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EQUATIONS MODELS

Gerd Ronning*

Universitat Konstanz
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Abstract

An adequate stochastic model for shares as dependent variables is provided

by the Dirichlet distribution. The paper considers two different parametriza-

tions which lead to linear and nonlinear Dirichlet share equations. Using an

inequality for the trigamma function the global concavity of the likelihood func-

tion for the nonlinear case is shown. The same inequality is employed in proving

positive definiteness of the information matrix for the linear case. Suitability of

the Dirichlet specification in econometric demand systems (such as AIDS and

Translog) is discussed.

Keywords: Dirichlet distribution, demand systems, trigamma function.

1 Introduction

Descriptive analysis by means of shares or percentages is a frequent statistical task

in applied research. However, adequate stochastic specifications have not received

•Research is related to project A2 of SFB 178.



much attention. The state of the art is described very extensively by Aitchison

(1982). Econometricians in particular have for a long time analysed budget shares

of households and cost shares of firms by means of models which are derived from

microeconomic theory and which result in systems of demand equations. See, for

example, Deaton and Muellbauer (1980). Almost every author has assumed that

shares are normally distributed which does not take into account that shares can

vary only within the interval [0,1]. The only noteworthy exception is Woodland

(1979) who employs the Dirichlet distribution to a set of linear share equations.

In this paper we compare Woodland's linear specification with a nonlinear spec-

ification which appears in demand systems such as the translog approach. For the

latter approach the simple inequality involving the trigamma function ip\ *

i\{x) < ail>i(ax) , x > 0, 0 < a < 1 ( 1 - 1 )

(see Ronning 1986) will be iised to show that the likelihood function is globally

concave. This generalizes a result of Ronning (1989) where numerical aspects of

maximum likelihood estimation are discussed, as well. We also use inequality (1-

1) to show that for the linear case for which the Hessian matrix depends on the

observed shares the information matrix is positive definite. This can be seen as an

indication of global identification. See Rothenberg (1971).

The paper is organized as follows: Section 2 considers linear and nonlinear spec-

ifications of Dirichlet share equations models. In section 3.1 we prove global con-

cavity for the nonlinear specification by an approach which partly makes use of

Dhrymes's (1978) proof for the multinomial logistic model. An alternative (direct)

proof is given in appendix A. Section 3.2 considers the linear case which is much

more cumbersome to deal with. A rather huge formal effort is necessary in order

to prove that the information matrix for this model is positive definite. Therefore

most details are treated in three appendices (B - D). Section 4 adds some remarks

'The trigamma function is the second derivative of the log of the gamma function. See

Abramovvitz and Stegun (1965, chapter 6).



about reasonableness and feasibility of the two approaches with special emphasis on

estimation of demand systems.

2 Dirichlet Share Equations Models

2.1 Econometric Share Equations

For illustrative purpose let us consider the case of budget shares in econometric

demand analysis. Let su be the share of budget (disposable income) in month t

which is spent for good /. The shares satisfy 0 < su < l,i = 1,..., fc, and J2isit = 1

for all t. Then a nonlinear (deterministic) share equation as considered in this

paper is given by

Sit = -=T { 1)

and a linear (deterministic) share equation is given by

su = ai + 0ixt (2 - 2)

where a,- and /?,• denote unknown parameters and xt is the value of an explanatory

variable for observation t2. For the collection of all k goods we call (2-1) and (2-

2), respectively, a demand system. (2-1) has the typical form of a demand system

derived from flexible functional forms (Christensen, Jorgenson and Lau 1975 p.370)

and (2-2) depicts the Almost Ideal Demand System by Deaton and Muellbauer (1980

p. 313)3. In both cases the explanatory variables are prices of all k goods and the

income of household in logarithmic form. Note that it is implicitly assumed that

either the xt or the parameters (or both) are such that the su of (2-1) and (2-2)

satisfy the share restrictions4. We also remark that (2-2) is derived from (2-1) by
2A more general specification involving two and more explanatory variables is straightforward.

