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1 Introduction

International comparisons of standardized tests on cognitive skills from the Programme for

International Student Assessment (PISA) persistently show Italy at the bottom of achieve-

ment league tables (Bratti et al. 2007, Hanushek and Woessmann, 2011). PISA scores also

show that, within Italy, Northerners do better than Southerners (see PISA 2012).1 The same

sharp North-South divide is found along many other dimensions. Southern regions are distin-

guished by persistently higher unemployment, lower per-capita income, higher crime rates,

and lower educational attainment. The South also lags in financial development (Guiso et al.,

2004), political accountability (Nannicini et al., 2013), and workplace productivity (Ichino

and Maggi, 2000). Differential performance across regions is often attributed to cultural

differences and differences in residents’ view of the role of government (Putnam et al., 1993).

The question of whether regional gaps in Italian scores reflect differences in school quality

remains open. In particular, differences in achievement at age 15 documented by PISA may

result from deterioration of school quality as students move across grades of compulsory

education (which in Italy normally ends at age 16).2 Italy has only recently embarked on

a program of national standardized tests to look into these issues. Surprisingly, in view of

the pattern in PISA scores, Italy’s own tests (administered by the Istituto Nazionale per la

Valutazione del Sistema dell’Istruzione, INVALSI in what follows) show Southern students

with higher achievement at elementary school. This can be seen from the left hand side

panels of Figure 1 and Figure 2 for math and language, respectively, which are obtained

pooling data for second and fifth grade students for the years 2009-2011.

The good performance of Southern students at INVALSI tests is however at odds with

the evidence from the Trends in International Mathematics and Science Study (TIMSS) and

the Progress in International Reading Literacy Study (PIRLS). The latter surveys, which are

representative of the population of Italian fourth grade students, picture the same North-

South divide documented by PISA.3 Moreover, the correlation between student achievement
1Italy is divided into 20 administrative regions. The South consists of Basilicata, Campania, Calabria,

Puglia, Abruzzo, Molise, and the islands of Sicily and Sardinia.
2The policy relevance of this question is strengthened by low mobility of Italian households (Cannari et

al. 2000, DiAddario and Patacchini, 2008).
3For example, in 2011 fourth grade students in the North score on average 516 in math, 551 in reading

and 535 in science with respect to an average of 496 in math, 528 in reading and 510 in science for students
living in the South (IEA 2011, CNEL, 2013).
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as measured by INVALSI and proxies of school and family inputs unveils patterns which are

hard to explain in light of the evidence from the international literature. For example, we

show below that social deprivation and lower per-capita income are associated with higher

scores, and that public spending - which we proxy with the pupil to teacher ratio at elemen-

tary school by region - is inversely related to achievement. Leaving causality aside, these

relationships are different from those found at older ages using PISA data.

We aim to reconcile these results, and argue that they can be explained by widespread

manipulation on INVALSI tests in the South. The right hand side panels of Figure 1 and

Figure 2 reproduce regional estimates of score manipulation for math and language, respec-

tively, as obtained by INVALSI in official publications. The manipulation indicator identifies

classes in which scores are likely to have been manipulated through a statistical model that

looks for surprisingly high average scores, low within-class variability, and implausible miss-

ing data patterns.4 This measure produces an average of about 6% of compromised scores.

In the South the proportion of compromised exams averages about 13% uncovering evidence

of a substantial regional gradient. For example, about 16% of classes in Sicily are suspected

to have manipulated scores.

Angrist et al. (2014) discuss at large the origin of this phenomenon, focusing on how

tests are graded. Differently from international surveys, INVALSI tests are proctored by

local administrators and teachers, and institutional features that regulate score transcription

seem to facilitate manipulation.5 This idea is confirmed by reduced manipulation in the

presence of external monitors at school (see Bertoni et al. 2013). Score manipulation on

the part of teachers is far from unique to Italy. In an early empirical contribution, Jacob

and Levitt (2003) documented substantial cheating from teachers in Chicago public schools.

More recently, Dee et al. (2011) have shown that scores on New York’s Regents exams are

manipulated by school staff who grade them in an effort to move marginal students over the

performance thresholds. A recent system-wide cheating scandal in Atlanta has raised much
4The INVALSI score manipulation variable identifies classes with substantially anomalous score distribu-

tions, imputing a probability of manipulation for each (see Quintano et al., 2009 and INVALSI, 2010). We
adopt a variant to this definition which is closer in spirit to Jacob and Levitt (2003), as we explain below.
Manipulation rates in the figures are computed for 2009-11 scores of second and fifth graders.

5PISA tests are graded by a group of test correctors, overseen by a project manager, and the corrections
are then cross-checked by other experts. In a similar way, in TIMSS and PIRLS tests scorers are organized
into teams, headed by a team leader. The leader’s primary responsibility is to monitor scoring reliability by
continually checking and rechecking the scores that scorers had assigned.
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interest from the media and now threatens to send large numbers of administrators to jail

(Severson 2011, Aviv 2014).

The contamination of INVALSI data raises the problem of uncovering true score patterns

across Italian regions, which is the objective of this paper. The problem of purging official

figures from potential manipulation is now widely recognized by researchers, and has received

considerable media attention. This prompted the reaction of test administrators, and from

2012 INVALSI down-weights schools with suspiciously large scores in the derivation of ag-

gregate figures by area (see INVALSI 2012, INVALSI 2013). The validity of this correction

is not uncontroversial, as it implicitly assumes that manipulators are a random sample from

the population (as well as that they can be detected with no error). The distribution of

scores retrieved from raw data is a mixture of true and contaminated scores, with mixing

weights representing the percentage of manipulators. To retrieve the distribution of true

scores one needs to know the true counterfactual score for manipulators, who are arguably a

self-selected group. This, together with the fact that manipulators are possibly misclassified

by INVALSI, challenge identification.

We derive bounds for the average of math and language true scores of elementary school

students, which represents the parameter of interest. Central to the development of our

strategy is to employ restrictions that tighten the bounds and strengthen the conclusions

about regional rankings by academic performance. We frame the identification problem

within the context of the corrupt sampling model of Horowitz and Manski (1995; HM in

what follows), and maintain the assumption that manipulation is aimed at boosting scores.

The latter represents a monotonicity restriction motivated by both accountability concerns

and the conclusions on the anatomy of the manipulation problem presented in Angrist et al.

(2014). We exploit a policy followed by INVALSI that randomly assigns external monitors

to about 20% of institutions in the country.

This natural experiment ensures that monitored and unmonitored institutions share the

same average of true scores, but present a rather different fraction of manipulated scores.

We show that restrictions on the parameter of interest naturally arise from the natural ex-

periment. Manipulation is measured at the class level replicating the same indicator used

by INVALSI in official publications, as we discuss further below. However, we allow this

indicator to be misclassified. Under the assumption that misclassification is independent of
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the sampling process that assigns monitors to classes, data on monitored classes classified as

manipulators must be informative on the relationship between measured and latent manip-

ulation. It follows that the extent of classification error in the INVALSI indicator is partly

revealed by the monitoring experiment.

