV power plants.
Variation of the load factor is markedly skewed to the right, revealing that plants are particularly
sensitive to decreases in the load factor.

Construction costs account for nearly 95% of the whole cost of a PV plant. One of the key
factors which drives construction costs is the scale of the installation: small residential PV plants
present higher investment costs per kw/h compared to bigger utility scale plants. The discount
rate is the third variable in order of importance. This is due to the short construction times
of PV power generation technologies. The incidence of the economic lifetime variations has to
be considered for the asymmetric distribution of its effects. While early retirement significantly
increases the LCOE, lifetime extension have little or no impact. Clearly, early retirement have a
strong impact on the ability to repay the initial capital investment. For this purpose, the lifetime
considered in the work by Marchesi et al. (2010) is prudentially fixed around 20 years, while most
studies use 25 or even 30 years. Finally, the absence of fuel costs is one of the major advantages
of renewable energy sources, which are not influenced by the volatility of fuel prices.

4.1 The LCOE

The set of data from the work by Politecnico di Milano are used to run the “Public Analysis” case
(Table 3). The low discount rate (i.e. 4%), used in the computation, well reflects the point of
view of a public investor. Furthermore, this work takes into account the important effect of plant
size: the LCOE is calculated for both 3kw (RESIDENTIAL) and 1Mw (UTILITY) installation.12

The overall PV system cost highly depends on the size of the system and on whether the system
is ground-or-roof-mounted-residential plants.

Table 3: Data from Marchesi et al. (2010)

The data from Salvadores and Keppler (2010a) are used to run the “Private Investor Analysis”
case (Table 4). These authors use two different discount factors: 5% and 10%, that best capture a
risk premium . In the remain of the paper, the first hypothesis will be called IEA5 and the second
IEA10. As we said before, the 10% discount rate is considered to internalize the technology and
market risks so that a higher discount rate results in a higher LCOE13.

4.2 Learning Curves

To predict the dynamics of LCOE we follow the learning curve approach. In the specific, the
learning curve approach is an empirical-based methodology, designed to describe the law of cost
reduction for a specific industry, based on the assumption that at each doubling of cumulated
output costs decrease by a stable percentage14.

There are several reasons that contributes to the ample diffusion of learning curves: i) the
readiness of the empirical time series required for its computation – cumulative capacity and
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Table 4: Data from Salvadores and Keppler (2010a)

costs – facilitates the capability to test the model; ii) they are capable to express with a single
parameter the complex process of innovation; iii) they are consistent with the theory that firms
learn on past experience and iv) the learning rate is not usually linked to a time variable, but to
variations in cumulative production and thus seems to be more suitable for forecasts on future
costs. However, the experience curve approach presents also many cons. The decrease in costs
is described by a unique parameter and so results are highly sensitive to the learning rate used,
which is not able to describe discontinuities in costs. The experience curve does not consider the
knowledge acquired from other sources like R&D expenditures and ignores changes in the quality
of the output. Moreover, industry structure affects the learning rate and so, for an industry that
is becoming more and more competitive like the photovoltaic one, the experience curve could
over-estimate the rate of technical progress15.

While there is an ample literature on the advantage and use of learning curves, few sources
have done an accurate analysis on how to use the learning curve approach for the PV industry
Acanfora and Alcor (2011), Nemet (2006).

Following this approach, in Appendix C, we express the PV unit cost dynamics on both
the average growth rate of the PV industry, GR, and the learning coefficient LN . The latter
is calculated from the slope of the learning curve, called progress ratio (PR), that express the
percentage of costs decrease at each doubling of cumulated capacity. That is:

LCOEt = LCOE0 e
αCt (3)

where αC = LN ·GR and LN = lnPR
ln 2 .

To properly use (3) we need to calibrate αC . Then we test if LCOE2030 (the expected levelised
cost for PV in 2030) is in line with the projected values of IEA, where LCOE0 refers to the level
of the italian Levelised Cost of Electricity in 2010.