See the discussion in section 3.
3We consider the approximate version which is mostly used in applied work. See Deaton and

Muellbauer (1980, p. 316).
4This problem could be avoided by using a logistic specification which however so far has not

become popular in econometric demand analysis. See Considine and Mount (1984).
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the imposition of the following parameter constraints:-
k k

> = 0 . (2-3)

2.2 Stochastic Share Equations

We assume that for each t the observed shares for the k categories are generated by

a Dirichlet distribution with parameters 9u. If we denote the observed shares by yu

then the joint density function is given by

with du > 0 and yu > 0 for all i, J2j=i Vjt = 1 and T denotes the gamma function.

We now let the parameters 8a depend linearly on the explanatory variable xt:

Ou = on + PiXt (2 - 5)

where again it is assumed that 6u > 0. Then the expected value of the stochastic

share Yu is given by

(see, for example, Johnson and Kotz 1972 p.233), that is, the expected value of

Yu has the form of the (deterministic) nonlinear share equation in (2-1). Following

Woodland (1979) a linear specification can be derived from

Ott = c(ai + l3ixt) c > 0 ( 2 - 7 )

together with the parameter restrictions in (2-3) which imply that the additional

parameter c satisfies c = J20j. Therefore we have under (2-3) and (2-7)

E(YU) = en + 0ixt . ( 2 - 8 )

Note that the use of (2-7) (instead of (2-5)) implies the flexible scale factor 1/(1 + c)

(instead of 1/2) in the covariance matrix of the random variables Yu for a certain

i5. In(2-8) we implicitly assume that 0 < a,- + Q[Xt < 1 holds.
5The covariance matrix of the Dirichlet. distribution is given, for example, in Johnson and Kotz

(1972 p.233).
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3 Global Concavity of Likelihood Function and Global

Identification

It will turn out in this section that the analysis of the nonlinear case is much more

straightforward. We therefore consider this case first and show that the likelihood

function for this model is globally concave since the Hessian matrix is negative

definite. This also implies that the information matrix has full rank. For the linear

case such an analysis of the likelihood function is not possible since the Hessian

matrix depends on the outcomes of the dependent variables. However, we can show

that the information matrix for this model is positive definite, too.

Since the (continuous) Dirichlet distribution and the (discrete) multinomial dis-

tribution are closely related it is not surprising that the matrix of second-order

partial derivatives for the nonlinear share equations model is similar in structure to

the multinomial logistic case. We therefore in our proof make use of a result which

has been obtained by Dhrymes (1978) in connection with the multinomial logistic

model. A second proof which is self-contained is given in appendix A.

In section 3.2 we then show that the information matrix for the linear model is

positive definite. In style our proof resembles that of Deprins and Simar (1985) for

linear models with gamma disturbances although another result from the trigamma

function (our inequality (1-1)) is applied and the dimension of the parameter space

makes the analysis more complicated.6 Rothenberg (1971) has shown that a positive

definite information matrix guarantees global identification of the parameters which

is therefore determined for both models.

sDeprins and Simar consider only one equation whereas we have to consider k — 1 equations.



3.1 The Nonlinear Case: Global Concavity

In this subsection we consider the nonlinear Dirichlet share equations. Starting

from density function (2-4) and using (2-5) under random sampling the loglikelihood

function is given by

\og{Y{st)) (3-1)

where Sjt is given by (2-1) and St — 5Zj=i sjt- We show in appendix A that the

matrix of second-order partial derivatives (Hessian matrix) with respect to the pa-

rameter vector ( a 1 ? . . .,atk,Pi, • • .,Pk) is given by

(3-2)
t=i

where <g> denotes the Kronecker product , and xt = (l,xt)'. The (k X k) matrix Bt

has the following form:

Bt = Dt-qtu' ( 3 - 3 )

where Dt is a diagonal matrix with diagonal elements du — ip\{oti + PiXt), i is a

&—dimensional vector of ones and qt = ipi(Ylaj + xt 12Pj)- Note that the matrix

(3-2) does not depend on the observed values yu.

