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Statistics and Econometrics

Saarland University

s.kloessner@mx.uni-saarland.de

April 28, 2014

Abstract

We study a dynamic model of opinion formation in social networks. In our

model, boundedly rational agents update opinions by averaging over their neigh-

bors’ expressed opinions, but may misrepresent their own opinion by conforming or

counter-conforming with their neighbors. We show that an agent’s social influence

on the long-run group opinion is increasing in network centrality and decreasing

in conformity. Concerning efficiency of information aggregation or “wisdom” of the

society, it turns out that misrepresentation of opinions need not undermine wisdom,

but may even enhance it. Given the network, we provide the optimal distribution of

conformity levels in the society and show which agents should be more conforming

in order to increase wisdom.
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1 Introduction

Opinions crucially shape individual behavior and affect economic decisions and outcomes.1

For instance, opinions on political issues set the political course, opinions about a prod-

uct’s quality and the integrity of its producer influence demand, and opinions about

an economy’s growth determine investment decisions. The formation and evolution of

opinions are often carried by day-to-day interactions of individuals, i.e. the opinions are

determined by exchange in a social network.

We model the formation of opinions through communication in a given social network

such that individuals are influenced by the opinions stated by others: individuals update

their opinion in a näıve way by taking a weighted average of others’ stated opinions

(as in the literature on näıve learning, see e.g. DeGroot, 1974; DeMarzo et al., 2003;

Golub and Jackson, 2010; Acemoglu et al., 2010). However, influence often goes beyond

this simple updating of opinions. When asked for a personal opinion, people usually do

not straightforwardly state what they truly think, rather they are tempted to misrepresent

their opinion to conform to their friends since disagreement entails discomfortable feelings

(see Zafar, 2011, for empirical evidence). In this paper, we consequently allow that not

only the own opinion is influenced by what others say, but also the statement itself. In

other words, some individuals tweak their stated opinions to conform to what their social

contacts say.

In such a framework, we study the dynamics of opinions and particularly focus on

the long-run distribution of opinions in the society. We show that under mild conditions

dynamics converge and subgroups of the society reach a consensus. Moreover, we obtain a

closed-form solution for long-run influence (opinion leadership): an individual’s influence

on consensus is increasing in her network centrality (as in DeMarzo et al., 2003), but

decreasing in her degree of conformity. This result, hence, explains the empirical finding

that opinion leaders are often characterized by low conformity.2 When interpreting initial

opinions as signals about some true state of nature, the quality of information aggregation

(wisdom) can be assessed by the precision of the consensus belief. We show in this paper

that information does not necessarily get distorted when individuals are conforming. In

fact, the society may be quite wise compared to the case where nobody misrepresents. The

reason is that opinion leaders (as characterized before) are not necessarily well-informed,

i.e. may not receive the best signal. To avoid that these powerful agents mislead the

society and to benefit the quality of information aggregation, these opinion leaders should

1Under the term opinions we subsume also beliefs, judgments, and estimations – depending on the
application.

2A personality trait that has been found to discriminate opinion leaders from followers is called ‘public
individuation’ (Chan and Misra, 1990). It measures by a list of questions the extent to which “people
choose to act differently than others” (Maslach et al., 1985).



conform more to the society. Depending on the network structure and the quality of

the signals, we characterize the set of optimal distributions of conformity to maximize

wisdom.

We allow for conformity in an opinion formation framework since there is substantial

empirical evidence that individuals conform to the actions of others when these actions

are observable (as stated opinions are). For instance in the famous study by Asch (1955),

subjects wrongly judged the length of a line after other participants of the experiment

(conceived as neutral by the subjects, but being collaborators) had placed the same wrong

judgment. Follow-up studies revealed that this effect is weaker if the subjects do not have

to report their judgments publicly (Deutsch and Gerard, 1955). In the study by Asch

(1955), subjects were asked for the reasons of their wrong judgment. Some said they were

convinced of the wrong answer by the collaborators; others said that they knew that their

answer was wrong, but felt uncomfortable by not conforming to what the collaborators

said (see Asch, 1955, p.21). Deutsch and Gerard (1955), hence, distinguish two forms of

social influence that can be observed in this study. While informational social influence

describes the updating of (true) opinions according to what others have said, normative

social influence describes the behavior of stating an opinion that fits the group norm.3

Normative social influence is also documented with respect to other publicly observ-

able behavior. In an experiment on charitable giving, Zafar (2011) shows that individuals

adjust more to the contributions of their neighbors (and hence conform more by reducing

respectively increasing their contribution), the more their donations are observable, sup-

porting the findings by Asch (1955) and Deutsch and Gerard (1955). Moreover, subjects

in Zafar’s experiment mainly conform to the actions of participants who are their friends

outside the lab. Hence, normative social influence is determined by the social network

itself. Zafar (2011) concludes that individuals experience “a utility gain by simply making

the same choice as [their] reference group” (Zafar, 2011, p. 774). Incentives to conform

can be derived from desires for social status (Bernheim, 1994) and are embodied in a

utility component that depends on the difference of the behavior of the focal actor and

the behavior of some peer group (Jones, 1984).

While normative social influence affects the choice of stated opinions, informational

social influence embodies the updating of the true opinions. We assume that individu-

als update their true opinions näıvely rather than sophistically since empirical evidence

strongly suggests that individuals in these settings behave boundedly rational (Corazzini

et al., 2012; Grimm and Mengel, 2013; Battiston and Stanca, 2014). If individuals were

3Deutsch and Gerard (1955, p. 629) further explain: “Commonly these two types of influence are
found together. However, it is possible to conform behaviorally with the expectations of others and say
things which one disbelieves but which agree with the beliefs of others. Also, it is possible that one will
accept an opponent’s beliefs as evidence about reality even though one has no motivation to agree with
him, per se.”
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fully rational, they would perfectly account for repetition of information (for some ref-

erences on Bayesian learning in opinion formation, see Gale and Kariv, 2003; Acemoglu

et al., 2011; Mueller-Frank, 2013). This, however, requires knowledge of the social net-

work (personal relationships, individual trust in one another). Moreover, under Bayesian

learning, the social network plays no role for the long-run outcome since individuals are

able to derive the initial signals and thus to extract all information perfectly,4 which is a

rather unrealistic assumption. In fact, evidence from laboratory experiments shows that

even in small social networks (of only four people) where the network is made common

knowledge, people fail to properly account for repetitions of information (Corazzini et al.,

2012; Battiston and Stanca, 2014). Making the network structure more complex, Grimm

and Mengel (2013) also confirm that learning in the lab is very well approximated by the

näıve learning approach.

Hence, we model informational social influence by assuming that individuals learn

näıvely from what others say (see also DeMarzo et al., 2003; Golub and Jackson, 2010;

Acemoglu et al., 2010). In view of the substantial empirical evidence, we enrich the

näıve learning model by studying the effects of individuals who have a desire to adjust

their behavior (i.e. their stated opinion) to the behavior of their friends (i.e. their friends’

stated opinions). In the words of psychology, this corresponds to modeling normative

social influence. Remarkably, this type of influence has not been studied in a theoretical

model of opinion dynamics despite the large empirical evidence.5 The main conceptual

contribution of this work is hence to fill this gap by studying a model incorporating

both informational and normative social influence. We focus on two motives for the

misrepresentation of opinions: conformity and counter-conformity, while we also allow for

honest agents.6 The desire to relate own stated opinions to the stated opinions of friends is

given by an additional utility component parameterized by a preference parameter which

we call the agents’ degree of conformity. If positive, agents are of conforming type and

state an opinion which is a convex combination of their own true opinion and other agents’

stated opinions. If negative, an agent is counter-conforming and will state a more extreme

opinion and if zero, an agent is honest, i.e. behaving like agents in the standard DeGroot

4Indeed, among equally informed agents with a strongly connected communication structure that is
common knowledge, Bayesian updating leads to convergence of each opinion to the average of the initial
opinions (DeMarzo et al., 2003, theorem 3).

5Meanwhile, the concepts of informational and normative social influence have become a cornerstone in
analyzing social influence, e.g. Ariely and Levav (2000, p. 279) call it the “primary paradigm”. However,
this paradigm did not explicitly enter economic models. The terms ‘social influence’ and ‘conformity’
do usually not clarify whether social or normative influence is at work. We will be more explicit on
this distinction and only refer to conformity as a form of normative social influence. In terms of this
paradigm, the DeGroot model of opinion formation and its variations are models of informational social
influence, but not of normative social influence.

6This is consistent with the psychological theory where identification, non-identification and disiden-
tification lead to these three types of normative social influence (Hogg and Abrams, 1988).
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model.

When opinions are exchanged and updated repeatedly, we show that if agents are

honest or of conforming type, the dynamics converge to a steady state.7 In contrast,

counter-conformity may lead to divergence of opinions which we exemplify in the case

of only two agents. This type of divergence is caused by agents stating more and more

extreme opinions implying cycling dynamics, a feature we do not observe in the DeGroot

model.

If agents in a subgroup find a consensus, the immediate question emerges how much

this consensus is influenced by each agent’s initial opinion.8 Each individual’s influence on

the long–run, hence, defines a measure of opinion leadership. As one of the main results,

we show how opinion leadership or power is determined not only by each individual’s

position in the network, given by eigenvector centrality (Bonacich, 1972; Friedkin, 1991),

but also by the distribution of conformity in the society. Comparative statics reveal that

an agent’s power is decreasing in own level of conformity, increasing in other agents’ level

of conformity and increasing in own network centrality.

Finally, we consider a context where there is a true state of nature and the individuals’

initial opinions are unbiased noisy signals which may differ with respect to signal precision

(the inverse of the variance). The question is how the misrepresentation of opinions affects

the accuracy of information aggregation (the society’s wisdom). A negative effect might

be expected since stated opinions may become even less reliable signals about the truth.

Our results show that this conjecture does not hold in general. First, if the society is

homogeneous with respect to conformity, then information aggregation is neither worse

nor better than in the DeGroot model (i.e. when all individuals are honest). Moreover,

heterogeneous levels of conformity foster wisdom if they balance the power of agents

with their signal precision, while an unbalanced distribution can lead to lower wisdom.