We further establish a connection with the partially verified model in Dominitz and

Sherman (2006) and the literature on misclassification (see for example Mahajan 2006, Lewbel

2007, and Hu 2008). This leads us to investigate the source of identifying information that

arises from imposing that the manipulation indicator is a surrogate of latent manipulation

in the relationship with scores (see Carroll et al., 2006 , and Chen et al., 2011). We show

that, in our application, bounds obtained under this assumption improve on bounds obtained

under the corrupt sampling model. We refine bounds by assuming that manipulation is more

likely for classes at the lower end of the distribution of true scores. Our strategy allows for

monitoring effects on the propensity to manipulate, as well as on the extent to which true

scores are boosted. We also show that if manipulation were exogenous, which corresponds to

the contaminated sampling model of HM, our assumptions would yield point identification of

the parameter of interest. In particular, our setting implies that point identification follows

without exclusion restrictions typically invoked in the literature on misclassification.

The resulting bounds are sufficiently tight to revert regional differences in raw scores,

under assumptions detailed below. This can be seen by comparing observed scores in the

left hand side panels with adjusted scores in the central panels of Figure 1 and Figure 2 for

math and language, respectively. For example Sicily - the region with the highest presumed

incidence of manipulation - is ranked 3rd among the 20 Italian regions using observed math

scores, and 20th (or 19th, depending on variants to the procedure implemented) after our

correction. The correlation of ranks before and after the correction is �14% and �9% for

math and language, respectively. Consistently with PISA, TIMSS and PIRLS our results

depict a rather different pattern than does the correction employed by INVALSI. Moreover

we show the relationship with family and school inputs is reverted once manipulation is taken

into account, concluding that surveys with pervasive score manipulation may lead to bias

conclusions on the role of inputs to the education production function.

The rest of the paper is organized as follows. The next section presents the institutional

background and data, and describes the monitoring experiment. Section 3 presents bounds
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on the percentage of manipulators. Section 4 presents bounds on scores allowing for corrupt

sampling as in HM. We then refine these bounds in Section 5 by imposing restrictions on the

manipulation indicator and on the behavior of manipulators. Section 6 concludes.

2 Background and Data

Institutional background and sample selection criteria

We use administrative data collected by the INVALSI on testing program in Italian elemen-

tary schools in the 2009/10, 2010/11, and 2011/12 school years. Elementary school lasts

5 years starting from 6 years of age and covers grade 1 to 5. Schools are organized into

single- or multi-unit institutions; in other words, each institution may comprise more than

one school. Standardized testing for evaluation purposes is compulsory in Italy since 2009 for

all schools and students. INVALSI assessments considered in what follows cover math and

language skills of pupils in second and fifth grade in a national administration lasting two

days in the Spring, usually in May.6 Scores in language and math are measured as number

of correct answers, and their number varies by grade and year of test administration. In the

empirical analysis we standardize them to have zero mean and unit variance by subject, year

of survey and grade. Our statistical unit of analysis is the class since our manipulation vari-

able varies at class level, as explained below. The sample selection replicates that in Angrist

et al. (2014): the working sample includes only students attending public schools (more than

90% of the students in Italian primary schools) and consists of about 70,000 classes in each

of the two grades covered by three years of data.

Measuring Manipulation

Class-level indicators of compromised scores are defined using within-class information on

average and standard deviation of test scores, proportion of items missing, and variability

in response patterns (measured by a Herfindahl index). These indicators are used as inputs

for a cluster analysis that flags as suspicious classes with abnormally high performance,

a small dispersion of scores, a low proportion of missing items, and high concentration in
6The testing procedure and its implementation are described in details in the annual reports of INVALSI

(see http://www.invalsi.it).
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response patterns. This procedure generates a dummy variable indicating classes where score

manipulation seems likely, separately for math and language. Our manipulation indicator

is similar to that used by Quintano et al. (2009) and employed by INVALSI except that

the latter produces a continuous class-level probability of manipulation.7 The manipulation

score indicator might be however affected by misclassification, as implied by the statistical

procedure used. We will come back to this point in Section 3.

The Monitoring Experiment

In an effort to increase test reliability, INVALSI randomly selects institutions to be observed

by an external monitor. Every year about 7% of classes and 20% of institutions in the

country are mandated to external control on the test day. Compliance of institutions is en-

forced by the Italian law; monitors supervise test administration and are responsible for score

sheet transcription in selected classes within schools, which are however not randomly chosen

within institutions (as evident from descriptives in Bertoni et al. 2013). The allocation of

external monitors to classes follows a two-stage design. First, a sample of institutions strati-

fied by region is selected with probability proportional to grade enrollment; then in sampled

institutions one or two classes by grade (depending on total enrollment) are assigned an

external monitor. Although within-institution monitoring is supposed to preserve random-

ness, in practice it appears to be contaminated by negotiation between school principals and

INVALSI.

Monitors are selected by a pool of retired teachers and principals who did not have direct

contacts with the schools or worked in town in the two years preceding the test. Monitors

have two main duties: supervise test administration and ensure compliance with INVALSI

testing standards on the one hand, and perform score sheet transcription on the other hand.

Tests without monitors (the majority in the data) are proctored by local school staff, under

the rule set by INVALSI that tests are not administered by the class teacher herself, but

by a different teacher (of the same school) specialized in a different subject. Proctors and

other teachers are expected to copy students’ original responses onto machine-readable answer
7Our procedure follows Jacob and Levitt (2003) who use patterns of answers within and across tests in a

classroom to detect manipulation. When manipulation is proxied by an indicator of concentration of answers
within the class, conclusions are informationally equivalent to those presented in what follows. For details
on methods and formulas used to classify score manipulation see the appendix in Angrist et al. (2014).
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sheets (called scheda risposta), which are then sent to INVALSI. The transcription procedure

is needed because this task is not totally mechanical. Questions come in the form of multiple

choice and open-ended items. Answers to open questions have to be judged by transcribers

as correct, wrong or missing, thus making transcription a form of grading. This transcription

procedure opens the door to score manipulation, as does the fact that INVALSI tests are

typically proctored by teachers and no further checks are done on the similarity between

student’s original responses and scheda risposta sent to INVALSI.8 Angrist et al. (2014)

show that score manipulation in Italian primary schools reflects teacher behavior, and identify

shirking rather than accountability concerns as main motivation.

Table 1 shows descriptive statistics for the estimation sample. Scores are lower in classes

in monitored institutions and even more so in monitored classes. Classes in the South have

higher scores than in the rest of Italy, but not in monitored classes. Finally, manipulation

rates are higher in the South and in math, and not surprisingly much lower in classes with

external monitor and in monitored institutions.