The Hessian matrix (3-2) is similar in structure to the one for the multinomial

logistic model. Dhrymes (1978 p. 350) proved global concavity for that model under

the assumption that the regressor matrix X has full column rank7. He showed that

a sufficient condition for negative definiteness of that matrix is provided by showing

that Bt is positive definite. Therefore we have to prove

Lemma 1 Let ai + PiXt > 0 for i = 1 , . . . ,k. Then Bt in (3-3) is a positive definite

matrix.
7Dhrymes considers the case of an arbitrary number of, say, r explanatory variables. In our no-

tation each row of the regressor matrix A" would consist of the row vector xt = (1, x\t, £2t,... ,.Xrt).

This extended vector xt used in (3-2) would give the Hessian matrix for the case of r explanatory

variables instead of just, one (beside the constant term).
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Proof:8 First note that from inequality (1-1) it follows that

i'd.St) < $-iri>i(8tt) (3-4)
Jt

holds for all i. We now consider the j—th principal submatrix of Bt denoted by Bjt-

For this matrix we obtain Bjt = Djt — qtEj where Djt contains the first j diagonal

elements of Dt and Ej is a (j X j) matrix of ones. Therefore the j—th principal

minor of Bt satisfies

> o
where the first line follows from, e.g., Gray bill (1983, theorem 8.4.3), the second

line uses inequality (3-4) and the third line is based on the property ipi(z) > 0 for

all z > 0 (Abramowitz and Stegun 1965, (6.4.10)) and the nonnegativity of the

term in parentheses. Since the inequality holds for all j the matrix Bt is positive

definite. •

Theorem 1 Assume that there are at least two linearly independent vectors among

the vectors x\,x2,. •. ,xn and that a, + ftixt > 0 holds for i = l,...,k and t =

l,...,k. Then the Hessian matrix (3-2) is negative definite and therefore the likeli-

hood function for the nonlinear Dirichlet share equations model is globally concave.

Proof: See Dhrymes (1978 p. 350) where lemma 1 from this paper has to be

substituted in order to prove that the matrix Bt is positive definite. Note that for

the general case of r explanatory variables the only modification in the theorem

would be that at least r + 1 linear independent vectors xt should exist. •

Finally we should mention that in appendix A (subsection A.2) a different for-

mulation of the Hessian matrix (3-2) is used to prove theorem 1 directly.
8The proof is almost identical to the one used in Ronning (1989) where no explanatory variables

were considered, that is all /?, were set equal to zero.



3.2 The Linear Case: Positive Definiteness of Information Matrix

The loglikelihood function for the linear case is obtained from density function (2-4)

with parameters 6u given by (2-7) where aj and Pj satisfy restrictions (2-3):

L = nlog(T(c)) + J2i2((^t-l)log(yjt)-\og(T{ejt))) (3-5)
4=1 j = l

n n

= nlog(r(c)) + cJ2^2(aJ + 0jXt)log(yjt/ykt) +
4 = 1 j<k 4=1

4=1 j = l 4 = 1 j<k

-f ; iog(r(c( l-J^aj-

From results in appendix B the following form of the information matrix Cl with

respect to the parameters «i,/3i,...,otk-\,Pk-\,c is obtained:

where fin has 2(& — 1) rows and columns, respectively, and Q22 is a scalar which

we will henceforth denote by w. We then have for the different submatrices of fi:9

fin = c2 ((X ® h-^'iV + (Wo ® u')) (X ® h-i)

where Ir denotes the (7- X r) identity matrix. Since V and WQ are positive diag-

onal matrices, the submatrix fin is positive definite if X has full column rank.

Furthermore we have

fiia = c ( X ® h - i ) ' ( V u - (WQ 0 /*_! )(d ® t ) ) = fi21

Finally the scalar term $7-22 = ^ is given by

u = -{n i/-'i(c) - u'Vu - d'Wod) (3 - 6)
9The exact definition of the vectors «, d and the matrices X, V, Wo is given in appendix B. They

are not repeated here in order to save space and not to obscure the sketch of the proof.