As the industry has grown PV module prices have shown an important decline (Figure 5)16.
In particular, from the first statistical data dating back to 1976 to the beginning of the 2000s,
module prices decrease shows a learning rate, LR = (1 − PR), of about 22%. An excursion
from this historical rate occurred due to supply bottlenecks and market dynamics – the so-called
polysilicon-shortage – from 2003 to the end of 2008. Since then the learning curve returned toward
its historic level, reaching a LR of about 19%. Nowadays, the IEA and EPIA expect further
costs reduction due to increased production capacities, improved supply chains and economies
of scale. Following Crespo et al. (2012), we use an average LR of 20%, which implies a PR of
80%17.

Let’s now consider the GR. Although the short-term expectations about the Italian PV
market could be very volatile, a long-term definition of the expected dynamic of the market
could be more reliable.18 In particular, we use two different GRs. In a first CONSERVATIVE
scenario, we set GR = 10%. This is based on the forecasts of the 2012 Solar Energy Report
for the Italian PV industry growth till 2020. In a second, more “optimistic”, scenario we set
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Figure 5: Learning curve dynamic – Data from Breyer and Gerlach (2010)

GR = 18%, considering the possibility of a new photovoltaic development in Italy boosted by
the adoption of Smart Grids (SMART GRIDS scenario). This second scenario is in line with the
EPIA expectations till 2020 (EPIA, 2012)19. Finally, by using the GR of the Italian PV industry
in 2011, we update our starting point from 2010 to 2011.

Plugging the values for LN and GR in (3), in Table 5 we show our projections for the four
cases considered. The 2020 LCOE projections made by the IEA are between 0,09 e/Kwh and
0,19 e/Kwh for the UTILITY sector and 0,12 e/Kwh and 0,23 e/Kwh for the RESIDENTIAL
sector. Furthermore, both the SMART GRIDS scenario and the CONSERVATIVE one are in
line with the IEA expectations20, except for the RESIDENTIAL value, which is slightly over the
range in the CONSERVATIVE case. Finally LCOE expectations for 2030 are within 0,07 e/Kwh
and 0,15 e/Kwh that is the range proposed by the IEA.

Table 5: LCOE projections

Finally, Bosetti et al. (2012), by interviewing some of the major European PV market experts,
calculate a range of values for LCOE in 2030. In this respect, most experts project that LCOE2030

will lay between 0,05 e/Kwh and 0,11 e/Kwh. These estimates, that are more optimistic than
the ones by IEA, give further support to our learning model.

We conclude this section adding a volatility term to equation (3) to account for possible
deviations of the learning rate from its historical trend. Deviations from the historical learning
rate can be explained by variations in PV module costs, mainly due to silicon supply and demand
conditions. However, since an estimate of the volatility of PV module prices is very difficult to
compute we will use, as a proxy, the stock prices volatility of the four biggest global producers
of PV modules (See Table 6).
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Table 6: Weighted volatilities of the four major PV module producers, data from www.yahoofinance.com

Following the approach used for the electricity price, we have estimated the stock price
volatility for Yingli Soalr, First Solar, Suntech and Trina Solar. For the volatility of LCOE
we calculate the average volatility of the four companies, weighted for their respective market
shares. Table 7 sums up the data involved in the analysis.

Table 7: Continuous time model inputs

This yields21:

dLCOEt
LCOEt

= αCdt+ σCdz, where αC = GRCLN (4)

where αC = LN ·GR and σC expresses the module price volatility.