3 Bounds on the percentage of manipulators

Notation

Let Yij,1 and Yij,0 be test scores for class i in institution j with and without manipulation,

respectively. Scores take values in the interval [k0, k1]. The observed score is Yij = Yij,0(1�

Mij)+Yij,1Mij, where Mij is an indicator for manipulation. The latter variable is unobserved,

but a proxy Wij of this indicator is available. Monitored institutions are denoted by the

dummy Zj. Finally, Dij indicates whether class i in institution j is monitored. As discussed

in the previous section, Zj is randomly assigned but classes are selected non randomly for

monitoring. Data come in the form (Yij, Dij,Wij, Zj), and class is our unit of analysis.
8No penalization from INVALSI is expected for classes suspected of manipulation. Only from school year

2011-12, INVALSI has actually used the score manipulation indicator to “correct” the average class scores.
In classes with manipulation indicator above a certain threshold set by INVALSI average class scores are not
returned to the school; in classes with manipulation indicator in a given range, again set up by INVALSI,
class average score are returned appropriately adjusted according to the extent of manipulation detected.
However, this procedure was unknown at the time the test took place and therefore our data are not affected
by changes in teachers behavior due to the threat of scores’ adjustment.
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Effects of manipulation

Monitors reduce manipulation markedly, as can be seen in Table 2. The first row reports the

coefficient on the dummy Zj from the following regression:

Wij = ⇢0 + ↵Zj + ⇢1Xij + "ij, (1)

where Xij contains a full set of grade and year effects as well as the stratification variables used

in the monitoring experiment (region, grade enrollment at institution and their interactions).

Here and in what follows standard errors are clustered on institution, which we reckon to be

a conservative strategy in this context. OLS results are presented for Italy first and are then

disaggregated by area, pooling Northern and Central regions and keeping Southern regions

separated. The monitoring effects are shown in columns 1-3 for math and columns 4-6 for

language, which suggest monitoring reduces manipulation rates by about 2% to 2.5% for

Italy. Effects are considerably more pronounced in the South.

The second row in Table 2 reports the coefficient on Dij from the following regression:

Wij = ⌧0 + �Dij + ⌧1Xij + ⇣ij,

which we estimate using 2SLS instrumenting Dij with Zj to correct for the endogenous choice

of monitored classes within institutions. The coefficient estimated identifies the effect of class

monitoring on manipulation. The effect is important and estimated at 7% to 8% for Italy.

As before, the size of the effect doubles in the South.

Table 3 replicates the same analysis presented in Table 2 using scores on the left hand side

of the equations considered. Institutional monitoring reduces math scores by 0.18�, while the

estimated monitoring effect on language scores is about �0.16�. Here too effects are much

larger in the South, ranging from �0.29� for math to �0.26� for language, estimates that

appear in columns 3 and 6 of the table, respectively. Not surprisingly, the presence of an

external monitor in class produces effects on tests scores which are more pronounced. Class

monitoring reduces test score by about 0.6� for math and 0.5� for language in Italy, with

effects twice as large in the South.
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Misclassified manipulation

Assuming that classification error is unrelated to monitoring, we can use the monitoring

experiment to bound the extent of true manipulation. This idea is formally stated through

an exclusion restriction, implying that the correlation between monitors and Wij only depends

on manipulation Mij. Recall that the monitoring sampling design implies P (Dij = 0|Zj =

0) = 1. Our key assumption is:

Assumption 1. For d = 0, 1:

P (Wij = 1|Mij = 0, Dij = d, Zj = 1) = P (Wij = 1|Mij = 0, Zj = 0),

= P (Wij = 1|Mij = 0) ⌘ 1� ⇡0,

P (Wij = 1|Mij = 1, Dij = d, Zj = 1) = P (Wij = 1|Mij = 1, Zj = 0),

= P (Wij = 1|Mij = 1) ⌘ ⇡1.

The terms ⇡1 and ⇡0 are probabilities of correct detection of manipulated and honest

scores, respectively. We also assume that monitoring eliminates manipulation.

Assumption 2. P (Mij = 1|Dij = 1) = 0.

Under Assumption 1 and Assumption 2, ⇡0 is identified from:

P (Wij = 1|Dij = 1) = P (Wij = 1|Mij = 0, Dij = 1, Zj = 1) = 1� ⇡0.

Define pz ⌘ P (Mij = 1|Zj = z) as the true manipulation rate of interest, for z = 0, 1. Since:

P (Wij = 1|Zj = z) = (1� ⇡0) + (⇡0 + ⇡1 � 1)pz,

it follows that pz is linked to ⇡1 by:

pz =
P (Wij = 1|Zj = z)� P (Wij = 1|Dij = 1)

⇡1 � P (Wij = 1|Dij = 1)
. (2)

This expression shows how knowledge of misclassification rates allows us to construct true

manipulation rates. We also impose that Wij is better than a coin toss.

Assumption 3. ⇡1 � 0.5.

Knowledge of ⇡0 together with Assumption 3 produce useful bounds on misclassification

rates, which can then be used to bound true manipulation rates. In particular the upper

10



bound on pz, which we denote by p̄z, is obtained when ⇡1 = 0.5. Assumptions 1-3 therefore

allow to determine the maximum extent of manipulated data in monitored and unmonitored

institution, which is a condition needed to develop bounds from the corrupt sampling model

in Section 4.

Counting rotten apples

Bounds on pz obtained under Assumptions 1-3 are presented in Table 6, for institutions

with and without monitors. Results are presented for values of ⇡1 consistent with bounds

developed in Section 4. We shall see that the monitoring experiment conveys information on

the largest possible value of ⇡1 which is consistent with our data. It follows that the range

of possible values is 0.5  ⇡1  0.7 for math scores in Northern and Central regions, and

⇡1 � 0.5 is all remaining cases.

The first row of Panel B and Panel C in Table 6 reports the fraction of presumed manip-

ulators as computed from raw data for monitored and unmonitored institutions, respectively.

The second row reports bounds on the true percentage of manipulators for the same sub-

groups. Here and in what follows bounds are estimated by replacing population probabilities

or conditional expectations with their empirical analogues. As the focus is identification, we

ignore the problem of sampling variability and of drawing inference for partially identified

models (see, for example, Horowitz and Manski 2000, Imbens and Manski 2004, and Molinari

2008).

When monitored institutions are considered the manipulation rate for math in the South

ranges between 5.0% and 11.0%, and is estimated at 9.0% in raw data. In unmonitored

institutions, it ranges between 12.0% and 26.0%, and is estimated at 16.0% in raw data. By

constructing:
p1 � p0 =

P (Wij = 1|Zj = 1)� P (Wij = 1|Zj = 0)

⇡1 � P (Wij = 1|Dij = 1)
,

we can bound the effect of external monitoring on manipulation. For math in the South this is

found to range between �7.0% and �14.7%, which should be compared to the point estimate

of -5.1% shown in column (3) of Table 2. The usual attenuation bias result induced by

classification errors applies to regression estimates based on equation (1), hence characterizing

the extent of the bias of 2SLS estimates of Y on W using Z as instrument (see Kane et al.

1999). The same analysis for math in Northern and Central regions yields bounds that are
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markedly different, pointing to manipulation in unmonitored institutions between 2.0% and

3.0% (2.0% if computed from raw data). It is also clear from the table that manipulation

can be ignored when monitored institutions are considered, being at most 1.0%. The effect

p1 � p0 for math in Northern and Central regions varies between �1.2% and �1.7%.