Since fin is positive definite we must only show that the determinant of fi satisfies:

det.(f)) > 0 ( 3 - 7 )

For the determinant of Q we can write:

1
det(fi) = <^det(fin fii2^2i)

u>

and the matrix in brackets can be written as

1 2 - ~ • / , - .
11 ^ 12 21 V- -• - - 1

with

B = Z - -hti . (3-9)
CO

w h e r e Z = V + (WQ ® u ' ) a n d h = V u - (Wo ® I k - i )(d ® i ) .

Please note that
1 t

B = Z H rrTTZTjhh (3 - 10)

where a well-known matrix inversion lemma has been applied (see, e.g., Rao 1973

p. 33).

We now use the following two lemmas which are proved in appendices C and D,

respectively.

Lemma 2 The expression u in (3-6) satisfies the inequality

w > 0 (3 - 11)

provided 0 < ctj + /3jXt < 1 holds for all j and t.

Lemma 3 The following inequality holds provided 0 < <Xj + /3jXt < 1 is valid for all

j and t:

v - h'Z-1 h > 0 ( 3 - 1 2 )



We know that Z is the sum of the positive definite matrix V and the positive

semidefinite matrix (WQ ® u'). Therefore Z~x is positive definite. From lemma 2

we see that the term (l/(o; - h'Z~1h)hh' is positive semidefinite. Therefore B~x in

(3-10) is positive definite. Then B and the matrix in (3-8) are positive definite, too,

which together with lemma 2 implies (3-7). This completes the proof of

Theorem 2 Assume that there are at least two linearly independent vectors among

the vectors xi,x2,... ,xn and that 0 < a,- + P;xt < 1 holds for i = l,...,k and

t = 1,...,&. Then the information matrix (3-6) is positive definite.

4 Comments

4.1 The Applicability of the Dirichlet Distribution

Woodland (1979 p. 363) starts his study by considering a system of nonlinear

deterministic share equations as given by (2-1) and points out: "This formulation of

the deterministic shares is particularly convenient in the motivation for the Dirichlet

distribution introduced below. Moreover it is a very general formulation." However,

both in his simulation study and in his three empirical examples he uses linear share

equations from type (2-2)10. Our analysis of the likelihood function for both models

reveals that indeed the nonlinear case fits better into the stochastic specification

involving the Dirichlet distribution.

The fact, that the stochastic specification of error terms in share equations is

more than merely "adding an additive error term", is nicely illustrated for the

nonlinear specification: For the deterministic share equations (2-1) parameters a,-

and Pi are not identified, that is the parameters are only unique up to a scale

factor. However our analysis in section 3.1 shows that in the nonlinear Dirichlet
10This can be motivated by the underlying economic theory which assumes that the denominator

in (2-2) equals 1.
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share equations model as described in section 2.2 these parameters are identified.

This is due to the fact that not only the expected values, but also the covariance

matrix of the shares for this model are determined by these parameters.

It is intuitively clear that a correct stochastic specification of share equations

models must take account of heteroskedasticity11. Moreover the (contemporaneous)

correlation between shares should be recognized. As to my opinion the important

message from Woodland's (1979) study is that an estimator which takes care of both

phenomena will be satisfactory: Firstly, for the linear two-equation model (which

due to adding-up reduces to one equation and therefore does not need to consider

correlation) it is shown that GLS estimation is only marginally less efficient than

ML estimation12. Estimation of a linear three-equation model is then illustrated

by means of three examples with relatively large sample size13. In the first two

examples the by now common procedure of iterated 3SLS produces almost identical

estimates in comparison with ML estimation of the Dirichlet share specification. The

third example uses estimation of a truncated normal distribution as the alternative

procedure. Here the estimates differ quite a lot from ML estimates of the Dirichlet

specification but standard errors for both procedures are large. This last result might

be seen as an indication of misspecification and it would be interesting to compare

these results with those from a nonlinear specification of the "flexible functional

form" type as given by (2-1).

A main disadvantage of the Dirichlet distribution is that all correlations between

shares are negative. More seriously, these nonzero correlations do not necessarily

have any economic meaning: If expenditures with regard to k different goods were

independently gamma distributed with identical scale parameter and second pa-

rameter $i, then the budget, shares axe Dirichlet distributed with parameters #,-.