Using comparative statics we observe that for the goal of higher accuracy of the consensus

opinion, it would be helpful if people with a low signal precision (relative to their power)

were more conforming, while people with a high signal precision (relative to their power)

should be less conforming, or in more poetic words: “The whole problem with the world

is that fools and fanatics are always so certain of themselves, but wiser people so full of

doubts.”9

7As in the classic DeGroot model, steady states feature consensus in closed and strongly connected
subgroups.

8This research question is also motivated by empirical research on identifying opinion leaders, which
started with Katz and Lazarsfeld (2005).

9Credit for this quote is often given to Bertrand Russell although the origin of the quote is actually
unknown. It is at least confirmed that Russell made a similar statement in his essay “The Triumph of
Stupidity” (10 May 1933), which can be found on pp. 203-204 in the collection of essays “Mortals and
Others”.
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Related Models There is a growing body of literature that studies näıve learning in so-

cial networks. DeMarzo et al. (2003) introduce this approach into the economics literature

arguing that people are often unable to properly account for repetition of information.

The underlying assumption of a “persuasion bias” is helpful to understand different em-

pirical phenomena such as the importance of airtime in political discussions and it has

also found empirical support in the laboratory (Corazzini et al., 2012; Grimm and Mengel,

2013; Battiston and Stanca, 2014). Among näıve agents the social network becomes vital

in the sense that not only accuracy of information but also network centrality determines

an agent’s influence on her group (DeMarzo et al., 2003). This form of social influence

makes näıve agents prone to be misled by powerful actors such as community leaders or

lobbyists (Acemoglu et al., 2010). On the other hand, dispersed pieces of information

can also be efficiently aggregated among näıve agents if the influence of each individual

is vanishingly small (Golub and Jackson, 2010). The crucial question is hence under

which conditions exchange of opinions among näıve agents leads to efficient information

aggregation which is also called wisdom (Golub and Jackson, 2010). Our model takes the

examination of the questions of power and wisdom to a further level since it incorporates

not only the social network structure but also individual degrees of conformity.

The modeling approach of the above literature roots in the pioneer work of French

(1956), Harary (1959), DeGroot (1974) and Friedkin and Johnsen (1990).10 One variation

of the näıve learning approach is to let agents only be affected by opinions that are not too

different from the own opinion (Hegselmann and Krause, 2002). Moreover, DeMarzo et al.

(2003) allow the self-confidence to vary over time, while Lorenz (2005) allows the whole

learning matrix to vary and identifies general conditions for convergence. Under some

conditions, convergence to consensus is also robust if updating is noisy, as Mueller-Frank

(2011) shows. There are also studies which extend the model by DeGroot (1974) to allow

for adaption of learning weights, e.g. in Pan (2010) the influence weights are updated

over time and Flache and Torenvlied (2004) study a variation of the classic model where

actors anticipate the difference between own opinion and group decision (“frustration”)

and adapt learning weights (“salience”) accordingly. The case where agents are able to

manipulate learning weights of others is studied in Foerster et al. (2013). The focus of

many of these models is to provide conditions for convergence, or determine opinion lead-

ership. We contribute to this literature by allowing agents to misrepresent their opinion

and study the effect on convergence conditions and opinion leadership. In a context of

cultural transmission of traits, Buechel et al. (2011) introduce strategic interaction for the

DeGroot model in an OLG framework. While this resembles counter-conforming misrep-

resentation of opinions, their model differs with respect to the optimization problem of

individuals, the updating rule, and the resulting dynamics.

10We adopt their assumptions on näıve learning to model informational social influence.
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Besides these highly related works, there are several contributions to somewhat similar

research questions, but with respect to different settings. While their discussion is beyond

the scope of this paper, we refer the reader to the following few prominent examples:

other models of social learning (Bikhchandani et al., 1992; Ellison and Fudenberg, 1993,

1995; Bala and Goyal, 1998, 2001), cooperative models of social influence (Grabisch and

Rusinowska, 2010, 2011), a model of strategic influence (Galeotti and Goyal, 2009), a

model on rumors (Merlone and Radi, 2014) and a framework which contains strategic

misrepresentation of opinions under Bayesian learning as a special case (Rosenberg et al.,

2009). Most of these models investigate social influence on a discrete choice of actions,

such as the choice of one out of two technologies, as opposed to continuous opinions.

The remainder of this paper is organized as follows. In Section 2 we introduce the

model. Before we present the main results (in Section 4), we discuss the two-player case

(Section 3). Section 5 addresses the wisdom of the society and in Section 6 we conclude,

while proofs are relegated to the appendix.

2 Model

2.1 Informational Social Influence

There is a set of agents/players N = {1, 2, ..., n} who interact with each other. A learning

structure is given by a n × n row stochastic matrix G, i.e. gij ≥ 0 for all i, j ∈ N and∑n
j=1 gij = 1 for all i ∈ N . This learning matrix represents the extent to which agents

listen to other agents and it can be interpreted as a weighted and directed social network.

We say that there is a directed path from i to j in this network if there exists i0, ..., ik ∈ N
such that i0 = i and ik = j and gilil+1

> 0 for all l = 0, ..., k − 1, which is equivalent to

(Gk)ij > 0.11 Moreover, we assume that gii < 1 for all i to assure that all agents update

their opinion.

We study a dynamic model where time is discrete t = 0, 1, 2... and initially each agent

has a predefined opinion xi(0) concerning some topic. The opinions of all agents at time

t are collected in x(t) ∈ Rn. In every period, agents talk to each other and finally update

their opinions according to the matrix G. In the classical DeGroot model agents exchange

opinions such that the opinions in period t+1 are formed by x(t+1) = Gx(t) = Gt+1x(0)

(DeGroot, 1974). The motivation for such a model is that agents always report their

true opinions and suffer from persuasion bias when the next period’s opinion is formed

as a weighted average of own and others’ opinions according to the social network G.

11We follow the convention of Jackson (2008) and DeMarzo et al. (2003) that a directed link from agent
i to agent j indicates that i listens to j, i.e. gij > 0, while the opposite convention is used by Corazzini
et al. (2012).
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Concerning the assumption of honesty in opinion formation, DeMarzo et al. (2003) note:

“For simplicity, we assume that agents report their beliefs truthfully.”12

We relax this assumption: an agent i ∈ N expresses some opinion si(t) ∈ R which need

not coincide with her true opinion xi(t).
13

A central assumption of our approach is that an agent cannot observe the true opinions

of the others but only their stated opinions. Since each agent knows her own true opinion

xi(t), we get that agent i′s next period’s opinion is formed by xi(t + 1) = giixi(t) +∑
j 6=i gijsj(t), where the weights gij are the individual learning weights as in the classical

model by DeGroot (1974). This holds for all agents i ∈ N and, thus, the updating process

becomes

x(t+ 1) = Dx(t) + (G−D)s(t), (1)

where D is the n× n diagonal matrix containing the diagonal of G.

2.2 Normative Social Influence

Misrepresenting the own opinion (i.e. being dishonest) might cause discomfort (e.g. Fes-

tinger, 1957). However, there are various motives to misrepresent the own opinion. Not

only strategic considerations of persuasion play a role, but also personality traits or emo-

tional motives. There is ample evidence that many people feel discomfort from stating an

opinion that is different from their peer group’s opinion (e.g. Deutsch and Gerard, 1955).

While certainly many people feel this type of normative social influence, this need not

be true for all people – there are even some who prefer to state an opinion that is far

away from what others say.14 We focus on these two motives for the misrepresentation of

opinions: conformity and counter-conformity.

To formalize these ideas, consider an agent i who is confronted with some group opinion

qi, while her own opinion on this topic is xi. In the spirit of the model of Bernheim (1994)

we consider a utility function that depends on an intrinsic part – this will be the incentive

to be honest – and a social part – this will be the incentive to conform/counter-conform.

Additionally, we assume that utility of an agent is additively separable into these two

parts and that for each part disutility takes a quadratic form.

12DeMarzo et al. (2003, p. 3, footnote 9).
13The incentive to state an opinion different from true opinion will be based on preferences for confor-

mity or counter-conformity (cf. Subection 2.2). Moreover, agents adapt their stated opinions faster than
true opinions such that s(t) is given by Proposition 1.

14For instance, Hornsey et al. (2003) conducted a laboratory experiment where subjects reported their
willingness to privately or publicly express and support their opinion. For subjects with a strong moral
basis on the topic, the treatment of suggesting that a majority of the other subjects disagreed slightly
increased the willingness to publicly express the opinion.
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Thus, the utility of agent i depends on the distance of true opinion xi to stated opinion

si as well as on the distance of stated opinion si to group opinion qi in the following way:

ui(si|xi) := −(1− δi)
(
si − xi

)2 − δi
(
si − qi

)2
, (2)

where δi ∈ (−1,+1) displays the relative importance of the preference for conformity in

relation to the preference for honesty. The preference peak (or “bliss point,” Bernheim,

1994) for such an agent is given by si = (1 − δi)xi(t) + δiqi(t). This assumption is

illustrated in Figure 1. For δi ∈ (0, 1) the agent faces a trade-off between conforming and

being honest such that her preference peak lies within the interval (xi, qi). For δi ∈ (−1, 0),

a similar trade-off can be seen between counter-conforming and being honest. In that case

the preference peak lies within the interval (xi − (qi − xi), xi). We assume that δi > −1

to restrict counter-conformity to a certain bound which seems weak enough to cover all

reasonable cases, but keeps the analysis tractable.

Figure 1: Preferences for conformity, counter-conformity, and honesty.

A stylized fact on normative social influence is that people are heterogeneous in the way

and their degree of being influenced. The degree of conformity can hence be considered a

personality trait, but it might also depend on the topic under discussion. Let ∆ denote

the n×n diagonal matrix with entries δi ∈ (−1, 1) on the diagonal representing the levels

of conformity in the society.