The same pattern applies to manipulation of language score. The effect p1 � p0 ranges

between �5.2% and �10.7% in the South, and between �1.0% and �2.1% in Northern and

Central regions.

4 Bounds on scores

Naive bounds

The quantity of interest is the average of Yij,0 across classes in the population. Conditional

on the strata used for random assignment of monitors, we have:9

E(Yij,0|Zj = 0) = E(Yij,0|Zj = 1). (3)

We start by assuming that manipulation is aimed at boosting scores, a behavioral restriction

motivated by background evidence from INVALSI data. Differences in observed scores be-

tween Northern and Southern regions, the existence of substantial manipulation in the South

and the evidence from international surveys documented in the Introduction suggest that

manipulated scores are higher than true scores. Moreover, the assumption is consistent with

the evidence in Angrist et al. (2014), who show that manipulation is primarily the result of

curbstoning by teachers during transcription.

Assumption 4. Y1 � Y0.

This is the Monotone Treatment Response assumption in Manski and Pepper (2000), and

amounts to stating that each class’ reported score is weakly increasing with manipulation

regardless of the extent of monitoring at institution. Since

E(Yij,0|Zj = z) = E(Yij,0|Mij = 0, Zj = z)[1� pz] + E(Yij,0|Mij = 1, Zj = z)pz, (4)
9In our empirical exercise population figures are obtained using sampling weights constructed from strata

controls. To ease notation, reference to the sampling scheme and the use of sampling weights will be left
implicit in what follows.
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Assumption 4 implies that the average of observed scores is above the average of true scores.

Let the following sets be defined for z = 0, 1:

I1z = {x : k0  x  E(Yij|Zj = z)}.

Naive bounds on E(Yij,0) under Assumption 4 are defined as follows:

I1 = I10 \ I11.

These are presented in the second row of each panel in Table 4 setting k0 and k1 to the

minimum and maximum values of Yij in the data, respectively (in the first row observed scores

are reported to ease the comparison). Much uncertainty about the true ranking of scores

across areas is revealed, for both math and language. This holds for both monitored (Panel

A) and unmonitored institutions (Panel B) and therefore for the intersection of their bounds,

i.e. considering all institutions (Panel C). The range of variation for scores in monitored

institutions is within that observed without monitors, with one exception. It follows that the

intersection of bounds constructed from the two groups coincides in most cases with bounds

obtained for monitored institutions. Despite the coarse information employed, these bounds

eliminate regional differences by subject observed in raw data. For example, observed math

scores in Table 1 are �0.12� and 0.21� for North/Centre and South, respectively, pointing

to figures well above the average in the latter area. We now learn that test scores in math

in the South are between [�4.57�,�0.05�], the upper bound being considerably below the

value of scores computed from raw data. Still results don’t reveal any ranking of areas with

respect to their performance by subject. Bounds are however informative about the distance

between true scores and the national average computed from raw scores, as all signs in the

bottom panel of Table 4 are negative.

Bounds from the corrupt sampling model

Results in HM allow to define sharp bounds on E(Yij,0|Zj = z) when (2) is limited from above

by p̄z. As discussed in Section 3, such upper limit on p̄z is achieved when ⇡1 = 0.5. Observed

data Yij = Yij,0(1�Mij) + Yij,1Mij are drawn from a mixture of the distribution of interest,

F (y0|Zj = z), and another distribution which follows from manipulation, F (y1|Zj = z).

Mixing weights pz define the percentage of corrupted data. Under the plausible scenario
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that manipulators have scores Yij,0 selectively different from those of non-manipulators, this

setting defines the corrupt sampling model of HM (for empirical applications of this idea

see, for example, Kreider and Pepper 2007, 2008, and 2011). Corollary 4.1 in HM yields the

following bounds for z = 0, 1:

E(Yij|Yij  Q1�p̄z , Zj = z)  E(Yij,0|Mij = 0, Zj = z)  E(Yij|Yij � Qp̄z , Zj = z),

where Q⌧ is the ⌧ -th quantile of F (y|Zj = z). Using (4) the following bounds on E(Yij,0|Zj =

z) are defined:

LB2(z) ⌘ (1� p̄z)E(Yij|Yij  Q1�p̄z , Zj = z) + p̄zk0,

UB2(z) ⌘ (1� p̄z)E(Yij|Yij � Qp̄z , Zj = z) + p̄zk1,

upon noting that in the absence of additional information we have:

k0  E(Yij,0|Mij = 1, Zj = z)  k1. (5)

Define the following sets for z = 0, 1:

I2z = {x : LB2(z)  x  UB2(z)},

Sets are defined for ⇡1 = 0.5, the lowest admissible value for ⇡1 implied by Assumption 3. As

I2z shrinks for increasing values of ⇡1, the identifying information conveyed by HM bounds

depends on the lowest value of the parameter space for ⇡1. The quantity of interest E(Yij,0)

lies in the intersection of the sets I2z across all values Zj = z (Manski 1990). It follows that

HM-like bounds on E(Yij,0) under Assumptions 1-4 are obtained as follows:

I2 = I20 \ I21 \ I1,

and are presented in the third row of each panel in Table 4.

The gain with respect to using only Assumption 4 is clear-cut. The result is driven by more

informative lower bounds as - by construction - Assumption 4 yields more informative upper

bounds than does the corrupt sampling model. For math in the South, for example, bounds

narrow from [�4.57�,�0.05�] to [�0.84�,�0.05�], a 83% reduction in width for monitored

institutions, and from [�3.82�, 0.29�] to [�1.24�, 0.29�], a 63% reduction for unmonitored

institutions. Similar figures are found for language: 86% and 74% reduction in institutions
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with and without monitors, respectively. In the North/Centre bounds shrink even more, a

98% reduction in monitored institutions and a 95% reduction in unmonitored institutions

for both math and language. These results follow from the lower percentage of manipulators

in the North, as documented in Table 6. The identifying power of HM-like lower bounds

is apparent when we consider the ranking of scores across areas. Despite not being able to

exclude that scores are identical across regions, lower bounds for math and language in the

North are now relatively close to upper bounds in the South.