5 Grid Parity Dynamics

Grid Parity models express a break-even point for an investment in PV plants. Grid Parity is
usually defined as the time t∗ when PV installations become cost neutral and so the electricity
price equals the levelised cost of PV generation (i.e. LCOE). Our Grid Parity analysis overcomes
this definition. Our model is based on a wider view of Grid Parity timing, where the optimal
t∗ internalizes the value of the option to have more information about future evolution of both
the electricity price and the unit cost of PV generation. In the next section we first calibrate a
standard Grid Parity model and then we provide our Real Option Grid Parity model. For both
the models we present two different sets of results. First, we analyse the Grid Parity from the
point of view of a public investor (“Public”), focusing on residential and utility plants (RESI-
DENTIAL, UTILITY). Second, we consider the private investor perspective (“Private”), where
the LCOE is calculated using two different discount rates (IEA5, IEA10). Further, we calculate
the Grid Parity time t∗ considering a learning curve with a GR = 10% (CONSERVATIVE) and
with GR = 20% (SMART GRIDS) and for both the GBM case and the Adj-GBM case.

5.1 The Standard Grid Parity Model

The aim of this section is to find the time t∗ where the expected value of electricity prices equals
the expected cost of PV plants, expressed by the LCOE22.

E0(Pt∗) = E0(LCOEt∗) (5)
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where E0(·) is the expectation taken at time t = 0 with respect to (1) and (4) respectively. By
subsituting and solving for t∗, we get:

t∗ = max

 ln
(
LCOE0
P0

)
αP − αC

, 0

 (6)

Plugging our data into (6) we obtain:

Public Perspective Analysis

Grid Parity will be reached in 2013-2014 by UTILITY, while the RESIDENTIAL sector will
reach the Grid Parity between 2016 and 2020.

Table 8: Standard Grid Parity Model - Public Analysis results

In particular, the results for UTILITY are quite homogeneous. Given that electricity prices
are already very close to the utilities’ LCOEs, a different growth rate has not so much influence
on Grid Parity timing. This result is coherent with the phase out of the Italian FIT program,
where the end of the incentive schemes is more gradual for residential customers. On the other
side, the RESIDENTIAL sector is strongly influenced by forecasts on future developments of the
PV industry. Since the initial gap between prices and costs is higher, a higher growth rate has
an important effect on Grid Parity timing. Specifically, when we take into account a lower drift
for electricity prices (i.e. in Adj-GBM case), the gap between CONSERVATIVE and SMART
GRIDS increases.

Accoding to Politecnico di Milano (2012) and Acanfora and Alcor (2011), our model concludes
that residential customers should need some form of public intervention in the following years
to reach Grid Parity: only through a sustained growth rate they will afford a cost-competitive
investment. For this reason, the introduction of smart grids might have an important role on
future expansions of the PV industry.

Private Investor Analysis

Table 9 shows that the results of the IEA5 scenario are in line with the EPIA forecasts,
which consider the period between 2013 and 2015 for the ground-mounted PV systems to be
cost-competitive. However, using the Adj-GBM, which uses a (lower) more reasonable growth
rate in the price of electricity, we obtain a substantial delay.

Table 9: Standard Grid Parity Model - Private Analysis results
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A delay is also obtained when LCOE considers a higher discount rate (IEA10). Note, however,
that in the case of Adj-GBM a higher growth rate could anticipate the Grid Parity by about
three years in the CONSERVATIVE case23.

5.2 A Stochastic Model

The standard Grid Parity model presents two main shortcomings. First, it does not consider that
an investment in a photovoltaic power plant is irreversible (construction costs account for 95% of
the whole cost of a PV plant). Second, it does not take into account the opportunity of waiting
to have more information about prices and market conditions before making the investment
decision. In other words, the standard model ignores to add among the costs the opportunity
cost of investing as soon as P equals LCOE.

To overcame these weakness, in this section, we use the Real Option approach to evaluate
the Grid Parity timing. Indicating with F (P,LCOE), the value of the opportunity to invest in
a PV project, this is given by:

F (P,LCOE) = E0 [e−µt
∗∗

(Pt∗∗ − LCOEt∗∗)] (7)

where µ > 0 is the risk-adjusted discount rate, t∗∗ is the (stochastic) Grid Parity time defined as
t∗∗ = inf{t ≥ 0 : F (Pt∗∗ , LCOEt∗∗) = Pt∗∗ − LCOEt∗∗}, and E0(·) is the expectation operator
taken with respect to (1) and (4)24. It is evident from (7) that the condition that identifies the
Grid Parity is Pt∗∗ = LCOEt∗∗ + F (Pt∗∗ , LCOEt∗∗), i.e. the price has to be equal the full cost
(LCOE + opportunity costs) of making the investment. Standard arguments lead to a solution
for (7) taking the following functional form (see Appendix D):