Now, we want to determine each agents’ stated opinion without assuming that the

network structure and the individual types are common knowledge and without assuming

that agents are sophisticated in anticipating the consequences of their behavior. For this

purpose we consider an adaption process of stated opinions which takes place within a

time period t, while true opinions are updated from one period to the next.15 Thus,

suppose that within each period t ∈ N, there is a fast time scale τ ∈ N such that at

each time step τ one or more agents speak. The (possibly random) set of agents who are

selected to state their opinions at time step τ (of period t) is denoted by Aτ (t). Let sτ (t)

be the vector of stated opinions. Agents who are not selected to revise keep the stated

opinion of the previous time step, i.e. sτi (t) = sτ−1
i (t) if i ∈ N \ Aτ (t). Agents, who are

15An interpretation for this assumption is that each period is a discussion round within which stated
opinions are adjusted, while learning takes place between discussion rounds.
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selected to speak and thereby revise their stated opinion, observe last time step’s stated

opinions of their neighbors. These are perceived as a reference opinion qτ−1
i (t), which is

the average of the stated opinions with weights according to the listening matrix G, i.e.

qτi (t) =
∑
j 6=i

gij
1− gii

sτj (t). (3)

In line with our assumption that agents are näıve when updating, we also assume that

agents are boundedly rational when revising their stated opinions. Upon revision oppor-

tunity, i.e. i ∈ Aτ (t), an agent i myopically chooses a stated opinion which maximizes her

current utility given by (2), i.e.

sτi (t) = (1− δi)xi(t) + δiq
τ−1
i (t), (4)

for any true opinion xi(t) and any reference opinion qτ−1
i (t).16 Hence, the stated opinion

given by myopic best response differs from the true opinion proportionally to the difference

of reference opinion and true opinion, and the proportion is determined by the preference

parameter δi. The parameter δi can thus be directly interpreted as the degree of conformity

of agent i′s behavior (cf. Figure 1). A conforming agent, characterized by δi ∈ (0, 1),

states an opinion between the true opinion xi(t) and perceived opinion qτ−1
i (t). A counter-

conforming agent, characterized by δi ∈ (−1, 0), states an opinion that is more extreme

than the true opinion xi(t) (with respect to the perceived opinion qτ−1
i (t)). Finally, an

honest agent, characterized by δi = 0, straight-forwardly states the true opinion, i.e.

sτi (t) = xi(t) for all τ ∈ N.

To ensure that every agent takes part in opinion exchange in period t, we assume that

for each agent i, the set {τ ∈ N : i ∈ Aτ (t)} is (almost surely) infinite, reflecting the

idea that no agent will stay forever with a stated opinion that is not in line with her

preferences. This assumption is satisfied if, e.g., at each time step τ agents are randomly

selected to speak according to some probability distribution with full support on N .

It turns out that such a myopic best reply process within period t ∈ N inevitably leads

to one specific profile of stated opinions s(t) which only depends on the network G and

the conformity parameters ∆, but not on the starting stated opinions s0(t).

Proposition 1. Given the assumptions above, the within-period dynamics sτ (t) converge

for τ →∞ to

s(t) := [I −∆(I −D)−1(G−D)]−1(I −∆)x(t). (5)

The proof of Proposition 1 as well as all proofs of the following propositions are rele-

gated to an appendix. Proposition 1 shows that agents who revise opinions by conforming

16Myopic maximizing is a common assumption in such models (see, e.g. Corazzini et al., 2012).
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or counter-conforming to what their neighbors last said, finally state (or express) the opin-

ions given by (5).

It is worth noting that considering the action sets Si(t) = R and utility functions

ui(si(t)|xi(t)) given by (2) implies that s(t) obtained by Proposition 1 is the unique Nash

equilibrium of the normal form game (N , S(t), u(·|x(t)) for each t ∈ N. Note that the

process that leads into this Nash equilibrium within period t neither requires complete

information (e.g. on the network structure G), nor high degrees of rationality, nor some

sort of common knowledge.

2.3 Model Summary

In our model each period t ∈ N can be viewed as a discussion round within which agents

express opinions and then learn from one discussion round to the next. Proposition 1

determines which opinions are finally stated in a given period as a function of the true

opinions x(t). These stated opinions s(t) determine the vector of reference opinions q(t)

by (3) and are then a crucial ingredient of the updating process.17 Since opinions of period

t+ 1 are formed by (1) and the stated opinions of each period can be calculated as in

Proposition 1, we conclude that the opinion profile in period t+ 1 depends on the opinion

profile in period t in the following way:

x(t+ 1) = Mx(t), (6)

where M :=
[
D+(G−D)[I−∆(I−D)−1(G−D)]−1(I−∆)

]
. Note that the transformation

from x(t) to x(t+1), i.e. the matrix M , is independent of x(t). Thus, the opinion dynamics

are fully described by the power series M t, since x(t + 1) = Mx(t) = M2x(t − 1) =

... = M t+1x(0).18 The relation to the classical DeGroot model becomes apparent in this

expression when recalling x(t+1) = Gx(t) = Gt+1x(0). In that light the misrepresentation

of opinions leads to a transformation of the matrix G into the matrix M . If every agent

is honest, i.e. δi = 0 for any i ∈ N , then M = G and, hence, we are back in the standard

case of DeGroot (1974).

Before we analyze this model in full generality in Section 4, we derive and illustrate

its properties for the case of two agents in Section 3.

17Since one interpretation for qi(t) is that this is the society’s opinion at time t as perceived by agent
i, we also call it i′s perceived opinion.

18The simple linear structure is of course implied by our assumption of quadratic utility.
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3 Two-Agent Case

In this case, closed form solutions are easy to obtain and, still, it is possible to observe

several important properties of the opinion dynamics.

Let n = 2. Then we can write G as

G =

(
1− g12 g12

g21 1− g21

)

with g12, g21 ∈ (0, 1). With only two agents, the relevant group average for one agent is

simply the stated opinion of the other agent, i.e. q1(t) = s2(t) and q2(t) = s1(t). Plugging

in the variables for G into (6) yields

M =

(
1−m12 m12

m21 1−m21

)
=

1− g12
1− δ2

1− δ1δ2

g12
1− δ2

1− δ1δ2

g21
1− δ1

1− δ1δ2

1− g21
1− δ1

1− δ1δ2

 .

Since x(t+ 1) = Mx(t), an entry mij gives the importance of Player j on the one-period

opinion change of Player i. From ∂m12

∂δ2
= −g12

1−δ1
(1−δ1δ2)2

, we see the following comparative

static effect: higher conformity of Player 2 reduces her one-period influence on Player 1

(m12), which vanishes (m12 → 0) when Player 2’s conformity approaches 1. Thus, in the

short run, conformity results in a reduction of influence. To investigate long-run effects,

we examine the power series M t since x(t) = M tx(0). By induction one can easily see

that M t can be rewritten as follows:

M t =
1

m12 +m21

(
m21 +m12(1−m12 −m21)t m12 −m12(1−m12 −m21)t

m21 −m21(1−m12 −m21)t m12 +m21(1−m12 −m21)t

)
. (7)

From (7), we observe that the decisive quantity for the (speed of) convergence of M t is

λ := 1−m12 −m21 = 1− g12(1− δ2) + g21(1− δ1)

1− δ1δ2

< 1,

which is the second (largest) eigenvalue of M (the other eigenvalue of M is always 1). In

particular, M t converges if |λ| < 1 and, moreover, the smaller |λ|, the higher the speed of

convergence. Before discussing the issue of convergence in more detail, let us have a brief

look at the limit of M t in case of convergence: with the help of (7), we have

M∞ = lim
t→∞

M t =


m21

m12 +m21

m12

m12 +m21
m21

m12 +m21

m12

m12 +m21
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such that, in the long run, the two agents will reach a consensus because x(∞) = M∞x(0).

Player 1’s and Player 2’s initial opinions enter this consensus opinion with weights m21

m12+m21

and m12

m12+m21
, respectively. Since m12

m12+m21
= g12(1−δ2)

g12(1−δ2)+g21(1−δ1)
= 1 − g21(1−δ1)

g12(1−δ2)+g21(1−δ1)
,

Player 2’s influence in the long run is decreasing in δ2. Therefore, increasing conformity

not only decreases the short-run importance of an agent, but also the long-term impact

of this agent’s initial opinion.

To study the effect of conformity/counter-conformity on convergence, we will first

consider the special case δ1 = δ2 =: δ which simplifies λ to

λ = 1− 1

1 + δ
(g12 + g21).19 (8)

Since λ < 1, the decisive thresholds for λ are λ = 0 and λ = −1: for λ = 0, convergence

will be fastest (one-step convergence due to M = M2 = ... = M∞), while λ = −1 marks

the case of cycling M t (M t will alternate between M1 = M3 = ... and M2 = M4 = ...).

Figure 2 exemplifies the corresponding across-period dynamics for G =

(
0.6 0.4

0.2 0.8

)
and

initial opinions x(0) = (0, 100)′. For better readability, we abstract from within-period

dynamics and simply connect the opinions at time t and t + 1 by straight lines in this

and the following figures. Notice, in particular, that the speed of convergence of true

opinions x(t) is not monotone in δ: when δ decreases from 0.5 to −0.4, speed increases and

eventually reaches one-step convergence; however, further reducing δ first leads to slower,

alternating dynamics, cycling, and finally divergent behavior.20 It might be surprising

that higher levels of conformity can decrease the speed of convergence. The intuition for

this effect can be gained by comparing cases (a) and (b). Under conformity, i.e. in case

(a), stated opinions s(t) are closer to each other in the first time periods such that agents’

true opinions x(t) are less swayed to the center compared with case (b) where agents are

honest.21

If we relax the assumption of equal conformity (δ1 = δ2), the necessary and sufficient

condition for convergence of M t (λ > −1) is equivalent to

g12
1− δ2

1− δ1δ2

+ g21
1− δ1

1− δ1δ2

< 2. (9)

To interpret this condition in terms of individual conformity parameters, let us distin-

19λ and |λ| as a function of δ are depicted in part (0) of Figure 2.
20Another aspect that can be observed in Figure 2 is that, under convergence, i.e. in cases (a)-(e), the

dynamics converge to the same limit independently of δ. We will show later on that this observation is
not a coincidence and that it is induced by setting δ1 = δ2 = δ.

21Recall that agents know their own true opinion and are thus resistant against their own misrepresen-
tation.
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Figure 2: Seven cases of two-agent dynamics for δ1 = δ2 = δ. Solid lines represent true
opinions and dashed lines display stated opinions. (0) Shape of λ. (a) δ > 0, conformity.
(b) δ = 0, honesty. (c) −0.4 < δ < 0, smooth convergence under counter-conformity. (d)
δ = −0.4, one-step convergence. (e) δ < −0.4, alternating dynamics with convergence.
(f) δ = −0.7, alternating dynamics (λ = −1). (g) δ < −0.7, divergence.

guish two cases:22

(i) If δ2 ≤ 2g21+g12−2
2+g12

, then M t converges if and only if δ1 >
g12(1−δ2)+g21−2

g21−2δ2
.