See Johnson and Kotz (1972 p. 231-233). This reveals two inconsistencies of the

11 This is best demonstrated by a graphical representation of (2-1) or (2-2).
12See Woodland (19T9), in particular table 1.
13Example 1: 41 observations, example 2: 61 observations, example 3: 316 observations.
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Dirichlet distribution approach: (i) Expenditures for some goods may very well be

correlated with each other according to substitutional or complementary relations of

the corresponding goods, (ii) The specification of gamma distributed expenditures

does not take into account, the budget constraint as a (finite) upper bound of the

random variable. Needless to say that these points should not be taken as arguments

in favour of the purely heuristic specification of normally distributed shares.

4.2 Competing Approaches

Econometric analysis of share equaiions such as (2-1) or (2-2) still has to consider

another problem which is almost never discussed: There is no guarantee that the

estimated shares lie within the interval [0,1]. Estimates of a; and /3j which imply

estimated shares outside the unit interval may occur even under the Dirichlet spec-

ification. Woodland (1979, section 6) demonstrates that this event has very small

probability if the economic model is correctly specified. An attractive alternative

which does not have this defect is proposed by Considine and Mount (1984)14: They

start from the stochastic share equations:

Yit - _fc
 P a ' '-j: ——- (4 - 1)

where the e's are normally distributed random variables. Clearly, for this model

estimated shares will always lie within the unit interval15. Moreover the e's could

follow any distribution. From an econometric point of view a disadvantage is that

demand-theoretic restrictions vary over the sample points. This could however be

as well seen as an advantage in checking whether the restrictions (such as concavity)

are satisfied for all points16.
14I am grateful to Timothy J. Considine for providing me with some subsequent work not yet

published.
15Note that Aitchison (1982) has already proposed such a share model for the analysis of budget

data. However he did not discuss its economic aspects.
16Considine raises this argument in an unpublished paper.
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The various difficulties arising in the econometric analysis of share equations

also provoke discussion whether econometricians should stick to share equations at

all. From a statistical point of view it would be much easier to model the quantities

demanded. However, such an approach does not necessarily lead to an simpler

solution if economic considerations are recognized. For example, Chipman and

Tian (1987) derive a. generalized form of the "linear expenditure system" from a

stochastic utility function. Since utility for this approach is assumed to be positive,

the random term has to follow a distribution which is bounded from below. Chipman

and Tian use the three-parameter lognormal distribution. The specification of a

stochastic utility function can also be used in connection with share equations: Lee

and Pitt (1986) illustrate this for the case of the translog demand system. In their

model random components may follow any distribution. Therefore it is similar in

its structure to the logistic approach of Considine and Mount (1984) although the

primary concern of this model is the phenomenon of "zero consumption" for certain

goods.

4.3 Concluding Remarks

Econometric analysis of share equations needs special treatment of stochastic speci-

fications which are frequently not taken into account in an appropriate manner. The

Dirichlet distribution offers a formally acceptable model for shares and its numeri-

cal treatment seems to be no longer of major concern1'. This paper shows that the

nonlinear specification (2-1) is "more natural'' than the linear approach. However

the rather restrictive covariance structure limits its applicability in both cases. It

seems that so far a satisfactory specification has not yet been found.

' ' S e e the discussion in Ronning (1989).
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A Proof of (3-2) and Alternative Proof of Theorem 1

A.I Proof of (3-2)

We consider first and second derivatives of the loglikelihood function (3-1) with re-

spect to the parameters «,• and /?,-, i = 1, . . . , k. For the first-order partial derivatives

we obtain:

dai = '
dL _ ,
dPi '

where ip denotes the digamma

given by

d2L
(drxif

d2h
daidcxj

d2L

(dpi)2

d2L
dPidp,

d2L
da;dpj

t

function18.

t

t

t

— /_, (^'l

t

^(Qit) + log(yit)) (A-l)

y{8it) + log(y.;t)) xt

The second-order partial derivatives are

{Si) MOu)) (A-2)