Bounds from partially verified data

HM-like bounds can be tightened using Wij to partition observed scores into two sets, under

the idea that values in one set are more likely to be determinations from the distribution of

interest. Dominitz and Sherman (2006, DS in what follows) refer to this setting as corrupt

sampling model with verification. In our setting, the verified set consists of scores with

Wij = 0. For w = 0, 1 denote by:

�wz = P (Mij = 1|Wij = w,Zj = z),

the percentage of manipulators in the Wij = 0 and Wij = 1 groups, respectively. Under

Assumption 1 we have:

�1z =
⇡1pz

P (Wij = 1|Zj = z)
, �0z =

(1� ⇡1)pz
1� P (Wij = 1|Zj = z)

,

which depend on the unknown ⇡1. Under Assumptions 1-3, it can be shown that the maxi-

mum values of �1z and �0z, which we denote by �1z and �0z respectively, are obtained when

⇡1 = 0.5. The derivation of bounds mirrors the steps followed above. First, write for z = 0, 1:

E(Yij,0|Mij = 0, Zj = z) = E(Yij,0|Mij = 0,Wij = 0, Zj = z)⇡0 (6)

+ E(Yij,0|Mij = 0,Wij = 1, Zj = z)[1� ⇡0],

where - differently from DS - mixture weights are known due to Assumptions 1-2. Second,

bound mixture components in (6) following the argument of HM conditional on Wij. Finally,
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use (4) and (6) to define the following bounds on E(Yij,0|Zj = z):

LB3(z) ⌘ (1� p̄z)⇡0E(Yij|Yij  Q

0
1��̄0z ,Wij = 0, Zj = z)

+ (1� p̄z)(1� ⇡0)E(Yij|Yij  Q

1
1��̄1z ,Wij = 1, Zj = z) + p̄zk0,

UB3(z) ⌘ (1� p̄z)⇡0E(Yij|Yij � Q

0
�̄0z ,Wij = 0, Zj = z)

+ (1� p̄z)(1� ⇡0)E(Yij|Yij � Q

1
�̄1z ,Wij = 1, Zj = z) + p̄zk1,

where Q

w
⌧ is the ⌧ -th quantile of F (y|Wij = w,Zj = z) for w = 0, 1. Define the following sets

for z = 0, 1:
I3z = {x : LB3(z)  x  UB3(z)},

which, as before, are defined for ⇡1 = 0.5 and shrink as ⇡1 increases. DS-like bounds on

E(Yij,0) under Assumptions 1-4 are obtained from intersections as follows:

I3 = I30 \ I31 \ I2,

and are presented in the last row of each panel in Table 4.

Given the small fraction of manipulators, score verification for Northern and Central

regions is expected to have less impact on bounds than it may have for the South. A similar

idea applies to differences between monitored and unmonitored institutions. Bounds are

narrowed by about 4% (1%) in monitored (unmonitored) institutions in the South, for both

math and language, as shown in the last row of each panel in Table 4. We find that the gain

in width is overall contained, and confined to the South.

Implications for the classification error

The identity in (3) imposes restrictions on the support of ⇡1. In particular, values of the

parameter space for ⇡1 which correspond to an empty set I3 are not plausible. Since I30 and

I31 shrink as ⇡1 increases, this condition might result in an upper bound for the parameter

space of ⇡1. Knowledge of this upper bound does not affect the HM-like and DS-like bounds.

It is however interesting to study the identifying power of this result when combined with

assumptions that define bounds alternative to those from the corrupt sampling model.

The implied ranges for ⇡1 in our data are [0.5, 0.7] for math scores in North/Centre, and

[0.5, 1] in all remaining cases. These ranges are consistent with having more misclassification

in the North/Centre than in the South. For example the percentage of true math manipula-
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tors amongst those deemed to manipulate in unmonitored institutions, �10, ranges between

66.9% and 67.2% in the North/Centre and 76.3% and 80.0% in the South. Such differential

patterns help interpret the manipulation coefficients in Table 7 of Angrist et al. (2014).

5 Refining bounds on scores

Restrictions on the manipulation indicator

Under the assumption that Wij does not contain more information on scores than the latent

indicator Mij, it is possible to define alternative bounds on E(Yij,0|Mij = 0, Zj = z).

Assumption 5. For z = 0, 1 and w = 0, 1:

E(Yij,0|Mij = 0,Wij = w,Zj = z) = E(Yij,0|Mij = 0, Zj = z),

E(Yij,1|Mij = 1,Wij = w,Zj = z) = E(Yij,1|Mij = 1, Zj = z).

This assumption is often referred to as non-differential misclassification and qualifies Wij

as a surrogate of Mij (see Carroll et al., 2006, and Chen et al., 2011). The conditioning on

Zj = z plays an important role in light of the endogenous determination of Mij. Manipulators

can be selectively different with and without monitors at institution, and this may result in

different distributions of Yij,0 for correct reporters Mij = 0. Moreover reported scores for

manipulators Yij,1 may differ with and without external monitoring. Monitors at institution

not only reduce the percentage of classes with manipulated scores, but may also change the

composition of manipulators as well as the reporting of scores.10

To fix ideas, assume that ⇡1 is known. Under Assumption 5, for z = 0, 1 we have:

E(Yij|Wij = 0, Zj = z) = E(Yij,0|Mij = 0, Zj = z)(1� �0z) + E(Yij,1|Mij = 1, Zj = z)�0z,

E(Yij|Wij = 1, Zj = z) = E(Yij,0|Mij = 0, Zj = z)(1� �1z) + E(Yij,1|Mij = 1, Zj = z)�1z,

10The setting considered for our analysis has interesting connections with the literature on identification
with imperfect instruments. To fix ideas, assume Wij=Mij and that the causal effect of manipulation on
scores E(Yij,1�Yij,0|Mij = 1) is the parameter of interest. Under a valid exclusion restriction Zj can be used
as instrument for Mij in the relationship between Yij and Mij . This restriction is violated if the extent of
manipulation in unmonitored classes depends on the presence of monitors at institution, for example because
Yij,1 is decreasing in Zj = z. Assumptions can be made to sign the role of unobservables that cause such
violation, as in Nevo and Rosen (2012). These assumptions yield partial identification of the parameter of
interest.
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which defines a system of two equations in two unknowns. It is easy to show that the system

has a solution if �1z 6= �0z, a condition implied by Assumption 3.11 It follows that:

E(Yij,0|Mij = 0, Zj = z) = (1� �0z)E(Yij|Wij = 0, Zj = z) + �0zE(Yij|Wij = 1, Zj = z),

E(Yij,1|Mij = 1, Zj = z) = (1� �1z)E(Yij|Wij = 0, Zj = z) + �1zE(Yij|Wij = 1, Zj = z),

where:

�0z ⌘ � �0z

�1z � �0z
, �1z ⌘

1� �0z

�1z � �0z
.

Bounds on E(Yij,0) for z = 0, 1 under Assumptions 1-5 can be constructed from (4) by varying

⇡1 over its support:12

LB4(z) ⌘ inf
⇡1

{(1� �0z)E(Yij|Wij = 0, Zj = z)[1� pz]

+ �0zE(Yij|Wij = 1, Zj = z)[1� pz] + k0pz},

UB4(z) ⌘ sup
⇡1

{(1� �0z)E(Yij|Wij = 0, Zj = z)[1� pz]

+ �0zE(Yij|Wij = 1, Zj = z)[1� pz] + k1pz},

and then taking the intersection of resulting bounds for z = 0, 1:

I4 = I40 \ I41 \ I3,

where:
I4z = {x : LB4(z)  x  UB4(z)}.

Differently from bounds constructed under the corrupt sampling model, I4 and I3 are not

necessarily nested. In our empirical exercise, however, we find that Assumption 5 reduces

the upper bound for the parameter of interest.