(ii) If δ2 >
2g21+g12−2

2+g12
, then M t converges for any δ1 ∈ (−1,+1).

Thus, if Player 2 has a relatively low degree of conformity (case (i)), then Player 1 must be

sufficiently conforming in order to assure convergence. However, if Player 2’s conformity is

above some threshold, then we will have convergence for any conformity level of Player 1.

In fact, δ2 > 1
3

is sufficient for (ii) to hold. Since similar arguments can be made by

exchanging the players’ labels, in the two-agent case we always have convergence if there

22It can be checked that the threshold which defines the two cases is always in (−1, 13 ). Additionally,
given that (i) holds, the threshold for δ1 is below 1.
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is an agent with δi >
1
3
. Thus, a sufficiently conforming agent will reach consensus with

any other agent.

4 Opinion Dynamics

To study the dynamics of opinions for an arbitrary number of agents, we first elaborate

on conditions of convergence and then determine where opinions converge to.

4.1 Convergence

By convergence, we mean that opinions settle down in a steady state, but not necessarily

that a consensus in the society is reached. In the standard DeGroot model, convergence of

opinions is obtained under very mild conditions, which basically exclude cycling dynamics

(Golub and Jackson, 2010). In our more general model, opinions may not only converge

or cycle, but also diverge, as shown in the case of two agents with the same level of

(counter-)conformity (cf. Figure 2). The two-agent case nurtures the intuition that among

conforming agents opinions always approach each other, while among counter-conforming

agents opinions may alternate and eventually diverge. Mathematically, convergence of

opinions is driven by convergence of M t.23 Counter-conforming agents can lead to negative

entries of matrix M which may but need not make M t divergent.24 Reversely, honest and

conforming agents do not induce negative entries of M such that convergence can be

guaranteed by standard results. This yields the following simple condition that ensures

convergence of opinion dynamics for any vector of starting opinions x(0).

Proposition 2 (First Convergence Result). M t converges for t→∞ if for all i ∈ N we

have gii > 0 and δi ≥ 0.

The condition presented here is fairly weak. If we exclude counter-conformity (δi ≥ 0),

and every individual has at least some self-confidence, then the opinion dynamics converge.

The assumption of positive self-confidence thereby only serves to assure aperiodicity of

matrix M which could also be generated by weaker assumptions. Although all cases of

conformity are covered by Proposition 2, it is important to emphasize that conformity is

not necessary for convergence. Examples of convergence which include counter-conforming

agents were already given in the two-agent case (Section 3). In order to analyze necessary

23Indeed, since x(t) = M tx(0), true opinions x(t) converge for arbitrary starting opinions x(0) if and
only if M t convergences. Moreover, it is easy to show that stated opinions s(t), as well as perceived
opinions q(t), converge if and only if true opinions converge (cf. Lemma A.2 in Appendix A.2).

24Negative entries of M are not only remarkable because of the different dynamics they induce, but
also because of their interpretation as a negative relation between two agents: Although only positive
weights are put on each other’s opinions, an agent may negatively incorporate a peer’s opinion due to
counter-conformity.
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and sufficient conditions for convergence, the block structure of matrix M has to be

inspected. As we will see later, the block structure also determines which subgroups of

the society reach a consensus in the long run. In the standard model, agents within

a closed and strongly connected group, which corresponds to a block in the matrix G,

reach a consensus (e.g. DeMarzo et al., 2003; Golub and Jackson, 2010). Accordingly, we

partition the set of agents N with respect to the paths in the network as follows.

Definition 1. Let Π(N , G) = {C1, C2, ..., CK ,R} be a partition of N into K(≥ 1) groups

and the (possibly empty) rest of the world R such that:

• Each group Ck is strongly connected, i.e. for all i, j ∈ Ck there exists l ∈ N such that

(Gl)ij > 0.

• Each group Ck is closed, i.e. for all i ∈ Ck, Gij > 0 implies j ∈ Ck.

• The (possibly empty) rest of the world consists of the agents who do not belong to

any closed and strongly connected set, i.e. R = N \
K⋃
k=1

Ck.

With a suitable renumeration, the matrix G is organized into blocks which correspond

to the groups of the partition Π(N , G):

G =



G11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 GKK 0

GR1 · · · · · · GRK GRR


(10)

with Gkk = G|Ck , GRR = G|R, and GRk consisting of the rows of G belonging to R and

the columns of G belonging to Ck.
Intuitively, convergence of opinions requires that dynamics in each part of the network

settle down. Formally, Proposition A.1 in Appendix A.2 explicitly determines M – and

in fact M t, for all t ∈ N – showing that the structure of the society extends from the

standard model to our more general set-up.25 This means that the opinion dynamics of

each group Ck can be studied independently, while only for agents in R multiple groups

may matter. Thus, for convergence of opinions it is necessary that dynamics within each

group converge, as it is the case in the classic model. In contrast to the classic model,

however, this is not sufficient, as the following example shows.

25This result is not self-evident. It crucially depends on the definition of the reference opinion qτi (t).
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Example 1. Suppose there are four agents such that G =


0.7 0.3 0 0

0.3 0.7 0 0

0.085 0.085 0.49 0.34

0.085 0.085 0.34 0.49

 .
Players 1 and 2 form a closed and strongly connected group C1, while Players 3 and 4 from

the rest of the worldR. Let the conformity parameter δ be given by δ = (0, 0, δROTW , δROTW ).

Figure 3 shows the opinion dynamics for the cases δROTW = −.75 and δROTW = −.9.

While convergence within the closed and strongly connected group is guaranteed, the rest

of the world (ROTW) may cause divergence of M t for t→∞.26
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Figure 3: The opinion dynamics of Example 1 for (a) δROTW = −.75 and (b) δROTW = −.9.

Thus, convergence of opinions in all closed and strongly connected groups is not suf-

ficient for convergence of opinions in the societey. In Proposition 3, we identify the

additional condition on the rest of the world such that M t converges.

Proposition 3 (Second Convergence Result). Let the block structure of M be given as

in (10). M t converges for t → ∞ if and only if M t
kk converges for all k = 1, . . . , K and

M t
RR converges to 0.

Proposition 3 presents a necessary and sufficient condition for convergence of M in

terms of the block structure. In Example 1 the condition that MRR converges to 0 fails

26Notice that, for the latter case, M not only has negative entries but also entries larger than unity:

M =


0.7 0.3 0 0
0.3 0.7 0 0

0.053125 0.053125 −0.115625 1.009375
0.053125 0.053125 1.009375 −0.115625

 .
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since strong counter-conformity of two agents leads to eigenvalues with high absolute

value to the extent that |λRR| > 1, for some eigenvalue of MRR. A similar violation of the

necessary condition for convergence occurs if counter-conformity of agents in the closed

and strongly connected groups is too strong.

While tight convergence conditions for each block of matrix M are known, it is difficult

to trace these conditions back to the model fundamentals, which are the network G and

the distribution of conformity ∆. Already in the case of two agents, such conditions are

relatively complex (cf. (9)). For every numerical example, however, it is an easy compu-

tational exercise to determine M and M t and thereby establish the dynamic properties

including whether opinions converge or not. Therefore, we now assume for the remainder,

that the power series M t converges. Notice that this does not preclude the presence of

counter-conforming agents.

4.2 Long-run Opinions

Having established convergence, we now address where opinions converge to (in the long

run) when starting with some opinion profile x(0). It turns out that true, stated, and

perceived opinions always converge to the same limit, i.e. x(∞) = s(∞) = q(∞), as we

formally show by Lemma A.2 in Appendix A.2. Therefore, we can restrict our analysis

of the long run to the dynamics of true opinions. We are particularly interested in the

influence of each agent’s initial opinion on the long-run opinion given her position in the

network G and her degree of conformity δi. The following result characterizes the long-run

opinions explicitly (conditional on convergence). We present it first in a formal way and

turn to its interpretation with respect to opinion leadership in Section 4.3.

Theorem 1. Let G and M be organized as in (10). We denote by w, v ∈ Rn the vectors

that fulfill the following: for each closed and strongly connected group Ck ∈ Π(N , G), w|Ck
is the left unit eigenvector of Gkk with

∑
i∈Ck

wi = 1, while v|Ck is left unit eigenvector of

Mkk with
∑
i∈Ck

wi = 1. If M t converges for t→∞ to some matrix M∞, then the following

holds:

M∞ =



M∞
11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 M∞
KK 0

M∞
R1 · · · · · · M∞

RK 0


with

M∞
kk = 1|Ckv

′
|Ck = 1|Ckw

′
|Ck

I −∆kk

1
′
|Ck(I −∆kk)w|Ck

, (11)
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and

M∞
Rk = (I −GRR)−1GRkM

∞
kk (12)

for all k = 1, . . . , K.

Theorem 1 fully characterizes the long-run dynamics of (true) opinions given con-

vergence since x(∞) = M∞x(0).27 For the interpretation of the result, we distinguish

between the closed and strongly connected groups Ck and the rest of the world R.

We can first observe that the long-run opinions may differ across groups, but each

closed and strongly connected group Ck reaches a consensus ck ∈ R as each block M t
kk

of M t converges to a matrix of rank 1. Each row of M∞
kk is given by the left-hand unit

eigenvector v′|Ck , implying

ck := xi(∞) = xj(∞) = v′|Ckx(0)|Ck (13)

for all agents i, j in group Ck. The left-hand normalized unit eigenvector v′|Ck thus displays

the extent to which the initial opinion of each agent i matters for consensus within group

Ck. Moreover, v′|Ck is a function of w′|CK , the left-hand unit eigenvector of Gkk, and the

conformity parameters within the group, ∆kk. (We delay the interpretation of this result

and its comparative statics to the next subsection.)