F (P,LCOE) = AP βLCOE1−β (8)

where A is a positive constant and β is equal to:

β =

1
2(σ2P + σ2C)− (αP − αC) +

√(
1
2(σ2P + σ2C)− (αP − αC)

)2
+ 2(σ2P + σ2C)(αC − µ)

σ̃2
> 1,

while the optimal threshold is given by:

P ∗∗

LCOE∗∗
=

β1
β1 − 1

. (9)

For the Grid Partiy t∗∗we should calculate the time that the ratio P
LCOE takes to reach the

investment trigger (9). In this regard, since P
LCOE is stochastic t∗∗ is stochastic as well, therefore

we need to refer to the probability distribution of t∗∗. In particular, we calculate the average
time (See Appendix D):

E(t∗∗) = m−1
[
ln

(
β1

β1 − 1

)
− ln

(
P0

LCOE0

)]
(10)

and the 95% confidence interval E(t∗∗)±1, 96
√
V ar(t∗∗), where m = σ2C +αP −αC− 1

2(σ2P +σ2C)
and V ar(t∗∗) is the variance of the distribution of t∗∗.

To complete the analysis we need to compute the risk-adjusted cost of capital µ. We do this
by using the Capital Asset Pricing Model formula µ = r+B(MRP ), where MRP is the market
risk premium , B measures the systematic risk and r is the risk free interest rate. Following
Fernandez et al. (2011), we use 5.50% for the Italian market risk premium. For the risk-free
interest rate we take the average of the last 10 years interest rates on the Italian BTP (maturity
15 year) as published by the Italian “Dipartimento del Tesoro”, i.e. r = 4.70%. Finally, for B we
calculate the average unlevered betas of three representative European companies that produce
electrical energy from renewable sources (see Table 10). Putting all this information toghether
we obtain µ = 10.07%
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Table 10: Beta estimation - Data from www.yahoofinance.com

Public Perspective Analysis

Table 11 shows the results for (10). Taking into account the opportunity cost of investing
led, on average, to a ten years postponement of the equality between prices and full costs of the
investment. In the specific, the optimal investment timing for RESIDENTIAL customers falls in
between 2025 and 2027, while for UTILITY installations the best time to invest falls in between
2023 and 2025.

Table 11: Stochastic Grid Parity Model - Public Analysis results

Yet, moving from the CONSERVATIVE scenario to the SMART GRID one the uncertainty
surrounding P and LCOE has the same impact on UTILITY and RESIDENTIAL installations.
The effect of the growth rate is smoothed with respect to the standard Grid Parity model and
the difference between the GBM and Adj-GBM is virtually zero.

Private Investor Analysis

Even for a private investor the optimal investment timing will be postponed with respect to
to the one calculated with the standard model. In particular the average time ranges between
2022 and 2024 in the lower 5% discount rate scenario and it is postponed till 2028 when LCOE is
calculated with a 10% discount rate. In both cases, a 10% increase in the learning rate anticipates
by two years the investment decision (see Table 12).

Table 12: Stochastic Grid Parity Model - Private Analysis results

The above results show how the Grid Parity is mainly driven by uncertainties over prices
and costs. To highlight this effect in Figure 6 we conduct some comparative statics analysis
with respect to V ar(t∗∗). According to the Real Options approach, the average time reduces as
the uncertainty decreases up to converge to the deterministic case represented by the Standard

14



Figure 6: Sensitivity analysis with respect to price volatility.

Model. Finally, we conclude showing in Figure 7, for all cases, the respective 95% confidence
intervals. Comparing the confidence intervals of the Conservative scenario and the Smart Grids
one, we can see that, when the assumed growth rate of the PV industry is higher, confidence
intervals are lower. Our expectations are more precise.
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(a) Confidence Intervals for the Conservative Scenario - GBM framework.