(S ) tb (6- )) x2

< n >2 - ± -

8The digamma function ti>{x) is the first derivative of log(F(x)).
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We now define the following expressions:

Pit =

'It = 4'ASt

xt =

X =

\ x

x2

L = (k - 1 elements)

P, =

Qo =

Pi2

q-2

Pin )

qn )

15



P =

Pk)

Q =

Qo Qo . . . Qo

Qo Qo . . . Qo

\ Qo Qo Qo Qo J

= Qo® u'

Dt =

Pit

P7t

\ Pkt )

Then the matrix // of second-order partial derivatives (Hessian matrix) can be

written as follows:

/ / = - xx>

(=1

where the (k x k) matrix Bt has the following form:

Bt = D t - qt Li

The proof of theorem 1 in the text is based on these two formulae.

A.2 Alternative Proof of Theorem 1

(A - 3)

( A - 4 )

An alternative formulation of the Hessian matrix // is given by

= -(X0lk)'(P-Q)(X®Ik) ( A - 5 )

16



If we assume that the matrix A" has full column rank19, positive definiteness of P — Q

is sufficient for the negative definiteness of / / . We will consider (P — Q)-1 and show

that this matrix is postive definite implying that P — Q has the same property.

1 /2

We define the (nk x A;) matrix F by F = Wo ® i. Then we can write

P-Q = P - FF' (A - 6)

and by a well-known matrix inversion lemma, (see, for example, Rao 1973, p. 33.)

( P - Q ) - 1 = P"1 + P~^ F [i - F1 P~l F\~l F'P-1 ( A - 7 )

Since / - F'P~1F = I - Qo X^=1 P~l is diagonal, it would be positive definite if all

diagonal elements were positive. For the t-th diagonal element we have (suppressing

the index t)

1 f i _ n j u PJ - <i n j * i Pi - g x \ . m PJ • • • - g n ^ f c ?, , .

We now use inequality (3-4) of section 3.1 which in the notation of this appendix

can be written as follows:
Q.

q < -^pi for each i (A - 9)

Applying this inequality to the right hand side numerator of (A-8) and noticing that

S = Ylj @j w e n n d that all diagonal elements of the matrix /— F'P~1F are positive

which shows that (P — Q)~l is positive definite. It then follows that H in (A-5) is

negative definite. •

We consider the case of only one explanatory variable in the text, that is our matrix X has

only two columns. However, the proof applies to an arbitrary number of columns.

17



B Derivation of the Hessian Matrix for the Linear

Case

We consider first and second derivatives of the loglikelihood function (3-6) with

respect to the parameters a,, /?,-, i = 1 , . . . , k — 1, and c. For the first-order partial

derivatives we obtain20:

J<k

= c £ I log — - V>(c(fti + PiXt))
ykl

log(?yfc() -(l-TTctj- xt Y.pj

T h e s e c o n d - o r d e r p a r t i a l d e r i v a t i v e s w i t h r e s p e c t t o a,- a n d /?,-, i = 1, . . . , & — 1, a r e

given by

l<k f.<k

d2L
5

92L n - ^ I • • ' ^ ) ) • •'• ' - ' •"• V - . V ^

d2L

E

denotes the digamma function. See Appendix A.
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Note that the three cross derivatives labelled i -£ j do not depend on i or j . Moreover

we have

= E (los f- - *w°i + a**)) + i w - E «i -
t \ JJkt j<k

-c E(a ( + PixMMai + /3,T()) (B-l)

+cE

i*(c(i - E «i - ** E ^)
j<k j<k

-c E ( a ; + PiXt)iJ>i(c(ai + PiXt))xt (B-2)
4

E f
\ 3<k

These two expressions have the following two special characteristics in common: the

first term depends on the outcome of the ra.ndom variables yu and is proportional

to the gradients JJ- and jjf-, respectively. Since it can be verified21 that

holds, the three first terms vanish if the expected value of the two cross derivatives

in (B-2) and (B-3) are considered. Finally we have

T7T—j = nm(c) - E E ( (a ' ' + P-iXt )2V'i (c(a'i
[ >' t J<k

«i - x> E A-)Vi(cd

Since two elements of the Hessian matrix depend on the yu, the loglikelihood func-

tion cannot be globally concave. We therefore consider the information matrix, that

is the negative of the expected value of the Hessian matrix. We want to show that