The long-run opinion of an agent in R is simply some weighted average of the long-run

opinions c1, . . . , cK within the groups 1, ..., K.28 To see this, consider the matrix

Γ := (I −GRR)−1(GR11|C1 , . . . , GRK1|CK ),

which is easily seen to be row-stochastic. Γ enables translating (12) into

x(∞)|R = Γc (14)

combining the long-run opinions of the closed and strongly connected groups denoted by

the K-dimensional vector c = (c1, . . ., cK)′. Thus, the initial opinion of some agent in

the ROTW does not affect the long-run opinion profile x(∞) since the ROTW agents

end up with a weighted average of the consensus opinions of the closed and strongly

connected groups, which in turn are dependent on the initial opinions within those groups.

Moreover, the weights of averaging depend on G but not on the conformity parameters δi

for i ∈ R. Consequently, the long-run opinion of an agent in the ROTW neither depends

on an initial opinion nor on the conformity parameter of any agent within the ROTW

(including herself). Thus, the only way conformity of agents in the rest of the world

27The dynamics collapse to the well-known DeGroot dynamics if every agent i is honest, i.e. ∆ is a
matrix of zeros.

28This result is fully analogous to theorem 10 in DeMarzo et al. (2003).
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can affect long-run opinions is to induce divergence such as in Example 1. Since each

agent in the ROTW may average differently between consent opinions of the closed and

strongly connected groups, the agents in the ROTW need not reach a consensus if there

is more than just one closed and strongly connected group. The important contribution

of Theorem 1 lies in the characterization of v as a function of w and ∆, as we will discuss

next.

4.3 Opinion Leadership

To simplify the discussion, let us now restrict attention to one closed and strongly con-

nected group by assuming that there is only one such group, i.e. Π(N , G) = N . For

this purpose it is sufficient to assume that G is strongly connected or, equivalently, that

rk(I −G) = n− 1, where rk yields the rank of a matrix.

From (13), we get that x(∞) = 1v′x(0) and hence xj(∞) = v′x(0) =
∑

i∈N vixi(0).

Thus, an entry vi of v determines the weight of the initial opinion of agent i on the

long-run consensus opinion. This is a very intuitive formalization of opinion leadership:

v measures the power of each agent.

Note that for δi = 0 for all i ∈ N , (11) yields v = w, i.e. opinion leadership is fully

determined by the left-hand unit eigenvector of G. w is a well-studied object in network

science: it is known as eigenvector centrality (Bonacich, 1972; Friedkin, 1991).29 Relaxing

the assumption that every agent is honest, the following corollary of Theorem 1 shows

how opinion leadership is not only determined by eigenvector centrality, but also by the

degree of conformity.

Corollary 1. Let rk(I − G) = n − 1. Let w and v be the normalized left-hand unit

eigenvectors of G and M , respectively. Then we have for any i ∈ N

vi =
(1− δi)wi∑
j∈N (1− δj)wj

. (15)

Moreover,

∂vi
∂δk

=
wk

n∑
j=1

wj(1− δj)

 wi(1− δi)
n∑
j=1

wj(1− δj)
− 1i=k

 =
wk

n∑
j=1

wj(1− δj)
(vi − 1i=k) . (16)

As it becomes apparent from (15) opinion leadership (power) vi of some agent i is

determined by the combination of her network centrality in G (wi) and the individual

29This index of centrality in a social network is recurrently defined via the rows of G′ (i.e. via the
columns of G): An agent’s centrality is the weighted sum of centralities of the agents who listen to her.
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conformity δi divided by the sum of these values over all agents. Thus, there is a com-

plementary relationship between network centrality and 1 − δi: power becomes minimal

(vi → 0) if either i’s network centrality approaches zero or if i is fully conform (δi → 1).

Taking the network G as given, we can observe the comparative statics with respect to

δi. From (16) we get for all i ∈ N that opinion leadership is decreasing in own conformity

δi and increasing in other agents’ conformity δk, k 6= i, since wj ∈ [0, 1] and 1 − δj ≥ 0

for all j ∈ N . Thus, low own conformity fosters opinion leadership. The same is true if

other agents are more conforming. We also may use (16) to examine which agent’s power

changes most in response to a marginal increase in her own conformity. From (16), we

calculate that∣∣∣∣∂vi∂δi

∣∣∣∣ < ∣∣∣∣∂vj∂δj

∣∣∣∣ ⇔ w2
j (1− δj)− w2

i (1− δi) < (wj − wi)
n∑
k=1

wk(1− δk). (17)

Thus, if two agents have the same network centrality wi = wj, then by (17),
∣∣∣∂vi∂δi

∣∣∣ <∣∣∣∂vj∂δj

∣∣∣ if and only if δi < δj. In other words, the agent with the already higher degree

of conformity and thus lower power loses even more power in response to a marginal

increase in conformity compared with an agent with low conformity. Holding δi = δj,

we get
∣∣∣∂vi∂δi

∣∣∣ < ∣∣∣∂vj∂δj

∣∣∣ if and only if wi < wj, which implies that for two agents with equal

conformity the agent with the higher network centrality loses more power when increasing

own conformity.

We can also use Corollary 1 to compare opinion leadership in our model, v, with

opinion leadership in the classic DeGroot model, w, (i.e. with the special case of our

model where every agent i is honest, δi = 0). For this purpose consider first a society

where all agents are characterized by the same trait, i.e. δj = δ̄ for all j ∈ N . Then

(15) yields v = w: opinion leadership is not affected by conformity when all agents are

characterized by the same level of conformity. More generally, we have vi ≥ wi if and only

if δi ≤
∑

j 6=i
wj∑
k 6=i wk

δj, i.e. an agent’s power in our model compared to the classic DeGroot

model is fostered if δi is below some average of the others’ conformity parameters.

This is illustrated in Figure 4 which depicts power vi as a function of conformity δi in

a variation of Example 1. We fixed δ1 = −0.7 and study the comparative-static effect of

Player 2’s conformity level δ2 on her power v2. If Player 2 is honest, her initial opinion’s

impact on the long-run consensus is approximately 0.37, it completely vanishes for confor-

mity level δ2 approaching 1, while counter-conformity allows Player 2 to “become” more

important in a comparative-static sense. One can show generally that the power gain by

counter-conforming is bounded by vi(δi) ≤ (2 − wi)vi(0). In this example, it is further

bounded by the fact that too strong counter-conformity (δ2 ≤ −0.7) leads to divergence

of opinions.
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Figure 4: Power as a function of own conformity level.

5 Wisdom

The discussion so far applies to any continuous opinion including those for which no true

value can be determined. In some applications, however, agents’ opinions are more or less

accurate with respect to some objective truth. As in the discrete context of Condorcet’s

Jury theorem, the question whether agents aggregate information in an efficient way is

also of interest in the context of continuous opinions (Golub and Jackson, 2010; Acemoglu

et al., 2010).

Therefore we assume that there is some true value µ ∈ R and that all agents of

the society receive independent unbiased signals about µ with individual precision (i.e.

inverse of the variance) which constitute the agents’ initial opinions. Formally, for all

i ∈ N , agent i’s initial opinion xi(0) is a random variable with expected value µ and some

individual variance σ2
i , and all xi(0) are uncorrelated random variables. Assuming that

opinion dynamics converge, a natural question to ask is how close the different steady

state opinions will be to the true, but to the agents unknown, value µ.30 To measure this

difference between µ and an estimate µ̂, we use the mean squared error (MSE), which is

defined as E((µ̂−µ)2).31 The MSE can be decomposed into the squared bias (E(µ̂−µ))2

and the estimator’s variance Var(µ̂):

E((µ̂− µ)2) = (E(µ̂− µ))2 + Var(µ̂).

30Recall that in a steady state true opinions and stated opinions coincide and there is consensus within
groups.

31The mean squared error as a measure of wisdom has also been used by Rauhut and Lorenz (2010).

22



Figure 5: Network for wisdom example. This society consists of three closed and strongly
connected groups of size two and four agents in the rest of the world.

As x(∞) = M∞x(0) and M∞
1 = 1, it is obvious that E(x(∞)) = µ1, i.e. all agents’

long-run opinions are unbiased estimates for µ. Denoting by Σ the covariance matrix

of x(0), the corresponding MSEs are therefore given by the entries on the diagonal of

M∞Σ(M∞)′. To study the effects of conformity on wisdom, we begin with an illustrative

example.

5.1 Wisdom: an Example

Let n = 10, (σ2
1, . . . , σ

2
10)=(6, 4, 8, 7, 6, 3, 10, 12, 14, 16), and

G =



0.9 0.1 0 0 0 0 0 0 0 0

0.4 0.6 0 0 0 0 0 0 0 0

0 0 0.8 0.2 0 0 0 0 0 0

0 0 0.3 0.7 0 0 0 0 0 0

0 0 0 0 0.7 0.3 0 0 0 0

0 0 0 0 0.3 0.7 0 0 0 0

0.1 0 0 0 0 0 0.9 0 0 0

0 0 0.2 0.3 0 0 0 0.5 0 0

0.1 0 0 0.1 0 0 0 0 0.8 0

0 0 0 0 0 0.2 0 0 0.2 0.6



.

In this situation, we have K = 3 closed and strongly connected groups, C1 = {1, 2},
C2 = {3, 4}, and C3 = {5, 6}, while Players 7 to 10 form the rest of the world, as also

illustrated in Figure 5. If all agents report their opinions truthfully (∆ = 0), we find

the MSEs equal to (4, 4, 4, 4, 2.25, 2.25, 4, 4, 2, 1.0625). There are several notable

features of this observation. First, due to the fact that their long-run opinions are equal,

all agents within a given closed and strongly connected group share the same level of

wisdom. Comparing the first two groups, we note that the MSEs of these two groups are
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4 each, although the first group enjoys significantly better initial signals (of variances 6

and 4), while the second group seems to combine their less precise signals (of variances 8

and 7) much more effectively. It is also remarkable that Player 2, by communicating with

Player 1, ends up with exactly the same MSE of 4 that she would reach if she used only

her own signal. With respect to the rest of the world, notice that these agents typically

have different MSEs. Furthermore, Players 7 and 8 each end up with the same MSE as

the first two groups, while Players 9 and 10 achieve MSEs better than all members of the

closed and strongly connected groups.