(b) Confidence Intervals for the Smart Grids Scenario - GBM framework.
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6 Final Remarks

Calibration of the standard Grid Parity model confirms literature’s findings. Due to relatively
high electricity prices and good solar irradiation, the PV Grid Parity is going to be reached soon
in Italy. In the case of a private investor, for example, the Grid Parity can be reached in 2015
while considering a public perspective, the Grid Parity can be reached by 2014.

However, the break-even analysis behind the standard model does not take into account two
important aspects of a decision to invest in a PV system: the sunkness of the investment cost
and the uncertainty related to both the electricity prices and the energy generation costs.

In this paper we take into account both of these aspects by calibrating a Real Option model
of the Grid Parity. The high volatility of energy prices and the uncertain future path of module
costs give rise to a high value to wait before investing in a PV plant. Our stochastic model
changes substantially the investment decision, well describing the current market situation. In
the case of the private investor, for example, Grid Parity can be postponed until 2025, while
considering a public perspective, the optimal time to invest in a PV system can be postponed
up to ten years.
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A The Dickey Fuller test

The simplest way to test for a unit root is by running the following regression:

pt − pt−1 = α+ θpt−1 + et . (A.1)

where pt is the natural logarithm of electricity prices Pt and E(et | pt−1, pt−2, . . . , p0) = 0 in
accordance with the use of a Wiener process. The process has a unit root if and only if θ = 0.
Yet, if α = 0 and θ = 0, pt follows a random walk without drift, while if α 6= 0 and θ = 0, pt is
a random walk with drift25. The null hypothesis is that pt has a unit root H0 : θ = 0 against
H1 : θ < 0. We dispose of 8 years monthly data on electricity prices, from April 2004 to December
2011, taken from the statistical publications of the GME (Gestore Mercati Energetici). As shown
in Table 13 given a critical value of −2, 706 for the test, we fail to reject the null hypothesis that
the process has a unit root at the 5% significance level.

Table 13

We obtain the same results running the regression (A.2) where we include 12 additional lags
to control for autocorrelation:

∆pt = α+ θpt−1 +
12∑
i=1

γi ∆pt−i + et. (A.2)

where rendregress is the log returns of electricity prices, ptmeno1 is pt−1 and the other values
presents the γi coefficients of ∆pt−1. The coefficient of pt−1 is statistically different from 0, i.e.
θ = −0, 223 with a t− statistics of −2, 71. Note that only the γi at the 12th lag is statistically
significant.

B Cost components for photovoltaic energy systems

We define the LCOE as the cost that, if assigned to every unit of energy produced by the system
over the lifetime period, will equal the total lifetime cost, when discounted back to the base year.
That is:

N∑
t=1

Electricityt · LCOE
(1 + r)t

=

∑N
t=1 (Capext +Opext +Assurancet)

(1 + r)t

or

LCOE =

∑N
t=1 (Capext +O&Mpext +Assurancet) · (1 + r)−t∑N

t=1Electricityt · (1 + r)−t
(B.1)
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Table 14:

where r is the discount factor (assumed to be constant), N is the economic life of the system,
Electricityt is the electricity produced by the plant in year t, Capext are annualized capital
expenditures26, O&Mpext are the operating and maintenance costs for each year and Assurancet
is the annual assurance cost. The capital cost, Capex, can be divided in two major components:
the price of the PV module and the Balance Of System costs (BOS). The price of the PV module
clearly depend on the price of silicon, while the BOS costs are linked to the price of the inverter,
the costs for the structural installation and other wiring and installation costs. The price of
the module is typically between a third and a half of the total capital cost and has been one
of the driving forces of PV costs reduction. O&Mpex costs have a low incidence on LCOE,
photovoltaic is well known to have low annual operational costs and low needs for maintenance
during its life27. Finally, it is worth mentioning the important cost of assurance needed to cover
the risk that the modules are stolen.