Results are presented in the second row of each panel of Table 5 (in the first row observed

scores are reported to ease the comparison). The identifying power of Assumption 5 is

investigated separately from that conveyed by the contaminated sampling model, ignoring
11Since there is P (Wij = 0|Zj = z) > 0 in our data, the condition �1z 6= �0z is met if ⇡1 6= P (Wij = 1|Zj =

z). This requirement is implied by Assumption 3, as in our data the maximum value of P (Wij = 1|Zj = z)
across z’s is 0.16. This can be equivalently stated by saying that classes with Wij = 1 are more likely to have
Mij = 1 than classes with Wij = 0, which is A1 in DS.

12It may be shown that �0 increases in ⇡1 and that �0 < 0. It follows that if E [Yij |Wij = 1, Zj = z] >
E [Yij |Wij = 0, Zj = z], a condition which always holds in our empirical application, E [Yij,0|Mij = 0, Zj = 0]
also increases in ⇡1. This, since pz decreases in ⇡1, implies that LB4(z) is obtained when ⇡1 = 0.5.
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intersections with bounds presented in Section 4. Assumption 4 is instead maintained in the

derivation of bounds throughout the table. Panel C of Table 5 almost depicts a reversal in

the regional ranking of language scores with respect to raw data. For math scores, bounds in

the South largely overlap to bounds in the North/Centre and it is not possible to establish

a clear regional ranking.

Behavioral restrictions

Restrictions on the origin of manipulation can be used to tighten bounds derived in the

previous section. Suppose, for example, that scores are manipulated more often in classes with

low average achievement. This restricts the support of E(Yij,0|Mij = 1, Zj = z) previously

stated in (5). We state this assumption in the form of multiplicative mean independence,

allowing two conditional means to differ by a factor of proportionality. This is in the spirit

of Kreider and Pepper (2011), although random assignment of monitors to institutions adds

to the informational content of this assumption.

We start from the following re-parametrization for z = 0, 1:

E(Yij,0|Mij = 1, Zj = z) = �zE(Yij,0|Mij = 0, Zj = z),

that relates true scores for manipulators to true scores of honest reporters. Exogeneity of

manipulation is equivalent to �z = 1, and defines the contaminated sampling model of HM.

Equation (4) implies:

E(Yij,0|Zj = z) = E(Yij,0|Mij = 0, Zj = z)[1� pz(1� �z)], (7)

and since Zj is assigned at random:

E(Yij,0|Mij = 0, Zj = 1)[1� p1(1� �1)] = E(Yij,0|Mij = 0, Zj = 0)[1� p0(1� �0)]. (8)

If manipulation is exogenous, under Assumption 5 the last equation can be solved for the

only unknown ⇡1. It follows that Assumptions 1-5 yield point identification in the con-

taminated sampling model of HM. When manipulation is not exogenous, the identification

breakdown is evident from equation (8). The following assumption restricts the composi-

tion of manipulators, as corrupted data are assumed to come from the lower end of the

distribution Yij,0. Calculations to derive bounds in the previous sections, not presented here,
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show that the upper bound on E(Yij,0|Mij = 0, Zj = z) is always negative. The condition

E(Yij,0|Mij = 0, Zj = z) � E(Yij,0|Mij = 1, Zj = z) in this setting is therefore equivalent to

�z � 1.

Assumption 6. �0 � 1 and �1 � 1.

Bounds under Assumption 6 are obtained by varying the three unknowns �0, �1 and ⇡1

in their corresponding parameter space and by imposing equation (4).13 For z = 0, 1 define:

LB5(z) ⌘ inf
⇡1,�z

{E(Yij,0|Mij = 0, Zj = z)[1� pz(1� �z)]},

UB5(z) ⌘ sup
⇡1,�z

{E(Yij,0|Mij = 0, Zj = z)[1� pz(1� �z)]},

and:
I5z = {x : LB5(z)  x  UB5(z)}.

Bounds on E(Yij,0) under Assumptions 1-6 are defined as follows:

I5 = I50 \ I51 \ I4.

Results are presented in the third row of each panel of Table 5. By construction Assump-

tion 6 affects the width of bounds only by changing their upper limit, and unveils geo-

graphic differences in scores that revert the picture obtained from raw data. Language

scores for the North/Centre are now in the [�0.23�,�0.15�] interval, which is above the

interval [�1.02�,�0.38�] found for the South. The interval for math scores in the South,

[�1.03�,�0.28�], overlaps only partially with the interval [�0.29�,�0.26�] for the Northern

and Central regions.

6 Implications and Directions for Further Work

Table 6 summarizes the main conclusions from our analysis. Panel A presents bounds on

E(Yij,0) that result from taking the intersection of bounds in Table 4 and Table 5. These

are our best estimates of bounds on the parameter of interest. For both math and language
13The derivation is obtained in two steps. Using results from the previous section, it is easy to show that

the quantity in (7) is minimized for the largest value of �z when ⇡1 = 0, 5. We use E(Yij,0|Zj = z) � k0
to limit the set of possible values that can be taken by �z. A similar argument shows that the quantity is
maximized when �z = 1 and ⇡1 is set to its maximum value. Equation (8) implies that the intersection of
bounds constructed for E(Yij,0|Zj = 0) and E(Yij,0|Zj = 1) must not be empty.
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bounds are sharp enough to provide a ranking of areas in terms of performance at national

tests. Bounds are tighter in Northern and Central regions; most importantly, there is almost

no overlap of bounds across areas. This allows us to conclude that true scores in the South

are consistently lower than in the rest of Italy. The comparison with average scores computed

from raw data, also reported in Table 6, reveals that regional inequality is reverted after the

adjustment.

The issue is further explored in the central panels of Figure 1 and Figure 2. Maps are

derived with a descriptive purpose and offer a graphical inspection of the distribution of test

scores across areas after our correction. When monitored institutions are considered, some

regions in Northern Italy present little variability of the indicator Wij. For these regions the

map reports observed average scores in monitored institutions.14 For all remaining regions

we compute area-specific bounds replicating the analysis presented in the previous sections,

and report the mid point of the interval. The central panels for adjusted scores should be

compared with the left panels obtained for observed scores. The ranking of regions in terms

of academic performance of students is reversed once manipulation is taken into account,

and matches that obtained from TIMSS and PIRLS (see INVALSI, 2011). The correlation

of ranks across the 20 Italian regions before and after the adjustment is �14% and �9% for

math and language scores, respectively.15

The second row in Panel A of Table 6 together with Figure A2 give insight on the geo-

graphical distribution of scores after the adjustment used by INVALSI in official publications.

As explained above, their procedure builds upon Quintano et al. (2009) to derive a continuous

class-level probability of presumed manipulation. The latter is then used to define weights

for all classes according to the following steps (see Falzetti, 2013). First manipulation is

bench-marked against Veneto, the region with lowest presumed manipulation. All classes in
14For example Veneto, the region with the lowest level of measured manipulation, has 8 classes in monitored

institutions with Wij = 1 for math out of 2, 505 classes (0.32%) in our data. Out of 1, 878 classes in
monitored institutions in Sicily, 199 have Wij = 1 for math scores (10.6%). We use observed math scores
from monitored institutions for the following seven regions: Piemonte, Lombardia, Trentino Alto-Adige,
Veneto, Friuli Venezia-Giulia, Toscana, and Lazio. For language scores we use raw data for the following
three regions: Lombardia, Trentino Alto-Adige and Friuli Venezia-Giulia.