Now suppose that Players 2, 3, and 5 are conforming with δ2 = 5/9, δ3 = 2/3, and

δ5 = 1/2 (and δi = 0 for all other players). Then wisdom levels can be calculated to be

(4.9, 4.9, 4, 4, 2, 2, 4.9, 4, 2.225, 1.05625). Thus, increasing conformity can lead to a

decrease in wisdom (as the first group’s MSE becomes larger), the same wisdom (as the

second group’s MSE does not change), or an increase in wisdom (as the third group’s

MSE becomes smaller). We also find that the agents in the rest of the world are affected

by the changes in conformity of the agents in the closed and strongly connected groups:

the MSE of Players 7 and 9 increases, while Player 10’s MSE decreases slightly. It still

holds that Player 7 and 8’s MSEs equal that of the first and second group, respectively.

We will now proceed by systematically analyzing the principles underlying the distri-

bution of wisdom within the society.

5.2 Wisdom of Groups

Due to (13), a group Ck will, given convergence, eventually end up reaching a consensus

where all agents’ opinions are equal to ck = v′|Ck
x(0)|Ck

=: µ̂k. Hence, we can directly

derive group Ck’s wisdom as the MSE of µ̂k.

Lemma 1. The MSE of µ̂k is given by

MSEk := E((µ̂k − µ)2) =
∑
i∈Ck

v2
i σ

2
i =

∑
i∈Ck

 (1− δi)wi∑
j∈Ck

(1− δj)wj


2

σ2
i .

We may use Lemma 1 to identify the individual contributions to the MSE in a given

group Ck. First, from Lemma 1 it follows directly that

MSEk =
∑
i∈Ck

v2
i σ

2
i ≤

∑
i∈Ck

viσ
2
i ≤ max

i∈Ck
σ2
i , (18)

since v2
i ≤ vi due to vi ∈ (0, 1] for all agents i. Thus, group Ck’s long-run opinion is on

average at least as close to the true value µ as that of the agent with the least precise
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signal. This worst case is given when both inequalities in (18) become equalities, which

is the case for vi ∈ {0, 1} for all i ∈ Ck (first inequality) and vi = 0 for all i with

σ2
i < max

j∈Ck
σ2
j (second inequality). Therefore, information updating within group Ck is

worst when importance is given to only one agent whose signal is most imprecise. This

case would be approached if all other agents were close to full conformity, i.e. δi close to

1. We now consider the comparative static effect of one agent’s conformity on the wisdom

of her group.

Proposition 4. The wisdom of a closed and strongly connected group Ck is increasing in

the conformity level of a group member i if and only if i′s product of signal variance and

power is larger than the group’s MSE, i.e.

∂MSEk

∂δi
≤ 0 ⇔ viσ

2
i ≥ MSEk .

To give an interpretation for Proposition 4, let us rewrite viσ
2
i = vi

1/σ2
i

and MSEk =∑
j∈Ck

vj
vj

1/σ2
j
. This shows that it is not a person’s expertise alone which is decisive for the

question of how this person can increase the group’s wisdom, rather, it is the ratio of power

over signal precision, vi
1/σ2

i
: if agents with a high ratio as compared to the group’s average

are more conforming, then this will reduce their power within the group, decrease the

group’s MSE, and thereby increase its wisdom. Vice versa, agents who are not powerful

enough in relation to their signal precision will increase the group’s wisdom if they are

less conforming, because this will increase their power, decrease the group’s MSE, and

foster its wisdom.32

The above discussion implies that in the best possible case, the ratio of power over

signal precision is constant within a group: viσ
2
i = vjσ

2
j for all i, j ∈ Ck. This is formalized

in the following corollary of Proposition 4.

Corollary 2. For the wisdom of group Ck as measured by MSEk, we have

MSEk ≥
1∑

j∈Ck

1
σ2
j

=: MSE∗k, (19)

with equality in (19) if and only if viσ
2
i = vjσ

2
j for all i, j ∈ Ck. The latter condition is

equivalent to

δi = 1− a 1

σ2
iwi

∑
j∈Ck

1
σ2
j

for all i ∈ Ck (20)

for some constant a ∈ (0, 2
∑
j∈Ck

1
σ2
j

min
j∈Ck

wjσ
2
j ).

32An analogous discussion can be already found in DeMarzo et al. (2003) for the case where agents are
honest.
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Corollary 2 delivers the analogue to (18). While (18) describes the worst case with

respect to wisdom, Corollary 2 considers the best scenario: all agents within the same

closed and strongly connected group share the same ratio of power over signal precision,

and this case can always be constructed if the agents’ conformity is distributed suitably.

In particular, choosing a ∈ (0,
∑
j∈Ck

1
σ2
j

min
j∈Ck

wjσ
2
j ] in (20) ensures δi ≥ 0 for all i ∈ Ck

and therefore by Proposition 2 guarantees convergence of the opinions in Ck to the best

possible consensus µ̂k. Notice also that the optimal MSE is smaller than individual signal

variance σ2
i for all agents i in group Ck, as is easily seen from (19). Therefore, under

optimal conformity all agents within Ck benefit from communication.

Reconsidering the example discussed in Subsection 5.1, we find the network centralities

(the left-hand unit eigenvectors of G) to be w1 = 0.8, w2 = 0.2, w3 = 0.6, w4 = 0.4,

w5 = 0.5, and w6 = 0.4. Therefore, in (20) the constant a can be chosen in (0, 2/3)

(group 1) and (0, 3/2) (groups 2 and 3). Choosing a = 1/3 (group 1) and a = 3/4 (groups

2 and 3) delivers δ1 = 5/6, δ3 = 5/12, and δ5 = 1/2 (and δi = 0 for all other agents).

Thus, choosing the agents’ degrees of conformity according to these values ensures the

optimal wisdom within the respective groups, given by (2.4, 2.4, 3.73, 3.73, 2, 2, 2.4,

3.73, 1.53, 0.883). The same level could also be reached for other conformity levels, for

instance, choosing a = 1/4 (first group), a = 3/7 (second group), and a = 3/8 (third

group) in (20), we find that the conformity levels δ1:6 = (7/8, 1/4, 2/3, 3/7, 3/4, 1/2)

also lead to the optimal wisdom. Notice that, as in Golub and Jackson (2010), wisdom

thus is independent of the speed of convergence, as we have two examples with the same

optimal wisdom but different speeds of convergence (the last-mentioned conformity levels

lead to slightly slower convergence than the earlier mentioned ones).

5.3 Wisdom within the Rest of the World

Let us recall that agents in the rest of the world do not necessarily share a consensus

opinion in the long run, so that we will typically have individual wisdom levels. Due

to (14), we have the following formula for the long-run opinions within the rest of the

world: x(∞)|R = Γµ̂, with µ̂ := (µ̂1, . . . , µ̂K)′. Therefore, the wisdom levels in the rest

of the world depend on the conformity levels of the agents in the closed and strongly

connected groups as these affect the consensus opinions µ̂k of these groups. On the other

hand, as neither the initial signals nor the conformity levels of the agents in the rest of

the world play any role for their long-run opinions, these agents’ wisdom is independent

of their conformity levels as well as of their initial signals. In other words, if the rest

of the world is non-empty, information processing in the society is necessarily inefficient

as the information contained in these agents’ initial signals is inevitably lost. Assuming

convergence, let γi,k denote the long-term weight of the group Ck on the opinion of agent

26



i ∈ R, i.e. xi(∞) =
K∑
k=1

γi,kµ̂k (cf. (14)). This immediately translates into the wisdom of

an agent i ∈ R as follows:

E((xi(∞)− µ)2) =
K∑
k=1

γ2
i,k MSEk ≤ max

k=1,...,K
MSEk . (21)

The wisdom of an agent in the rest of the world depends on the wisdom within the closed

and strongly connected groups. More precisely, an agent i’s wisdom only depends on the

wisdom of groups Ck to which there is a directed path in the network G because this

corresponds to γi,k > 0. The worst case for an agent in the rest of the world is to be

influenced only by agents of one closed and strongly connected group with maximal MSE.

With regard to the example discussed in subsection 5.1 this is the case for Players 7 and 8

who have directed paths only into group 1 and group 2, respectively, such that they share

their MSEs of 4 (cf. Figure 5). Player 9, however, who has directed paths into both groups

with MSE of 4 reaches an MSE of 2 since the long-term weights γ9,1 = 0.5 and γ9,2 = 0.5

are squared in (21). Finally, Player 10 has directed paths into these groups via Player 9

and, moreover, has a directed path into group 3. Player 10 therefore is able to combine

MSEs of 4, 4, and 2.25 into an MSE as low as 1.0625. It is intuitive that for maximal

wisdom of an agent in the rest of the world, all groups’ signals have to be accessed with

some kind of balanced group weights. The following proposition confirms this intuition.

Proposition 5. For agents i ∈ R, we have:

E((xi(∞)− µ)2) ≥ 1
K∑
k=1

1
MSEk

, (22)

with equality if and only if γi,k = 1

MSEk

K∑
l=1

1
MSEl

for all k = 1, . . . , K.

Therefore, the highest wisdom is achieved if an agent in the rest of the world averages

the different groups’ opinions in such a way that the product of weight put on a group

and its MSE is constant for all groups: the better a group’s estimate, the more weight it

should get. Nevertheless, as all the optimal weights are positive, this optimum can only be

achieved if from agent i there is a directed path into all the closed and strongly connected

groups. Notice also that the optimal weights depend on the groups’ MSEs such that an

agent in the rest of the world who is initially characterized by optimal weights would no

longer average the groups’ opinions optimally if conformity levels within the groups were

to change.

It is remarkable that an agent in the rest of the world who is connected to multiple

groups can reach a significantly lower MSE than the best informed agents from those
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groups. Thus, the fact that agents in the rest of the world are absolutely powerless does

not imply that they are not wise.