Further, we have to consider two important parameters that influence the output (Electricity):
the level of solar irradiation and the efficiency of solar cells. They will be both synthetized by
the net Capacity Factor. The net Capacity Factor is the ratio of the actual output of a power
plant over a period of time and its potential output if it had operated at full nameplate capacity
the entire time (www.nrc.gov). Both solar irradiation and the efficiency of solar cells contribute
to its variations and so the latitude of the installation site is crucial for the cost of PV systems.

Finally, given that LCOE is based on a DCF analysis, where the costs are computed dis-
counting annual flows to a common basis, we have to take into consideration the time value of
money. This value is not necessarily the same for all investors and it is influenced by a variety
of factors, such as the investor rate of return, risk premium, planning horizon and others.
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C A continuous-time learning model

The base formulation of a learning curve (see Nemet 2006), takes the cost of the N-th unit
produced as a proxy of the cumulated experience, while the dependent variable is the cumulated
production, which provides a measure of learning and technological improvement. That is:

CN = C0N
LN (C.1)

where CN is the cost of the N − th unit produced, C0 is the cost of the first unit, N is the
cumulated production and LN is the learning curve coefficient. Assuming that costs decrease by
a fixed amount every time quantity doubles, we are able to express the slope of the learning curve,
called progress ratio (PR), by the percentage of costs decrease at each doubling of cumulated
capacity. That is, PR = 2LN or, LN = lnPR

ln 2 .
Let now define the annual capacity installations of the photovoltaic industry as follows:

Ws = Ws−1(1 +GR), s ≥ 1 (C.2)

whereWs is the capacity installed in year s and GR is the average growth rate of the PV industry,
assumed to be constant. The cumulative capacity up to t > s can be calculated as:

Wt = W0

t∑
s=0

(1 +GR)s.

Substituting this definition of cumulative capacity in equation (C.2), and considering LCOE as
the unit cost, we can write the learning relationship as follow28.

LCOEt = LCOE0

(
t∑

s=0

(1 +GR)s

)LN
(C.3)

This discrete-time learning model is the same used by Breyer and Gerlach (2010), derived from
Wright (1936) (the so-called Wright’s cumulative model). Taking m as the detection frequency
of the growth rate – usually expressed in annual terms – we can rewrite the previous expression
as follows:

LCOEt = LCOE0

(
t∑

s=0

(
1 +

GR

m

)sm)LN
. (C.4)

Letting m→∞ equation (C.4) reduces to:

LCOEt = LCOE0

(∫ s

0
eGRsds

)LN
= LCOE0 e

LN ln( 1
GR

(eGRt−1)).

(C.5)

Now, from (C.5) it is easy to show that the rate of change is equal to:

dLCOEt
LCOEt

= LN GR
eGRt

eGRt − 1
dt

which is driven by both the average growth rate of the PV industry GR and the learning curve
coefficient LN . Since eGRt

eGRt−1 → 1 as t increases, for the sake of simplicity, we reduce the LCOE’s
rate of change as:

dLCOEt
LCOEt

= αCdt, where αC = LN GR (C.6)
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D Equations (9) and (10)

Writing C for LCOE, equation (7) becomes:

F (P,C) = E0 [e−µt
∗∗

(Pt∗∗ − Ct∗∗)].

The general solution for F (P,C) as well as the optimal Grid Parity threshold Pt∗∗ −Ct∗∗ can be
obtained by verifying that the expected change of F (P,C) satisfies a second-order linear differen-
tial equation under some suitable boundary conditions at t∗∗. By applying a standard dynamic
programming approach, the project’s value, F (P,C), solves the following Bellman equation:

µF (P,C)dt = E0 [dF (P,C)]. (D.1)

Using Itô’s Lemma, we can expand dF (P,C) and rearrange (D.1) as follows:

1

2
(σ2PP

2FPP + σ2CC
2FCC) + PαPFP + CαCFC − µF = 0 (D.2)

where FPP , FCC , FP and FC are the first and second partial derivative with respect P and C.
Since F (P,C) is homogeneous of degree 1 in (P,C) allows us to reduce it to one dimension. The
optimal decision should therefore depend only on the ratio p ≡ P

C , i.e.:

F (P,C) = Cf

(
P

C

)
= Cf(p)

where f is now the function to be determined. Successive differentiation gives

FP (P,C) = f
′
(p), FC(P,C) = f(p)− pf ′(p)

FPP (P,C) =
f
′′
(p)

C
FPC(P,C) = −pf

′′
(p)

C
, FCC(P,C) =

p2f
′′
(p)

C
.

Substituting these into (D.2) and grouping terms, we get:

1

2

(
σ2P + σ2C

)
p2f

′′
(p) + (αP − αC)pf

′
(p) + (αC − µ)f(p) = 0. (D.3)

This is an ordinary differential equation for the unknown function f(p) of the scalar independent
variable p. Its boundary conditions can be defined as follows:

f(p) = p− 1 (D.4)

f
′
(p) = 1, f(p)− pf ′(p) = −1. (D.5)

The solution of (D.3) takes the form:

f(p) = Apβ (D.6)

where β > 1 is the positive root of the the quadratic equation 1
2(σ2P +σ2C)x(x−1)+(αP −αC)x+

(αC − µ) = 0, and the optimal threshold is given by:

p∗∗ =
P ∗∗

C∗∗
=

β

β − 1
. (D.7)

We are now able to compute the average time that the process pt takes to reach the trigger p∗∗,
starting from a point pt < p∗∗. By applying Itô’s Lemma to ln pt we get:

d ln p =

(
σ2C + αP − αC −

1

2
(σ2C + σ2P )

)
dt− σCdzC + σPdzP
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The mean time that ln pt takes to reach the upper trigger ln p∗∗ for the first time is given by:

E(t∗∗) = m−1 log

(
β
β−1
p0

)
, (D.8)

where m is the constant drift
(
σ2C + αP − αC − 1

2(σ2C + σ2P )
)
, p0 = P0

C0
and the variance is

V ar(t∗∗) =
(p∗∗−p0)(σ2

C+σ2
P )

2(σ2
C+αP−αC− 1

2
(σ2

C+σ2
P ))

3
29.
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Notes
1The first Conto Energia was issued with, D.L. 387 2003 and Decreto Attuativo July 28, 2005; the fifth Conto

Energia was issued with, D.M. July 5, 2012.
2This article outlined three key points for governments and regulators to set a sustainable PV-support program.

First, Governments had to “Clarify objectives”, before establishing the support policy, deciding the goals of the
public intervention. Second, Governments had to “reward production, not capacity”, creating the incentives to
increase cost-efficiency. Third, Governments had to “phase out subsidies carefully”, to avoid creating a vicious
cycle after the reaching of Grid Parity.

3Different types of plants will reach Grid Parity in different moments.
4The annual volatility is around 30% , see Renò (2006) and Dmouj (2006).
5See Escribano et al. (2011) and for the Italian case the annual reports by GME (Gestore Mercati Energetici).
6Assuming that the state variable follows a lognormal random walk is standard in real-option models. How-

ever, alternative processes, such as mean-reverting, can be used. This would complicate the analysis, without
significantly changing the results .

7The log returns of Italian electricity prices present some border values, which are higher than the standard
normal distribution. This is in line with the general observation about the presence of fat tails in different financial
time series.

8We can easily transform monthly data in an annual data by the following formula:

σyearly =
√

12 : σ2
monthly

9The parameter η can be calculate by using the formula − log(θ + 1), where θ is the coefficient of pt−1 in the
regression A.2 in the Appendix A (see Dixit and Pindyck 1994, pp. 74-79)

10As Breyer and Gerlach (2010), we are using the end user price to compute our Grid Parity. Clearly, the break
even point for industrial or domestic consumers have to be computed on their reference prices.