'For the special case of A; = 2 see Johnson and Kotz (1970 p. 52)
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this matrix is positive definite. A convenient: formulation of this matrix makes use

of the following definitions:

A

Uti

dt

wt

- 12j<k

- 12j<k

- ^

= iti(c(

ih
3 i X l

1 _

^ h

k u

A

>ixt))

tj

- Bxt )) =

e

( n x 1)

14/

(n x 1) (n x

((Jfc - l ) n X 1) ((k - 1) x 1)

d = e-

X =

e = e

1 x

20



V = v2

Vni vnj

Wo =
tt'2

,w = WQ ® it!

We denote the information matrix by Cl, that is ft = —E(H) where H is the Hessian

matrix. We shall illustrate the structure of the information matrix for the case k =

3, that is we have parameters ai,/3i,a'2,/?2>c which have to be estimated.

01

a2

02

C

<*1

C2 E4 -41

+ C2E4^4

+c2 E« xtwt

c2 E4 wt

c2 Zt xtwt

-cl2tdtwt

Pi

+c212txtwt

c2 Et xtvn

-cJ2txtdtWt

« 2

c2Zt

+c2E

+c212t

- ^ E 4

^ 4

Vt2

?tVt2

xtwt

dtwt

P2

c2 E4 xtwt

C2 E 4 Xt'vt2

+c2 Zt Wt

C2 12t XlVt2

+c2 E4 x2wt

c ^

—c

+ E4

c

—̂

C4-42.42

E i artdtiwt

E3<k^2jVtj

21



This matrix can be written in a more compact form as follows:

c2X'(V1 + W0)X

c2X'W0X

-cd'W0X

c2X'W0X

cu!2V2X

-cd'W0X

cX'Wd

cX'V2u2

-cX'Wod

—ni>x(c)

We obtain the following form of the information matrix ft with respect to the pa-

rameters Qi,/?i,..., ajt_i,/?fc_i,c:

ft =
ft,, ft11 " 1 2

^22

where ftn has 2(k — 1) rows and columns, respectively, and O22 is a scalar which

we will henceforth denote by w. We then have for the different submatrices of Q.:

fin = c2 ((A" © 4-j)'(V + (WQ ® u')) (X ® /fc_x)

where Ir denotes the (r x ?•) identity matrix. Since V and WQ are positive diag-

onal matrices, the submatrix fin is positive definite if X has full column rank.

Furthermore we have

fii2 = c(X ® h-X)'(Vu - (Wo ® h-i)(d® t)) = fi21

Finally the scalar term Q22 = w is given by

u; = -(n 0i(c) - u'Vu - d'W0d)

22



C Proof of Lemma 2

We consider the expression

n

= E
/.= i

n

= E

c) -u'Vn-
fc-i

"A— i

d'Wod

ufjvtj - dfwt

fc-i

71 fc-1

=• y y utj (tpi(c) — uijVtj) -

4 = 1 j = l 4 = 1

Please note that utj and dt are shares, that is, 0 < utj < 1 and 0 < dt < 1 holds for

each j and 2. Since vtj = i'i(c-^tj) and wt = 4'i(cdt) (see appendix B), we obtain

from the basic inequality (1-1) of section 1.

ib](c) < utjVtj for all 2 and j

and

•01 (c) < dtwt for all 2

This implies that u > 0. •
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D Proof of Lemma 3

We consider the expression

u-h'Z-t-h = -ni>l(c) + u'Vu +d'Wod (D-l)

- [Vu - (Wo ® I)(d ® i)]' (V + W)-1 [Vu - (Wo ® I)(d ® L)]

Since

d = e - (I ® i)'u

and
(d®i) = (e ® t) - ((I ® i)'u ® 0

= € — (I ® u')u

(see Appendix B) we can write for (D-l):

uj-tiZ~xh = -n4'i(c) + u'Vu + e'Woe (D-2)