6 Concluding Remarks

So far, the literature on opinion dynamics has focused on truthful opinion representation

either with a Bayesian approach (Banerjee, 1992; Bikhchandani et al., 1992; Smith and

Sorensen, 2000; Gale and Kariv, 2003; Acemoglu et al., 2011) or assuming näıve updating

according to a learning matrix (DeGroot, 1974; DeMarzo et al., 2003; Golub and Jackson,

2010; Acemoglu et al., 2010). Despite some disputable assumptions in both approaches,

as Acemoglu and Ozdaglar (2011) point out, these models serve well to study conditions

under which societies will eventually reach a state of agreement, i.e. consensus. Moreover,

in both contexts the aggregation of initial opinions may, but need not, be “asymptotically

efficient,” in the sense that social learning leads to a high accuracy of information in the

long run. One basic force fostering efficient information aggregation even among näıve

agents is a statistical effect of growing sample size (which is also called “the wisdom of

crowds”) such as in Condorcet’s Jury Theorem. On the other hand, prominent agents

or opinion leaders might reduce the accuracy of information aggregation by superseding

valuable opinions of others.

To our best knowledge, this paper is the first contribution to incorporate misrepre-

sentation of opinions among näıve agents. We assume that individuals depart from their

true opinion by conforming or counter-conforming with their peer group which is a well

documented phenomenon (Deutsch and Gerard, 1955; Jones, 1984; Zafar, 2011). While

we follow the literature based on DeGroot (1974) in modeling informational social influ-

ence as näıve updating of opinions through the network, we, thus, also model normative

social influence by including conforming/counter-conforming behavior. In order to study

the effects of conformity on long-run opinions and information aggregation, we charac-

terize sufficient conditions for convergence and characterize the long-run opinions in this

dynamic framework. When all agents are conforming or honest, then opinions converge

(Proposition 2).

Assuming convergence, we then characterize the long-run (consensus) opinion in each

closed and strongly connected group under conformity (Theorem 1). Thereby, we are in

a position to study the impact of the individual levels of conformity on opinion leader-

ship and on wisdom of the society. Opinion leaders are those whose initial opinion has a

high impact on consensus. We find that this influence is increasing in network centrality

(as in the DeGroot model), but moreover decreasing in the individual level of confor-

mity (Corollary 1). Thus, taking the network as given, we conclude that low conformity

fosters opinion leadership while high conformity undermines opinion leadership. This re-
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sult is fully in line with empirical evidence that opinion leaders are characterized by a

higher inclination to “publicly individuate” themselves (Chan and Misra, 1990). There-

fore, counter-conformity might be interpreted as a persuasion device since not only the

connected agents’ opinions of next period are swayed towards own opinion but a higher

impact on the consensus opinion is achieved.

The effect of heterogeneous levels of conformity on wisdom of the society is ambiguous.

Here, wisdom is defined as the mean squared error (MSE) of the consensus opinion where

agents’ initial opinions are noisy but unbiased signals about some true state of the world

with heterogeneous signal precision. Increasing conformity of a given individual need not

undermine the wisdom of the society, but can also enhance it or leave it unchanged. We

find that increasing conformity of agents with high power and low signal precision increases

the group’s wisdom (Proposition 4). In particular, optimal wisdom within a given closed

and strongly connected group is achieved if distribution of conformity levels is such that

ratio of power over signal precision is balanced across agents (Corollary 2). This result

resembles the fact that reducing prominence of individuals – in particular prominence

of uninformed agents – increases the accuracy of information aggregation. While in the

previous literature reduction of prominence is achieved by increasing population size (see

e.g. Golub and Jackson, 2010), in our model this can be achieved by conformity and

therefore also holds for small groups. Finally, when considering agents in the rest of the

world, we find that their levels of conformity have no influence on wisdom. Although

powerless, individuals in the rest of the world can be quite wise since they may aggregate

information from different groups.

The model presented here contains some simplifying assumptions which may be relaxed

in future research. First, we assumed that the social network is exogenous and stays

fixed over time. In the literature we can find models where the network structure may

vary over time such that only agents with “close opinions” are listened to (Hegselmann

and Krause, 2002), self-confidence varies (DeMarzo et al., 2003), and general changes

are possible (Lorenz, 2005). It would be interesting to see how changes in the learning

structure, either exogenously or endogenously, affect our results. Second, we assumed

that interaction neighborhood equals observation neighborhood in the sense that agents

conform or counter-conform with those agents they listen to. If this assumption is relaxed,

the group structure may no longer be preserved and interesting applications to lobbying

(addressing a certain group) become possible. We leave these ideas and possible other

extensions to future research.
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A Mathematical Appendix

A.1 Expressed Opinions

Proof of Proposition 1

First, notice that s(t) by construction satisfies s(t) = (I − ∆)x(t) + ∆Y s(t) with

Y := (I − D)−1(G − D) and that for all i ∈ Aτ (t), sτi (t) is the i-th component of

(I − ∆)x(t) + ∆Y sτ−1(t). For all i ∈ Aτ (t), we therefore find sτi (t) − si(t) as the i-

th component of ∆Y (sτ−1(t)− s(t)). As Y is obviously a row-stochastic matrix, we

immediately have |sτi (t) − si(t)| ≤ δ∗||sτ−1(t) − s(t)||∞ for all i ∈ Aτ (t), with δ∗ :=

max
i∈N
|δi| < 1, while we have |sτi (t) − si(t)| = |sτ−1

i (t) − si(t)| ≤ ||sτ−1(t) − s(t)||∞ for all

i 6∈ Aτ (t). Together, we therefore have that ||sτ (t) − s(t)||∞ ≤ ||sτ−1(t) − s(t)||∞ for all

τ , showing that the distance between sτ (t) and s(t) measured using the || · ||∞-norm is a

non-increasing and therefore converging sequence.

Now, let Ui(t) := {τ ∈ N : i ∈ Aτ (t)}, for each agent i. Using the assumption that

every agent i belongs almost surely to infinitely many Aτ (t), we define τ1 := min{τ ∈
N : (∀i ∈ N )(Ui(t) ∩ {1, . . . , τ} 6= ∅)} as the first time-step where every agent has at

least once been satisfied with her stated opinion.33 Given the above, it is easy to see that

||sτ1(t)− s(t)||∞ ≤ δ∗||s0(t)− s(t)||∞. Proceeding in the same way by recursively defining

τk+1 := min{τ > τk : (∀i ∈ N )(Ui(t)∩{τk + 1, . . . , τ} 6= ∅)} as the first time-step after τk

such that all agents have at least been once satisfied with their stated opinion, we then

have ||sτk(t)− s(t)||∞ ≤ (δ∗)k||s0(t)− s(t)||∞, yielding that ||sτk(t)− s(t)||∞ and therefore

also ||sτ (t)− s(t)||∞ converges to 0.

A.2 Convergence

To prove Proposition 2 the following lemma is helpful.

Lemma A.1 (I-M). I −M = (I − (G−D)∆(I −D)−1)
−1

(I −G).

Proof of Lemma A.1 (I-M)

First, we can rewrite M , given by (6), to obtain

M = G− (G−D)(I −∆(I −D)−1(G−D))−1∆(I − (I −D)−1(G−D)).

33The assumption that all Ui(t) are almost surely infinite guarantees that τ1, τ2, . . . are almost surely
well-defined.
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This can be verified by the following calculation.

M = D + (G−D)(I −∆(I −D)−1(G−D))−1(I −∆)

= D + (G−D)
[
I −∆(I −D)−1(G−D)

]−1[
I −∆(I −D)−1(G−D)

+ ∆(I −D)−1(G−D)−∆
]

= D + (G−D)(I +
[
I −∆(I −D)−1(G−D)

]−1[
∆(I −D)−1(G−D)−∆)

]
= G− (G−D)

[
I −∆(I −D)−1(G−D)

]−1
∆
[
I − (I −D)−1(G−D)

]
.

Thus,

I −M = I −G+ (G−D)
[
I −∆(I −D)−1(G−D)

]−1
∆(I −D)−1(I −G)

=
(
I + (G−D)

[
I −∆(I −D)−1(G−D)

]−1
∆(I −D)−1

)
(I −G). (A.1)

Now, note that for any n × m-matrix A and any m × n-matrix B, with Ik the k-

dimensional identity matrix (k ∈ {n,m}), we have that In − AB is invertible if and

only if Im − BA is invertible, and then (In − AB)−1 = In + A(Im − BA)−1B, since

(In +A(Im−BA)−1B)(In−AB) = In−AB +A(Im−BA)−1B −A(Im−BA)−1BAB =

In −AB +A(Im −BA)−1(Im −BA)B = In. Taking A = G−D and B = ∆(I −D)−1 in

(A.1) then gives I −M = (I − (G−D)∆(I −D)−1)
−1

(I −G).

Proof of Proposition 2

Denote Y := (I − D)−1(G − D) which is row stochastic. Thus, as |δi| < 1 for all

i ∈ N , we have that I − ∆Y is invertible and (I −∆Y )−1 =
∑∞

k=0(∆Y )k. Moreover, if

δi ≥ 0 for all i ∈ N , the sum
∑∞

k=0(∆Y )k is a sum of non-negative matrices, implying

that (I−∆Y )−1 has only non-negative entries. Hence M = D+(G−D)[I−∆Y ]−1(I−∆)

is non-negative since it is the product of non-negative matrices (since 0 < gii < 1) added

to D, which is a diagonal matrix with strictly positive entries (0 < gii). Finally, since

M1 = 1 by Lemma A.1, we get that M is row stochastic. Since the diagonal of D is

strictly positive, we get that the diagonal of M is strictly positive, mii > 0, implying

aperiodicity of M . Thus M t converges.

Proposition A.1 (Blocks). Let G be given as in (10), i.e. organized into blocks according
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to the partition Π(N , G) = {C1, C2, ..., CK ,R}. Then for every t = 1, 2, ... we have

M t =



M t
11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 M t
KK 0

(M t)R1 · · · · · · (M t)RK M t
RR


with

M t
kk = [I −

(
I − (Gkk −Dkk)∆kk(I −Dkk)

−1
)−1

(I −Gkk)]
t

for all k = 1, . . . , K,R, and

(M t)Rk =
t−1∑
l=0

M l
RRMRkM

t−1−l
kk ,

where MRk = (I − (GRR − DRR)∆RR(I − DRR)−1)−1GRk[(I − ∆kk(I − Dkk)
−1(Gkk −

Dkk))
−1(I −∆kk)] for all k = 1, . . . , K.

Proof of Proposition A.1

Let Z := [I−∆(I−D)−1(G−D)]−1(I−∆) to simplify s = Zx and M = D+(G−D)Z.

We now proceed in three steps: we first characterize Z, then M , and finally M t. Let G be

given as in (10). Then simple but tedious block matrix algebra together with Lemma A.1

yields:

1.