11The values of LCOE depend mainly on the assumptions made for its calculation. For an accurate analysis
of costs concerning the photovoltaic power generation plants, it is useful to present the effects of the variation of
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single cost component on LCOE. The sensitivity results reported in this paper are taken from the Salvadores and
Keppler (2010a) and from Darling et al. (2011)

12As matter of fact, a minimum and a maximum LCOE are calculated for each plant size. We take the average
to have a single value.

13For the sake of completeness, it is important to mention some key methodology assumptions used in both
studies. PV modules can be divided in two different categories: thin film modules and crystalline silicon modules.
Being this lasts the most diffused on the market, both studies refer only to this category. For the assurance
cost, the estimates are based on direct and indirect damages coverage and theft coverage. For the choice of the
capacity factor, both works consider 1250 hours of operation per year and a capacity factor of 14-16%. Clearly,
being Italy a peninsula with different levels of solar radiations, southern regions have higher capacity factors than
the northern ones. This important issue is not at stake in our model. Finally, it is important to underline that
taxes are excluded from the computation of the LCOE.

14For more details about the learning curve approach see Nemet (2006).
15From 2004 to the third quarter of 2008 the price of PV modules remained flat, despite manufactures were

making continuous improvements and scale to reduce their costs. This was due to the fact that German and
Spanish tariff incentives allowed project developers to buy the technology at those prices. The 18 largest quoted
solar companies followed by Bloomberg made average operating margins of 15% Bazilian et al. (2009). When the
Spanish incentive regime ended abruptly at the end of September 2008 global demand had a sudden deceleration,
while silicon availability increased. This sudden need to compete on prices pushed PV constructors to reduce
margins. They were able to drop their prices by 50% and still make a positive margin, given the costs reductions
achieved in past years. In addition, following the understanding and comfort of PV deployment risks, financing
costs were falling. Nowadays, the recent excess production capacity can push the price to fall to the level of
marginal production costs, having important implication on future PV module prices. In Germany Q-cells and
Solon have announced bankruptcy between the end of 2011 and April 2012 and the U.S. First Solar closed its
European operation in April 2012. For this main reasons, some have argued that prices are below sustainable
levels and might even gave to rise slightly. However, technological advancements, process improvements and
changes in the structure of the industry suggest that further price reductions are likely to occur in coming years
Bazilian et al. (2009)

16PV learning curves are computed at module level, because module costs account for nearly a half of the total
LCOE.

17The progress ratio is equal 1 minus the learning ratio, it express the cost decrease of the future years at each
doubling of cumulated output.

18In the 2012 “Solar Energy Report”, there is a medium term punctual forecast on the possible PV installations
for 2012 and 2013. The expectations for 2012 define a 20% increase of the PV market, with the construction of
2,7 GW of new plants. For 2013, taking into account the interactions between the actual “5th Conto Energia”and
the end of the incentive system, the market is expected to growth by 10%, with 1.475 Mw of new installed plants.

19Both GRs are adjusted for taking account that (3) expresses the dynamic of LCOE in continuous time.
20IEA5 and IEA10 are both referred to the Utility sector.
21We work under the assumption of a GBM.
22This model is equal to the one used by Breyer and Gerlach (2010)
23This result is a consequence of the learning curve which expresses an historical 20% learning rate for the PV

industry.
24We assume that correlation between (1) and (4) is null throughout the whole analysis.
25The equivalent of the GBM in discrete time.
26The annualized capital expenditures are obtained trough the use of the capital recovery factor (CRF), the

CRF simply converts a present value into a stream of equal annual payments over a specified time period at a
given discount rate.

27In the study made by the Politecnico di Milano, O&Mpex costs are on average 1,5% of the total costs for
PV.

28What we do, in practice, is to transform a volume-dependent formula, usually used to express learning curves,
in a time-dependent formula, which is more suitable for our analysis.

29Obviously m should be positive; otherwise E(t∗∗) =∞ (see Cox and Miller (1997) p. 221-222).
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