+ ((I® /,)'«)' Wo ((I ® i)'u) - 2 ((/ ® L)'U)' Woe

- u'V(V + WTlVu - c'(W0 ® I)(V + W)-\W0 ® I)e

- u'(I ® u')(W0 ® I)(V + W)-\Wo ® /)(/ ® u')u

+ 2e'(WQ ® I)(V + W)-\W0 ® /)(/ ® u')u

- 2u'V(V + W)~HW0 ® I)(I ® u')u

u'l'H + u'( i ® i)wo(i ® L)'U - u'v(v

- u'W(V + W)~xWu - 2u'V(V + W)~lWu-

- nij^(c) + e'WQf. - c'(Wo ®

- 2«'(7 © t)WQe + 2u'W(V

Since

u'Vu = u'V{ V + W)-1 ( V + W)Vu

= u' V (( V + W) ~] V u + u' V (V + W) ~a W u

u'Wu = u'\V( V 4 W)-1 Wu + u'W(V + W)~lVu

24



and

(I®r)W0(I®tY = (W0®u') = W

(lQi.)Woe = Woe® i = (W0®I)e

we obtain from (D-2)

u - tiZ~xh = u'V(V 4 W)~xWu 4- u'V{V + WyH

Since

+ e'Woe - e'(W0

- 2u'(I ® i)Woe + 2u'(I ® i)Woe

= - nih(c) 4 e'WQe - e'(W0

e'('Wo ® /)(V 4

1 (Wo

(k - 1)2
1

(k-D2

1
'k-l€ '

V)-l(W0®I)e-e'WQe

+ W)~1We-c'Wej

+ W)~lWe - e'(V + W)(V

+ W)~1We

(D-3)

and

with $ = ipi(c)In we finally obtain from (D-3)

4 • r - f ' V f V 4 Mr
n* — 1 /„,

(D-4)

Application of the matrix inversion lemma (see, e.g., Rao 1973 p. 33) gives

(V + W)-1 = [V 4 (H'o7 ©

./=!

- 1

(wll2®iW-x

25



with

Note that

fc-i

(w0
11/2^.W-in4/'/2

v - 1 ( w Wo E Vf1 =C-I
i=i

(W0C-l)®u'

fc-i
H'oC-1 =

where we have exploited the diagonal structure of Wo and Vi,i = l , . . . , f t — 1.

Therefore we can write

W = W - (Wo
1/2 ® i)C-l(W0

1/2 ® t)'V

= W - (T'70
1/2 ® /,)C'-1T'F0(E Vf1)^'2 ®

j=i

= (w0
l/2 ® o [/ - c - 1 (c -1)] (w0

1/2 ® o'

t)(W0
1/2 ® t)'

Therefore our expression under consideration reduces further from (D-4) to

= -e'Ve (D-5)

We see from equation (D-5) that our expression would be positive if all diagonal

elements of the matrix
fc-i "--1

' cr1 + E *r
. 7 = 1

would be negative. But. this can be shown as follows:22 If we write ib instead of ip\(c)

and denote the t-th diagonal element of li'u by w and the 2-th diagonal element of

22A similar procedure wn.s used in section A.'2 of appendix A for the proof of theorem 1.
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Vj by Vj, then we have for each diagonal element of the matrix

I l l 1
- 4 — + — 4 . . . 4
w v1 v2 vk_

/ Tik— l ,.,. _i_ .. rr , , . i .... TT .... i i „.. n «.. \
, / 117 = 1 ° J T "• l l j i l '-'Ji> - -J- i £ —

- i ^ - w n.7-

(d 4 Mi + »2 4 . . . 4- «fc-i - 1) w Tlj vj

Yi + ri + ri + u

= 0

since iti 4- u2 + . . . 4- uk-\ 4- rf = 1 for each 2 (see appendix B). Again we have applied

inequality (1-1) which in the notation of this appendix is given by i>\(c) < dtwt and

V>i(c) < utjVtj for all t and j . This completes the proof that u — h'Z~lh > 0. •
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