Z =



Z11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 ZKK 0

ZR1 · · · · · · ZRK ZRR


with

Zkk = (I −∆kk(I −Dkk)
−1(Gkk −Dkk))

−1(I −∆kk),

ZRk = ZRR(I −∆RR)−1∆RR(I −DRR)−1GRkZkk

for all k = 1, . . . , K, and

ZRR = (I −∆RR(I −DRR)−1(GRR −DRR))−1(I −∆RR).
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2. For M = D + (G−D)Z = I − (I − (G−D)∆(I −D)−1)
−1

(I −G), we get

M =



M11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 MKK 0

MR1 · · · · · · MRK MRR


with

Mkk = Dkk + (Gkk −Dkk)(I −∆kk(I −Dkk)
−1(Gkk −Dkk))

−1(I −∆kk)

= I −
(
I − (Gkk −Dkk)∆kk(I −Dkk)

−1
)−1

(I −Gkk),

MRk = GRkZkk + (GRR −DRR)ZRk

= (I − (GRR −DRR)∆RR(I −DRR)−1)−1GRkZkk

for all k = 1, . . . , K, and

MRR = DRR + (GRR −DRR)(I −∆RR(I −DRR)−1(GRR −DRR))−1(I −∆RR)

= I −
(
I − (GRR −DRR)∆RR(I −DRR)−1

)−1
(I −GRR).

3. Finally, we claim that for every t ∈ N \ {0},

M t =



M t
11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 M t
KK 0

(M t)R1 · · · · · · (M t)RK M t
RR


with (M t)Rk =

t−1∑
l=0

M l
RRMRkM

t−1−l
kk for all k = 1, . . . , K.

The assertion for the diagonal elements M t
11, . . . ,M

t
KK and M t

RR is trivial. We prove

the formula for M t
Rk by induction.

• For t = 1, the assertion is trivial.

• t 7→ t + 1: first, we have (M t+1)Rk = (M tM)Rk = (M t)RkMkk + M t
RRMRk

by simple matrix multiplication. Inserting (M t)Rk =
t−1∑
l=0

M l
RRMRkM

t−1−l
kk , we
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find

(M t+1)Rk =

(
t−1∑
l=0

M l
RRMRkM

t−1−l
kk

)
Mkk +M t

RRMRk

=
t+1−1∑
l=0

M l
RRMRkM

t+1−1−l
kk ,

which concludes the proof.

Proof of Proposition 3

1. ‘Only if’: this is proven in the first part of the proof of Theorem 1.

2. ‘If’: Suppose each M t
kk converges and M t

RR converges to 0. First, since M t
kk con-

verges, its only eigenvalue with |λ| ≥ 1 is λ = 1 with algebraic and geometric

multiplicity equal to 1 for every k = 1, . . . , K. On the other hand, M t
RR → 0 im-

plies that the eigenvalues of MRR are all smaller than 1 in absolute value and, thus,

MRR − λI is invertible for all complex numbers λ with |λ| ≥ 1.

Now, let the complex number λ̃ be either outside of the unit circle (|λ̃| > 1) or

exactly on the unit circle (|λ̃| = 1), but different from 1. Taking into account the

block structure of M , we easily see that any solution of (M − λ̃I)x = 0 must satisfy

x|C1 = 0, . . . , x|CK = 0, and therefore also x|CR = 0, so that we can conclude that

λ = 1 is the only possible eigenvalue of M with |λ| ≥ 1.

In order to show convergence of M t, we therefore have to show that algebraic and

geometric multiplicity of λ = 1 coincide. With regard to algebraic multiplicity, the

block structure of M implies det(M −λI) =
K∏
k=1

det(Mkk−λI) det(MRR−λI), such

that the algebraic multiplicity of λ = 1 is the sum of the algebraic multiplicities

of M11, . . . ,MKK and MRR, which are given by 1 and 0, respectively, since Mkk

is by definition irreducible for all k = 1, ..., K. Consequently, the algebraic multi-

plicity equals K. With regard to geometric multiplicity, the block structure of M

implies that for any real numbers c1, . . . , cK , the vector x of the form x|Ck = ck1|Ck

(k = 1, . . . , K) and x|CR = (I −MRR)−1
n∑
k=1

ckMRk1|Ck is an eigenvector to M for

λ = 1, implying that the geometric multiplicity is at least K, thereby concluding

the proof.

A.3 Long run

Lemma A.2. The following statements are equivalent:
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1. True opinions x(t) converge for t→∞.

2. Stated opinions s(t) converge for t→∞.

3. Perceived opinions q(t) converge for t→∞.

Moreover, if the true, stated, and perceived opinions converge, then the limits coincide:

lim
t→∞

x(t) = lim
t→∞

s(t) = lim
t→∞

q(t).

Proof of Lemma A.2

From Proposition 1, we get that s(t) = (I −∆(I −D)−1(G−D))
−1

(I−∆)x(t). Thus

convergence of x(t) implies convergence of s(t). By definition we have that q(t) = (I −
D)−1(G−D)s(t), and hence convergence of s(t) implies convergence of q(t). To see that

convergence of q(t) implies convergence of x(t), we use that x(t + 1) = Dx(t) + (G −

D)s(t) = Dx(t) + (I −D)q(t). For all t ≥ 0, this implies x(t) = Dtx(0) +
t−1∑
l=0

Dt−1−l(I −

D)q(l), the first part of which converges to 0 because all elements of the diagonal matrix

D belong to [0, 1). The limit of x(t) therefore equals

lim
t→∞

t−1∑
l=0

Dt−1−l(I −D)q(l) = lim
t→∞

t−1∑
l=0

Dt−1−l(I −D) (q(l)− q(∞))

+ lim
t→∞

t−1∑
l=0

Dt−1−l(I −D)q(∞).

First, note that the second limit equals q(∞), because
∞∑
l=0

Dl = (I −D)−1. For the first

limit, note that for any ε > 0, we can find an index lε such that we have ||q(l)−q(∞)|| < ε

for all l > lε. Splitting the sum into small l (l ≤ lε) and large l (l > lε), we then

easily see that the first term converges to 0. Therefore, x(t) converges to q(∞). Since

s(t) = (I −∆)x(t) + ∆q(t), s(t) also shares the same limit.

To prove Theorem 1, the following Lemma is helpful.

Lemma A.3 (Convergence to Eigenvector). Let A be an n× n-matrix with A1 = 1 and

rk(I −A) = n− 1. If At converges to A∞ for t→∞, then A∞ = 1w′, with w′ the unique

normalized left eigenvector of A associated with the eigenvalue 1.

Proof of Lemma A.3

Obviously, AA∞ = A∞ = A∞A. This implies that

• the columns of A∞ must be multiples of 1,

• the rows of A∞ must be multiples of w′,
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from which we find A∞ = r 1w′ for some real number r which is found to be equal to 1

as 1 = A∞1 = r 1w′1 = r 1.

Proof of Theorem 1

We first derive the formula for M∞
kk . Then we will turn to M∞

RR and M∞
Rk.

Assume for the moment that rk(I −G) = n− 1. Then, as v′(M − I) = 0, we have due

to Lemma A.1

0 = v′(I −M) = v′
(
I − (G−D)∆(I −D)−1

)−1
(I −G),

implying

v′
(
I − (G−D)∆(I −D)−1

)−1
= r w′

for some real number r. Using w′G = w′, we then find

v′ = r w′
(
I − (G−D)∆(I −D)−1

)
= r w′

(
I − (I −D)∆(I −D)−1

)
= r w′(I −∆).

The normalization of v then entails r = 1
w′(I−∆)1

, which shows that v =
(I −∆)w
1
′(I −∆)w

.

Now, relaxing the assumption rk(I −G) = n− 1, the formula for M∞
kk follows.

To determine the formulas for M∞
RR and M∞

Rk, we first establish that GM∞ = M∞.

We have Gx = x ⇔ (I − G)x = 0 ⇔
[
I − (G − D)∆(I − D)−1

]−1
(I − G)x = 0, since

by Lemma A.1
[
I − (G −D)∆(I −D)−1

]
is invertible. Thus by Lemma A.1, Gx = x if

and only if Mx = x. Furthermore, MM∞x = M∞x and therefore GM∞x = M∞x for all

n-dimensional vectors x, delivering GM∞ = M∞. This implies

• M∞
RR = GRRM

∞
RR and therefore (I − GRR)M∞

RR = 0, entailing M∞
RR = 0 because

I −GRR is invertible,

• M∞
Rk = GRkM

∞
kk +GRRM

∞
Rk, and therefore M∞

Rk = (I −GRR)−1GRkM
∞
kk .

A.4 Wisdom

Proof of Lemma 1

First, µ̂k is easily seen to be unbiased for µ because
∑
i∈Ck

vi = 1. Therefore, its MSE

equals its variance which is given by
∑
i∈Ck

v2
i σ

2
i as the xi(0) are uncorrelated.

Proof of Proposition 4
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∂MSEk

∂δi
=

∂
∑
j∈Ck

v2
jσ

2
j

∂δi
=
∑
j∈Ck

2σ2
j vj

∂vj
∂δi

(16)
=

2wi∑
j∈Ck

wj(1− δj)
∑
j∈Ck

σ2
j vj (vj − 1j=i) .

The assertion follows easily noting that MSEk =
∑
j∈Ck

vjvjσ
2
j .

Proof of Proposition 5 First, notice that E((xi(∞) − µ)2) =
K∑
k=1

γ2
i,k MSEk, with

K∑
k=1

γi,k = 1 for all i ∈ R. By the Cauchy-Schwarz inequality, we have

1 =
K∑
k=1

γi,k =
K∑
k=1

(
γi,k
√

MSEk

) 1√
MSEk

≤

√√√√ K∑
k=1

γ2
i,k MSEk

√√√√ K∑
k=1

1

MSEk

,

with equality if and only if there exists some (necessarily positive) constant a such that

γi,k
√

MSEk = a 1√
MSEk

for all k. We therefore have
K∑
k=1

γ2
i,k MSEk ≥ 1

K∑
k=1

1
MSEk

, with equality

if and only if γi,k = 1

MSEk

K∑
l=1

1
MSEl

for all k.
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