15Figure A1 in the Appendix is obtained following the same procedure, but reporting the lower bound
for Northern regions and the upper bound for Southern regions. This represents the worse case scenario for
detecting differences across areas, but still conveys a message similar to that in the central panels of Figure
1 and Figure 2. Using Figure A1 in the Appendix, the correlation of ranks before and after the adjustment
is 34% and �3% for math and language scores, respectively.
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Italy with value of the manipulation probability below the median value in Veneto are given

weight one. It is worth noting that this implicitly admits the existence of classification errors

in the manipulation probability. All remaining classes are weighted one minus the probabil-

ity of presumed manipulation. The correction employed by INVALSI yields a correlation of

ranks with raw data of 99% and 66% for math and language scores, respectively.16

Our correction heavily affects the ranking of regions because the effects of manipulation

on scores are large, as shown in the last row of Panel B and Panel C of Table 6. Our setting

allows to identify bounds on E(Yij,1 � Yij,0|Mij = 1, Zj = z) since E(Yij,1|Mij = 1, Zj =

z) and E(Yij,0|Mij = 1, Zj = z) can be retrieved under Assumption 5 and Assumption

6. As explained, bounds are defined without exclusion restrictions for Zj, and allow for

mismeasurement of the indicator Wij. Here too bounds are marginally tighter in Northern

and Central regions, and in monitored institutions. Bounds for monitored institutions are

however not disjoint from those for unmonitored institutions, pointing to effects of at least

3�. The same conclusion applies if the intersection between monitored and unmonitored

institutions is considered, assuming constant effects of manipulation with respect to Zj. This

finding is consistent with the idea that when manipulators rig scores, the result is independent

of the presence of an external monitor at institution.

Why is the fact that score manipulation distorts regional rankings in Italy of general

interest? Micro-data on student achievement are employed in empirical research to learn

about the most effective determinants in the education production function. Figure 3 presents

the association between observed and adjusted scores and selected proxies of family and school

inputs. Only math scores are considered, as the figure for language scores conveys a similar

message. We consider two indicators of family background: per-capita income (top panel)

and an index of deprivation (central panel) distributed by the National Statistical Office. The

bottom panel reports score profiles by pupil-to-teacher ratio, which we interpret as a proxy

for public spending on education at primary school. The association between achievement

and inputs is reverted by manipulation.

Our findings raise a number of questions, including why teacher manipulation is so much

more prevalent in the South, and what can be done to enhance accurate assessment in Italy
16A variant to this procedure is also considered by INVALSI, and assigns weight zero to all classes with a

probability value above 50%. Figure A3 in the Appendix shows results from this variant. In this case the
correlations with observed scores are still very high (92% and 43% for math and language, respectively).
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and elsewhere. It’s also worth asking what are the determinants of low performance of

students in the South, in light of the ongoing education policies in those areas (Objective 1

regions) eligible to receive EU Regional Development Funds and EU Social Funds (see, for

example Battistin and Meroni, 2013) and the positive trend in PISA scores of some regions.

We hope to answer these questions in future work.
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Table 1: Descriptive StatisticsTable 1: Descriptive statistics.

Math Language

Italy North/Centre South Italy North/Centre South

(1) (2) (3) (4) (5) (6)

A. Monitored institutions

Observed score -0.14 -0.20 -0.04 -0.10 -0.09 -0.11

(0.91) (0.74) (1.15) (0.92) (0.78) (1.13)

Presumed manipulators 0.04 0.01 0.09 0.03 0.01 0.07

(0.19) (0.11) (0.28) (0.18) (0.12) (0.26)

N 33,267 21,589 11,678 33,267 21,589 11,678

B. Monitored classes

Observed score -0.33 -0.30 -0.37 -0.27 -0.18 -0.42

(0.82) (0.66) (1.03) (0.86) (0.72) (1.03)

Presumed manipulators 0.02 0.01 0.04 0.02 0.01 0.03

(0.13) (0.08) (0.19) (0.12) (0.07) (0.18)

N 9,630 6,030 3,600 9,630 6,030 3,600

C. Unmonitored institutions

Observed score 0.04 -0.10 0.28 0.03 -0.01 0.09

(1.02) (0.80) (1.27) (1.02) (0.83) (1.27)

Presumed manipulators 0.07 0.02 0.16 0.06 0.03 0.12

(0.26) (0.15) (0.36) (0.24) (0.16) (0.33)

N 106,743 65,909 40,834 106,743 65,909 40,834

D. All institutions

Observed score -0.00 -0.12 0.21 -0.00 -0.03 0.05

(1.00) (0.79) (1.25) (1.00) (0.82) (1.24)

Presumed manipulators 0.07 0.02 0.14 0.06 0.02 0.11

(0.25) (0.14) (0.35) (0.23) (0.15) (0.32)

N 140,010 87,498 52,512 140,010 87,498 52,512

Note. This table shows descriptive statistics for a sample pooling second and fifth graders.
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Table 2: Monitoring Effects on Score ManipulationTable 2: Monitoring e↵ects on score manipulation.

Math Language

Italy North/Centre South Italy North/Centre South

(1) (2) (3) (4) (5) (6)

Monitor at institution (Zj) -0.024*** -0.008*** -0.051*** -0.021*** -0.010*** -0.039***

(0.002) (0.001) (0.006) (0.002) (0.002) (0.005)

Monitor in class (Dij) -0.081*** -0.029*** -0.163*** -0.070*** -0.036*** -0.124***

(0.008) (0.005) (0.018) (0.007) (0.005) (0.016)

N 139,996 87,491 52,505 140,003 87,493 52,510

Note. This table shows the e↵ect of monitors on score manipulation. Class-level e↵ects are 2SLS estimates

using the presence of institutional monitors as an instrument. Robust standard errors, clustered on institution,

are shown in parentheses. All regressions include year and grade fixed e↵ects and sampling strata controls

(grade enrollment at institution, region dummies and their interactions). * significant at 10%; ** significant at

5%; *** significant at 1%.

Table 3: Monitoring e↵ects on test scores.

Math Language

Italy North/Centre South Italy North/Centre South

(1) (2) (3) (4) (5) (6)

Monitor at institution (Zj) -0.179*** -0.118*** -0.289*** -0.158*** -0.103*** -0.256***

(0.012) (0.011) (0.027) (0.012) (0.012) (0.025)

Monitor in class (Dij) -0.609*** -0.416*** -0.919*** -0.538*** -0.365*** -0.816***

(0.041) (0.039) (0.084) (0.040) (0.040) (0.080)

N 140,010 87,498 52,512 140,010 87,498 52,512

Note. This table shows the e↵ect of monitors on test scores. Class-level e↵ects are 2SLS estimates using

the presence of institutional monitors as an instrument. Robust standard errors, clustered on institution, are

shown in parentheses. All regressions include year and grade fixed e↵ects and sampling strata controls (grade

enrollment at institution, region dummies and their interactions). * significant at 10%; ** significant at 5%;

*** significant at 1%.
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Table 4: Bounds on Scores from the Corrupt Sampling ModelTable 4: Bounds using the corrupt sampling model.

Math Language

North/Centre South North/Centre South

(1) (2) (3) (4)

A. Monitored institutions

Observed scores -0.20 -0.04 -0.09 -0.11

Naive [-2.73, -0.22] [-4.57, -0.05] [-3.73, -0.11] [-5.08, -0.19]

Corrupt sampling [-0.27, -0.22] [-0.84, -0.05] [-0.20, -0.11] [-0.86, -0.19]

Corrupt sampling with verification [-0.27, -0.22] [-0.81, -0.05] [-0.20, -0.11] [-0.84, -0.19]

B. Unmonitored institutions

Observed scores -0.10 0.28 -0.01 0.09

Naive [-3.14, -0.11] [-3.82, 0.29] [-4.42, -0.02] [-6.05, 0.08]

Corrupt sampling [-0.26, -0.11] [-1.24, 0.29] [-0.25, -0.02] [-1.52, 0.08]

Corrupt sampling with verification [-0.26, -0.11] [-1.22, 0.29] [-0.24, -0.02] [-1.51, 0.08]

C. All institutions

Observed scores -0.12 0.21 -0.03 0.05

Naive [-2.73, -0.22] [-3.82, -0.05] [-3.73, -0.11] [-5.08, -0.19]

Corrupt sampling [-0.26, -0.22] [-0.84, -0.05] [-0.20, -0.11] [-0.86, -0.19]

Corrupt sampling with verification [-0.26, -0.22] [-0.81, -0.05] [-0.20, -0.11] [-0.84, -0.19]

Note. This table shows bounds obtained by imposing the restrictions discussed in Section 4. Panel A refers to

monitored institutions. Panel B refers to unmonitored institutions. Panel C reports bounds constructed from

the intersection of bounds in the first two panels. Naive bounds are defined from Assumption 4. Bounds from

corrupt sampling are calculated under Assumptions 1-4, and follow from Horowitz and Manski (1995). Bounds

from corrupt sampling with verification are calculated under Assumptions 1-4, and follow from Dominitz and

Sherman (2006).
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Table 5: Bounds on Scores using the Measurement Model and Monotonicity RestrictionsTable 5: Bounds using the measurement model and monotonicity restrictions.

Math Language

North/Centre South North/Centre South

(1) (2) (3) (4)

A. Monitored institutions

Observed scores -0.20 -0.04 -0.09 -0.11

Non-di↵erential misclassification [-0.31, -0.23] [-1.03, -0.10] [-0.23, -0.12] [-1.02, -0.22]

Manipulation decreasing with true scores [-0.31, -0.26] [-1.03, -0.28] [-0.23, -0.15] [-1.02, -0.38]

B. Unmonitored institutions

Observed scores -0.10 0.28 -0.01 0.09

Non-di↵erential misclassification [-0.29, -0.11] [-1.45, 0.35] [-0.28, 0.00] [-1.71, 0.14]

Manipulation decreasing with true scores [-0.29, -0.18] [-1.45, -0.07] [-0.28, -0.07] [-1.71, -0.22]

C. All institutions

Observed scores -0.12 0.21 -0.03 0.05

Non-di↵erential misclassification [-0.29, -0.23] [-1.03, -0.10] [-0.23, -0.12] [-1.02, -0.22]

Manipulation decreasing with true scores [-0.29, -0.26] [-1.03, -0.28] [-0.23, -0.15] [-1.02, -0.38]

Note. This table shows bounds obtained by imposing the restrictions discussed in Section 5. Panel A refers

to monitored institutions. Panel B refers to unmonitored institutions. Panel C reports bounds constructed

from the intersection of bounds in the first two panels. Bounds from non-di↵erential misclassification are

calculated under Assumptions 1-5. Bounds assuming manipulation decreasing with true scores are calculated

under Assumptions 1-6.
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Table 6: Summary of Main Results: Bounds on Scores and Manipulation Rates
Table 6: Summary of Main Results: Bounds on Scores and Manipulation Rates.

Math Language

North/Centre South North/Centre South

(1) (2) (3) (4)

A. All institutions

Observed scores -0.12 0.21 -0.03 0.05

Scores disclosed by INVALSI -0.15 -0.02 -0.06 -0.13

True scores [-0.26, -0.26] [-0.81, -0.28] [-0.20, -0.15] [-0.84, -0.38]

B. Monitored institutions

Presumed manipulators 0.01 0.09 0.01 0.07

True manipulators [0.01, 0.01] [0.05, 0.11] [0.01, 0.02] [0.04, 0.09]

E↵ect of manipulation on scores [5.18, 7.65] [4.24, 8.52] [4.22, 7.80] [4.33, 9.03]

C. Unmonitored institutions

Presumed manipulators 0.02 0.16 0.03 0.12

True manipulators [0.02, 0.03] [0.12, 0.26] [0.02, 0.04] [0.10, 0.20]

E↵ect of manipulation on scores [3.41, 6.37] [2.90, 6.64] [2.95, 7.31] [3.12, 8.95]

Note. This table shows bounds obtained by imposing Assumptions 1-6. Panel A presents bounds on scores,

which are derived as intersection between bounds in the last row of Table 4 and Table 5. The table also re-

ports scores calculated from raw data (observed scores) and scores adjusted using the procedure employed by

INVALSI (scores disclosed by INVALSI). Panel B and Panel C refer to monitored and unmonitored institu-

tions, respectively. The latter two panels report the percentage of true manipulators, as well as the e↵ect of

manipulation on scores.
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Figure 1: Observed Scores, Adjusted Scores and Manipulation Rates for Math
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Figure 2: Observed Scores, Adjusted Scores and Manipulation Rates for Language
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Figure 3: Observed and Adjusted Scores against School and Family Inputs
Figure 1: Observed and adjusted scores against SES.

Note. The figure plots regional average math scores against per-capita income (top panel), an index of depri-

vation (central panel) and the pupil to teacher ratio (bottom panel). Points plotted with a “x” refer to observed

scores, points plotted with a “•” refer to adjusted scores. Labeled in the figure are regions with the lowest

(Veneto) and highest (Sicily) incidence of manipulation. Data on per-capita income are obtained from Istat,

Conti economici regionali 2012. Data on the deprivation index are from Istat, Indagine sul reddito e condizioni

di vita (Eu-Silc) 2012. Data on the pupil to teacher ratio are from Ministry of Education, La scuola statale -

sintesi dei dati 2009-2010.
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Appendix
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Figure A1: Adjusted Scores (alternative method)
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Figure A2: Adjusted Scores Using the INVALSI Methodology
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Figure A3: Scores Adjusted Using the INVALSI Methodology (alternative method)
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